1
|
He E, Li Y, Zhao R, Kong Q, Shao Y, Wang C, Liu B, Jiang Y, Liu Q, Cui H. IL7 as a Risk Factor for Prostate Cancer: Implications for T Cell Apoptosis and Infiltration in the Tumor Microenvironment. Prostate 2025; 85:315-323. [PMID: 39593187 DOI: 10.1002/pros.24830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/23/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Prostate cancer's complex interplay with the immune microenvironment prompted an investigation into immune-related pathogenic mechanisms and potential therapeutic targets. METHODS Within the GSE176031 data set, Seurat meticulously dissected single-cell profiles from radical prostatectomy patients. Leveraging CellMarker and SingleR cell identities were precisely annotated. Then, monocle traced pseudotime trajectories, illuminating cellular paths, complemented by CellChat's insights into intricate intercellular communications. Furthermore, mendelian randomization (MR) robustly substantiated causal associations within prostate cancer contexts. RESULTS Employing single-cell analysis on intraoperative tumor and normal tissue, we identified 15 distinct cell types, notably observing a significant T cell reduction in tumor samples. Intercellular communication analysis revealed multiple pathways between epithelial cells and T cells, highlighting interleukin (IL)-IL7R-IL2RG interactions. IL7R, crucial in T cell apoptosis, showed differential expression across T cell development stages. Patients with IL7 amplification had poorer outcomes (p < 0.05), supported by MR in two cohorts (ieu-b-4809 cohort: odds ratio [OR] = 1.005, p = 0.002, 95% confidence interval [CI] [1.002-1.008]; ebi-a-GCST90018905: OR = 1.063, p = 0.032, 95% CI [1.005-1.125]), confirming IL7 as a prostate cancer risk factor. CONCLUSIONS These findings suggest T cell depletion via IL7-IL7R signaling may drive prostate cancer progression, offering novel therapeutic insights.
Collapse
Affiliation(s)
- Enyang He
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Yaowen Li
- Tianjin Medical University, Tianjin, China
- The First Central Hospital of Tianjin, Tianjin, China
| | - Rui Zhao
- Tianjin Medical University, Tianjin, China
- General Hospital of Tianjin Medical University, Tianjin, China
| | - Qinyan Kong
- West China Hospital of Sichuan University, Chengdu, China
| | - Yi Shao
- Tianjin Medical University, Tianjin, China
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Cong Wang
- Tianjin Medical University, Tianjin, China
- General Hospital of Tianjin Medical University, Tianjin, China
| | - Baoqun Liu
- Tianjin Medical University, Tianjin, China
- The First Central Hospital of Tianjin, Tianjin, China
| | - Yvhang Jiang
- Tianjin Medical University, Tianjin, China
- General Hospital of Tianjin Medical University, Tianjin, China
| | - Qian Liu
- Tianjin Medical University, Tianjin, China
- The First Central Hospital of Tianjin, Tianjin, China
| | - Hualei Cui
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Ullah A, Jiao W, Shen B. The role of proinflammatory cytokines and CXC chemokines (CXCL1-CXCL16) in the progression of prostate cancer: insights on their therapeutic management. Cell Mol Biol Lett 2024; 29:73. [PMID: 38745115 PMCID: PMC11094955 DOI: 10.1186/s11658-024-00591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Reproductive cancers are malignancies that develop in the reproductive organs. One of the leading cancers affecting the male reproductive system on a global scale is prostate cancer (PCa). The negative consequences of PCa metastases endure and are severe, significantly affecting mortality and life quality for those who are affected. The association between inflammation and PCa has captured interest for a while. Inflammatory cells, cytokines, CXC chemokines, signaling pathways, and other elements make up the tumor microenvironment (TME), which is characterized by inflammation. Inflammatory cytokines and CXC chemokines are especially crucial for PCa development and prognosis. Cytokines (interleukins) and CXC chemokines such as IL-1, IL-6, IL-7, IL-17, TGF-β, TNF-α, CXCL1-CXCL6, and CXCL8-CXCL16 are thought to be responsible for the pleiotropic effects of PCa, which include inflammation, progression, angiogenesis, leukocyte infiltration in advanced PCa, and therapeutic resistance. The inflammatory cytokine and CXC chemokines systems are also promising candidates for PCa suppression and immunotherapy. Therefore, the purpose of this work is to provide insight on how the spectra of inflammatory cytokines and CXC chemokines evolve as PCa develops and spreads. We also discussed recent developments in our awareness of the diverse molecular signaling pathways of these circulating cytokines and CXC chemokines, as well as their associated receptors, which may one day serve as PCa-targeted therapies. Moreover, the current status and potential of theranostic PCa therapies based on cytokines, CXC chemokines, and CXC receptors (CXCRs) are examined.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Jiao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Zhang S, Ma J, Yu T, Song Z, Lau WY, Zha Y. circ_HMGCS1 modulates hepatocellular carcinoma chemoresistance via miR-338-5p/IL-7 pathway. J Cell Mol Med 2024; 28:e18137. [PMID: 38445791 PMCID: PMC10915820 DOI: 10.1111/jcmm.18137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 03/07/2024] Open
Abstract
Hepatocellular cancer is one of the most serious types of cancer in the world, with high incidence and mortality rates. Most HCC patients with long-term chemotherapy develop chemoresistance, leading to a poor prognosis. However, the underlying mechanism of circRNAs in HCC chemoresistance remains unclear. Our research found that circ_0072391(circ_HMGCS1) expression was significantly upregulated in cisplatin-resistant HCC cells. The silence of circ_HMGCS1 attenuated the cisplatin resistance in HCC. Results showed that circ_HMGCS1 regulated the expression of miR-338-5p via acting as microRNA sponges. Further study confirmed that miR-338-5p regulated the expression of IL-7. IL-7 could remodel the immune system by improving T-cell function and antagonising the immunosuppressive network. IL-7 is an ideal target used to enhance the function of the immune system. circ_HMGCS1 exerts its oncogenic function through the miR-338-5p/IL-7 pathway. Inhibition of circ_HMGCS1/miR-338-5p/IL-7 could effectively attenuate the chemoresistance of HCC. IL-7 might be a promising immunotherapy target for HCC cancer treatment.
