1
|
Vera-Cruz S, Jornet Culubret M, Konetzki V, Alb M, Friedel SR, Hudecek M, Einsele H, Danhof S, Scheller L. Cellular Therapies for Multiple Myeloma: Engineering Hope. Cancers (Basel) 2024; 16:3867. [PMID: 39594822 PMCID: PMC11592760 DOI: 10.3390/cancers16223867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple myeloma (MM) treatment remains challenging due to its relapsed/refractory disease course as well as intra- and inter-patient heterogeneity. Cellular immunotherapies, especially chimeric antigen receptor (CAR)-T cells targeting B cell maturation antigen (BCMA), mark a major breakthrough, achieving long-lasting remissions and instilling hope for a potential cure. While ongoing clinical trials are increasingly driving approved cellular products towards earlier lines of therapy, novel targets as well as advanced approaches employing natural killer (NK) cells or dendritic cell (DC) vaccines are currently under investigation. Treatment resistance, driven by tumor-intrinsic factors such as antigen escape and the intricate dynamics of the tumor microenvironment (TME), along with emerging side effects such as movement and neurocognitive treatment-emergent adverse events (MNTs), are the major limitations of approved cellular therapies. To improve efficacy and overcome resistance, cutting-edge research is exploring strategies to target the microenvironment as well as synergistic combinatorial approaches. Recent advances in CAR-T cell production involve shortened manufacturing protocols and "off-the-shelf" CAR-T cells, aiming at decreasing socioeconomic barriers and thereby increasing patient access to this potential lifesaving therapy. In this review, we provide an extensive overview of the evolving field of cellular therapies for MM, underlining the potential to achieve long-lasting responses.
Collapse
Affiliation(s)
- Sarah Vera-Cruz
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Maria Jornet Culubret
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Verena Konetzki
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Miriam Alb
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Sabrina R. Friedel
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
- Fraunhofer-Institut für Zelltherapie und Immunologie (IZI), Außenstelle Zelluläre Immuntherapie, 97080 Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Sophia Danhof
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
- Mildred Scheel Early Career Center, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Lukas Scheller
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
- Interdisziplinäres Zentrum für Klinische Forschung (IZKF), Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
2
|
Abdollahi P, Norseth HM, Schjesvold F. Advances and challenges in anti-cancer vaccines for multiple myeloma. Front Immunol 2024; 15:1411352. [PMID: 39161773 PMCID: PMC11331005 DOI: 10.3389/fimmu.2024.1411352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Multiple myeloma (MM) is a hematological cancer marked by plasma cell accumulation in the bone marrow. Despite treatment advancements, MM remains incurable in most patients. MM-associated immune dysregulation fosters disease progression, prompting research into immunotherapy to combat the disease. An area of immunotherapy investigation is the design of myeloma vaccine therapy to reverse tumor-associated immune suppression and elicit tumor-specific immune responses to effectively target MM cells. This article reviews vaccine immunotherapy for MM, categorizing findings by antigen type and delivery method. Antigens include idiotype (Id), tumor-associated (TAA), tumor-specific (TSA), and whole tumor lysate. Myeloma vaccination has so far shown limited clinical efficacy. However, further studies are essential to optimize various aspects, including antigen and patient selection, vaccine timing and sequencing, and rational combinations with emerging MM treatments.
Collapse
Affiliation(s)
- Pegah Abdollahi
- Oslo Myeloma Center, Department of Hematology, Oslo University Hospital, Oslo, Norway
| | | | | |
Collapse
|
3
|
Jiang XT, Liu Q. mRNA vaccination in breast cancer: current progress and future direction. J Cancer Res Clin Oncol 2023; 149:9435-9450. [PMID: 37100972 PMCID: PMC10132791 DOI: 10.1007/s00432-023-04805-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Messenger RNA (mRNA) vaccination has proven to be highly successful in combating Coronavirus disease 2019 (COVID-19) and has recently sparked tremendous interest. This technology has been a popular topic of research over the past decade and is viewed as a promising treatment strategy for cancer immunotherapy. However, despite being the most prevalent malignant disease for women worldwide, breast cancer patients have limited access to immunotherapy benefits. mRNA vaccination has the potential to convert cold breast cancer into hot and expand the responders. Effective mRNA vaccine design for in vivo function requires consideration of vaccine targets, mRNA structures, transport vectors, and injection routes. This review provides an overview of pre-clinical and clinical data on various mRNA vaccination platforms used for breast cancer treatment and discusses potential approaches to combine appropriate vaccination platforms or other immunotherapies to improve mRNA vaccine therapy efficacy for breast cancer.
Collapse
Affiliation(s)
- Xiao-Ting Jiang
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Qiang Liu
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
4
|
Liu Z, Yang C, Liu X, Xu X, Zhao X, Fu R. Therapeutic strategies to enhance immune response induced by multiple myeloma cells. Front Immunol 2023; 14:1169541. [PMID: 37275861 PMCID: PMC10232766 DOI: 10.3389/fimmu.2023.1169541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Multiple myeloma (MM)as a haematological malignancy is still incurable. In addition to the presence of somatic genetic mutations in myeloma patients, the presence of immunosuppressive microenvironment greatly affects the outcome of treatment. Although the discovery of immunotherapy makes it possible to break the risk of high toxicity and side effects of traditional chemotherapeutic drugs, there are still obstacles of ineffective treatment or disease recurrence. In this review, we discuss therapeutic strategies to further enhance the specific anti-tumor immune response by activating the immunogenicity of MM cells themselves. New ideas for future myeloma therapeutic approaches are provided.
Collapse
|
5
|
Ma N, Liu H, Zhang Y, Liu W, Liang Z, Wang Q, Sun Y, Wang L, Li Y, Ren H, Dong Y. Identification of CD8+ T-cell epitope from multiple myeloma-specific antigen AKAP4. Front Immunol 2022; 13:927804. [PMID: 35967402 PMCID: PMC9366082 DOI: 10.3389/fimmu.2022.927804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is a malignant plasma cell disorder affecting mainly the elderly population. Revolutionary progress in immunotherapy has been made recently, including monoclonal antibodies and chimeric antigen receptor T cell (CAR-T) therapies; however, the high relapse rate remains problematic. Therefore, combination therapies against different targets would be a reasonable strategy. In this study, we present a new X-chromosome encoded testis-cancer antigen (CTA) AKAP4 as a potential target for MM. AKAP4 is expressed in MM cell lines and MM primary malignant plasma cells. HLA-A*0201-restricted cytotoxic T lymphocytes (CTLs) induced by dendritic cells (DCs) transduced with an adenovirus vector encoding the full-length AKAP4 gene were demonstrated to lyse AKAP4+ myeloma cells. Seven of the 12 candidate epitopes predicated by the BIMAS and SYFPEITH algorithms were able to bind HLA-A*0201 in the T2 binding assay, of which only two peptides were able to induce CTL cytotoxicity in the co-culture of peptide-loaded human mature dendritic cells and the autologous peripheral blood mononuclear cells (PBMCs) from the same HLA-A*0201 donor. The AKAP4 630–638 VLMLIQKLL was identified as the strongest CTL epitope by the human IFN-γ ELISPOT assay. Finally, the VLMLIQKLL-specific CTLs can lyse the HLA-A*0201+AKAP4+ myeloma cell line U266 in vitro, and inhibit tumor growth in the mice bearing U266 tumors in vivo. These results suggest that the VLMLIQKLL epitope could be used to develop cancer vaccine or T-cell receptor transgenic T cells (TCR-T) to kill myeloma cells.
