1
|
Beig Parikhani A, Dehghan R, Talebkhan Y, Bayat E, Biglari A, Shokrgozar MA, Ahangari Cohan R, Mirabzadeh E, Ajdary S, Behdani M. A novel nanobody-based immunocytokine of a mutant interleukin-2 as a potential cancer therapeutic. AMB Express 2024; 14:19. [PMID: 38337114 PMCID: PMC10857990 DOI: 10.1186/s13568-023-01648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/26/2023] [Indexed: 02/12/2024] Open
Abstract
The immunotherapeutic application of interleukin-2 (IL-2) in cancer treatment is limited by its off-target effects on different cell populations and insufficient activation of anti-tumor effector cells at the site of the tumor upon tolerated doses. Targeting IL-2 to the tumor microenvironment by generating antibody-cytokine fusion proteins (immunocytokine) would be a promising approach to increase efficacy without associated toxicity. In this study, a novel nanobody-based immunocytokine is developed by the fusion of a mutant (m) IL-2 with a decreased affinity toward CD25 to an anti-vascular endothelial growth factor receptor-2 (VEGFR2) specific nanobody, denoted as VGRmIL2-IC. The antigen binding, cell proliferation, IFN-γ-secretion, and cytotoxicity of this new immunocytokine are evaluated and compared to mIL-2 alone. Furthermore, the pharmacokinetic properties are analyzed. Flow cytometry analysis shows that the VGRmIL2-IC molecule can selectively target VEGFR2-positive cells. The results reveal that the immunocytokine is comparable to mIL-2 alone in the stimulation of Primary Peripheral Blood Mononuclear Cells (PBMCs) and cytotoxicity in in vitro conditions. In vivo studies demonstrate improved pharmacokinetic properties of VGRmIL2-IC in comparison to the wild or mutant IL-2 proteins. The results presented here suggest VGRmIL2-IC could be considered a candidate for the treatment of VEGFR2-positive tumors.
Collapse
Affiliation(s)
- Arezoo Beig Parikhani
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Rada Dehghan
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Yeganeh Talebkhan
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Bayat
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Biglari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Esmat Mirabzadeh
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Rybchenko VS, Aliev TK, Panina AA, Kirpichnikov MP, Dolgikh DA. Targeted Cytokine Delivery for Cancer Treatment: Engineering and Biological Effects. Pharmaceutics 2023; 15:pharmaceutics15020336. [PMID: 36839658 PMCID: PMC9960319 DOI: 10.3390/pharmaceutics15020336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Anti-tumor properties of several cytokines have already been investigated in multiple experiments and clinical trials. However, those studies evidenced substantial toxicities, even at low cytokine doses, and the lack of tumor specificity. These factors significantly limit clinical applications. Due to their high specificity and affinity, tumor-specific monoclonal antibodies or their antigen-binding fragments are capable of delivering fused cytokines to tumors and, therefore, of decreasing the number and severity of side effects, as well as of enhancing the therapeutic index. The present review surveys the actual antibody-cytokine fusion protein (immunocytokine) formats, their targets, mechanisms of action, and anti-tumor and other biological effects. Special attention is paid to the formats designed to prevent the off-target cytokine-receptor interactions, potentially inducing side effects. Here, we describe preclinical and clinical data and the efficacy of the antibody-mediated cytokine delivery approach, either as a single therapy or in combination with other agents.
Collapse
Affiliation(s)
- Vladislav S Rybchenko
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Teimur K Aliev
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anna A Panina
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Dmitry A Dolgikh
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
3
|
Casadesús AV, Cruz BM, Díaz W, González MÁ, Gómez T, Fernández B, González A, Ledón N, Sosa K, Castro K, López A, Plasencia C, Ramírez Y, Teillaud JL, Hernández C, León K, Hernández T. Potent immunomodulatory and antitumor effect of anti-CD20-IL2no-alpha tri-functional immunocytokine for cancer therapy. Front Immunol 2022; 13:1021828. [PMID: 36569901 PMCID: PMC9780377 DOI: 10.3389/fimmu.2022.1021828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction The anti-CD20 antibody rituximab (RTX) has substantially improved outcomes of patients with B-cell lymphomas, although more efficient therapies are needed for refractory or relapsing lymphomas. An approach to increase the clinical effectiveness of anti-tumor therapy is the use of antibody-cytokine fusion proteins (immunocytokines (ICKs)) to deliver at the tumor site the antibody effector functions and cytokines that trigger anti-tumor activities. In particular, IL-2-based ICKs have shown significant results in preclinical studies but not in clinical trials due to the toxicity profile associated to high doses IL-2 and the undesired expansion of Tregs. Methods To improve the efficacy of RTX therapy, we fused a murine (mIgG2a) or a human (hIgG1) version of RTX to a mutated IL-2 (no-alpha mutein), which has a disrupted affinity for the high affinity IL-2 receptor (IL-2R) to prevent the stimulation of Tregs and reduce the binding to endothelial cells expressing CD25, the α chain of high affinity IL-2R. Characterization of anti-CD20-IL2no-alpha ICKs was performed by SDS-PAGE, Western-blotting and SEC-HPLC and also by several functional in vitro techniques like T-cell proliferation assays, apoptosis, CDC and ADCC assays. The in vivo activity was assessed by using murine tumor cells expressing huCD20 in C57/Bl6 mice. Results Both ICKs exhibited similar in vitro specific activity of their IL2no-alpha mutein moieties and kept CD20-binding capacity. Anti-CD20-IL2no-alpha (hIgG1) retained antibody effector functions as complement-dependent cytotoxicity and enhanced direct apoptosis, NK cell activation and antibody-dependent cellular cytotoxicity relative to RTX. In addition, both ICKs demonstrated a higher antitumor efficacy than parental molecules or their combination in an EL4-huCD20 tumor model in immunocompetent mice. Anti-CD20-IL2no-alpha (hIgG1) strongly expanded NK and CD8+ T cells but not Tregs in tumor-bearing mice. Discussion These findings suggest that anti-CD20-IL2no-alpha could represent an alternative treatment for B cell lymphoma patients, mainly those refractory to RTX therapy.