Collapse
Affiliation(s)
- Siyu Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
- Department of Medical OncologySichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center Affiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Jun Ma
- Department of Hepatobiliary and Pancreatic SurgeryThe Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| | - Tingdong Yu
- Department of Hepatobiliary and Pancreatic SurgeryThe Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| | - Zhengrui Song
- Department of Hepatobiliary and Pancreatic SurgeryThe Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| | - Wan Yee Lau
- Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Yong Zha
- Department of Hepatobiliary and Pancreatic SurgeryThe Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| |
Collapse
|
4
|
Wang G, Liu Y, Liu S, Lin Y, Hu C. Oncolyic Virotherapy for Prostate Cancer: Lighting a Fire in Winter. Int J Mol Sci 2022; 23:12647. [PMID: 36293504 PMCID: PMC9603894 DOI: 10.3390/ijms232012647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
As the most common cancer of the genitourinary system, prostate cancer (PCa) is a global men's health problem whose treatments are an urgent research issue. Treatment options for PCa include active surveillance (AS), surgery, endocrine therapy, chemotherapy, radiation therapy, immunotherapy, etc. However, as the cancer progresses, the effectiveness of treatment options gradually decreases, especially in metastatic castration-resistant prostate cancer (mCRPC), for which there are fewer therapeutic options and which have a shorter survival period and worse prognosis. For this reason, oncolytic viral therapy (PV), with its exceptional properties of selective tumor killing, relatively good safety in humans, and potential for transgenic delivery, has attracted increasing attention as a new form of anti-tumor strategy for PCa. There is growing evidence that OV not only kills tumor cells directly by lysis but can also activate anticancer immunity by acting on the tumor microenvironment (TME), thereby preventing tumor growth. In fact, evidence of the efficacy of this strategy has been observed since the late 19th century. However, subsequently, interest waned. The renewed interest in this therapy was due to advances in biotechnological methods and innovations at the end of the 20th century, which was also the beginning of PCa therapy with OV. Moreover, in combination with chemotherapy, radiotherapy, gene therapy or immunotherapy, OV viruses can have a wide range of applications and can provide an effective therapeutic result in the treatment of PCa.
Collapse
Affiliation(s)
- Gongwei Wang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shuoru Liu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yuan Lin
- Department of Pharmacology, Sun Yat-sen University, Guangzhou 528478, China
| | - Cheng Hu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
5
|
Mohammad T, Singh P, Jairajpuri DS, Al-Keridis LA, Alshammari N, Adnan M, Dohare R, Hassan MI. Differential Gene Expression and Weighted Correlation Network Dynamics in High-Throughput Datasets of Prostate Cancer. Front Oncol 2022; 12:881246. [PMID: 35719950 PMCID: PMC9198298 DOI: 10.3389/fonc.2022.881246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
Precision oncology is an absolute need today due to the emergence of treatment resistance and heterogeneity among cancerous profiles. Target-propelled cancer therapy is one of the treasures of precision oncology which has come together with substantial medical accomplishment. Prostate cancer is one of the most common cancers in males, with tremendous biological heterogeneity in molecular and clinical behavior. The spectrum of molecular abnormalities and varying clinical patterns in prostate cancer suggest substantial heterogeneity among different profiles. To identify novel therapeutic targets and precise biomarkers implicated with prostate cancer, we performed a state-of-the-art bioinformatics study, beginning with analyzing high-throughput genomic datasets from The Cancer Genome Atlas (TCGA). Weighted gene co-expression network analysis (WGCNA) suggests a set of five dysregulated hub genes (MAF, STAT6, SOX2, FOXO1, and WNT3A) that played crucial roles in biological pathways associated with prostate cancer progression. We found overexpressed STAT6 and SOX2 and proposed them as candidate biomarkers and potential targets in prostate cancer. Furthermore, the alteration frequencies in STAT6 and SOX2 and their impact on the patients' survival were explored through the cBioPortal platform. The Kaplan-Meier survival analysis suggested that the alterations in the candidate genes were linked to the decreased overall survival of the patients. Altogether, the results signify that STAT6 and SOX2 and their genomic alterations can be explored in therapeutic interventions of prostate cancer for precision oncology, utilizing early diagnosis and target-propelled therapy.
