1
|
Halabian R, Jahangiri A, Sedighian H, Behzadi E, Fooladi AAI. Staphylococcal enterotoxin B as DNA vaccine against breast cancer in a murine model. Int Microbiol 2023; 26:939-949. [PMID: 36991248 PMCID: PMC10057679 DOI: 10.1007/s10123-023-00348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
Recently, many efforts have been made to treat cancer using recombinant bacterial toxins and this strategy has been used in clinical trials of various cancers. Therapeutic DNA cancer vaccines are now considered as a promising strategy to activate the immune system against cancer. Cancer vaccines could induce specific and long-lasting immune responses against tumors. This study aimed to evaluate the antitumor potency of the SEB DNA vaccine as a new antitumor candidate against breast tumors in vivo. To determine the effect of the SEB construct on inhibiting tumor cell growth in vivo, the synthetic SEB gene, subsequent codon optimization, and embedding the cleavage sites were sub-cloned to an expression vector. Then, SEB construct, SEB, and PBS were injected into the mice. After being vaccinated, 4T1 cancer cells were injected subcutaneously into the right flank of mice. Then, the cytokine levels of IL-4 and IFN-γ were estimated by the ELISA method to evaluate the antitumor activity. The spleen lymphocyte proliferation, tumor size, and survival time were assessed. The concentration of IFN-γ in the SEB-Vac group showed a significant increase compared to other groups. The production of IL-4 in the group that received the DNA vaccine did not change significantly compared to the control group. The lymphocyte proliferation increased significantly in the mice group that received SEB construct than PBS control group (p < 0.001). While there was a meaningful decrease in tumor size (p < 0.001), a significant increase in tumor tissue necrosis (p < 0.01) and also in survival time of the animal model receiving the recombinant construct was observed. The designed SEB gene construct can be a new model vaccine for breast cancer because it effectively induces necrosis and produces specific immune responses. This structure does not hurt normal cells and is a safer treatment than chemotherapy and radiation therapy. Its slow and long-term release gently stimulates the immune system and cellular memory. It could be applied as a new model for inducing apoptosis and antitumor immunity to treat cancer.
Collapse
Affiliation(s)
- Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wang H, Lin S, Feng L, Huang B, Lu X, Yang Z, Jiang Z, Li Y, Zhang X, Wang M, Wang B, Kong L, Pan Q, Bai S, Li Y, Yang Y, Lee WYW, Currie PD, Lin C, Jiang Y, Chen J, Tortorella MD, Li H, Li G. Low-Dose Staphylococcal Enterotoxin C2 Mutant Maintains Bone Homeostasis via Regulating Crosstalk between Bone Formation and Host T-Cell Effector Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300989. [PMID: 37552005 PMCID: PMC10558680 DOI: 10.1002/advs.202300989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/22/2023] [Indexed: 08/09/2023]
Abstract
Studies in recent years have highlighted an elaborate crosstalk between T cells and bone cells, suggesting that T cells may be alternative therapeutic targets for the maintenance of bone homeostasis. Here, it is reported that systemic administration of low-dose staphylococcal enterotoxin C2 (SEC2) 2M-118, a form of mutant superantigen, dramatically alleviates ovariectomy (OVX)-induced bone loss via modulating T cells. Specially, SEC2 2M-118 treatment increases trabecular bone mass significantly via promoting bone formation in OVX mice. These beneficial effects are largely diminished in T-cell-deficient nude mice and can be rescued by T-cell reconstruction. Neutralizing assays determine interferon gamma (IFN-γ) as the key factor that mediates the beneficial effects of SEC2 2M-118 on bone. Mechanistic studies demonstrate that IFN-γ stimulates Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling, leading to enhanced production of nitric oxide, which further activates p38 mitogen-activated protein kinase (MAPK) and Runt-related transcription factor 2 (Runx2) signaling and promotes osteogenic differentiation. IFN-γ also directly inhibits osteoclast differentiation, but this effect is counteracted by proabsorptive factors tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) secreted from IFN-γ-stimulated macrophages. Taken together, this work provides clues for developing innovative approaches which target T cells for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Haixing Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