Collapse
Affiliation(s)
- Ana Victoria Casadesús
- Department of Chimeric Proteins, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Beatriz María Cruz
- Quality Control Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Wilden Díaz
- Quality Control Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Miguel Ángel González
- Department of Animal Facilities, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Tania Gómez
- Quality Control Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Briandy Fernández
- Department of Chimeric Proteins, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Addys González
- Department of Animal Facilities, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Nuris Ledón
- Department of Innovation´s Management, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Katya Sosa
- Department of Chimeric Proteins, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Kathleen Castro
- Department of Chimeric Proteins, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Armando López
- Department of Animal Facilities, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Claudia Plasencia
- Department of Chimeric Proteins, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Yaima Ramírez
- Development Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Jean-Luc Teillaud
- Laboratory of Immune Microenvironment and Immunotherapy, Centre d’immunologie et des maladies infectieuses (CIMI-Paris), Inserm UMRS1135, Sorbonne University, Paris, France
| | | | - Kalet León
- Research Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Tays Hernández
- Department of Chimeric Proteins, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba,*Correspondence: Tays Hernández,
| |
Collapse
|
4
|
Runbeck E, Crescioli S, Karagiannis SN, Papa S. Utilizing Immunocytokines for Cancer Therapy. Antibodies (Basel) 2021; 10:antib10010010. [PMID: 33803078 PMCID: PMC8006145 DOI: 10.3390/antib10010010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Cytokine therapy for cancer has indicated efficacy in certain diseases but is generally accompanied by severe toxicity. The field of antibody-cytokine fusion proteins (immunocytokines) arose to target these effector molecules to the tumor environment in order to expand the therapeutic window of cytokine therapy. Pre-clinical evidence has shown the increased efficacy and decreased toxicity of various immunocytokines when compared to their cognate unconjugated cytokine. These anti-tumor properties are markedly enhanced when combined with other treatments such as chemotherapy, radiotherapy, and checkpoint inhibitor antibodies. Clinical trials that have continued to explore the potential of these biologics for cancer therapy have been conducted. This review covers the in vitro, in vivo, and clinical evidence for the application of immunocytokines in immuno-oncology.
Collapse
Affiliation(s)
- Erin Runbeck
- ImmunoEngineering Group, School of Cancer and Pharmaceutical Studies, King’s College London, London SE19RT, UK;
| | - Silvia Crescioli
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK; (S.C.); (S.N.K.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK; (S.C.); (S.N.K.)
| | - Sophie Papa
- ImmunoEngineering Group, School of Cancer and Pharmaceutical Studies, King’s College London, London SE19RT, UK;
- Correspondence:
| |
Collapse
|
5
|
Kholodenko RV, Kalinovsky DV, Doronin II, Ponomarev ED, Kholodenko IV. Antibody Fragments as Potential Biopharmaceuticals for Cancer Therapy: Success and Limitations. Curr Med Chem 2019; 26:396-426. [DOI: 10.2174/0929867324666170817152554] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Monoclonal antibodies (mAbs) are an important class of therapeutic agents approved for the therapy of many types of malignancies. However, in certain cases applications of conventional mAbs have several limitations in anticancer immunotherapy. These limitations include insufficient efficacy and adverse effects. The antigen-binding fragments of antibodies have a considerable potential to overcome the disadvantages of conventional mAbs, such as poor penetration into solid tumors and Fc-mediated bystander activation of the immune system. Fragments of antibodies retain antigen specificity and part of functional properties of conventional mAbs and at the same time have much better penetration into the tumors and a greatly reduced level of adverse effects. Recent advantages in antibody engineering allowed to produce different types of antibody fragments with improved structure and properties for efficient elimination of tumor cells. These molecules opened up new perspectives for anticancer therapy. Here, we will overview the structural features of the various types of antibody fragments and their applications for anticancer therapy as separate molecules and as part of complex conjugates or structures. Mechanisms of antitumor action of antibody fragments as well as their advantages and disadvantages for clinical application will be discussed in this review.
Collapse
Affiliation(s)
- Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| | - Daniel V. Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| | - Igor I. Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| | - Eugene D. Ponomarev
- School of Biomedical Sciences, Faculty of Medicine and Brain, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Irina V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| |
Collapse
|
6
|
Antibody-cytokine fusion proteins: Biopharmaceuticals with immunomodulatory properties for cancer therapy. Adv Drug Deliv Rev 2019; 141:67-91. [PMID: 30201522 DOI: 10.1016/j.addr.2018.09.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/07/2023]
Abstract
Cytokines have long been used for therapeutic applications in cancer patients. Substantial side effects and unfavorable pharmacokinetics limit their application and may prevent dose escalation to therapeutically active regimens. Antibody-cytokine fusion proteins (often referred to as immunocytokines) may help localize immunomodulatory cytokine payloads to the tumor, thereby activating anticancer immune responses. A variety of formats (e.g., intact IgGs or antibody fragments), molecular targets (e.g., extracellular matrix components and cell membrane antigens) and cytokine payloads have been considered for the development of this novel class of biopharmaceuticals. This review presents the basic concepts on the design and engineering of immunocytokines, reviews their potential limitations, points out emerging opportunities and summarizes key features of preclinical and clinical-stage products.
Collapse
|
7
|
Felder M, Kapur A, Rakhmilevich AL, Qu X, Sondel PM, Gillies SD, Connor J, Patankar MS. MUC16 suppresses human and murine innate immune responses. Gynecol Oncol 2019; 152:618-628. [PMID: 30626487 DOI: 10.1016/j.ygyno.2018.12.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/18/2018] [Accepted: 12/26/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE MUC16, the mucin that contains the CA125 epitopes, suppresses the cytolytic responses of human NK cells and inhibits the efficacy of therapeutic antibodies. Here, we provide further evidence of the regulatory role of MUC16 on human and murine NK cells and macrophages. METHODS Target cell cytolysis and doublet formation assays were performed to assess effects of MUC16 on human NK cells. The effect of MUC16 on ovarian tumor growth was determined in a mouse model by monitoring survival and ascites formation. Innate immune cells from spleens and peritoneal cavities of mice were isolated and stimulated in vitro with anti-CD40 antibody, lipopolysaccharide and IFN-γ and their ability to cytolyse MUC16 expressing and non-expressing cells was determined. RESULTS We confirm that MUC16 inhibits cytolysis by human NK cells as well as the formation of NK-tumor conjugates. Mice implanted with MUC16-knockdown OVCAR-3 show >2-fold increase in survival compared to controls. Murine NK cells and macrophages are more efficient at lysing MUC16-knockdown cells. In vitro cytotoxicity assays with NK cells and macrophages isolated from mice stimulated with anti-CD40 antibody showed 2-3-fold increased activity against the MUC16-knockdown cells as compared to matching target cells expressing this mucin. Finally, knockdown of MUC16 increased the susceptibility of cancer cells to ADCC by murine splenocytes. CONCLUSIONS For the first time, we demonstrate the immunoregulatory effects of MUC16 on murine NK cells and macrophages. Our study implies that the immunoregulatory role of MUC16 on murine NK cells and macrophages should be considered when examining the biology of MUC16 in mouse models.
Collapse
Affiliation(s)
- Mildred Felder
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
| | - Arvinder Kapur
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
| | | | - Xiaoyi Qu
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Paul M Sondel
- Departments of Pediatrics and Human Oncology, University of Wisconsin, Madison, WI, USA
| | | | - Joseph Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53792, USA.