Collapse
Affiliation(s)
- Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Yan M, Yang Y, Zhou Y, Yu C, Li R, Gong W, Zheng J. Interleukin-7 aggravates myocardial ischaemia/reperfusion injury by regulating macrophage infiltration and polarization. J Cell Mol Med 2021; 25:9939-9952. [PMID: 34581005 PMCID: PMC8572772 DOI: 10.1111/jcmm.16335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Interleukin (IL)‐7 is known to enhance the macrophages cytotoxic activity and that macrophages play a pivotal role in the development and progression of myocardial ischaemia/reperfusion (I/R) injury. However, the effects of IL‐7 on macrophages infiltration and polarization in myocardial I/R injury are currently unclear. This study aimed to evaluate the effects of the IL‐7 expression on myocardial I/R injury and their relationship with macrophages. The data showed that IL‐7 expression in mouse heart tissue increases following I/R injury and that IL‐7 knockout or anti‐IL‐7 antibody treatment significantly improve I/R injury, including reduction in myocardial infarction area, a serum troponin T level decreases and an improvement in cardiac function. On the other hand, recombinant IL‐7 (rIL‐7) supplementation induces opposite effects and the anti‐IL‐7 antibody significantly reduces the cardiomyocyte apoptosis and macrophage infiltration. rIL‐7 cannot directly cause apoptosis, but it can induce cardiomyocyte apoptosis through macrophages, in addition to increase the macrophages migration in vitro. Anti‐IL‐7 antibody affects the cytokine production in T helper (Th) 1 and Th2 cells and also promotes the macrophages differentiation to M2 macrophages. However, anti‐IL‐7 antibody does not reduce the M1 macrophage number, and it only increases the ratio of M2/M1 macrophages in mice heart tissues after I/R injury. Taking together, these data reveal that IL‐7 plays an intensifying role in myocardial I/R injury by promoting cardiomyocyte apoptosis through the regulation of macrophage infiltration and polarization.
Collapse
Affiliation(s)
- Mengwen Yan
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Yaliu Yang
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Ying Zhou
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Changan Yu
- Central Laboratory of Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, China
| | - Rui Li
- Department of Health Care, China-Japan Freindship Hospital, Ministry of Health, Beijing, China
| | - Wei Gong
- Emergency and Critical Care Center, Beijing Anzhen Hospital Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Jingang Zheng
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China.,Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| |
Collapse
|
7
|
Fan T, Pan S, Yang S, Hao B, Zhang L, Li D, Geng Q. Clinical Significance and Immunologic Landscape of a Five-IL(R)-Based Signature in Lung Adenocarcinoma. Front Immunol 2021; 12:693062. [PMID: 34497605 PMCID: PMC8419226 DOI: 10.3389/fimmu.2021.693062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/03/2021] [Indexed: 01/05/2023] Open
Abstract
Interleukins (ILs) and interleukin receptors (ILRs) play important role in the antitumor immune response. However, the expression signature and clinical characteristics of the IL(R) family in lung adenocarcinoma (LUAD) remains unclear. The main purpose of this study was to explore the expression profile of IL(R) family genes and construct an IL(R)-based prognostic signature in LUAD. Five public datasets of 1,312 patients with LUAD were enrolled in this study. Samples from The Cancer Genome Atlas (TCGA) were used as the training set, and samples from the other four cohorts extracted from Gene Expression Omnibus (GEO) database were used as the validation set. Additionally, the profile of IL(R) family signature was explored, and the association between this signature and immunotherapy response was also analyzed. Meanwhile, the prognostic value was compared between this IL(R)-based signature and different immunotherapy markers. A signature based on five identified IL(R)s (IL7R, IL5RA, IL20RB, IL11, IL22RA1) was constructed using the TCGA dataset through univariate/multivariable Cox proportional hazards regression and least absolute shrinkage and selection operator (LASSO) Cox analysis. These cases with LUAD were stratified into high- and low-risk group according to the risk score. This signature showed a strong prognostic ability, which was verified by the five independent cohorts and clinical subtypes. The IL(R)-based models presented unique characteristics in terms of immune cell infiltration and immune inflammation profile in tumor microenvironment (TME). Biological pathway analysis confirmed that high-risk patients showed significant T- and B-cell immunosuppression and rapid tumor cell proliferation. More importantly, we researched the relationship between this IL(R)-based signature and immune checkpoints, tumor mutation burden (TMB), tumor purity and ploidy, and tumor immune dysfunction and exclusion (TIDE) score, which confirmed that this signature gave the best prognostic value. We first provided a robust prognostic IL(R)-based signature, which had the potential as a predictor for immunotherapy response to realize individualized treatment of LUAD.
Collapse
Affiliation(s)
- Tao Fan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shize Pan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Hao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Donghang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Regulation and Functions of Protumoral Unconventional T Cells in Solid Tumors. Cancers (Basel) 2021; 13:cancers13143578. [PMID: 34298791 PMCID: PMC8304984 DOI: 10.3390/cancers13143578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/03/2023] Open
Abstract
The vast majority of studies on T cell biology in tumor immunity have focused on peptide-reactive conventional T cells that are restricted to polymorphic major histocompatibility complex molecules. However, emerging evidence indicated that unconventional T cells, including γδ T cells, natural killer T (NKT) cells and mucosal-associated invariant T (MAIT) cells are also involved in tumor immunity. Unconventional T cells span the innate-adaptive continuum and possess the unique ability to rapidly react to nonpeptide antigens via their conserved T cell receptors (TCRs) and/or to activating cytokines to orchestrate many aspects of the immune response. Since unconventional T cell lineages comprise discrete functional subsets, they can mediate both anti- and protumoral activities. Here, we review the current understanding of the functions and regulatory mechanisms of protumoral unconventional T cell subsets in the tumor environment. We also discuss the therapeutic potential of these deleterious subsets in solid cancers and why further feasibility studies are warranted.