- Centre for Regenerative Medicine and HealthHong Kong Institute of Science & InnovationChinese Academy of SciencesHong Kong999077China
| | - Sien Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Lu Feng
- Centre for Regenerative Medicine and HealthHong Kong Institute of Science & InnovationChinese Academy of SciencesHong Kong999077China
| | - Baozhen Huang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Xuan Lu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Zhengmeng Yang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Zhaowei Jiang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Yu‐Cong Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Xiaoting Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Ming Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Bin Wang
- Greater Bay Area Institute of Precision Medicine (Guangzhou)Fudan University2nd Nanjiang Rd, Nansha DistrictGuangzhou511458China
| | - Lingchi Kong
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalYishan Rd. 600Shanghai200233China
| | - Qi Pan
- Department of OrthopaedicsSouth China HospitalShenzhen UniversityShenzhen518116China
| | - Shanshan Bai
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Yuan Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Yongkang Yang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Wayne Yuk Wai Lee
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Peter D. Currie
- Australian Regenerative Medicine InstituteMonash UniversityWellington RoadClaytonVictoria3800Australia
| | - Changshuang Lin
- Shenyang Xiehe Biopharmaceutical Co. Ltd.ShenyangLiaoning Province110179China
| | - Yanfu Jiang
- Shenyang Xiehe Biopharmaceutical Co. Ltd.ShenyangLiaoning Province110179China
| | - Juyu Chen
- Shenyang Xiehe Biopharmaceutical Co. Ltd.ShenyangLiaoning Province110179China
| | - Micky D. Tortorella
- Centre for Regenerative Medicine and HealthHong Kong Institute of Science & InnovationChinese Academy of SciencesHong Kong999077China
| | - Hongyi Li
- Shenyang Xiehe Biopharmaceutical Co. Ltd.ShenyangLiaoning Province110179China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| |
Collapse
|
3
|
Fu X, Xu M, Yu Z, Gu W, Zhang Z, Zhang B, Wang X, Su Z, Zhang C. Staphylococcal Enterotoxin C2 Mutant-Induced Antitumor Immune Response Is Controlled by CDC42/MLC2-Mediated Tumor Cell Stiffness. Int J Mol Sci 2023; 24:11796. [PMID: 37511553 PMCID: PMC10380429 DOI: 10.3390/ijms241411796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
As a biological macromolecule, the superantigen staphylococcal enterotoxin C2 (SEC2) is one of the most potent known T-cell activators, and it induces massive cytotoxic granule production. With this property, SEC2 and its mutants are widely regarded as immunomodulating agents for cancer therapy. In a previous study, we constructed an MHC-II-independent mutant of SEC2, named ST-4, which exhibits enhanced immunocyte stimulation and antitumor activity. However, tumor cells have different degrees of sensitivity to SEC2/ST-4. The mechanisms of immune resistance to SEs in cancer cells have not been investigated. Herein, we show that ST-4 could activate more powerful human lymphocyte granule-based cytotoxicity than SEC2. The results of RNA-seq and atomic force microscopy (AFM) analysis showed that, compared with SKOV3 cells, the softer ES-2 cells could escape from SEC2/ST-4-induced cytotoxic T-cell-mediated apoptosis by regulating cell softness through the CDC42/MLC2 pathway. Conversely, after enhancing the stiffness of cancer cells by a nonmuscle myosin-II-specific inhibitor, SEC2/ST-4 exhibited a significant antitumor effect against ES-2 cells by promoting perforin-dependent apoptosis and the S-phase arrest. Taken together, these data suggest that cell stiffness could be a key factor of resistance to SEs in ovarian cancer, and our findings may provide new insight for SE-based tumor immunotherapy.