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
8
|
Cazzamalli S, Ziffels B, Widmayer F, Murer P, Pellegrini G, Pretto F, Wulhfard S, Neri D. Enhanced Therapeutic Activity of Non-Internalizing Small-Molecule-Drug Conjugates Targeting Carbonic Anhydrase IX in Combination with Targeted Interleukin-2. Clin Cancer Res 2018; 24:3656-3667. [PMID: 29691298 DOI: 10.1158/1078-0432.ccr-17-3457] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/06/2018] [Accepted: 04/19/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Antibody-drug conjugates and small-molecule-drug conjugates have been proposed as alternatives to conventional anticancer cytotoxic agents, with the potential to deliver bioactive payloads to the site of disease, helping spare normal tissues.Experimental Design: Here, we describe a novel small-molecule-drug conjugate, based on a high-affinity ligand specific to carbonic anhydrase IX. The product featured a peptidic linker, suitable for cleavage in the tumor extracellular environment, and monomethyl auristatin E as cytotoxic payload.Results: A potent anticancer activity was observed in nude mice bearing SKRC-52 renal cell carcinoma xenografts, but no durable complete responses could be observed in this model. However, when the product was administered together with L19-IL2 (a clinical-stage fusion protein capable of delivering IL2 to the tumor neovasculature), all treated mice in the combination group could be rendered tumor free, in a process that favored the influx of natural killer cells into the tumor mass. The combination of L19-IL2 and the new small-molecule-drug conjugate also eradicated cancer in 100% of immunocompetent mice, bearing subcutaneously grafted CT26 colorectal cancer cells, which stably expressed carbonic anhydrase IX.Conclusions: These findings may be of clinical significance, because carbonic anhydrase IX is overexpressed in the majority of clear cell renal cell carcinomas and in approximately 30% of colorectal cancers. The targeted delivery of IL2 helps potentiate the action of targeted cytotoxics, leading to cancer eradication in models that cannot be cured by conventional chemotherapy. Clin Cancer Res; 24(15); 3656-67. ©2018 AACR.
Collapse
Affiliation(s)
- Samuele Cazzamalli
- Department of Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Barbara Ziffels
- Department of Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Fontaine Widmayer
- Department of Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Patrizia Murer
- Department of Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | | | | | - Dario Neri
- Department of Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland.
| |
Collapse
|
9
|
Marusic C, Pioli C, Stelter S, Novelli F, Lonoce C, Morrocchi E, Benvenuto E, Salzano AM, Scaloni A, Donini M. N-glycan engineering of a plant-produced anti-CD20-hIL-2 immunocytokine significantly enhances its effector functions. Biotechnol Bioeng 2018; 115:565-576. [PMID: 29178403 DOI: 10.1002/bit.26503] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022]
Abstract
Anti-CD20 recombinant antibodies are among the most promising therapeutics for the treatment of B-cell malignancies such as non-Hodgkin lymphomas. We recently demonstrated that an immunocytokine (2B8-Fc-hIL2), obtained by fusing an anti-CD20 scFv-Fc antibody derived from C2B8 mAb (rituximab) to the human interleukin 2 (hIL-2), can be efficiently produced in Nicotiana benthamiana plants. The purified immunocytokine (IC) bearing a typical plant protein N-glycosylation profile showed a CD20 binding activity comparable to that of rituximab and was efficient in eliciting antibody-dependent cell-mediated cytotoxicity (ADCC) of human PBMC against Daudi cells, indicating its fuctional integrity. In this work, the immunocytokine devoid of the typical xylose/fucose N-glycosylation plant signature (IC-ΔXF) and the corresponding scFv-Fc-ΔXF antibody not fused to the cytokine, were obtained in a glyco-engineered ΔXylT/FucT N. benthamiana line. Purification yields from agroinfiltrated plants amounted to 20-35 mg/kg of leaf fresh weight. When assayed for interaction with FcγRI and FcγRIIIa, IC-ΔXF exhibited significantly enhanced binding affinities if compared to the counterpart bearing the typical plant protein N-glycosylation profile (IC) and to rituximab. The glyco-engineered recombinant molecules also exhibited a strongly improved ADCC and complement-dependent cytotoxicity (CDC). Notably, our results demonstrate a reduced C1q binding of xylose/fucose carrying IC and scFv-Fc compared to versions that lack these sugar moieties. These results demonstrate that specific N-glycosylation alterations in recombinant products can dramatically affect the effector functions of the immunocytokine, resulting in an overall improvement of the biological functions and consequently of the therapeutic potential.
Collapse
Affiliation(s)
| | - Claudio Pioli
- Laboratory of Biomedical Technologies, ENEA Research Center Rome, Rome, Italy
| | - Szymon Stelter
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Flavia Novelli
- Laboratory of Biomedical Technologies, ENEA Research Center Rome, Rome, Italy
| | | | - Elena Morrocchi
- Laboratory of Biomedical Technologies, ENEA Research Center Rome, Rome, Italy
| | | | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | | |
Collapse
|
10
|
Duggan MC, Campbell AR, McMichael EL, Opheim KS, Levine KM, Bhave N, Culbertson MC, Noel T, Yu L, Carson WE. Co-stimulation of the fc receptor and interleukin-12 receptor on human natural killer cells leads to increased expression of cd25. Oncoimmunology 2017; 7:e1381813. [PMID: 29308301 DOI: 10.1080/2162402x.2017.1381813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/31/2017] [Accepted: 09/14/2017] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells serve a critical role in the immune response against microbes and developing tumors. We have demonstrated that NK cells produce stimulatory cytokines (e.g., IFN-γ) in response to potent stimulation via immobilized IgG (to engage Fc receptors) and interleukin (IL)-12. CD25 is a component of the high-affinity IL-2R, which promotes NK cell activation in response to low doses of IL-2 such as those released by activated T cells. We hypothesized that stimulation of NK cells via IgG and IL-12 would enhance CD25 expression and promote NK cell anti-tumor activity in response to low-dose IL-2. It was confirmed that this dual stimulation strategy significantly enhanced NK cell CD25 expression compared to unstimulated cells or cells treated with IgG or IL-12 alone. Dual stimulated NK cells also were more responsive to low-dose IL-2. Dual stimulated NK cells subsequently treated with low-dose IL-2 (10 pg/mL) displayed enhanced intracellular signaling as indicated by increased pSTAT5 levels. IFN-γ production and cytotoxicity against K562 cells by NK cells stimulated with low-dose IL-2 was comparable to that of cells treated with high-dose IL-2 (10 ng/mL). Importantly, cells isolated from head and neck cancer patients receiving the mAb cetuximab and IL-12 on a clinical trial displayed increased CD25 expression following combination therapy compared to baseline. Altogether, these findings suggest that FcR and IL-12R co-stimulation induces expression of the high-affinity IL-2R and promotes NK cell anti-tumor activity.