Collapse
Affiliation(s)
| | - Huihui Liu
- *Correspondence: Huihui Liu, ; Yujun Dong,
| | | | | | | | | | | | | | | | | | - Yujun Dong
- *Correspondence: Huihui Liu, ; Yujun Dong,
| |
Collapse
|
6
|
Guiren Fritah H, Rovelli R, Lai-Lai Chiang C, Kandalaft LE. The current clinical landscape of personalized cancer vaccines. Cancer Treat Rev 2022; 106:102383. [DOI: 10.1016/j.ctrv.2022.102383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022]
|
7
|
Verheye E, Bravo Melgar J, Deschoemaeker S, Raes G, Maes A, De Bruyne E, Menu E, Vanderkerken K, Laoui D, De Veirman K. Dendritic Cell-Based Immunotherapy in Multiple Myeloma: Challenges, Opportunities, and Future Directions. Int J Mol Sci 2022; 23:904. [PMID: 35055096 PMCID: PMC8778019 DOI: 10.3390/ijms23020904] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapeutic approaches, including adoptive cell therapy, revolutionized treatment in multiple myeloma (MM). As dendritic cells (DCs) are professional antigen-presenting cells and key initiators of tumor-specific immune responses, DC-based immunotherapy represents an attractive therapeutic approach in cancer. The past years, various DC-based approaches, using particularly ex-vivo-generated monocyte-derived DCs, have been tested in preclinical and clinical MM studies. However, long-term and durable responses in MM patients were limited, potentially attributed to the source of monocyte-derived DCs and the immunosuppressive bone marrow microenvironment. In this review, we briefly summarize the DC development in the bone marrow niche and the phenotypical and functional characteristics of the major DC subsets. We address the known DC deficiencies in MM and give an overview of the DC-based vaccination protocols that were tested in MM patients. Lastly, we also provide strategies to improve the efficacy of DC vaccines using new, improved DC-based approaches and combination therapies for MM patients.
Collapse
Affiliation(s)
- Emma Verheye
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Jesús Bravo Melgar
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Sofie Deschoemaeker
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Geert Raes
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Anke Maes
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Elke De Bruyne
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Eline Menu
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Karin Vanderkerken
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Damya Laoui
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Kim De Veirman
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| |
Collapse
|
8
|
Krejcik J, Barnkob MB, Nyvold CG, Larsen TS, Barington T, Abildgaard N. Harnessing the Immune System to Fight Multiple Myeloma. Cancers (Basel) 2021; 13:4546. [PMID: 34572773 PMCID: PMC8467095 DOI: 10.3390/cancers13184546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a heterogeneous plasma cell malignancy differing substantially in clinical behavior, prognosis, and response to treatment. With the advent of novel therapies, many patients achieve long-lasting remissions, but some experience aggressive and treatment refractory relapses. So far, MM is considered incurable. Myeloma pathogenesis can broadly be explained by two interacting mechanisms, intraclonal evolution of cancer cells and development of an immunosuppressive tumor microenvironment. Failures in isotype class switching and somatic hypermutations result in the neoplastic transformation typical of MM and other B cell malignancies. Interestingly, although genetic alterations occur and evolve over time, they are also present in premalignant stages, which never progress to MM, suggesting that genetic mutations are necessary but not sufficient for myeloma transformation. Changes in composition and function of the immune cells are associated with loss of effective immune surveillance, which might represent another mechanism driving malignant transformation. During the last decade, the traditional view on myeloma treatment has changed dramatically. It is increasingly evident that treatment strategies solely based on targeting intrinsic properties of myeloma cells are insufficient. Lately, approaches that redirect the cells of the otherwise suppressed immune system to take control over myeloma have emerged. Evidence of utility of this principle was initially established by the observation of the graft-versus-myeloma effect in allogeneic stem cell-transplanted patients. A variety of new strategies to harness both innate and antigen-specific immunity against MM have recently been developed and intensively tested in clinical trials. This review aims to give readers a basic understanding of how the immune system can be engaged to treat MM, to summarize the main immunotherapeutic modalities, their current role in clinical care, and future prospects.
Collapse
Affiliation(s)
- Jakub Krejcik
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Mike Bogetofte Barnkob
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Charlotte Guldborg Nyvold
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, 5000 Odense, Denmark
| | - Thomas Stauffer Larsen
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Torben Barington
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Niels Abildgaard
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
9
|
Santos PM, Adamik J, Howes TR, Du S, Vujanovic L, Warren S, Gambotto A, Kirkwood JM, Butterfield LH. Impact of checkpoint blockade on cancer vaccine-activated CD8+ T cell responses. J Exp Med 2021; 217:151736. [PMID: 32369107 PMCID: PMC7336310 DOI: 10.1084/jem.20191369] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/04/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Immune and molecular profiling of CD8 T cells of patients receiving DC vaccines expressing three full-length melanoma antigens (MAs) was performed. Antigen expression levels in DCs had no significant impact on T cell or clinical responses. Patients who received checkpoint blockade before DC vaccination had higher baseline MA-specific CD8 T cell responses but no evidence for improved functional responses to the vaccine. Patients who showed the best clinical responses had low PD-1 expression on MA-specific T cells before and after DC vaccination; however, blockade of PD-1 during antigen presentation by DC had minimal functional impact on PD-1high MA-specific T cells. Gene and protein expression analyses in lymphocytes and tumor samples identified critical immunoregulatory pathways, including CTLA-4 and PD-1. High immune checkpoint gene expression networks correlated with inferior clinical outcomes. Soluble serum PD-L2 showed suggestive positive association with improved outcome. These findings show that checkpoint molecular pathways are critical for vaccine outcomes and suggest specific sequencing of vaccine combinations.
Collapse
Affiliation(s)
- Patricia M Santos
- University of Pittsburgh Medical Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Juraj Adamik
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Timothy R Howes
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Samuel Du
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Lazar Vujanovic
- University of Pittsburgh Medical Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | | | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - John M Kirkwood
- University of Pittsburgh Medical Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Lisa H Butterfield
- University of Pittsburgh Medical Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA.,Parker Institute for Cancer Immunotherapy, San Francisco, CA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
10
|
Liegel J, Weinstock M, Rosenblatt J, Avigan D. Vaccination as Immunotherapy in Hematologic Malignancies. J Clin Oncol 2021; 39:433-443. [PMID: 33434056 DOI: 10.1200/jco.20.01706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Jessica Liegel
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology and Hematologic Malignancies, Harvard Medical School, Boston, MA
| | - Matthew Weinstock
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology and Hematologic Malignancies, Harvard Medical School, Boston, MA
| | - Jacalyn Rosenblatt
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology and Hematologic Malignancies, Harvard Medical School, Boston, MA
| | - David Avigan
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology and Hematologic Malignancies, Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Fang Y, Hou J. Immunotherapeutic strategies targeting B cell maturation antigen in multiple myeloma. Mil Med Res 2021; 8:9. [PMID: 33504363 PMCID: PMC7839214 DOI: 10.1186/s40779-021-00302-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, and is characterized by the clonal expansion of malignant plasma cells. Despite the recent improvement in patient outcome due to the use of novel therapeutic agents and stem cell transplantation, all patients eventually relapse due to clone evolution. B cell maturation antigen (BCMA) is highly expressed in and specific for MM cells, and has been implicated in the pathogenesis as well as treatment development for MM. In this review, we will summarize representative anti-BCMA immune therapeutic strategies, including BCMA-targeted vaccines, anti-BCMA antibodies and BCMA-targeted CAR cells. Combination of different immunotherapeutic strategies of targeting BCMA, multi-target immune therapeutic strategies, and adding immune modulatory agents to normalize anti-MM immune system in minimal residual disease (MRD) negative patients, will also be discussed.