Collapse
Affiliation(s)
- Xuanhe Fu
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- Department of Immunology, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang 110034, China
- Key Laboratory of Superantigen Research of Liao Ning Province, Shenyang 110016, China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- Key Laboratory of Superantigen Research of Liao Ning Province, Shenyang 110016, China
| | - Zhixiong Yu
- Department of Immunology, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang 110034, China
| | - Wu Gu
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichun Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiujuan Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- Key Laboratory of Superantigen Research of Liao Ning Province, Shenyang 110016, China
| | - Zhencheng Su
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- Key Laboratory of Superantigen Research of Liao Ning Province, Shenyang 110016, China
| | - Chenggang Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- Key Laboratory of Superantigen Research of Liao Ning Province, Shenyang 110016, China
| |
Collapse
|
4
|
Li Y, Xu M, Li Y, Zhang Z, Gu W, Halimu G, Li Y, Zhang H, Zhang C. Induction of CD4 + regulatory T cells by stimulation with Staphylococcal Enterotoxin C2 through different signaling pathways. Biomed Pharmacother 2021; 143:112204. [PMID: 34560552 DOI: 10.1016/j.biopha.2021.112204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
As a member of superantigens, Staphylococcal Enterotoxin C2 (SEC2) can potently activate T cells expressing specific Vβ repertoires and has been applied in clinic for tumor immunotherapy in China for more than 20 years. However, excessive activation of T cells by over-stimulation with superantigen are always followed by eliciting regulatory T cells (Tregs) induction and functional immunosuppression, which brings uncertainties to SEC2 application in tumor immunotherapy. In this study, we found that SEC2 could induce CD4+CD25+Foxp3+ Tregs from the murine splenocytes in dose and time related manners. The induced Tregs with high expression of GITR and CTLA-4 and low expression of CD127 were TCR Vβ8.2-specific and have character of IL-10 production in a SEC2 dose-depended manner. Importantly, SEC2-induced CD4+ Tregs showed the potent capacity of suppressing proliferation of intact murine splenocytes response to SEC2. Furthermore, by using specific inhibitors or neutralizing antibody, we proved that the signaling pathways of TCR-NFAT/AP-1, IL-2-STAT5, and TGF-β-Smad3 play crucial roles in Tregs induction by SEC2. These findings will help us better understand the balance of immune stimulation and immunosuppression mediated by SEC2 and provide valuable guidance for SEC2 application in antitumor immunology.
Collapse
Affiliation(s)
- Yongqiang Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, Shenyang, China.
| | - Yansheng Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhichun Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wu Gu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Gulinare Halimu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuqi Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huiwen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, Shenyang, China
| | - Chenggang Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, Shenyang, China
| |
Collapse
|
5
|
Fu X, Xu M, Zhang H, Li Y, Li Y, Zhang C. Staphylococcal Enterotoxin C2 Mutant-Directed Fatty Acid and Mitochondrial Energy Metabolic Programs Regulate CD8 + T Cell Activation. THE JOURNAL OF IMMUNOLOGY 2020; 205:2066-2076. [PMID: 32938730 DOI: 10.4049/jimmunol.2000538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/10/2020] [Indexed: 11/19/2022]
Abstract
CD8+ T cells can switch between fatty acid catabolism and mitochondrial energy metabolism to sustain expansion and their cytotoxic functions. ST-4 is a TCR-enhanced mutant derived from superantigen staphylococcal enterotoxin C2 (SEC2), which can hyperactivate CD4+ T cells without MHC class II molecules. However, whether ST-4/SEC2 can enhance metabolic reprogramming in CD8+ T cells remains poorly understood. In this study, we found that ST-4, but not SEC2, could induce proliferation of purified CD8+ T cell from BALB/c mice in Vβ8.2- and -8.3-specific manners. Results of gas chromatography-mass spectroscopy analysis showed that fatty acid contents in CD8+ T cells were increased after ST-4 stimulation. Flow cytometry and Seahorse analyses showed that ST-4 significantly promoted mitochondrial energy metabolism in CD8+ T cells. We also observed significantly upregulated levels of gene transcripts for fatty acid uptake and synthesis, and significantly increased protein expression levels of fatty acid and mitochondrial metabolic markers of mTOR/PPARγ/SREBP1 and p38-MAPK signaling pathways in ST-4-activated CD8+ T cells. However, blocking mTOR, PPARγ, SREBP1, or p38-MAPK signals with specific inhibitors could significantly relieve the enhanced fatty acid catabolism and mitochondrial capacity induced by ST-4. In addition, blocking these signals inhibited ST-4-stimulated CD8+ T cell proliferation and effector functions. Taken together, our findings demonstrate that ST-4 enhanced fatty acid and mitochondria metabolic reprogramming through mTOR/PPARγ/SREBP and p38-MAPK signaling pathways, which may be important regulatory mechanisms of CD8+ T cell activation. Understanding the effects of ST-4-induced regulatory metabolic networks on CD8+ T cells provide important mechanistic insights to superantigen-based tumor therapy.