Collapse
Affiliation(s)
- Megan C Duggan
- Comprehensive Cancer Center, The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH
| | - Amanda R Campbell
- Comprehensive Cancer Center, The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH.,Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Elizabeth L McMichael
- Comprehensive Cancer Center, The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH
| | - Kallan S Opheim
- Comprehensive Cancer Center, The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH
| | - Kala M Levine
- Comprehensive Cancer Center, The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH
| | - Neela Bhave
- Comprehensive Cancer Center, The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH
| | - Michelle C Culbertson
- Comprehensive Cancer Center, The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH
| | - Tiffany Noel
- Comprehensive Cancer Center, The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, OH
| | - W E Carson
- Comprehensive Cancer Center, The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH.,Department of Surgery, The Ohio State University, Columbus, OH
| |
Collapse
|
11
|
Stern PL. Is immunity in cancer the key to improving clinical outcome?: Report on the International Symposium on Immunotherapy, The Royal Society, London, UK, 12-13 May 2017. THERAPEUTIC ADVANCES IN VACCINES 2017; 5:55-68. [PMID: 28794878 DOI: 10.1177/2051013617720659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/19/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Peter L Stern
- Division of Molecular & Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Paterson Building, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
12
|
Addressing the Immunogenicity of the Cargo and of the Targeting Antibodies with a Focus on Demmunized Bacterial Toxins and on Antibody-Targeted Human Effector Proteins. Biomedicines 2017; 5:biomedicines5020028. [PMID: 28574434 PMCID: PMC5489814 DOI: 10.3390/biomedicines5020028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/23/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Third-generation immunotoxins are composed of a human, or humanized, targeting moiety, usually a monoclonal antibody or an antibody fragment, and a non-human effector molecule. Due to the non-human origin of the cytotoxic domain, these molecules stimulate potent anti-drug immune responses, which limit treatment options. Efforts are made to deimmunize such immunotoxins or to combine treatment with immunosuppression. An alternative approach is using the so-called “human cytotoxic fusion proteins”, in which antibodies are used to target human effector proteins. Here, we present three relevant approaches for reducing the immunogenicity of antibody-targeted protein therapeutics: (1) reducing the immunogenicity of the bacterial toxin, (2) fusing human cytokines to antibodies to generate immunocytokines and (3) addressing the immunogenicity of the targeting antibodies.
Collapse
|
13
|
Delivering safer immunotherapies for cancer. Adv Drug Deliv Rev 2017; 114:79-101. [PMID: 28545888 DOI: 10.1016/j.addr.2017.05.011] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022]
Abstract
Cancer immunotherapy is now a powerful clinical reality, with a steady progression of new drug approvals and a massive pipeline of additional treatments in clinical and preclinical development. However, modulation of the immune system can be a double-edged sword: Drugs that activate immune effectors are prone to serious non-specific systemic inflammation and autoimmune side effects. Drug delivery technologies have an important role to play in harnessing the power of immune therapeutics while avoiding on-target/off-tumor toxicities. Here we review mechanisms of toxicity for clinically-relevant immunotherapeutics, and discuss approaches based in drug delivery technology to enhance the safety and potency of these treatments. These include strategies to merge drug delivery with adoptive cellular therapies, targeting immunotherapies to tumors or select immune cells, and localizing therapeutics intratumorally. Rational design employing lessons learned from the drug delivery and nanomedicine fields has the potential to facilitate immunotherapy reaching its full potential.
Collapse
|
14
|
Dhupkar P, Gordon N. Interleukin-2: Old and New Approaches to Enhance Immune-Therapeutic Efficacy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 995:33-51. [PMID: 28321811 DOI: 10.1007/978-3-319-53156-4_2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interleukin-2 (IL-2) is a very well-known cytokine that has been studied for the past 35 years. It plays a major role in the growth and proliferation of many immune cells such NK and T cells. It is an important immunotherapy cytokine for the treatment of various diseases including cancer. Systemic delivery of IL-2 has shown clinical benefit in renal cell carcinoma and melanoma patients. However, its use has been limited by the numerous toxicities encountered with the systemic delivery. Intravenous IL-2 causes the well-known "capillary leak syndrome," or the leakage of fluid from the circulatory system to the interstitial space resulting in hypotension (low blood pressure), edema, and dyspnea that can lead to circulatory shock and eventually cardiopulmonary collapse and multiple organ failure. Due to the toxicities associated with systemic IL-2, an aerosolized delivery approach has been developed, which enables localized delivery and a higher local immune cell activation. Since proteins are absorbed via pulmonary lymphatics, after aerosol deposition in the lung, aerosol delivery provides a means to more specifically target IL-2 to the local immune system in the lungs with less systemic effects. Its benefits have extended to diseases other than cancer. Delivery of IL-2 via aerosol or as nebulized IL-2 liposomes has been previously shown to have less toxicity and higher efficacy against sarcoma lung metastases. Dogs with cancer provided a highly relevant means to determine biodistribution of aerosolized IL-2 and IL-2 liposomes. However, efficacy of single-agent IL-2 is limited. As in general, for most immune-therapies, its effect is more beneficial in the face of minimal residual disease. To overcome this limitation, combination therapies using aerosol IL-2 with adoptive transfer of T cells or NK cells have emerged.Using a human osteosarcoma (OS) mouse model, we have demonstrated the efficacy of single-agent aerosol IL-2 and combination therapy aerosol IL-2 and NK cells or aerosol IL-2 and interleukin 11 receptor alpha-directed chimeric antigen receptor-T cells (IL-11 receptor α CAR-T cells) against OS pulmonary metastases. Combination therapy resulted in a better therapeutic effect. A Phase-I trial of aerosol IL-2 was done in Europe and proved to be safe. Others and our preclinical studies provided the basis for the development of a Phase-I aerosol IL-2 trial in our institution to include younger patients with lung metastases. OS, our disease of interest, has a peak incidence in the adolescent and young adult years. Our goal is to complete this trial in the next 2 years.In this chapter, we summarize the different effects of IL-2 and cover the advantages of the aerosol delivery route for diseases of the lung with an emphasis on some of our most recent work using combination therapy aerosol IL-2 and NK cells for the treatment of OS lung metastases.