Collapse
Affiliation(s)
- Yi Fang
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
12
|
Esprit A, de Mey W, Bahadur Shahi R, Thielemans K, Franceschini L, Breckpot K. Neo-Antigen mRNA Vaccines. Vaccines (Basel) 2020; 8:E776. [PMID: 33353155 PMCID: PMC7766040 DOI: 10.3390/vaccines8040776] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The interest in therapeutic cancer vaccines has caught enormous attention in recent years due to several breakthroughs in cancer research, among which the finding that successful checkpoint blockade treatments reinvigorate neo-antigen-specific T cells and that successful adoptive cell therapies are directed towards neo-antigens. Neo-antigens are cancer-specific antigens, which develop from somatic mutations in the cancer cell genome that can be highly immunogenic and are not subjected to central tolerance. As the majority of neo-antigens are unique to each patient's cancer, a vaccine technology that is flexible and potent is required to develop personalized neo-antigen vaccines. In vitro transcribed mRNA is such a technology platform and has been evaluated for delivery of neo-antigens to professional antigen-presenting cells both ex vivo and in vivo. In addition, strategies that support the activity of T cells in the tumor microenvironment have been developed. These represent a unique opportunity to ensure durable T cell activity upon vaccination. Here, we comprehensively review recent progress in mRNA-based neo-antigen vaccines, summarizing critical milestones that made it possible to bring the promise of therapeutic cancer vaccines within reach.
Collapse
Affiliation(s)
| | | | | | | | | | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel, B-1090 Brussels, Belgium; (A.E.); (W.d.M.); (R.B.S.); (K.T.); (L.F.)
| |
Collapse
|
13
|
Das B, Senapati S. Immunological and functional aspects of MAGEA3 cancer/testis antigen. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 125:121-147. [PMID: 33931137 DOI: 10.1016/bs.apcsb.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification of ectopic gene activation in cancer cells serves as a basis for both gene signature-guided tumor targeting and unearthing of oncogenic mechanisms to expand the understanding of tumor biology/oncogenic process. Proteins expressed only in germ cells of testis and/or placenta (immunoprivileged organs) and in malignancies are called cancer testis antigens; they are antigenic because of the lack of antigen presentation by those specific cell types (germ cells), which limits the exposure of the proteins to the immune cells. Since the Cancer Testis Antigens (CTAs) are immunogenic and expressed in a wide variety of cancer types, CT antigens have become interesting target for immunotherapy against cancer. Among CT antigens MAGEA family is reported to have 12 members (MAGEA1 to MAGEA12). The current review highlights the studies on MAGEA3 which is a CT antigen and reported in almost all types of cancer. MAGEA3 is well tried for cancer immunotherapy. Recent advances on its functional and immunological aspect warranted much deliberation on effective therapeutic approach, thus making it a more interesting target for cancer therapy.
Collapse
Affiliation(s)
- Biswajit Das
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
14
|
Oncolytic measles virus therapy enhances tumor antigen-specific T-cell responses in patients with multiple myeloma. Leukemia 2020; 34:3310-3322. [PMID: 32327728 PMCID: PMC7581629 DOI: 10.1038/s41375-020-0828-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/13/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022]
Abstract
Oncolytic virus therapy leads to immunogenic death of virus-infected tumor cells and this has been shown in preclinical models to enhance the cytotoxic T-lymphocyte response against tumor-associated antigens (TAAs), leading to killing of uninfected tumor cells. To investigate whether oncolytic virotherapy can increase immune responses to tumor antigens in human subjects, we studied T-cell responses against a panel of known myeloma TAAs using PBMC samples obtained from ten myeloma patients before and after systemic administration of an oncolytic measles virus encoding sodium iodide symporter (MV-NIS). Despite their prior exposures to multiple immunosuppressive antimyeloma treatment regimens, T-cell responses to some of the TAAs were detectable even before measles virotherapy. Measurable baseline T-cell responses against MAGE-C1 and hTERT were present. Furthermore, MV-NIS treatment significantly (P < 0.05) increased T-cell responses against MAGE-C1 and MAGE-A3. Interestingly, one patient who achieved complete remission after MV-NIS therapy had strong baseline T-cell responses both to measles virus proteins and to eight of the ten tested TAAs. Our data demonstrate that oncolytic virotherapy can function as an antigen agnostic vaccine, increasing cytotoxic T-lymphocyte responses against TAAs in patients with multiple myeloma, providing a basis for continued exploration of this modality in combination with immune checkpoint blockade.
Collapse
|
15
|
Abstract
Cellular immunotherapy for myeloma has the unique potential both to potently kill the malignant clone and to evoke a memory response to protect from relapse. Understanding the complex interactions between the malignant clone and the microenvironment that promote immune escape is critical to evoke effective antimyeloma immunity. Tremendous progress has been made in the area of cancer vaccines and adoptive T-cell therapy in recent years. Careful study of the mechanisms of response and of immune escape will be critical to developing novel combination therapies and ultimately to improve outcomes for patients with myeloma.
Collapse
|
16
|
Ribonucleic Acid Engineering of Dendritic Cells for Therapeutic Vaccination: Ready 'N Able to Improve Clinical Outcome? Cancers (Basel) 2020; 12:cancers12020299. [PMID: 32012714 PMCID: PMC7072269 DOI: 10.3390/cancers12020299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/06/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
Targeting and exploiting the immune system has become a valid alternative to conventional options for treating cancer and infectious disease. Dendritic cells (DCs) take a central place given their role as key orchestrators of immunity. Therapeutic vaccination with autologous DCs aims to stimulate the patient's own immune system to specifically target his/her disease and has proven to be an effective form of immunotherapy with very little toxicity. A great amount of research in this field has concentrated on engineering these DCs through ribonucleic acid (RNA) to improve vaccine efficacy and thereby the historically low response rates. We reviewed in depth the 52 clinical trials that have been published on RNA-engineered DC vaccination, spanning from 2001 to date and reporting on 696 different vaccinated patients. While ambiguity prevents reliable quantification of effects, these trials do provide evidence that RNA-modified DC vaccination can induce objective clinical responses and survival benefit in cancer patients through stimulation of anti-cancer immunity, without significant toxicity. Succinct background knowledge of RNA engineering strategies and concise conclusions from available clinical and recent preclinical evidence will help guide future research in the larger domain of DC immunotherapy.
Collapse
|
17
|
Sumransub N, Jirapongwattana N, Jamjuntra P, Thongchot S, Chieochansin T, Yenchitsomanus PT, Thuwajit P, Warnnissorn M, O-Charoenrat P, Thuwajit C. Breast cancer stem cell RNA-pulsed dendritic cells enhance tumor cell killing by effector T cells. Oncol Lett 2020; 19:2422-2430. [PMID: 32194742 PMCID: PMC7038997 DOI: 10.3892/ol.2020.11338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) underpin the resistance of breast cancer (BC) cells to therapy. Dendritic cell (DC)-based treatment is efficacious and safe, but the efficiency of this technique for targeting CSCs in BC treatment requires further investigation. The present study aimed to investigate the ability of DCs pulsed with breast CSC antigens to activate effector lymphocytes for killing BC cells. CD44+/CD24− CSCs were isolated from BCA55-121, an in-house patient-derived BC cell line, and acquisition of stemness properties was confirmed by upregulated expression of OCT4A and a superior proliferative capacity in colony formation assays compared with whole population of BCA55-121 (BCA55-121-WP). DCs were differentiated from monocytes from peripheral blood of healthy donors and pulsed with CSC total RNA. Maturation of the CSC RNA-pulsed DCs was confirmed by increased expression of CD11c, CD40, CD83, CD86 and HLA-DR, as well as reduced CD14 expression compared with monocytes. Total lymphocytes co-cultured with CSC RNA-pulsed DCs were analyzed by flow cytometry for markers including CD3, CD4, CD8, CD16 and CD56. The results revealed that the co-cultures contained mostly cytotoxic CD8+ T lymphocytes followed by CD4+ T lymphocytes and smaller populations of natural killer (NK) and NKT cells. ELISA was used to measure IFN-γ production, and it was revealed that activated CD4+ and CD8+ lymphocytes produced more IFN-γ compared with naïve T cells, suggesting that CD8+ T cells were effector T cells. CSC RNA was a more efficient antigen source compared with RNA from mixed BC cells for activating tumor antigen-specific killing by T cells. These CSC-specific effector T cells significantly induced BC cell apoptosis at a 20:1 effector T cell:tumor cell ratio. Of note, the breast CSCs cultures demonstrated resistance to effector T cell killing, which was in part due to increased expression of programmed death ligand 1 in the CSC population. The present study highlights the potential use of CSC RNA for priming DCs in modulating an anticancer immune response against BC.