Collapse
Affiliation(s)
- Xuanhe Fu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; and
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; and
| | - Huiwen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; and
| | - Yongqiang Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; and.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yansheng Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; and.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenggang Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; and
| |
Collapse
|
6
|
Yao S, Li Y, Zhang Q, Zhang H, Zhou L, Liao H, Zhang C, Xu M. Staphylococcal enterotoxin C2 as an adjuvant for rabies vaccine induces specific immune responses in mice. Pathog Dis 2019; 76:5025657. [PMID: 29860490 DOI: 10.1093/femspd/fty049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/29/2018] [Indexed: 01/16/2023] Open
Abstract
Rabies vaccine administration is the most effective method to prevent the occurrence of rabies disease. However, administration of rabies vaccine without adjuvant always shows low efficiency. As a member of superantigen, staphylococcal enterotoxin C2 (SEC2) non-specifically activates T-cells at extremely low concentration. It enlightens us that SEC2 may be used as an adjuvant. We carried out the experiment that the mice received twice immunization with rabies vaccine in the presence or absence of SEC2 at 1-week interval. Serum and splenocytes from immunized mice were collected to measure the level of rabies-specific-IgG and the cell that secretes IFN-γ or IL-4. The promotion of antigen-specific splenocytes proliferation was also detected. Besides, a challenge test was performed to evaluate the protective efficiency of SEC2. It was shown that mice immunized with vaccine combined with SEC2 generated more specific anti-rabies-antibodies. The results for production of IFN-γ and IL-4, as well as the proliferation of splenocytes from immunized mice indicated SEC2 promoted the specific immune responses induced by rabies vaccine. Moreover, immunization of mice with vaccine combined with SEC2 provided efficient protection against the lethal rabies exposure. Taken together, our findings indicated that SEC2 can be served as an adjuvant for rabies vaccines.
Collapse
Affiliation(s)
- Songyuan Yao
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yongqiang Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qianru Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| | - Huiwen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| | - Libao Zhou
- Chengda Biotechnology Co. Ltd, 110179 Liaoning, China
| | - Hui Liao
- Chengda Biotechnology Co. Ltd, 110179 Liaoning, China
| | - Chenggang Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| |
Collapse
|
7
|
Fu X, Xu M, Song Y, Li Y, Zhang H, Zhang J, Zhang C. Enhanced interaction between SEC2 mutant and TCR Vβ induces MHC II-independent activation of T cells via PKCθ/NF-κB and IL-2R/STAT5 signaling pathways. J Biol Chem 2018; 293:19771-19784. [PMID: 30352872 DOI: 10.1074/jbc.ra118.003668] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/23/2018] [Indexed: 11/06/2022] Open
Abstract
SEC2, a major histocompatibility complex class II (MHC II)-dependent T-cell mitogen, binds MHC II and T-cell receptor (TCR) Vβs to induce effective co-stimulating signals for clonal T-cell expansion. We previously characterized a SEC2 mutant with increased recognition of TCR Vβs, ST-4, which could intensify NF-κB signaling transduction, leading to IL-2 production and T-cell activation. In this study, we found that in contrast to SEC2, ST-4 could induce murine CD4+ T-cell proliferation in a Vβ8.2- and Vβ8.3-specific manner in the absence of MHC II+ antigen-presenting cells (APCs). Furthermore, although IL-2 secretion in response to either SEC2 or ST-4 stimulation was accompanied by up-regulation of protein kinase Cθ (PKCθ), inhibitor of κB (IκB), α and β IκB kinase (IKKα/β), IκBα, and NF-κB in mouse splenocytes, only ST-4 could activate CD4+ T cells in the absence of MHC II+ APCs through the PKCθ/NF-κB signaling pathway. The PKCθ inhibitor AEB071 significantly suppressed SEC2/ST-4-induced T-cell proliferation, CD69 and CD25 expression, and IL-2 secretion with or without MHC II+ APCs. Further, SEC2/ST-4-induced changes in PKCθ/NF-κB signaling were significantly relieved by AEB071 in a dose-dependent manner. Using Lck siRNA, we found that Lck controlled SEC2/ST-4-induced phosphorylation of PKCθ. We also demonstrated that the IL-2R/STAT5 pathway is essential for SEC2/ST-4-induced T-cell activation. Collectively, our data demonstrate that an enhanced ST-4-TCR interaction can compensate for lack of MHC II and stimulate MHC II-free CD4+ T-cell proliferation via PKCθ/NF-κB and IL-2R/STAT5 signaling pathways. Compared with SEC2, intensified PKCθ/NF-κB and IL-2R/STAT5 signals induced by ST-4 lead to enhanced T-cell activation. The results of this study will facilitate better understanding of TCR-based immunotherapies for cancer.