Collapse
Affiliation(s)
- Pooja Dhupkar
- Department of Pediatrics-Research, The Children's Cancer Hospital, University of Texas M.D. Anderson Cancer Center, 7777 Knight Road, Houston, TX, 77030, USA
- Experimental Therapeutics Academic Program, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nancy Gordon
- Department of Pediatrics-Research, The Children's Cancer Hospital, University of Texas M.D. Anderson Cancer Center, 7777 Knight Road, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Morris ZS, Guy EI, Francis DM, Gressett MM, Werner LR, Carmichael LL, Yang RK, Armstrong EA, Huang S, Navid F, Gillies SD, Korman A, Hank JA, Rakhmilevich AL, Harari PM, Sondel PM. In Situ Tumor Vaccination by Combining Local Radiation and Tumor-Specific Antibody or Immunocytokine Treatments. Cancer Res 2016; 76:3929-41. [PMID: 27197149 DOI: 10.1158/0008-5472.can-15-2644] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/04/2016] [Indexed: 01/06/2023]
Abstract
Interest in combining radiotherapy and immune checkpoint therapy is growing rapidly. In this study, we explored a novel combination of this type to augment antitumor immune responses in preclinical murine models of melanoma, neuroblastoma, and head and neck squamous cell carcinoma. Cooperative effects were observed with local radiotherapy and intratumoral injection of tumor-specific antibodies, arising in part from enhanced antibody-dependent cell-mediated cytotoxicity (ADCC). We could improve this response by combining radiation with intratumoral injection of an IL2-linked tumor-specific antibody (termed here an immunocytokine), resulting in complete regression of established tumors in most animals associated with a tumor-specific memory T-cell response. Given the T-cell response elicited by combined local radiation and intratumoral immunocytokine, we tested the potential benefit of adding this treatment to immune checkpoint blockade. In mice bearing large primary tumors or disseminated metastases, the triple-combination of intratumoral immunocytokine, radiation, and systemic anti-CTLA-4 improved primary tumor response and animal survival compared with combinations of any two of these three interventions. Taken together, our results show how combining radiation and intratumoral immunocytokine in murine tumor models can eradicate large tumors and metastases, eliciting an in situ vaccination effect that can be leveraged further by T-cell checkpoint blockade, with immediate implications for clinical evaluation. Cancer Res; 76(13); 3929-41. ©2016 AACR.
Collapse
Affiliation(s)
- Zachary S Morris
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin.
| | - Emily I Guy
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - David M Francis
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Monica M Gressett
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Lauryn R Werner
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Lakeesha L Carmichael
- Department of Biostatistics and Bioinformatics, University of Wisconsin, Madison, Wisconsin
| | - Richard K Yang
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Eric A Armstrong
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Shyhmin Huang
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Fariba Navid
- Department of Oncology, St. Jude Children's Hospital, Memphis, Tennessee
| | | | | | - Jacquelyn A Hank
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | | | - Paul M Harari
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin. Department of Pediatrics, University of Wisconsin, Madison, Wisconsin. Department of Genetics, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
16
|
Neri D, Sondel PM. Immunocytokines for cancer treatment: past, present and future. Curr Opin Immunol 2016; 40:96-102. [PMID: 27060634 DOI: 10.1016/j.coi.2016.03.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 12/11/2022]
Abstract
Immunocytokines are antibody-cytokine fusion proteins, with the potential to preferentially localize on tumor lesions and to activate anticancer immunity at the site of disease. Various tumor targets (e.g., cell membrane antigens and extracellular matrix components) and antibody formats (e.g., intact IgG and antibody fragments) have been considered for immunocytokine development and some products have advanced to clinical trials. In this review, we present relevant concepts and strategies for the design and use of anticancer immunocytokine products. In addition, we discuss emerging strategies for the pharmaceutical development and clinical application of this promising class of biopharmaceuticals.
Collapse
Affiliation(s)
- Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland.
| | - Paul M Sondel
- Departments of Pediatrics, Human Oncology and Genetics, and UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
17
|
Marusic C, Novelli F, Salzano AM, Scaloni A, Benvenuto E, Pioli C, Donini M. Production of an active anti-CD20-hIL-2 immunocytokine in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:240-51. [PMID: 25879373 PMCID: PMC11388813 DOI: 10.1111/pbi.12378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/27/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
Anti-CD20 murine or chimeric antibodies (Abs) have been used to treat non-Hodgkin lymphomas (NHLs) and other diseases characterized by overactive or dysfunctional B cells. Anti-CD20 Abs demonstrated to be effective in inducing regression of B-cell lymphomas, although in many cases patients relapse following treatment. A promising approach to improve the outcome of mAb therapy is the use of anti-CD20 antibodies to deliver cytokines to the tumour microenvironment. In particular, IL-2-based immunocytokines have shown enhanced antitumour activity in several preclinical studies. Here, we report on the engineering of an anti-CD20-human interleukin-2 (hIL-2) immunocytokine (2B8-Fc-hIL2) based on the C2B8 mAb (Rituximab) and the resulting ectopic expression in Nicotiana benthamiana. The scFv-Fc-engineered immunocytokine is fully assembled in plants with minor degradation products as assessed by SDS-PAGE and gel filtration. Purification yields using protein-A affinity chromatography were in the range of 15-20 mg/kg of fresh leaf weight (FW). Glycopeptide analysis confirmed the presence of a highly homogeneous plant-type glycosylation. 2B8-Fc-hIL2 and the cognate 2B8-Fc antibody, devoid of hIL-2, were assayed by flow cytometry on Daudi cells revealing a CD20 binding activity comparable to that of Rituximab and were effective in eliciting antibody-dependent cell-mediated cytotoxicity of human PBMC versus Daudi cells, demonstrating their functional integrity. In 2B8-Fc-hIL2, IL-2 accessibility and biological activity were verified by flow cytometry and cell proliferation assay. To our knowledge, this is the first example of a recombinant immunocytokine based on the therapeutic Rituximab antibody scaffold, whose expression in plants may be a valuable tool for NHLs treatment.
Collapse
Affiliation(s)
- Carla Marusic
- Laboratory of Biotechnology, ENEA Research Center Casaccia, Rome, Italy
| | - Flavia Novelli
- Laboratory of Radiation Biology and Biomedicine, ENEA Research Center Casaccia, Rome, Italy
| | - Anna M Salzano
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | - Eugenio Benvenuto
- Laboratory of Biotechnology, ENEA Research Center Casaccia, Rome, Italy
| | - Claudio Pioli
- Laboratory of Radiation Biology and Biomedicine, ENEA Research Center Casaccia, Rome, Italy
| | - Marcello Donini
- Laboratory of Biotechnology, ENEA Research Center Casaccia, Rome, Italy
| |
Collapse
|
18
|
Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy. Front Immunol 2015; 6:368. [PMID: 26284063 PMCID: PMC4515552 DOI: 10.3389/fimmu.2015.00368] [Citation(s) in RCA: 384] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells play a major role in cancer immunotherapies that involve tumor-antigen targeting by monoclonal antibodies (mAbs). NK cells express a variety of activating and inhibitory receptors that serve to regulate the function and activity of the cells. In the context of targeting cells, NK cells can be "specifically activated" through certain Fc receptors that are expressed on their cell surface. NK cells can express FcγRIIIA and/or FcγRIIC, which can bind to the Fc portion of immunoglobulins, transmitting activating signals within NK cells. Once activated through Fc receptors by antibodies bound to target cells, NK cells are able to lyse target cells without priming, and secrete cytokines like interferon gamma to recruit adaptive immune cells. This antibody-dependent cell-mediated cytotoxicity (ADCC) of tumor cells is utilized in the treatment of various cancers overexpressing unique antigens, such as neuroblastoma, breast cancer, B cell lymphoma, and others. NK cells also express a family of receptors called killer immunoglobulin-like receptors (KIRs), which regulate the function and response of NK cells toward target cells through their interaction with their cognate ligands that are expressed on tumor cells. Genetic polymorphisms in KIR and KIR-ligands, as well as FcγRs may influence NK cell responsiveness in conjunction with mAb immunotherapies. This review focuses on current therapeutic mAbs, different strategies to augment the anti-tumor efficacy of ADCC, and genotypic factors that may influence patient responses to antibody-dependent immunotherapies.