Collapse
Affiliation(s)
- Nuttavut Sumransub
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Niphat Jirapongwattana
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pranisa Jamjuntra
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thaweesak Chieochansin
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Department of Siriraj Center of Research Excellence for Cancer Immunotherapy (siCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Department of Siriraj Center of Research Excellence for Cancer Immunotherapy (siCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Malee Warnnissorn
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pornchai O-Charoenrat
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
18
|
Therapeutic Cancer Vaccination with Ex Vivo RNA-Transfected Dendritic Cells-An Update. Pharmaceutics 2020; 12:pharmaceutics12020092. [PMID: 31979205 PMCID: PMC7076681 DOI: 10.3390/pharmaceutics12020092] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/18/2020] [Indexed: 12/19/2022] Open
Abstract
Over the last two decades, dendritic cell (DC) vaccination has been studied extensively as active immunotherapy in cancer treatment and has been proven safe in all clinical trials both with respect to short and long-term side effects. For antigen-loading of dendritic cells (DCs) one method is to introduce mRNA coding for the desired antigens. To target the whole antigenic repertoire of a tumor, even the total tumor mRNA of a macrodissected biopsy sample can be used. To date, reports have been published on a total of 781 patients suffering from different tumor entities and HIV-infection, who have been treated with DCs loaded with mRNA. The majority of those were melanoma patients, followed by HIV-infected patients, but leukemias, brain tumors, prostate cancer, renal cell carcinomas, pancreatic cancers and several others have also been treated. Next to antigen-loading, mRNA-electroporation allows a purposeful manipulation of the DCs’ phenotype and function to enhance their immunogenicity. In this review, we intend to give a comprehensive summary of what has been published regarding clinical testing of ex vivo generated mRNA-transfected DCs, with respect to safety and risk/benefit evaluations, choice of tumor antigens and RNA-source, and the design of better DCs for vaccination by transfection of mRNA-encoded functional proteins.
Collapse
|
19
|
Abstract
Multiple myeloma (MM) is a B-cell malignancy characterized by the abnormal proliferation of clonal plasma cells in the bone marrow leading to end-organ manifestations. Despite the advancement in the therapy and care of patients with MM, relapse and resistance to standard therapy remain significant. The development of immunotherapy as a treatment modality for many types of cancers has led investigators to explore its use in MM in order to elicit myeloma-targeted immune responses, especially given that immune dysregulation is an underlying feature in the pathogenesis and progression of MM. In this concise review, we discuss the different advances in the immune-based therapy of MM, from immunomodulation, vaccines, to monoclonal antibodies, checkpoint inhibitors, adoptive T-cell therapies, and future promising therapies under investigation.
Collapse
|
20
|
Li R, Johnson R, Yu G, McKenna DH, Hubel A. Preservation of cell-based immunotherapies for clinical trials. Cytotherapy 2019; 21:943-957. [PMID: 31416704 PMCID: PMC6746578 DOI: 10.1016/j.jcyt.2019.07.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022]
Abstract
In the unique supply chain of cellular therapies, preservation is important to keep the cell product viable. Many factors in cryopreservation affect the outcome of a cell therapy: (i) formulation and introduction of a freezing medium, (ii) cooling rate, (iii) storage conditions, (iv) thawing conditions and (v) post-thaw processing. This article surveys clinical trials of cellular immunotherapy that used cryopreserved regulatory, chimeric antigen receptor or gamma delta T cells, dendritic cells or natural killer (NK) cells. Several observations are summarized from the given information. The aforementioned cell types have been similarly frozen in media containing 5-10% dimethyl sulfoxide (DMSO) with plasma, serum or human serum albumin. Two common freezing methods are an insulated freezing container such as Nalgene Mr. Frosty and a controlled-rate freezer at a cooling rate of -1°C/min. Water baths at approximately 37°C have been commonly used for thawing. Post-thaw processing of cryopreserved cells varied greatly: some studies infused the cells immediately upon thawing; some diluted the cells in a carrier solution of varying formulation before infusion; some washed cells to remove cryoprotective agents; and others re-cultured cells to recover cell viability or functionality lost due to cryopreservation. Emerging approaches to preserving cellular immunotherapies are also described. DMSO-free formulations of the freezing media have demonstrated improved preservation of cell viability in T lymphocytes and of cytotoxic function in natural killer cells. Saccharides are a common type of molecule used as an alternative cryoprotective agent to DMSO. Improving methods of preservation will be critical to growth in the clinical use of cellular immunotherapies.
Collapse
Affiliation(s)
- Rui Li
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rachel Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Guanglin Yu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - David H McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Allison Hubel
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
21
|
da Silva JL, Dos Santos ALS, Nunes NCC, de Moraes Lino da Silva F, Ferreira CGM, de Melo AC. Cancer immunotherapy: the art of targeting the tumor immune microenvironment. Cancer Chemother Pharmacol 2019; 84:227-240. [PMID: 31240384 DOI: 10.1007/s00280-019-03894-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/14/2019] [Indexed: 01/07/2023]
Abstract
For many decades, cancer treatment has been strongly directed toward the development of cytotoxic and cytostatic drugs, quite often leading to disappointing results due to the inter- and intra-tumoral heterogeneity. Lately, this intra-cellular look has given way to the understanding of the tumor microenvironment, thus enabling modification of the immunological dynamics between tumor cells and their host. An era of new drugs aiming to unlock the host immune system against tumor cells is steadily increasing. Strategies involving adoptive cell therapy, therapeutic vaccines, immune checkpoint inhibitors and so on have provided spectacular clinical responses and increased survival in previously refractory settings and "hard-to-treat" cancers. Based on a comprehensive search in the main scientific databases, annals of recent renowned oncology congresses and platforms of ongoing trials, the clinical pharmacology characteristics of the main classes of immunotherapeutic agents, as well as the new treatment strategies related to immunotherapy in solid tumors, are carefully discussed throughout this review.
Collapse
Affiliation(s)
- Jesse Lopes da Silva
- Clinic Oncomed, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil.
- Oncomed Clinic Oncologica, Niterói, Rio de Janeiro, 24220-300, Brazil.
| | | | - Natalia Cristina Cardoso Nunes
- Clinic Oncomed, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Oncoclinicas Institute for Research and Education, Sao Paulo, Brazil
| | | | | | - Andreia Cristina de Melo
- Clinic Oncomed, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Oncoclinicas Institute for Research and Education, Sao Paulo, Brazil
| |
Collapse
|
22
|
Schmidt M, Altdörfer V, Schnitte S, Fuchs AR, Kropp KN, Maurer S, Müller MR, Salih HR, Rittig SM, Grünebach F, Dörfel D. The Deubiquitinase Inhibitor b-AP15 and Its Effect on Phenotype and Function of Monocyte-Derived Dendritic Cells. Neoplasia 2019; 21:653-664. [PMID: 31132676 PMCID: PMC6538843 DOI: 10.1016/j.neo.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system is elementary for cellular protein degradation and gained rising attention as a new target for cancer therapy due to promising clinical trials with bortezomib, the first-in class proteasome inhibitor meanwhile approved for multiple myeloma and mantle cell lymphoma. Both bortezomib and next-generation proteasome inhibitors mediate their effects by targeting the 20S core particle of the 26S proteasome. The novel small molecule inhibitor b-AP15 affects upstream elements of the ubiquitin-proteasome cascade by suppressing the deubiquitinase activity of both proteasomal regulatory 19S subunits and showed promising anticancer activity in preclinical models. Nonetheless, effects of inhibitors on the ubiquitin-proteasome system are not exclusively restricted to malignant cells: alteration of natural killer cell-mediated immune responses had already been described for drugs targeting either 19S or 20S proteasomal subunits. Moreover, it has been shown that bortezomib impairs dendritic cell (DC) phenotype and function at different levels. In the present study, we comparatively analyzed effects of bortezomib and b-AP15 on monocyte-derived DCs. In line with previous results, bortezomib exposure impaired maturation, antigen uptake, migration, cytokine secretion and immunostimulation, whereas treatment with b-AP15 had no compromising effects on these DC features. Our findings warrant the further investigation of b-AP15 as an alternative to clinically approved proteasome inhibitors in the therapy of malignancies, especially in the context of combinatorial treatment with DC-based immunotherapies.