Collapse
|
9
|
Bednarz-Misa I, Bromke MA, Krzystek-Korpacka M. Interleukin (IL)-7 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:9-49. [PMID: 33559853 DOI: 10.1007/978-3-030-55617-4_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-7 plays an important immunoregulatory role in different types of cells. Therefore, it attracts researcher's attention, but despite the fact, many aspects of its modulatory action, as well as other functionalities, are still poorly understood. The review summarizes current knowledge on the interleukin-7 and its signaling cascade in context of cancer development. Moreover, it provides a cancer-type focused description of the involvement of IL-7 in solid tumors, as well as hematological malignancies.The interleukin has been discovered as a growth factor crucial for the early lymphocyte development and supporting the growth of malignant cells in certain leukemias and lymphomas. Therefore, its targeting has been explored as a treatment modality in hematological malignancies, while the unique ability to expand lymphocyte populations selectively and without hyperinflammation has been used in experimental immunotherapies in patients with lymphopenia. Ever since the early research demonstrated a reduced growth of solid tumors in the presence of IL-7, the interleukin application in boosting up the anticancer immunity has been investigated. However, a growing body of evidence indicative of IL-7 upregulation in carcinomas, facilitating tumor growth and metastasis and aiding drug-resistance, is accumulating. It therefore becomes increasingly apparent that the response to the IL-7 stimulus strongly depends on cell type, their developmental stage, and microenvironmental context. The interleukin exerts its regulatory action mainly through phosphorylation events in JAK/STAT and PI3K/Akt pathways, while the significance of MAPK pathway seems to be limited to solid tumors. Given the unwavering interest in IL-7 application in immunotherapy, a better understanding of interleukin role, source in tumor microenvironment, and signaling pathways, as well as the identification of cells that are likely to respond should be a research priority.
Collapse
Affiliation(s)
- Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Mariusz A Bromke
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
10
|
Cytokines and Chemokines as Mediators of Prostate Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21124449. [PMID: 32585812 PMCID: PMC7352203 DOI: 10.3390/ijms21124449] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022] Open
Abstract
The consequences of prostate cancer metastasis remain severe, with huge impact on the mortality and overall quality of life of affected patients. Despite the convoluted interplay and cross talk between various cell types and secreted factors in the metastatic process, cytokine and chemokines, along with their receptors and signaling axis, constitute important factors that help drive the sequence of events that lead to metastasis of prostate cancer. These proteins are involved in extracellular matrix remodeling, epithelial-mesenchymal-transition, angiogenesis, tumor invasion, premetastatic niche creation, extravasation, re-establishment of tumor cells in secondary organs as well as the remodeling of the metastatic tumor microenvironment. This review presents an overview of the main cytokines/chemokines, including IL-6, CXCL12, TGFβ, CXCL8, VEGF, RANKL, CCL2, CX3CL1, IL-1, IL-7, CXCL1, and CXCL16, that exert modulatory roles in prostate cancer metastasis. We also provide extensive description of their aberrant expression patterns in both advanced disease states and metastatic sites, as well as their functional involvement in the various stages of the prostate cancer metastatic process.
Collapse
|
11
|
Shore ND, Pieczonka CM, Henderson RJ, Bailen JL, Saltzstein DR, Concepcion RS, Beebe-Dimmer JL, Ruterbusch JJ, Levin RA, Wissmueller S, Le TH, Gillatt D, Chan DW, Campbell DH, Walsh BJ. Development and evaluation of the MiCheck test for aggressive prostate cancer. Urol Oncol 2020; 38:683.e11-683.e18. [PMID: 32305266 DOI: 10.1016/j.urolonc.2020.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/27/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND A clinical need exists for a biomarker test to accurately delineate aggressive prostate cancer (AgCaP), and thus better assist clinicians and patients decision-making on whether to proceed to prostate biopsy. OBJECTIVES To develop a blood test for AgCaP and compare to PSA, %free PSA, proPSA, and prostate health index (PHI) tests. DESIGN, SETTINGS AND PARTICIPANTS Patient samples from the MiCheck-01 trial were used for development of the MiCheck test. METHODS Serum analyte concentrations for cellular growth factors were determined using a custom-made Luminex-based R&D Systems multianalyte kit. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Bayesian model averaging and random forest approaches were used to identify clinical factors and growth factors able to distinguish between men with AgCaP (Gleason Score [GS] ≥3+4) from those with non-AgCaP (GS 3+3). Logistic regression and Monte Carlo cross-validation identified variable combinations in order to able to maximize differentiation of AgCaP from non-AgCaP. RESULTS The MiCheck logistic regression model was developed and comprises the following variables: serum prostate-specific antigen (PSA), patient age, Digital Rectal Exam (DRE) status, Leptin, IL-7, vascular endothelial growth factor, and Glypican-1. The model differentiated AgCaP from non-AgCaP with an area under the curve of 0.83 and was superior to PSA, %free PSA and PHI in all patient groups, regardless of PSA range. Applying the MiCheck test to all evaluable biopsy patients from the MiCheck-01 study demonstrated that up to 30% of biopsies could be avoided while delaying diagnosis of only 6.8% of GS ≥3+4 cancers, 5% of GS ≥4+3 cancers and no cancers of GS 8 or higher. CONCLUSIONS The MiCheck test outperforms PSA, %free PSA and PHI tests in differentiating AgCaP vs. non-AgCaP patients. The MiCheck test could result in a significant number of biopsies being avoided with a low number of patients experiencing a delayed diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jennifer L Beebe-Dimmer
- Barbara Ann Karmanos Cancer Institute and Wayne State University School of Medicine, Department of Oncology, Detriot, MI
| | - Julie J Ruterbusch
- Barbara Ann Karmanos Cancer Institute and Wayne State University School of Medicine, Department of Oncology, Detriot, MI
| | | | | | - Thao Ho Le
- Minomic International Ltd, NSW, Sydney, Australia
| | - David Gillatt
- Faculty of Medical and Health Sciences, Macquarie University, Sydney, Australia
| | - Daniel W Chan
- Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | |
Collapse
|
12
|
Interleukin-7 Contributes to the Invasiveness of Prostate Cancer Cells by Promoting Epithelial-Mesenchymal Transition. Sci Rep 2019; 9:6917. [PMID: 31061414 PMCID: PMC6502845 DOI: 10.1038/s41598-019-43294-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/17/2019] [Indexed: 01/05/2023] Open
Abstract
Precise mechanisms underlying interleukin-7 (IL-7)-mediated tumor invasion remain unclear. Thus, we investigated the role of IL-7 in tumor invasiveness using metastatic prostate cancer PC-3 cell line derivatives, and assessed the potential of IL-7 as a clinical target using a Janus kinase (JAK) inhibitor and an IL-7-blocking antibody. We found that IL-7 stimulated wound-healing migration and invasion of PC-3 cells, increased phosphorylation of signal transducer and activator of transcription 5, Akt, and extracellular signal-regulated kinase. On the other hand, a JAK inhibitor and an IL-7-blocking antibody decreased the invasiveness of PC-3 cells. IL-7 increased tumor sphere formation and expression of epithelial–mesenchymal transition (EMT) markers. Importantly, lentiviral delivery of IL-7Rα to PC-3 cells significantly increased bone metastasis in an experimental murine metastasis model compared to controls. The gene expression profile of human prostate cancer cells from The Cancer Genome Atlas revealed that EMT pathways are strongly associated with prostate cancers that highly express both IL-7 and IL-7Rα. Collectively, these data suggest that IL-7 and/or IL-7Rα are promising targets of inhibiting tumor metastasis.
Collapse
|
13
|
Interleukin-7 promotes lung-resident CD14+ monocytes activity in patients with lung squamous carcinoma. Int Immunopharmacol 2019; 67:202-210. [DOI: 10.1016/j.intimp.2018.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
|
14
|
Gevariya N, Besançon M, Robitaille K, Picard V, Diabaté L, Alesawi A, Julien P, Fradet Y, Bergeron A, Fradet V. Omega-3 fatty acids decrease prostate cancer progression associated with an anti-tumor immune response in eugonadal and castrated mice. Prostate 2019; 79:9-20. [PMID: 30073695 DOI: 10.1002/pros.23706] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 07/13/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Several lines of evidence suggest effects of dietary fat on prostate cancer (PCa) development and progression. Targeting omega (ω)-3:ω6 fatty acids (FA) ratio could be beneficial against PCa by favorably modulating inflammation. Here, we studied the effects of ω3- and ω6-enriched diets on prostate tumor growth and inflammatory response in androgen-deprived and non-deprived conditions. METHODS Immune-competent eugonadal and castrated C57BL/6 mice were injected with TRAMP-C2 prostate tumor cells and daily fed with ω3- or ω6-enriched diet. FA and cytokine profiles were measured in blood and tumors using gas chromatography and multiplex immunoassay, respectively. Immune cell infiltration in tumors was profiled by multicolor flow cytometry. RESULTS ω3-enriched diet decreased prostate TRAMP-C2 tumor growth in immune-competent eugonadal and castrated mice. Cytokines associated with Th1 immune response (IL-12 [p70], IFN-γ, GM-CSF) and eosinophil recruitment (eotaxin-1, IL-5, and IL-13) were significantly elevated in tumors of ω3-fed mice. Using in vitro experiments, we confirmed ω3 FA-induced eotaxin-1 secretion by tumor cells and that eotaxin-1 secretion was regulated by androgens. Analysis of immune cell infiltrating tumors showed no major difference of immune cells' abundance between ω3- and ω6-enriched diets. CONCLUSIONS ω3-enriched diet reduces prostate tumor growth independently of androgen levels. ω3 FA can inhibit tumor cell growth and induce a local anti-tumor inflammatory response. These findings warrant further examination of dietary ω3's potential to slow down the progression of androgen-sensitive and castrate-resistant PCa by modulating immune cell function in tumors.