Collapse
Affiliation(s)
- Wei Wang
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy K. Erbe
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacquelyn A. Hank
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
19
|
Müller D. Antibody fusions with immunomodulatory proteins for cancer therapy. Pharmacol Ther 2015; 154:57-66. [PMID: 26145167 DOI: 10.1016/j.pharmthera.2015.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 06/29/2015] [Indexed: 01/02/2023]
Abstract
The potential of immunomodulatory proteins, in particular cytokines, for cancer therapy is well recognized, but hampered by the toxicity associated with their systemic application. In order to address this problem, targeted delivery by antibody fusion proteins has been early proposed and their development intensively pursued over the last decade. Here, factors influencing the selection and modification of cytokines and antibody formats for this approach are being discussed, indicating current developments and translational advances in the field.
Collapse
Affiliation(s)
- Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
20
|
Abstract
Given recent technological advances and advances in our understanding of cancer, immunotherapy of cancer is being used with clear clinical benefit. The immunosuppression accompanying cancer itself, as well as with current cancer treatment with radiation or chemotherapy, impairs adaptive immune effectors to a greater extent than innate effector cells. In addition to being less suppressed, innate immune cells are capable of being enhanced via immune-stimulatory regimens. Most strategies being investigated to promote innate immune responses against cancer do not require complex, patient-specific, ex vivo cellular or molecular creation of therapeutic agents; thus they can, generally, be used as "off the shelf" therapeutics that could be administered by most cancer clinics. Successful applications of innate immunotherapy in the clinic have effectively targeted components of the innate immune response. Preclinical data demonstrate how initiation of innate immune responses can lead to subsequent adaptive long-term cancer immunity. We hypothesize that integration of innate immune activation strategies into combination therapies for cancer treatment will lead to more effective and long-term clinical benefit.
Collapse
Affiliation(s)
- Jacob L Goldberg
- Department of Pediatrics, The University of Wisconsin, Madison WI
| | - Paul M Sondel
- Department of Pediatrics, The University of Wisconsin, Madison WI; Department of Human Oncology, The University of Wisconsin, Madison WI; Department of Genetics, The University of Wisconsin, Madison WI.
| |
Collapse
|
21
|
Abstract
The past decade has seen several anticancer immunotherapeutic strategies transition from "promising preclinical models" to treatments with proven clinical activity or benefit. In 2013, the journal Science selected the field of Cancer Immunotherapy as the overall number-1 breakthrough for the year in all of scientific research. In the setting of cancer immunotherapy for adult malignancies, many of these immunotherapy strategies have relied on the cancer patient's endogenous antitumor T-cell response. Although much promising research in pediatric oncology is similarly focused on T-cell reactivity, several pediatric malignancies themselves, or the chemo-radiotherapy used to achieve initial responses, can be associated with profound immune suppression, particularly of the T-cell system. A separate component of the immune system, also able to mediate antitumor effects and less suppressed by conventional cancer treatment, is the NK-cell system. In recent years, several distinct immunotherapeutic approaches that rely on the activity of NK cells have moved from preclinical development into clinical testing, and some have shown clear antitumor benefit. This review provides an overview of NK cell-based immunotherapy efforts that are directed toward childhood malignancies, with an emphasis on protocols that are already in clinical testing.
Collapse
|
22
|
Skrombolas D, Frelinger JG. Challenges and developing solutions for increasing the benefits of IL-2 treatment in tumor therapy. Expert Rev Clin Immunol 2014; 10:207-17. [PMID: 24410537 DOI: 10.1586/1744666x.2014.875856] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Interleukin-2 (IL-2) is a cytokine with pleiotropic effects on the immune system. Systemic IL-2 treatment has produced durable responses in melanoma and renal cancer patients, but unfortunately this is effective only in a fraction of patients. Moreover, IL-2 treatment also engenders serious side effects, which limit its clinical utility. It is now appreciated that IL-2 not only stimulates NK and effector T cells but also has a critical role in the generation and maintenance of regulatory T cells, which act to dampen immune responses. Thus, successful immunotherapy of cancers using IL-2 has to address two fundamentally important issues: (1) how to limit side effects yet be active where it is needed, and (2) how to preferentially activate effector T cells while limiting the stimulation of Tregs. Strategies are now being developed to address these critical obstacles that may lead to a renaissance of IL-2 therapy.
Collapse
Affiliation(s)
- Denise Skrombolas
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY14642, USA
| | | |
Collapse
|
23
|
Wadhwa M, Bird C, Heath AB, Dilger P, Thorpe R. The 2nd International standard for Interleukin-2 (IL-2) Report of a collaborative study. J Immunol Methods 2013; 397:1-7. [DOI: 10.1016/j.jim.2013.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/09/2013] [Accepted: 07/22/2013] [Indexed: 11/27/2022]
|
24
|
Gillies SD. A new platform for constructing antibody-cytokine fusion proteins (immunocytokines) with improved biological properties and adaptable cytokine activity. Protein Eng Des Sel 2013; 26:561-9. [PMID: 24025193 DOI: 10.1093/protein/gzt045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A novel method for constructing immunocytokines has been developed that utilizes fusion of cytokines to the C-terminus of the Ig light chain, rather than fusing to the heavy chain. Such molecules are expressed well in transfected cells, are very stable in normal buffers and have biological properties that are superior to immunocytokines made by fusion to the heavy chain. These properties include longer circulating half-life, increased uptake following subcutaneous dosing and similar or improved antibody effector activities of antibody-dependent cytotoxic activity and complement-dependent cytotoxicity, respectively. Furthermore, the sequestering effect of this fusion junction allows one to adjust intermediate affinity (βγ) interleukin 2 receptor (IL2R) binding and activation by shortening the N-terminus of IL2 at the fusion point. This appears to limit access of the critical contact residue Asp20 of IL2 to the β-chain of βγ IL2R, while maintaining binding and activation of high-affinity (αβγ) IL2R-expressing cells. Several immunocytokine forms with varying degrees of IL2R specificity have been constructed, and some appear to regain their activity for the βγ IL2R when bound to antigen-coated beads. Such molecules may have reduced toxicity in the circulation and enhanced anti-tumor activity.