Collapse
Affiliation(s)
- Moritz Schmidt
- CCU Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Germany
| | - Vanessa Altdörfer
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, UKT, Germany
| | - Sarah Schnitte
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, UKT, Germany
| | - Alexander Rolf Fuchs
- CCU Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Germany
| | - Korbinian Nepomuk Kropp
- CCU Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Germany
| | - Stefanie Maurer
- CCU Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Germany
| | - Martin Rudolf Müller
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, UKT, Germany
| | - Helmut Rainer Salih
- CCU Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Germany; Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, UKT, Germany
| | - Susanne Malaika Rittig
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, UKT, Germany; Department of Hematology, Oncology and Tumor Immunology, Charité University Hospital Berlin, Germany
| | - Frank Grünebach
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, UKT, Germany
| | - Daniela Dörfel
- CCU Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Germany; Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, UKT, Germany.
| |
Collapse
|
23
|
Mougel A, Terme M, Tanchot C. Therapeutic Cancer Vaccine and Combinations With Antiangiogenic Therapies and Immune Checkpoint Blockade. Front Immunol 2019; 10:467. [PMID: 30923527 PMCID: PMC6426771 DOI: 10.3389/fimmu.2019.00467] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Considering the high importance of immune surveillance and immune escape in the evolution of cancer, the development of immunotherapeutic strategies has become a major field of research in recent decades. The considerable therapeutic breakthrough observed when targeting inhibitory immune checkpoint molecules has highlighted the need to find approaches enabling the induction and proper activation of an immune response against cancer. In this context, therapeutic vaccination, which can induce a specific immune response against tumor antigens, is an important approach to consider. However, this strategy has its advantages and limits. Considering its low clinical efficacy, approaches combining therapeutic cancer vaccine strategies with other immunotherapies or targeted therapies have been emphasized. This review will list different cancer vaccines, with an emphasis on their targets. We highlight the results and limits of vaccine strategies and then describe strategies that combine therapeutic vaccines and antiangiogenic therapies or immune checkpoint blockade. Antiangiogenic therapies and immune checkpoint blockade are of proven clinical efficacy for some indications, but are limited by toxicity and the development of resistance. Their combination with therapeutic vaccines could be a way to improve therapeutic outcome by specifically stimulating the immune system and considering a global approach to tumor microenvironment remodeling.
Collapse
Affiliation(s)
- Alice Mougel
- PARCC (Paris-Cardiovascular Research Center), INSERM U970, Paris, France.,UFR Science du Vivant, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Magali Terme
- PARCC (Paris-Cardiovascular Research Center), INSERM U970, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Corinne Tanchot
- PARCC (Paris-Cardiovascular Research Center), INSERM U970, Paris, France
| |
Collapse
|
24
|
Franssen LE, Mutis T, Lokhorst HM, van de Donk NWCJ. Immunotherapy in myeloma: how far have we come? Ther Adv Hematol 2019; 10:2040620718822660. [PMID: 30719268 PMCID: PMC6348514 DOI: 10.1177/2040620718822660] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022] Open
Abstract
The treatment of multiple myeloma (MM) has evolved substantially over the past decades, leading to a significantly improved outcome of MM patients. The introduction of high-dose therapy, especially, and autologous stem cell transplantation, as well as the development of new drugs, such as immunomodulatory drugs (IMiDs) and proteasome inhibitors have contributed to the improvement in survival. However, eventually most MM patients relapse, which indicates that there is a need for new agents and novel treatment strategies. Importantly, the long-term survival in a subset of MM patients after allogeneic stem cell transplantation illustrates the potential of immunotherapy in MM, but allogeneic stem cell transplantation is also associated with a high rate of treatment-related mortality. Recently, a better insight into several immune-evasion mechanisms, which contribute to tumor progression, has resulted in the development of active and well-tolerated novel forms of immunotherapy. These immunotherapeutic agents can be used as monotherapy, or, even more successfully, in combination with other established anti-MM agents to further improve depth and duration of response by preventing the outgrowth of resistant clones. This review will discuss the mechanisms used by MM cells to evade the immune system, and also provide an overview of currently approved immunotherapeutic drugs, such as IMiDs (e.g. lenalidomide and pomalidomide) and monoclonal antibodies that target cell surface antigens present on the MM cell (e.g. elotuzumab and daratumumab), as well as novel immunotherapies (e.g. chimeric antigen receptor T-cells, bispecific antibodies and checkpoint inhibitors) currently in clinical development in MM.
Collapse
Affiliation(s)
- Laurens E Franssen
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tuna Mutis
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Henk M Lokhorst
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
25
|
van Ee TJ, Van Acker HH, van Oorschot TG, Van Tendeloo VF, Smits EL, Bakdash G, Schreibelt G, de Vries IJM. BDCA1+CD14+ Immunosuppressive Cells in Cancer, a Potential Target? Vaccines (Basel) 2018; 6:E65. [PMID: 30235890 PMCID: PMC6161086 DOI: 10.3390/vaccines6030065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022] Open
Abstract
Dendritic cell (DC) vaccines show promising effects in cancer immunotherapy. However, their efficacy is affected by a number of factors, including (1) the quality of the DC vaccine and (2) tumor immune evasion. The recently characterized BDCA1+CD14+ immunosuppressive cells combine both aspects; their presence in DC vaccines may directly hamper vaccine efficacy, whereas, in patients, BDCA1+CD14+ cells may suppress the induced immune response in an antigen-specific manner systemically and at the tumor site. We hypothesize that BDCA1+CD14+ cells are present in a broad spectrum of cancers and demand further investigation to reveal treatment opportunities and/or improvement for DC vaccines. In this review, we summarize the findings on BDCA1+CD14+ cells in solid cancers. In addition, we evaluate the presence of BDCA1+CD14+ cells in leukemic cancers. Preliminary results suggest that the presence of BDCA1+CD14+ cells correlates with clinical features of acute and chronic myeloid leukemia. Future research focusing on the differentiation from monocytes towards BDCA1+CD14+ cells could reveal more about their cell biology and clinical significance. Targeting these cells in cancer patients may improve the outcome of cancer immunotherapy.
Collapse
Affiliation(s)
- Thomas J van Ee
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
| | - Heleen H Van Acker
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp 2000, Belgium.
| | - Tom G van Oorschot
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp 2000, Belgium.
| | - Evelien L Smits
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp 2000, Belgium.
- Center for Oncological Research, University of Antwerp, Antwerp 2000, Belgium.
| | - Ghaith Bakdash
- Allergic Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Gerty Schreibelt
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
- Department of Medical Oncology; Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
| |
Collapse
|
26
|
Shinde P, Fernandes S, Melinkeri S, Kale V, Limaye L. Compromised functionality of monocyte-derived dendritic cells in multiple myeloma patients may limit their use in cancer immunotherapy. Sci Rep 2018; 8:5705. [PMID: 29632307 PMCID: PMC5890285 DOI: 10.1038/s41598-018-23943-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) have the potential to elicit long-lasting anti-tumour immune responses. Most of the clinical trials of anti-cancer DC vaccines are based on monocyte-derived DCs (Mo-DCs). However, their outcomes have shown limited promise especially in multiple myeloma (MM) patients. Here, we investigated whether in vitro generated Mo-DCs from MM patients (MM-DCs) possess impaired functionality, thus contributing to the limited success of DC vaccines. We generated MM-DCs and compared them with DCs from healthy donors (HD-DCs). The yield of DCs in MM was 3.5 fold lower than in HD sets. However morphology, phenotype, antigen uptake and allo-T cell stimulation were comparable. Migration and secretion of IL12p70 and IFN-γ (in DC-T cell co-cultures) were significantly reduced in MM-DCs. Thus, MM-DCs were compromised in functionality. This impairment could be attributed to autocrine secretion of IL6 by MM-monocytes and activation of their P38 MAPK pathway. This indicates a need to look for alternative sources of DCs.