Collapse
Affiliation(s)
- Nikunj Gevariya
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Marjorie Besançon
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Karine Robitaille
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Valérie Picard
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Lamoussa Diabaté
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Anwar Alesawi
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Pierre Julien
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
- Endocrinology and Nephrology Axis, Centre de recherche du CHU de Québec-Université Laval-CHUL, Québec, Quebec, Canada
| | - Yves Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Alain Bergeron
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Vincent Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
15
|
Guertin MH, Robitaille K, Pelletier JF, Duchesne T, Julien P, Savard J, Bairati I, Fradet V. Effects of concentrated long-chain omega-3 polyunsaturated fatty acid supplementation before radical prostatectomy on prostate cancer proliferation, inflammation, and quality of life: study protocol for a phase IIb, randomized, double-blind, placebo-controlled trial. BMC Cancer 2018; 18:64. [PMID: 29321047 PMCID: PMC5763552 DOI: 10.1186/s12885-017-3979-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/22/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Prostate cancer is the most commonly diagnosed cancer in north-American men. Few dietary or lifestyle interventions have been tested to prevent prostate cancer progression. Omega-3 fatty acid supplementation represents a promising intervention for prostate cancer patients. The aim of the study is to evaluate the effects of long-chain omega-3 polyunsaturated fatty acids (LCn3), more precisely eicosapentaenoic acid monoacylglyceride (MAG-EPA) supplementation, on prostate cancer proliferation, inflammation mediators and quality of life among men who will undergo radical prostatectomy. METHODS/DESIGN We propose a phase IIb, randomized, double-blind placebo-controlled trial of MAG-EPA supplementation for 130 men who will undergo radical prostatectomy as treatment for a prostate cancer of Gleason score ≥ 7 in an academic cancer center in Quebec City. Participants will be randomized to 6 capsules of 625 mg of fish oil (MAG-EPA) per capsule containing 500 mg of EPA daily or to identically looking capsules of high oleic acid sunflower oil (HOSO) as placebo. The intervention begins 4 to 10 weeks prior to radical prostatectomy (baseline) and continues for one year after surgery. The primary endpoint is the proliferative index (Ki-67) measured in prostate cancer cells at radical prostatectomy. A secondary endpoint includes prostate tissue levels of inflammatory mediators (cytokines and proteins) at time of radical prostatectomy. Changes in blood levels of inflammatory mediators, relative to baseline levels, at time of radical prostatectomy and 12 months after radical prostatectomy will also be evaluated. Secondary endpoints also include important aspects of psychosocial functioning and quality of life such as depression, anxiety, sleep disturbances, fatigue, cognitive complaints and prostate cancer-specific quality of life domains. The changes in these outcomes, relative to baseline levels, will be evaluated at 3, 6, 9 and 12 months after radical prostatectomy. DISCUSSION The results from this trial will provide crucial information to clarify the role of omega-3 supplementation on prostate cancer proliferation, inflammation and quality of life. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02333435. Registered on December 17, 2014. Last updated September 6, 2016.
Collapse
Affiliation(s)
- Marie-Hélène Guertin
- Oncology Unit, Centre de recherche du CHU de Québec – Université Laval - L’Hôtel-Dieu de Québec, 6 rue McMahon, Québec, QC Canada
| | - Karine Robitaille
- Oncology Unit, Centre de recherche du CHU de Québec – Université Laval - L’Hôtel-Dieu de Québec, 6 rue McMahon, Québec, QC Canada
| | - Jean-François Pelletier
- Oncology Unit, Centre de recherche du CHU de Québec – Université Laval - L’Hôtel-Dieu de Québec, 6 rue McMahon, Québec, QC Canada
| | - Thierry Duchesne
- Mathematics and Statistics Department, Université Laval, 1045 avenue de la médecine, Bureau, Québec, QC 1056 Canada
| | - Pierre Julien
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec – Université Laval - CHUL, 2705, boulevard Laurier, Québec, QC Canada
| | - Josée Savard
- Oncology Unit, Centre de recherche du CHU de Québec – Université Laval - L’Hôtel-Dieu de Québec, 6 rue McMahon, Québec, QC Canada
| | - Isabelle Bairati
- Oncology Unit, Centre de recherche du CHU de Québec – Université Laval - L’Hôtel-Dieu de Québec, 6 rue McMahon, Québec, QC Canada
| | - Vincent Fradet
- Oncology Unit, Centre de recherche du CHU de Québec – Université Laval - L’Hôtel-Dieu de Québec, 6 rue McMahon, Québec, QC Canada
| |
Collapse
|
16
|
Patin EC, Soulard D, Fleury S, Hassane M, Dombrowicz D, Faveeuw C, Trottein F, Paget C. Type I IFN Receptor Signaling Controls IL7-Dependent Accumulation and Activity of Protumoral IL17A-Producing γδT Cells in Breast Cancer. Cancer Res 2017; 78:195-204. [PMID: 29070614 DOI: 10.1158/0008-5472.can-17-1416] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/06/2017] [Accepted: 10/20/2017] [Indexed: 11/16/2022]
Abstract
The protumoral activity of γδT17 cells has recently emerged in a wide variety of solid malignancies, including breast cancer. These cells exert their detrimental functions by promoting tumor growth, angiogenesis, and subsequent metastasis development. However, the intratumoral factors that regulate the biology of γδT17cells within the tumor microenvironment are less well understood. Here, using two experimental models of breast cancer, we reinforced the concept that tumor-infiltrating γδT17 cells are endowed with protumoral functions, which promote tumor progression and metastasis development. More importantly, we demonstrated a critical role for type I IFN signaling in controlling the preferential accumulation in the tumor bed of a peculiar subset of γδT17 cells displaying a CD27- CD3bright phenotype (previously associated with the invariant Vγ6Vδ1+ TCR). Interestingly, this effect was indirect and partially relied on the IFNAR1-dependent control of IL7 secretion, a factor that triggers proliferation and activating functions of deleterious γδT17 cells. Our work therefore identifies a key role of the type I IFN/IL7 axis in the regulation of intratumoral γδT17-cell functions and in the development of primary breast tumor growth and metastasis.Significance: Tumor-derived IL7 can represent a therapeutic target to prevent accumulation of immune cells endowed with potent protumoral activities. Cancer Res; 78(1); 195-204. ©2017 AACR.