Collapse
Affiliation(s)
- Xuanhe Fu
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and.,the School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 WenHua Road, Shenyang 110016, China
| | - Mingkai Xu
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Yubo Song
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Yongqiang Li
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Huiwen Zhang
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Jinghai Zhang
- the School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 WenHua Road, Shenyang 110016, China
| | - Chenggang Zhang
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| |
Collapse
|
8
|
Yao S, Xu M, Li Y, Zhou L, Liao H, Zhang H, Zhang C. Staphylococcal enterotoxin C2 stimulated the maturation of bone marrow derived dendritic cells via TLR-NFκB signaling pathway. Exp Cell Res 2018; 370:237-244. [DOI: 10.1016/j.yexcr.2018.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/27/2022]
|
9
|
Fu X, Xu M, Yao S, Zhang H, Zhang C, Zhang J. Staphylococcal enterotoxin C2 mutant drives T lymphocyte activation through PI3K/mTOR and NF-ĸB signaling pathways. Toxicol Appl Pharmacol 2017; 333:51-59. [DOI: 10.1016/j.taap.2017.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/28/2017] [Accepted: 08/10/2017] [Indexed: 11/29/2022]
|
10
|
Liu T, Li L, Yin L, Yu H, Jing H, Liu Y, Kong C, Xu M. Superantigen staphylococcal enterotoxin C1 inhibits the growth of bladder cancer. Biosci Biotechnol Biochem 2017; 81:1741-1746. [PMID: 28715277 DOI: 10.1080/09168451.2017.1350564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Superantigens can induce cell-mediated cytotoxicity preferentially against MHC II-positive target cells with large amounts of inflammatory cytokines releasing. In this study, superantigen staphylococcal enterotoxin C (SEC) 1 was investigated to evaluate its potential in bladder cancer immunotherapy in vitro and in vivo. Our results revealed that SEC1 could stimulate the proliferation of human peripheral blood mononuclear cells (PBMCs) in a dose-dependent manner, accompanied with the release of interleukin-2, interferon-γ, and tumor necrosis factor-α, and increased the population of CD4+ T cells and CD8+ T cells. PBMCs stimulated by SEC1 could initiate significant cytotoxicity towards human bladder cancer cells in vitro. The results of in vivo antitumor experiment indicated that SEC1 could decrease the rate of tumor formation and prolong the survival time of tumor-bearing mice. Our study demonstrated that SEC1 inhibited the growth of bladder cancer. And it is also suggested that SEC1 may become a candidate for bladder cancer immunotherapy.
Collapse
Affiliation(s)
- Tao Liu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Lin Li
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Lei Yin
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Hongyuan Yu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Hongwei Jing
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yang Liu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Chuize Kong
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People’s Republic of China
| |
Collapse
|
11
|
Xie Y, Wang M, Dong Z, Song H, Li L, Yang M, Li P, Tian J, Zhang K, Xia X, Zhang T, Tang A. In vitro effects of Staphylococcus aureus enterotoxin C3 on T cell activation, proliferation and cytokine production. Mol Med Rep 2017; 16:4744-4750. [PMID: 28849041 PMCID: PMC5647103 DOI: 10.3892/mmr.2017.7199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 06/13/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effects of Staphylococcus aureus enterotoxin C3 (SEC3), including recombinant (r)SEC3 protein and lentivirus‑mediated SEC3, on the activation, proliferation and cytokine production of human T cells. HeLa cells were infected with SEC3 lentiviral vector (LV‑SEC3) and viability was determined using the Cell Counting Kit‑8 (CCK‑8) assay. Subsequently, infected cells or rSEC3 protein were co‑cultured with human peripheral blood mononuclear cells (PBMCs) for 10 days, after which the culture supernatant and T cells were incubated with untreated HeLa cells, which were subjected to a CCK‑8 assay to determine cytotoxicity. In addition, IL‑6 and IFN‑γ expression was detected by chemiluminescence and enzyme‑linked immunospot analyses, respectively. Subpopulations of activated T cells were sorted by flow cytometry. The results demonstrated that, following infection with LV‑SEC3 or negative control lentiviral vector (LV‑NC), >80% of HeLa cells presented green fluorescent protein‑positive signals. All five groups of co‑cultured T cells exhibited proliferation. Co‑culture of PBMCs with rSEC3 protein or LV‑SEC‑infected cells resulted in elevated IL‑6 and IFN‑γ secretion. In addition, rSEC3‑activated and monocultured T cells were predominantly cluster of differentiation (CD)4+ (62.7 and 59.6%, respectively) whereas phytohemagglutinin‑stimulated T cells were predominantly CD8+ (57.8%). Compared with the LV‑NC group, T cells and culture supernatants from the LV‑SEC3 group significantly attenuated proliferation of HeLa cells. These results suggest that rSEC3 protein, and LV‑SEC3‑infected HeLa cells, are able to potently activate T cells, increasing cytokine production and amplify the antitumor immune response.