Collapse
Affiliation(s)
- Prajakta Shinde
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, India
| | - Sophia Fernandes
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, India
| | - Sameer Melinkeri
- Blood and Marrow Transplant Unit, Deenanath Mangeshkar Hospital, Erandawne, Pune, 411004, India
| | - Vaijayanti Kale
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, India
| | - Lalita Limaye
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
27
|
Therapeutic cancer vaccines: From initial findings to prospects. Immunol Lett 2018; 196:11-21. [DOI: 10.1016/j.imlet.2018.01.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/30/2017] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
|
28
|
Li D, He S. MAGE3 and Survivin activated dendritic cell immunotherapy for the treatment of non-small cell lung cancer. Oncol Lett 2018; 15:8777-8783. [PMID: 29805617 DOI: 10.3892/ol.2018.8362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
Dendritic cell (DC) immunotherapy is an optimal cancer treatment, resulting in its emergence as a therapeutic choice; however, there are limited studies investigating dual antigen-pulsed DC immunotherapy in non-small cell lung cancer (NSCLC). In order to determine the effect of a recombinant melanoma-associated antigen (rMAGE-3) and recombinant Survivin (rSurvivin) peptide-pulsed DC immunotherapy in patients with NSCLC, the present clinical study was performed. DC immunotherapy was generated from the monocytes of patients with NSCLC and primed with rMAGE-3 and rSurvivin peptides. The present open-label, non-randomised study enrolled 16 patients with histologically confirmed stage I-IIIB NSCLC between December 2013 and October 2014. A prime immunotherapy (9.1×107 cells/dose) and a single boost (8.2×107 cells/dose) were administered 1 month apart intradermally and the patients were evaluated for immunological and clinical response. DC immunotherapy was well tolerated, with no serious adverse events. There was a single incidence of grade 1 fever, chills and fatigue. Out of the 16 patients enrolled, 11 patients showed stable disease and 5 showed disease progression. There was a significant increase in IFN-γ expression on day 60 vs. day 0 (P=0.048). An increasing trend in the mean cluster of differentiation (CD)4:CD8 values of day 30 and day 90 was observed, but this was not significant. The present study established that DCs primed with rMAGE-3 and rSurvivin may be used in NSCLC treatment. However, a larger study is required to address prominent issues, including secretion of immunosuppressive cytokines and mechanisms of tumour escape from immune surveillance. Several factors associated with the manufacturing and quality of immunotherapy also require standardisation.
Collapse
Affiliation(s)
- Dong Li
- Department of Cardiothoracic Surgery, Central Hospital of Zibo, Zibo, Shandong 250012, P.R. China
| | - Song He
- Maanshan Center for Clinical Laboratory, Maanshan, Anhui 243000, P.R. China.,Maanshan Municipal Hospital Group, Maanshan, Anhui 243000, P.R. China
| |
Collapse
|
29
|
Guang MHZ, McCann A, Bianchi G, Zhang L, Dowling P, Bazou D, O’Gorman P, Anderson KC. Overcoming multiple myeloma drug resistance in the era of cancer 'omics'. Leuk Lymphoma 2018; 59:542-561. [PMID: 28610537 PMCID: PMC6152877 DOI: 10.1080/10428194.2017.1337115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multiple myeloma (MM) is among the most compelling examples of cancer in which research has markedly improved the length and quality of lives of those afflicted. Research efforts have led to 18 newly approved treatments over the last 12 years, including seven in 2015. However, despite significant improvement in overall survival, MM remains incurable as most patients inevitably, yet unpredictably, develop refractory disease. Recent advances in high-throughput 'omics' techniques afford us an unprecedented opportunity to (1) understand drug resistance at the genomic, transcriptomic, and proteomic level; (2) discover novel diagnostic, prognostic, and therapeutic biomarkers; (3) develop novel therapeutic targets and rational drug combinations; and (4) optimize risk-adapted strategies to circumvent drug resistance, thus bringing us closer to a cure for MM. In this review, we provide an overview of 'omics' technologies in MM biomarker and drug discovery, highlighting recent insights into MM drug resistance gleaned from the use of 'omics' techniques. Moving from the bench to bedside, we also highlight future trends in MM, with a focus on the potential use of 'omics' technologies as diagnostic, prognostic, or response/relapse monitoring tools to guide therapeutic decisions anchored upon highly individualized, targeted, durable, and rationally informed combination therapies with curative potential.
Collapse
Affiliation(s)
- Matthew Ho Zhi Guang
- Department of Medical Oncology, Jerome Lipper Multiple
Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston,
Massachusetts, USA
- UCD School of Medicine, College of Health and Agricultural
Science and UCD Conway Institute of Biomolecular and Biomedical Research, University
College Dublin, UCD, Belfield, Dublin 4, Ireland
| | - Amanda McCann
- UCD School of Medicine, College of Health and Agricultural
Science and UCD Conway Institute of Biomolecular and Biomedical Research, University
College Dublin, UCD, Belfield, Dublin 4, Ireland
| | - Giada Bianchi
- Department of Medical Oncology, Jerome Lipper Multiple
Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston,
Massachusetts, USA
| | - Li Zhang
- Department of Medical Oncology, Jerome Lipper Multiple
Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston,
Massachusetts, USA
- Department of Hematology, West China Hospital, Sichuan
University, Chengdu, China
| | - Paul Dowling
- Department of Haematology, Mater Misericordiae University
Hospital, Dublin 7, Ireland
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University
Hospital, Dublin 7, Ireland
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University
Hospital, Dublin 7, Ireland
| | - Kenneth C. Anderson
- Department of Medical Oncology, Jerome Lipper Multiple
Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston,
Massachusetts, USA
| |
Collapse
|
30
|
Wang J, Faict S, Maes K, De Bruyne E, Van Valckenborgh E, Schots R, Vanderkerken K, Menu E. Extracellular vesicle cross-talk in the bone marrow microenvironment: implications in multiple myeloma. Oncotarget 2018; 7:38927-38945. [PMID: 26950273 PMCID: PMC5122441 DOI: 10.18632/oncotarget.7792] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/21/2016] [Indexed: 12/13/2022] Open
Abstract
The bone marrow (BM) represents a complex microenvironment containing stromal cells, immune cells, osteoclasts, osteoblasts, and hematopoietic cells, which are crucial for the immune response, bone formation, and hematopoiesis. Apart from soluble factors and direct cell-cell contact, extracellular vesicles (EVs), including exosomes, were recently identified as a third mediator for cell communication. Solid evidence has already demonstrated the involvement of various BM-derived cells and soluble factors in the regulation of multiple biological processes whereas the EV-mediated message delivery system from the BM has just been explored in recent decades. These EVs not only perform physiological functions but can also play a role in cancer development, including in Multiple Myeloma (MM) which is a plasma cell malignancy predominantly localized in the BM. This review will therefore focus on the multiple functions of EVs derived from BM cells, the manipulation of the BM by cancer-derived EVs, and the role of BM EVs in MM progression.