Collapse
Affiliation(s)
- Stephen D Gillies
- Provenance Biopharmaceuticals Corp., 70 Bedford Road, Carlisle, MA 01741, USA
| |
Collapse
|
25
|
Müller D. Antibody–Cytokine Fusion Proteins for Cancer Immunotherapy: An Update on Recent Developments. BioDrugs 2013; 28:123-31. [DOI: 10.1007/s40259-013-0069-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
List T, Neri D. Immunocytokines: a review of molecules in clinical development for cancer therapy. Clin Pharmacol 2013; 5:29-45. [PMID: 23990735 PMCID: PMC3753206 DOI: 10.2147/cpaa.s49231] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The concept of therapeutically enhancing the immune system’s responsiveness to tumors is
long standing. Several cytokines have been investigated in clinical trials for their therapeutic
activity in cancer patients. However, substantial side effects and unfavorable pharmacokinetic
properties have been a major drawback hampering the administration of therapeutically relevant
doses. The use of recombinant antibody–cytokine fusion proteins promises to significantly
enhance the therapeutic index of cytokines by targeting them to the site of disease. This review
aims to provide a concise and complete overview of the preclinical data and clinical results
currently available for all immunocytokines having reached clinical development.
Collapse
Affiliation(s)
- Thomas List
- Department of Chemistry and Applied Biosciences, Swiss Federal institute of Technology (ETH Zürich), Zurich, Switzerland
| | | |
Collapse
|
27
|
Differential expression of proteins in naïve and IL-2 stimulated primary human NK cells identified by global proteomic analysis. J Proteomics 2013; 91:151-163. [PMID: 23806757 DOI: 10.1016/j.jprot.2013.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/15/2013] [Accepted: 06/17/2013] [Indexed: 12/17/2022]
Abstract
UNLABELLED Natural killer (NK) cells efficiently cytolyse tumors and virally infected cells. Despite the important role that interleukin (IL)-2 plays in stimulating the proliferation of NK cells and increasing NK cell activity, little is known about the alterations in the global NK cell proteome following IL-2 activation. To compare the proteomes of naïve and IL-2-activated primary NK cells and identify key cellular pathways involved in IL-2 signaling, we isolated proteins from naïve and IL-2-activated NK cells from healthy donors, the proteins were trypsinized and the resulting peptides were analyzed by 2D LC ESI-MS/MS followed by label-free quantification. In total, more than 2000 proteins were identified from naïve and IL-2-activated NK cells where 383 proteins were found to be differentially expressed following IL-2 activation. Functional annotation of IL-2 regulated proteins revealed potential targets for future investigation of IL-2 signaling in human primary NK cells. A pathway analysis was performed and revealed several pathways that were not previously known to be involved in IL-2 response, including ubiquitin proteasome pathway, integrin signaling pathway, platelet derived growth factor (PDGF) signaling pathway, epidermal growth factor receptor (EGFR) signaling pathway and Wnt signaling pathway. BIOLOGICAL SIGNIFICANCE The development and functional activity of natural killer (NK) cells is regulated by interleukin (IL)-2 which stimulates the proliferation of NK cells and increases NK cell activity. With the development of IL-2-based immunotherapeutic strategies that rely on the IL-2-mediated activation of NK cells to target human cancers, it is important to understand the global molecular events triggered by IL-2 in human NK cells. The differentially expressed proteins in human primary NK cells following IL-2 activation identified in this study confirmed the activation of JAK-STAT signaling pathway and cell proliferation by IL-2 as expected, but also led to the discovery and identification of other factors that are potentially important in IL-2 signaling. These new factors warrant further investigation on their potential roles in modulating NK cell biology. The results from this study suggest that the activation of NK cells by IL-2 is a dynamic process through which proteins with various functions are regulated. Such findings will be important for the elucidation of molecular pathways involved in IL-2 signaling in NK cells and provide new targets for future studies in NK cell biology.
Collapse
|
28
|
Zhan J, Han Q, Wang K. Development of antibody therapeutics for small cell lung cancer. Expert Opin Investig Drugs 2012; 22:235-44. [PMID: 23176362 DOI: 10.1517/13543784.2013.750293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Small cell lung cancer (SCLC) is one of most aggressive cancers and only modest improvements have been achieved in overall survival over last 30 years. In recent years, antibody therapeutics has been actively studied and shown promise in treatment of SCLC. AREAS COVERED A comprehensive literature search through Medline and the registry database of clinical trials (ClinicalTrials.gov) was performed to collect all relevant preclinical and clinical data. The diverse antibody therapeutics which target against different antigens including VEGE-A, CEA, IGF-1R, CD56, EpCAM, CTLA-4, gangliosides GD2 and GD3, Lewis Y and tenascin-C are now under clinical investigation for therapeutic effects in SCLC. EXPERT OPINION During the last few decades, progresses have been made in antibody therapy for SCLC, however great challenges still remain. The major reasons are the complexity of SCLC and a lack of understanding of cancer immunology. The profound studies of signaling pathways involved in carcinogenesis, proliferation, metastasis and apoptosis in SCLC are crucial for the identification of new therapeutic targets and biomarkers. Moreover, a better understanding of the interplay between cancer and the immune system is a new direction for the design of more effective antibody therapeutics.
Collapse
Affiliation(s)
- Jinbiao Zhan
- Zhejiang University School of Medicine, Department of Biochemistry, Laboratory for Gene and Antibody Engineering, Hangzhou 310058, PR China.
| | | | | |
Collapse
|
29
|
Antibody–cytokine fusion proteins. Arch Biochem Biophys 2012; 526:194-205. [PMID: 22445675 DOI: 10.1016/j.abb.2012.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 01/01/2023]
|
30
|
Yang RK, Kalogriopoulos NA, Rakhmilevich AL, Ranheim EA, Seo S, Kim K, Alderson KL, Gan J, Reisfeld RA, Gillies SD, Hank JA, Sondel PM. Intratumoral hu14.18-IL-2 (IC) induces local and systemic antitumor effects that involve both activated T and NK cells as well as enhanced IC retention. THE JOURNAL OF IMMUNOLOGY 2012; 189:2656-64. [PMID: 22844125 DOI: 10.4049/jimmunol.1200934] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
hu14.18-IL-2 (IC) is an immunocytokine consisting of human IL-2 linked to hu14.18 mAb, which recognizes the GD2 disialoganglioside. Phase 2 clinical trials of i.v. hu14.18-IL-2 (i.v.-IC) in neuroblastoma and melanoma are underway and have already demonstrated activity in neuroblastoma. We showed previously that intratumoral hu14.18-IL-2 (IT-IC) results in enhanced antitumor activity in mouse models compared with i.v.-IC. The studies presented in this article were designed to determine the mechanisms involved in this enhanced activity and to support the future clinical testing of intratumoral administration of immunocytokines. Improved survival and inhibition of growth of both local and distant tumors were observed in A/J mice bearing s.c. NXS2 neuroblastomas treated with IT-IC compared with those treated with i.v.-IC or control mice. The local and systemic antitumor effects of IT-IC were inhibited by depletion of NK cells or T cells. IT-IC resulted in increased NKG2D receptors on intratumoral NKG2A/C/E⁺ NKp46⁺ NK cells and NKG2A/C/E⁺ CD8⁺ T cells compared with control mice or mice treated with i.v.-IC. NKG2D levels were augmented more in tumor-infiltrating lymphocytes compared with splenocytes, supporting the localized nature of the intratumoral changes induced by IT-IC treatment. Prolonged retention of IC at the tumor site was seen with IT-IC compared with i.v.-IC. Overall, IT-IC resulted in increased numbers of activated T and NK cells within tumors, better IC retention in the tumor, enhanced inhibition of tumor growth, and improved survival compared with i.v.-IC.