Collapse
Affiliation(s)
- Yixin Xie
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhihui Dong
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Huan Song
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Lianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Min Yang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Pengling Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jingjing Tian
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Kan Zhang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Tingting Zhang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Aiguo Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
12
|
In Silico Analyses of Staphylococcal Enterotoxin B as a DNA Vaccine for Cancer Therapy. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9595-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Transcytosis, Antitumor Activity and Toxicity of Staphylococcal Enterotoxin C2 as an Oral Administration Protein Drug. Toxins (Basel) 2016; 8:toxins8060185. [PMID: 27322320 PMCID: PMC4926151 DOI: 10.3390/toxins8060185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/06/2016] [Indexed: 11/17/2022] Open
Abstract
Staphylococcal enterotoxin C2 (SEC2) is a classical superantigen (SAg), which can tremendously activate T lymphocytes at very low dosage, thus exerting its powerful antitumor activity. As an intravenous protein drug and a bacterial toxin, SEC2 has some limitations including poor patient compliance and toxic side effects. In this research, we devoted our attention to studying the antitumor activity and toxicity of SEC2 as a potential oral administration protein drug. We proved that His-tagged SEC2 (SEC2-His) could undergo facilitated transcytosis on human colon adenocarcinoma (Caco-2) cells and SEC2-His was detected in the blood of rats after oral administration. Furthermore, oral SEC2-His caused massive cytokine release and immune cell enrichment around tumor tissue, leading to inhibition of tumor growth in vivo. Meanwhile, although SEC2-His was dosed up to 32 mg/kg in mice, no significant toxicity was observed. These data showed that SEC2 can cross the intestinal epithelium in an immunologically integral form, maintaining antitumor activity but with reduced systemic toxicity. Therefore, these results may have implications for developing SEC2 as an oral administration protein drug.
Collapse
|
14
|
TNF-α produced by SEC2 mutant (SAM-3)-activated human T cells induces apoptosis of HepG2 cells. Appl Microbiol Biotechnol 2015; 100:2677-84. [DOI: 10.1007/s00253-015-7104-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
|
15
|
Li T, Xu M, Wang N, Zhao M. Superantigen staphylococcal enterotoxin C1 mutant can reduce paraquat pulmonary fibrosis. Toxicol Mech Methods 2015; 25:574-80. [DOI: 10.3109/15376516.2015.1056863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Liu Y, Xu M, Li X, Sun J, Zhang C, Zhang H. The construction of a bifunctional fusion protein consisting of SEC2 and EGFP. Biotechnol Appl Biochem 2014; 61:565-71. [PMID: 24397332 DOI: 10.1002/bab.1203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/27/2013] [Indexed: 11/09/2022]
Abstract
The aim of this study was to construct a bifunctional fusion protein consisting of staphylococcal enterotoxin C2 (SEC2) and enhanced green fluorescent protein (EGFP). We inserted EGFP and SEC2 fragments into the pET-28a(+) vector to create the expression plasmid vector, pET-28a(+)-SEC2-EGFP, using a two-step method. After verification of the plasmid, successful isolation of the fusion protein, SEC2-EGFP, was achieved by Ni+-affinity chromatography. Fluorescence microscopy, methylthiazol tetrazolium, and flow cytometry assays demonstrated that the constructed fusion protein not only retained the fluorescence signal of EGFP but also exhibited SEC2 bioactivity. Therefore, SEC2-EGFP is a promising tool for the study of the detailed temporal and spatial distributions of SEC2 in cells. Future studies with this vector may help uncover novel therapeutic strategies to treat or manage SEC2-associated diseases and be a new clinical tool for exploiting SEC2 in immunotherapy.