Collapse
Affiliation(s)
- Emmanuel C Patin
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, France
| | - Daphnée Soulard
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, France
| | - Sébastien Fleury
- Université de Lille, INSERM, Institut Pasteur de Lille, CHU Lille, U1011, EGID, Lille, France.,European Genomic Institute of Diabetes, Lille, France
| | - Maya Hassane
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, France.,Laboratoire Microbiologie Santé et Environnement, Ecole doctorale en Sciences et Technologies/Faculté de Santé Publique, Université Libanaise, Tripoli, Liban
| | - David Dombrowicz
- Université de Lille, INSERM, Institut Pasteur de Lille, CHU Lille, U1011, EGID, Lille, France.,European Genomic Institute of Diabetes, Lille, France
| | - Christelle Faveeuw
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, France
| | - François Trottein
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, France
| | - Christophe Paget
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, France. .,Université de Tours, INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
| |
Collapse
|
17
|
Qu H, Zou Z, Pan Z, Zhang T, Deng N, Chen G, Wang Z. IL-7/IL-7 receptor axis stimulates prostate cancer cell invasion and migration via AKT/NF-κB pathway. Int Immunopharmacol 2016; 40:203-210. [DOI: 10.1016/j.intimp.2016.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/09/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022]
|
18
|
Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer. PLoS One 2015; 10:e0145322. [PMID: 26683658 PMCID: PMC4687717 DOI: 10.1371/journal.pone.0145322] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/02/2015] [Indexed: 11/30/2022] Open
Abstract
Genomic technologies including microarrays and next-generation sequencing have enabled the generation of molecular signatures of prostate cancer. Lists of differentially expressed genes between malignant and non-malignant states are thought to be fertile sources of putative prostate cancer biomarkers. However such lists of differentially expressed genes can be highly variable for multiple reasons. As such, looking at differential expression in the context of gene sets and pathways has been more robust. Using next-generation genome sequencing data from The Cancer Genome Atlas, differential gene expression between age- and stage- matched human prostate tumors and non-malignant samples was assessed and used to craft a pathway signature of prostate cancer. Up- and down-regulated genes were assigned to pathways composed of curated groups of related genes from multiple databases. The significance of these pathways was then evaluated according to the number of differentially expressed genes found in the pathway and their position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. The “transforming growth factor-beta signaling” and “Ran regulation of mitotic spindle formation” pathways were strongly associated with prostate cancer. Several other significant pathways confirm reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of pathway analysis and identified an underexplored area (Ran) for investigation in prostate cancer pathogenesis.
Collapse
|
19
|
Wu CT, Chang YH, Lin WY, Chen WC, Chen MF. TGF Beta1 Expression Correlates with Survival and Tumor Aggressiveness of Prostate Cancer. Ann Surg Oncol 2015; 22 Suppl 3:S1587-93. [PMID: 26271396 DOI: 10.1245/s10434-015-4804-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND Although biopsy Gleason score and clinical stage can be used to inform treatment decisions for prostate cancer, identifying molecular markers of tumor aggressiveness could lead to a more tailored approaches to therapy. In the present study, we investigated the association of transforming growth factor (TGF)-β1 levels and various markers of tumor aggressiveness and explore some potential mechanisms underlying the associations. METHODS We used human and murine prostate cancer cell lines and their respective hormone resistance sub-lines, in vitro and in vivo to examine the changes in tumor aggressiveness, as well as the pathway responsible for these changes. Furthermore, 105 prostate cancer biopsy specimens were analyzed to correlate the level of TGF-β1 with the clinical characteristics of patients. RESULTS Our data revealed that activated TGF-β1 signaling resulted in more aggressive tumor growth and augmented the epithelial-mesenchymal transition. Activated IL-6 signaling was associated with TGF-β1 levels and the aggressive tumor features noted in TGF-β1-positive prostate cancers in vitro and in vivo. Furthermore, the TGF-β1 levels significantly correlated with Tregs accumulation in vivo. The clinical data indicated that TGF-β1 immunoreactivity had a moderate positive correlation with IL-6 staining, advanced clinical stage, higher Gleason score, and pretreatment PSA in patients with prostate cancer. CONCLUSIONS TGF-β1 levels are significantly associated with aggressive prostate features. In vitro and in vivo alternations of TGF-β1 expression impacts tumor invasiveness, tumor growth rate and recruitment of immunosuppressive Treg cells in the tumor microenvironment. TGF-β1 expression may represent a clinical useful biomarker to guide prostate cancer treatment decisions.
Collapse
Affiliation(s)
- Chun-Te Wu
- Department of Urology, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Hsu Chang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Urology, Chang Gung Memorial Hospital at Linko, Linko, Taiwan
| | - Wei-Yu Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Urology, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| | - Wen-Cheng Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| | - Miao-Fen Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Radiation Oncology, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan.
| |
Collapse
|
20
|
Mechanism of Action of IL-7 and Its Potential Applications and Limitations in Cancer Immunotherapy. Int J Mol Sci 2015; 16:10267-80. [PMID: 25955647 PMCID: PMC4463645 DOI: 10.3390/ijms160510267] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/16/2015] [Accepted: 04/29/2015] [Indexed: 01/10/2023] Open
Abstract
Interleukin-7 (IL-7) is a non-hematopoietic cell-derived cytokine with a central role in the adaptive immune system. It promotes lymphocyte development in the thymus and maintains survival of naive and memory T cell homeostasis in the periphery. Moreover, it is important for the organogenesis of lymph nodes (LN) and for the maintenance of activated T cells recruited into the secondary lymphoid organs (SLOs). The immune capacity of cancer patients is suppressed that is characterized by lower T cell counts, less effector immune cells infiltration, higher levels of exhausted effector cells and higher levels of immunosuppressive cytokines, such as transforming growth factor β (TGF-β). Recombinant human IL-7 (rhIL-7) is an ideal solution for the immune reconstitution of lymphopenia patients by promoting peripheral T cell expansion. Furthermore, it can antagonize the immunosuppressive network. In animal models, IL-7 has been proven to prolong the survival of tumor-bearing hosts. In this review, we will focus on the mechanism of action and applications of IL-7 in cancer immunotherapy and the potential restrictions for its usage.