Collapse
Affiliation(s)
- Jinheng Wang
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Sylvia Faict
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Rik Schots
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| |
Collapse
|
31
|
Galati D, Zanotta S. Hematologic neoplasms: Dendritic cells vaccines in motion. Clin Immunol 2017; 183:181-190. [PMID: 28870867 DOI: 10.1016/j.clim.2017.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/28/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs) are bone-marrow-derived immune cells accounted for a key role in cancer vaccination as potent antigen-presenting cells within the immune system. Cancer microenvironment can modulate DCs maturation resulting in their accumulation into functional states associated with a reduced antitumor immune response. In this regard, a successful cancer vaccine needs to mount a potent antitumor immune response able to overcome the immunosuppressive tumor milieu. As a consequence, DCs-based approaches are a safe and promising strategy for improving the therapeutic efficacy in hematological malignancies, particularly in combinations with additional treatments. This review summarizes the most significant evidence about the immunotherapeutic strategies performed to target hematologic neoplasms including the tumoral associated antigens (TAA) pulsed on DCs, whole tumor cell vaccines or leukemia-derived DCs.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Hematology, National Cancer Institute, Fondazione 'G. Pascale', IRCCS, Via Mariano Semmola 49, 80131 Naples, Italy.
| | - Serena Zanotta
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Hematology, National Cancer Institute, Fondazione 'G. Pascale', IRCCS, Via Mariano Semmola 49, 80131 Naples, Italy
| |
Collapse
|
32
|
Ex Vivo Induction of Multiple Myeloma-specific Immune Responses by Monocyte-derived Dendritic Cells Following Stimulation by Whole-tumor Antigen of Autologous Myeloma Cells. J Immunother 2017; 40:253-264. [DOI: 10.1097/cji.0000000000000182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Abraham RS, Mitchell DA. Gene-modified dendritic cell vaccines for cancer. Cytotherapy 2017; 18:1446-1455. [PMID: 27745604 DOI: 10.1016/j.jcyt.2016.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/16/2016] [Indexed: 12/13/2022]
Abstract
Dendritic cell (DC) vaccines are an immunotherapeutic approach to cancer treatment that use the antigen-presentation machinery of DCs to activate an endogenous anti-tumor response. In this treatment strategy, DCs are cultured ex vivo, exposed to tumor antigens and administered to the patient. The ex vivo culturing provides a unique and powerful opportunity to modify and enhance the DCs. As such, a variety of genetic engineering approaches have been employed to optimize DC vaccines, including the introduction of messenger RNA and small interfering RNA, viral gene transduction, and even fusion with whole tumor cells. In general, these modifications aim to improve targeting, enhance immunogenicity, and reduce susceptibility to the immunosuppressive tumor microenvironment. It has been demonstrated that several of these modifications can be employed in tandem, allowing for fine-tuning and optimization of the DC vaccine across multiple metrics. Thus, the application of genetic engineering techniques to the dendritic cell vaccine platform has the potential to greatly enhance its efficacy in the clinic.
Collapse
Affiliation(s)
- Rebecca S Abraham
- UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Department of Neurosurgery, University of Florida, Gainesville, FL 32605
| | - Duane A Mitchell
- UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Department of Neurosurgery, University of Florida, Gainesville, FL 32605.
| |
Collapse
|
34
|
Abstract
Historically, immune-based therapies have played a leading role in the treatment of hematologic malignancies, with the efficacy of stem cell transplantation largely attributable to donor immunity against malignant cells. As new and more targeted immunotherapies have developed, their role in the treatment of hematologic malignancies is evolving and expanding. Herein, we discuss approaches for antigen discovery and review known and novel tumor antigens in hematologic malignancies. We further explore the role of established and investigational immunotherapies in hematologic malignancies, with a focus on personalization of treatment modalities such as cancer vaccines and adoptive cell therapy. Finally, we identify areas of active investigation and development. Immunotherapy is at an exciting crossroads for the treatment of hematologic malignancies, with further investigation aimed at producing effective, targeted immune therapies that maximize antitumor effects while minimizing toxicity.
Collapse
Affiliation(s)
- David A. Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
35
|
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells that constitute a major component of the immune system’s role in the recognition, elimination, and tolerance of cancer. The unique immunologic capabilities of DCs have recently been harnessed for therapeutic use with the creation of DC-based anti-tumor vaccines, several of which have moved into testing in clinical trials for hematologic malignancies. This review summarizes how treatment strategies using DC-based anti-tumor vaccines are advancing immunotherapeutic options for these diseases.
Collapse
|
36
|
Immunotherapy for the treatment of multiple myeloma. Crit Rev Oncol Hematol 2017; 111:87-93. [PMID: 28259300 DOI: 10.1016/j.critrevonc.2017.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 11/20/2022] Open
Abstract
Immunotherapy has recently emerged as a promising treatment for multiple myeloma (MM). There are now several monoclonal antibodies that target specific surface antigens on myeloma cells or the checkpoints of immune and myeloma cells. Elotuzumab (targeting SLAMF7), daratumumab (targeting CD38), and pembrolizumab (targeting PD-1) have shown clinical activity in clinical studies with relapsed/refractory MM. Dendritic cell vaccination is a safe strategy that has shown some efficacy in a subset of myeloma patients and may become a crucial part of MM treatment when combined with immunomodulatory drugs or immune check-point blockade. Genetically engineered T cells, such as chimeric antigen receptor T cells or T cell receptor-engineered T cells, have also shown encouraging results in recent clinical studies of patients with MM. In this paper, we discuss recent progress in immunotherapy for the treatment of MM.
Collapse
|
37
|
Hutten TJA, Thordardottir S, Fredrix H, Janssen L, Woestenenk R, Tel J, Joosten B, Cambi A, Heemskerk MHM, Franssen GM, Boerman OC, Bakker LBH, Jansen JH, Schaap N, Dolstra H, Hobo W. CLEC12A-Mediated Antigen Uptake and Cross-Presentation by Human Dendritic Cell Subsets Efficiently Boost Tumor-Reactive T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2016; 197:2715-25. [DOI: 10.4049/jimmunol.1600011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/31/2016] [Indexed: 01/19/2023]
|
38
|
Utilizing cell-based therapeutics to overcome immune evasion in hematologic malignancies. Blood 2016; 127:3350-9. [PMID: 27207792 DOI: 10.1182/blood-2015-12-629089] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/29/2016] [Indexed: 12/28/2022] Open
Abstract
Hematologic malignancies provide a suitable testing environment for cell-based immunotherapies, which were pioneered by the development of allogeneic hematopoietic stem cell transplant. All types of cell-based therapies, from donor lymphocyte infusion to dendritic cell vaccines, and adoptive transfer of tumor-specific cytotoxic T cells and natural killer cells, have been clinically translated for hematologic malignancies. The recent success of chimeric antigen receptor-modified T lymphocytes in B-cell malignancies has stimulated the development of this approach toward other hematologic tumors. Similarly, the remarkable activity of checkpoint inhibitors as single agents has created enthusiasm for potential combinations with other cell-based immune therapies. However, tumor cells continuously develop various strategies to evade their immune-mediated elimination. Meanwhile, the recruitment of immunosuppressive cells and the release of inhibitory factors contribute to the development of a tumor microenvironment that hampers the initiation of effective immune responses or blocks the functions of immune effector cells. Understanding how tumor cells escape from immune attack and favor immunosuppression is essential for the improvement of immune cell-based therapies and the development of rational combination approaches.
Collapse
|
39
|
Direct Delivery of Antigens to Dendritic Cells via Antibodies Specific for Endocytic Receptors as a Promising Strategy for Future Therapies. Vaccines (Basel) 2016; 4:vaccines4020008. [PMID: 27043640 PMCID: PMC4931625 DOI: 10.3390/vaccines4020008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen presenting cells and are therefore indispensable for the control of immunity. The technique of antibody mediated antigen targeting to DC subsets has been the basis of intense research for more than a decade. Many murine studies have utilized this approach of antigen delivery to various kinds of endocytic receptors of DCs both in vitro and in vivo. Today, it is widely accepted that different DC subsets are important for the induction of select immune responses. Nevertheless, many questions still remain to be answered, such as the actual influence of the targeted receptor on the initiation of the immune response to the delivered antigen. Further efforts to better understand the induction of antigen-specific immune responses will support the transfer of this knowledge into novel treatment strategies for human diseases. In this review, we will discuss the state-of-the-art aspects of the basic principles of antibody mediated antigen targeting approaches. A table will also provide a broad overview of the latest studies using antigen targeting including addressed DC subset, targeted receptors, outcome, and applied coupling techniques.