Collapse
Affiliation(s)
- Yanli Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People's Republic of China; Department of Life Science and Technology, Xinxiang Medical University, Xinxiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
T-cell proliferation and antitumour activities of a truncated mutant of staphylococcal enterotoxin C2 with decreased cytokine secretion. J Med Microbiol 2013. [DOI: 10.1099/jmm.0.047472-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Liu Y, Xu M, Zhang H, Li X, Su Z, Zhang C. SEC2-induced superantigen and antitumor activity is regulated through calcineurin. Appl Microbiol Biotechnol 2013; 97:9695-703. [PMID: 23435984 DOI: 10.1007/s00253-013-4764-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/04/2013] [Accepted: 02/07/2013] [Indexed: 12/22/2022]
Abstract
Once the TCR-SAg-MHC II ternary complex is established, it triggers a variety of intracellular signal transduction pathways, which provoke extreme responses in the immune system. However, the signaling events that involved in SAg-induced immune activation are not well understood. In this study, we demonstrated that the Ca(2+)/calcineurin (CaN)/nuclear factor of activated T cells (NFAT) signaling pathway was involved in SEC2-induced immune activation, and selective blockade of CaN by its inhibitor cyclosporine A (CsA) can completely inhibited the SEC2-induced T-cell stimulating potency. In addition, we selected an engineered SEC2 mutant named SAM-1 based on a series of biological activity tests, and our further studies on it not only confirmed that the CaN activity and gene transcription of its key substrates were proportional to the SEC2/SAM-1-induced T-cell stimulating potency, but also suggested that intensified Ca(2+)/CaN/NFAT signaling transduction induced by SAM-1 resulted in enhanced T-cell stimulating potency, production of cytokines and cytotoxicity, which finally elicit the improved antitumor activity of SAM-1 in vivo.
Collapse
Affiliation(s)
- Yanli Liu
- Institute of Applied of Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis, P.O. Box 417, 110016, Shenyang, Liaoning, People's Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Gu L, Yue J, Zheng Y, Zheng X, Wang J, Wang Y, Li J, Jiang Y, Jiang H. Evaluation of a recombinant double mutant of staphylococcal enterotoxin B (SEB-H32Q/K173E) with enhanced antitumor activity effects and decreased pyrexia. PLoS One 2013; 8:e55892. [PMID: 23405232 PMCID: PMC3566101 DOI: 10.1371/journal.pone.0055892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 01/07/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Immunotherapy has been used to improve patient immune function, inhibit tumor growth and has become a highly promising method of cancer treatment. Highly agglutinative staphylococcin (HAS), a mixture of Staphylococcus aureus culture filtrates, which include staphylococcal enterotoxin (SE) C as the active ingredient, has been used clinically as an immunomodifier in the treatment of a number of tumors for many years. However, the use of HAS has been associated with some unavoidable side-effects such as fever. Previous studies have shown that SEB stimulates a more potent activation of T lymphocytes than SEC3, and mutations of the histidine residues eliminated the toxicity of SEB. SE mutants with decreased side-effects and/or more potent antitumor activities are required. METHODOLOGY/PRINCIPAL FINDINGS We built a structural model of the MHC II-SEB-TCR complex and found that a mutation of SEB at Lys173 might decrease the repulsion force between the SEB-TCR, which would facilitate their interaction. From the above results, we designed SEB-H32Q/K173E (mSEB). Analysis of in vitro stimulation of the proliferation of human peripheral blood mononuclear cells (PBMCs), IFN-γ secretion and inhibition of the growth of various tumor cell lines demonstrated that mSEB exhibited higher antitumor activity compared with wild-type SEB (wtSEB). Notably, mSEB inhibited the growth of various tumors at an extremely low concentration with little cytotoxicity against normal cells. Three animal tumor models (C57BL/6 mouse, New Zealand rabbit and a humanized NOD/SCID mouse) were used to evaluate the in vivo immunotherapeutic effects. Compared with wtSEB, mSEB significantly enhanced antitumor effect in more than one animal model with reduced pyrexia toxicity and prolonged the survival of tumor-bearing mice. CONCLUSIONS/SIGNIFICANCE Our results suggest that SEB-H32Q/K173E retains superantigen (SAg) characteristics and enhances the host immune response to neoplastic diseases while reducing associated pyrogenic toxicity.