Collapse
|
21
|
Molecular profiling predicts the existence of two functionally distinct classes of ovarian cancer stroma. BIOMED RESEARCH INTERNATIONAL 2013; 2013:846387. [PMID: 23762861 PMCID: PMC3665167 DOI: 10.1155/2013/846387] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 01/12/2023]
Abstract
Although stromal cell signaling has been shown to play a significant role in the progression of many cancers, relatively little is known about its importance in modulating ovarian cancer development. The purpose of this study was to investigate the process of stroma activation in human ovarian cancer by molecular analysis of matched sets of cancer and surrounding stroma tissues. RNA microarray profiling of 45 tissue samples was carried out using the Affymetrix (U133 Plus 2.0) gene expression platform. Laser capture microdissection (LCM) was employed to isolate cancer cells from the tumors of ovarian cancer patients (Cepi) and matched sets of surrounding cancer stroma (CS). For controls, ovarian surface epithelial cells (OSE) were isolated from the normal (noncancerous) ovaries and normal stroma (NS). Hierarchical clustering of the microarray data resulted in clear separations between the OSE, Cepi, NS, and CS samples. Expression patterns of genes encoding signaling molecules and compatible receptors in the CS and Cepi samples indicate the existence of two subgroups of cancer stroma (CS) with different propensities to support tumor growth. Our results indicate that functionally significant variability exists among ovarian cancer patients in the ability of the microenvironment to modulate cancer development.
Collapse
|
22
|
Current World Literature. Curr Opin Urol 2013. [DOI: 10.1097/mou.0b013e3283605159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Current World Literature. Curr Opin Oncol 2013; 25:99-104. [DOI: 10.1097/cco.0b013e32835c1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Current challenges in development of differentially expressed and prognostic prostate cancer biomarkers. Prostate Cancer 2012; 2012:640968. [PMID: 22970379 PMCID: PMC3434411 DOI: 10.1155/2012/640968] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/13/2012] [Indexed: 01/05/2023] Open
Abstract
Introduction. Predicting the aggressiveness of prostate cancer at biopsy is invaluable in making treatment decisions. In this paper we review the differential expression of genes and microRNAs identified through microarray analysis as potentially useful markers for prostate cancer prognosis and discuss some of the challenges associated with their development. Methods. A review of the literature was conducted through Medline. Articles were identified through searches of the following terms: "prostate cancer AND differential expression", "prostate cancer prognosis", and "prostate cancer AND microRNAs". Results. Though numerous differentially expressed genes and microRNAs were identified as possible prognostic markers, the significance of several of these genes is either debated due to conflicting results or is not validated in other study populations. A few of the articles constructed predictive nomograms using a panel of biomarkers which require further validation. Challenges to the development of useful markers include different methodology, cancer heterogeneity, and sampling error. These can be overcome by categorizing prognostic factors into particular gene pathways or by supplementing biopsy information with blood or urine-based biomarkers. Conclusion. Though biomarkers based on differential expression offer the potential to improve decision making concerning prostate cancer, further validation of their utility and accuracy at the biopsy level is needed.
Collapse
|
25
|
Hu Z, Gupta J, Zhang Z, Gerseny H, Berg A, Chen YJ, Zhang Z, Du H, Brendler CB, Xiao X, Pienta KJ, Guise T, Lee C, Stern PH, Stock S, Seth P. Systemic delivery of oncolytic adenoviruses targeting transforming growth factor-β inhibits established bone metastasis in a prostate cancer mouse model. Hum Gene Ther 2012; 23:871-82. [PMID: 22551458 DOI: 10.1089/hum.2012.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We have examined whether Ad.sTβRFc and TAd.sTβRFc, two oncolytic viruses expressing soluble transforming growth factor-β receptor II fused with human Fc (sTGFβRIIFc), can be developed to treat bone metastasis of prostate cancer. Incubation of PC-3 and DU-145 prostate tumor cells with Ad.sTβRFc and TAd.sTβRFc produced sTGFβRIIFc and viral replication; sTGFβRIIFc caused inhibition of TGF-β-mediated SMAD2 and SMAD3 phosphorylation. Ad(E1-).sTβRFc, an E1(-) adenovirus, produced sTGFβRIIFc but failed to replicate in tumor cells. To examine the antitumor response of adenoviral vectors, PC-3-luc cells were injected into the left heart ventricle of nude mice. On day 9, mice were subjected to whole-body bioluminescence imaging (BLI). Mice bearing hind-limb tumors were administered viral vectors via the tail vein on days 10, 13, and 17 (2.5×10(10) viral particles per injection per mouse, each injection in a 0.1-ml volume), and subjected to BLI and X-ray radiography weekly until day 53. Ad.sTβRFc, TAd.sTβRFc, and Ad(E1-).sTβRFc caused significant inhibition of tumor growth; however, Ad.sTβRFc was the most effective among all the vectors. Only Ad.sTβRFc and TAd.sTβRFc inhibited tumor-induced hypercalcemia. Histomorphometric and synchrotron micro-computed tomographic analysis of isolated bones indicated that Ad.sTβRFc induced significant reduction in tumor burden, osteoclast number, and trabecular and cortical bone destruction. These studies suggest that Ad.sTβRFc and TAd.sTβRFc can be developed as potential new therapies for prostate cancer bone metastasis.
Collapse
Affiliation(s)
- Zebin Hu
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, IL 60201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|