Collapse
Affiliation(s)
- Richard K Yang
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sondel PM, Gillies SD. Current and Potential Uses of Immunocytokines as Cancer Immunotherapy. Antibodies (Basel) 2012; 1:149-171. [PMID: 24634778 PMCID: PMC3954573 DOI: 10.3390/antib1020149] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immunocytokines (ICs) are a class of molecules created by linking tumor-reactive monoclonal antibodies to cytokines that are able to activate immune cells. Tumor selective localization is provided by the ability of the mAb component to bind to molecules found on the tumor cell surface or molecules found selectively in the tumor microenvronment. In this way the cytokine component of the immunocytokine is selectively localized to sites of tumor and can activate immune cells with appropriate receptors for the cytokine. Immunocytokines have been made and tested by us, and others, using a variety of tumor-reactive mAbs linked to distinct cytokines. To date, the majority of clinical progress has been made with ICs that have linked human interleukin-2 (IL2) to a select number of tumor reactive mAbs that had already been in prior clinical testing as non-modified mAbs (Figure 1). Here we briefly review the background for the creation of ICs, summarize current clinical progress, emphasize mechanisms of action for ICs that are distinct from those of their constituent components, and present some directions for future development and testing.
Collapse
Affiliation(s)
- Paul M Sondel
- The Departments of Pediatrics, Human Oncology, and Genetics and The UW Carbone Cancer Center, University of Wisconsin, Madison WI
| | - Stephen D Gillies
- The Departments of Pediatrics, Human Oncology, and Genetics and The UW Carbone Cancer Center, University of Wisconsin, Madison WI
| |
Collapse
|
32
|
Abstract
Carbohydrate signatures on tumor cells have functional implications in tumor growth and metastasis and constitute valuable tools in cancer diagnosis and immunotherapy. Increasing data regarding the mechanisms by which they are recognized by the immune system are facilitating the design of more efficient immunotherapeutic protocols based on cancer-associated glycan structures. Recent molecular and proteomic studies revealed that carbohydrates are recognized, not only by B cells and antibodies, but also by cells from the innate arm of immunity, as well as by T cells, and are able to induce specific T-cell immunity and cytotoxicity. In this review, we discuss and update the different strategies targeting tumor-associated carbohydrate antigens that are being evaluated for antitumor immunotherapy, an approach that will be highly relevant, especially when combined with other strategies, in the future fight against cancer.
Collapse
Affiliation(s)
- Teresa Freire
- UdelaR, Facultad de Medicina, Dept. Inmunobiología, Gral. Flores 2125, 11800, Montevideo, Uruguay
| | - Eduardo Osinaga
- UdelaR, Facultad de Medicina, Dept. Inmunobiología, Gral. Flores 2125, 11800, Montevideo, Uruguay
- Institut Pasteur Montevideo, Laboratorio de Glicobiología e Inmunología tumoral, Mataojo 2020, 11400, Montevideo, Uruguay
| |
Collapse
|
33
|
|
34
|
Koehn TA, Trimble LL, Alderson KL, Erbe AK, McDowell KA, Grzywacz B, Hank JA, Sondel PM. Increasing the clinical efficacy of NK and antibody-mediated cancer immunotherapy: potential predictors of successful clinical outcome based on observations in high-risk neuroblastoma. Front Pharmacol 2012; 3:91. [PMID: 22623917 PMCID: PMC3353262 DOI: 10.3389/fphar.2012.00091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/26/2012] [Indexed: 12/02/2022] Open
Abstract
Disease recurrence is frequent in high-risk neuroblastoma (NBL) patients even after multi-modality aggressive treatment [a combination of chemotherapy, surgical resection, local radiation therapy, autologous stem cell transplantation, and cis-retinoic acid (CRA)]. Recent clinical studies have explored the use of monoclonal antibodies (mAbs) that bind to disialoganglioside (GD2), highly expressed in NBL, as a means to enable immune effector cells to destroy NBL cells via antibody-dependent cell-mediated cytotoxicity (ADCC). Preclinical data indicate that ADCC can be more effective when appropriate effector cells are activated by cytokines. Clinical studies have pursued this by administering anti-GD2 mAb in combination with ADCC-enhancing cytokines (IL2 and GM-CSF), a regimen that has demonstrated improved cancer-free survival. More recently, early clinical studies have used a fusion protein that consists of the anti-GD2 mAb directly linked to IL2, and anti-tumor responses were seen in the Phase II setting. Analyses of genes that code for receptors that influence ADCC activity and natural killer (NK) cell function [Fc receptor (FcR), killer immunoglublin-like receptor (KIR), and KIR-ligand (KIR-L)] suggest patients with anti-tumor activity are more likely to have certain genotype profiles. Further analyses will need to be conducted to determine whether these genotypes can be used as predictive markers for favorable therapeutic outcome. In this review, we discuss factors that affect response to mAb-based tumor therapies such as hu14.18-IL2. Many of our observations have been made in the context of NBL; however, we will also include some observations made with mAbs targeting other tumor types that are consistent with results in NBL. Therefore, we hypothesize that the NBL observations discussed here may also be relevant to mAb therapy for other cancers, in which ADCC is known to play a role.
Collapse
Affiliation(s)
- Tony A Koehn
- Department of Human Oncology, University of Wisconsin Madison Madison, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity. J Biomed Biotechnol 2011; 2011:379123. [PMID: 21660134 PMCID: PMC3110303 DOI: 10.1155/2011/379123] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/16/2011] [Indexed: 01/08/2023] Open
Abstract
Natural killer (NK) cells are powerful effector cells that can be directed to eliminate tumor cells through tumor-targeted monoclonal antibodies (mAbs). Some tumor-targeted mAbs have been successfully applied in the clinic and are included in the standard of care for certain malignancies. Strategies to augment the antitumor response by NK cells have led to an increased understanding of how to improve their effector responses. Next-generation reagents, such as molecularly modified mAbs and mAb-cytokine fusion proteins (immunocytokines, ICs) designed to augment NK-mediated killing, are showing promise in preclinical and some clinical settings. Continued research into the antitumor effects induced by NK cells and tumor-targeted mAbs suggests that additional intrinsic and extrinsic factors may influence the antitumor response. Therefore more research is needed that focuses on evaluating which NK cell and tumor criteria are best predictive of a clinical response and which combination immunotherapy regimens to pursue for distinct clinical settings.
Collapse
|