Collapse
MESH Headings
- Animals
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/therapy
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Enterotoxins/genetics
- Enterotoxins/immunology
- Enterotoxins/metabolism
- Female
- Fever/genetics
- Fever/immunology
- Fever/therapy
- Genes, MHC Class II/genetics
- Genes, MHC Class II/immunology
- Humans
- Immunotherapy
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Mutant Proteins/therapeutic use
- Mutation/genetics
- Rabbits
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Recombinant Proteins/therapeutic use
- Staphylococcus aureus/metabolism
- Survival Rate
Collapse
Affiliation(s)
- Liwei Gu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Traditional Chinese Medicine Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Junjie Yue
- Beijing Institute of Biotechnology, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xin Zheng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Jun Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanzi Wang
- Department of Pharmacy, Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Xuzhou, China
| | - Jianchun Li
- Department of Traditional Chinese Medicine Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
- * E-mail: (JCL); (YQJ); (HJ)
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- * E-mail: (JCL); (YQJ); (HJ)
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- * E-mail: (JCL); (YQJ); (HJ)
| |
Collapse
|
20
|
Liu Y, Xu M, Su Z, Cai Y, Zhang G, Zhang H. Increased T-cell stimulating activity by mutated SEC2 correlates with its improved antitumour potency. Lett Appl Microbiol 2012; 55:362-9. [PMID: 22925007 DOI: 10.1111/j.1472-765x.2012.03303.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the improved antitumour activity of SAM-3 compared with recombinant staphylococcal enterotoxins C2 (rSEC2). METHODS AND RESULTS Methylthiazol tetrazolium and flow cytometry assays showed that the antitumour activity of SAM-3 in vivo was improved because of enhanced T-cell stimulating potency, resulting in massive activation of T cells, particularly CD4(+) and CD8(+) T cells, and subsequent cytokine release. Quantitative real-time PCR assay showed that despite similar Vβ specificities induced by rSEC2 and SAM-3, the quantities of activated T cells bearing specific Vβin vitro were different. CONCLUSIONS The results strongly suggested that the increased SAM-3-T-cell receptor (TCR) binding affinity contributed to massive T-cell activation and cytokine release, substantially amplifying antitumour immune response in vivo. SIGNIFICANCE AND IMPACT OF THE STUDY This study provided evidence for the mechanism of SAM-3 antitumour activity improvement compared with rSEC2. Results indicated that SAM-3 could be used as a potent powerful candidate agent for tumour treatment in clinics.
Collapse
Affiliation(s)
- Y Liu
- Microbiology Resources, Institute of Applied Ecology, Chinese Academy of Science, Shenyang, China College of Resource and Environment, Graduate University of Chinese Academy of Sciences, Beijing, China Center for Drug Evaluation and Research, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - M Xu
- Microbiology Resources, Institute of Applied Ecology, Chinese Academy of Science, Shenyang, China College of Resource and Environment, Graduate University of Chinese Academy of Sciences, Beijing, China Center for Drug Evaluation and Research, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Z Su
- Microbiology Resources, Institute of Applied Ecology, Chinese Academy of Science, Shenyang, China College of Resource and Environment, Graduate University of Chinese Academy of Sciences, Beijing, China Center for Drug Evaluation and Research, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Y Cai
- Microbiology Resources, Institute of Applied Ecology, Chinese Academy of Science, Shenyang, China College of Resource and Environment, Graduate University of Chinese Academy of Sciences, Beijing, China Center for Drug Evaluation and Research, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - G Zhang
- Microbiology Resources, Institute of Applied Ecology, Chinese Academy of Science, Shenyang, China College of Resource and Environment, Graduate University of Chinese Academy of Sciences, Beijing, China Center for Drug Evaluation and Research, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - H Zhang
- Microbiology Resources, Institute of Applied Ecology, Chinese Academy of Science, Shenyang, China College of Resource and Environment, Graduate University of Chinese Academy of Sciences, Beijing, China Center for Drug Evaluation and Research, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| |
Collapse
|