Collapse
|
40
|
The antigenic landscape of multiple myeloma: mass spectrometry (re)defines targets for T-cell-based immunotherapy. Blood 2015; 126:1203-13. [PMID: 26138685 DOI: 10.1182/blood-2015-04-640532] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/22/2015] [Indexed: 12/16/2022] Open
Abstract
Direct analysis of HLA-presented antigens by mass spectrometry provides a comprehensive view on the antigenic landscape of different tissues/malignancies and enables the identification of novel, pathophysiologically relevant T-cell epitopes. Here, we present a systematic and comparative study of the HLA class I and II presented, nonmutant antigenome of multiple myeloma (MM). Quantification of HLA surface expression revealed elevated HLA molecule counts on malignant plasma cells compared with normal B cells, excluding relevant HLA downregulation in MM. Analyzing the presentation of established myeloma-associated T-cell antigens on the HLA ligandome level, we found a substantial proportion of antigens to be only infrequently presented on primary myelomas or to display suboptimal degrees of myeloma specificity. However, unsupervised analysis of our extensive HLA ligand data set delineated a panel of 58 highly specific myeloma-associated antigens (including multiple myeloma SET domain containing protein) which are characterized by frequent and exclusive presentation on myeloma samples. Functional characterization of these target antigens revealed peptide-specific, preexisting CD8(+) T-cell responses exclusively in myeloma patients, which is indicative of pathophysiological relevance. Furthermore, in vitro priming experiments revealed that peptide-specific T-cell responses can be induced in response-naive myeloma patients. Together, our results serve to guide antigen selection for T-cell-based immunotherapy of MM.
Collapse
|
41
|
Esfandiary A, Ghafouri-Fard S. MAGE-A3: an immunogenic target used in clinical practice. Immunotherapy 2015; 7:683-704. [PMID: 26100270 DOI: 10.2217/imt.15.29] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melanoma antigen family A, 3 (MAGE-A3) is a cancer-testis antigen whose expression has been demonstrated in a wide array of malignancies including melanoma, brain, breast, lung and ovarian cancer. In addition, its ability to elicit spontaneous humoral and cellular immune responses has been shown in cancer patients. As antigen-specific immune responses can be stimulated by immunization with MAGE-A3, several clinical trials have used MAGE-A3 vaccines to observe clinical responses. The frequent expressions of this antigen in various tumors and its immunogenicity in cancer patients have led to application of this antigen in cancer immunotherapy. However, the results of recent clinical trials indicate that there is a need for research in the vaccine design, adjuvant selection as well as patient selection criteria.
Collapse
Affiliation(s)
- Ali Esfandiary
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| |
Collapse
|
42
|
Vaccination of multiple myeloma: Current strategies and future prospects. Crit Rev Oncol Hematol 2015; 96:339-54. [PMID: 26123319 DOI: 10.1016/j.critrevonc.2015.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 05/06/2015] [Accepted: 06/09/2015] [Indexed: 01/21/2023] Open
Abstract
Tumor immunotherapy holds great promise in controlling multiple myeloma (MM) and may provide an alternative treatment modality to conventional chemotherapy for MM patients. For this reason, a major area of investigation is the development of cancer vaccines to generate myeloma-specific immunity. Several antigens that are able to induce specific T-cell responses are involved in different critical mechanisms for cell differentiation, inhibition of apoptosis, demethylation and proliferation. Strategies under development include infusion of vaccine-primed and ex vivo expanded/costimulated autologous T cells after high-dose melphalan, genetic engineering of autologous T cells with receptors for myeloma-specific epitopes, administration of dendritic cell/plasma cell fusions and administration expanded marrow-infiltrating lymphocytes. In addition, novel immunomodulatory drugs may synergize with immunotherapies. The task ahead is to evaluate these approaches in appropriate clinical settings, and to couple them with strategies to overcome mechanisms of immunoparesis as a means to induce more robust clinically significant immune responses.
Collapse
|
43
|
Vallazza B, Petri S, Poleganov MA, Eberle F, Kuhn AN, Sahin U. Recombinant messenger RNA technology and its application in cancer immunotherapy, transcript replacement therapies, pluripotent stem cell induction, and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:471-99. [DOI: 10.1002/wrna.1288] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | | | | | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH; Mainz Germany
- TRON gGmbH; Mainz Germany
| |
Collapse
|
44
|
Hoang MD, Jung SH, Lee HJ, Lee YK, Nguyen-Pham TN, Choi NR, Vo MC, Lee SS, Ahn JS, Yang DH, Kim YK, Kim HJ, Lee JJ. Dendritic Cell-Based Cancer Immunotherapy against Multiple Myeloma: From Bench to Clinic. Chonnam Med J 2015; 51:1-7. [PMID: 25914874 PMCID: PMC4406989 DOI: 10.4068/cmj.2015.51.1.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 01/27/2023] Open
Abstract
Although the introduction of stem cell transplantation and novel agents has improved survival, multiple myeloma (MM) is still difficult to cure. Alternative approaches are clearly needed to prolong the survival of patients with MM. Dendritic cell (DC) therapy is a very promising tool immunologically in MM. We developed a method to generate potent DCs with increased Th1 polarization and migration ability for inducing strong myeloma-specific cytotoxic T lymphocytes. In this review, we discuss how the efficacy of cancer immunotherapy using DCs can be improved in MM.
Collapse
Affiliation(s)
- My-Dung Hoang
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea. ; Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyun-Ju Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | | | - Thanh-Nhan Nguyen-Pham
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Nu-Ri Choi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Seung-Shin Lee
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jae-Sook Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Deok-Hwan Yang
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Yeo-Kyeoung Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea. ; Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea. ; Vaxcell-Bio Therapeutics, Hwasun, Korea
| |
Collapse
|
45
|
Xi HB, Wang GX, Fu B, Liu WP, Li Y. Survivin and PSMA Loaded Dendritic Cell Vaccine for the Treatment of Prostate Cancer. Biol Pharm Bull 2015; 38:827-35. [PMID: 25787895 DOI: 10.1248/bpb.b14-00518] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dendritic cell (DC)-based vaccines are a promising therapeutic modality for cancer. Results from recent trials and approval of the first DC vaccine by the U.S. Food and Drugs Administration for prostate cancer have paved the way for DC-based vaccines. A total of 21 hormone refractory prostate cancer (HRPC) patients with a life expectancy >3 months were randomised into two groups. DC loaded with recombinant Prostate Specific Membrane Antigen (rPSMA) and recombinant Survivin (rSurvivin) peptides was administered as an subcutaneous (s.c.) injection (5×10(6) cells). Docetaxel (75 mg/m(2) intravenous (i.v.)) and prednisone (5 mg, bis in die (b.i.d.)) served as control. Clinical and immunological responses were evaluated. Primary endpoints were safety and feasibility; secondary endpoint was overall survival. Responses were evaluated on day 15, day 30, day 60, and day 90. DC vaccination was well tolerated with no signs of grade 2 toxicity. DC vaccination induced delayed-type hypersensitivity reactivity and an immune response in all patients. Objective Response Rate (ORR) by Response Evaluation Criteria in Solid Tumours (RECIST) was 72.7% (8/11) versus 45.4 (5/11) in the docetaxel arm and immune related response criteria (irRC) was 54.5% (6/11) compared with 27.2% (3/11) in the control arm. The DC arm showed stable disease (SD) in 6 patients, progressive disease (PD) in 3 patients, and partial remission (PR) in two patients compared to SD in 5 patients, PD in 6 patients, and PR in none in the docetaxel arm. There was a cellular response, disease stabilization, no adverse events, and partial remission with the rPSMA and rSurvivin primed DC vaccine.
Collapse
Affiliation(s)
- Hai-Bo Xi
- Department of Urology, The First Affiliated Hospital of Nanchang University
| | | | | | | | | |
Collapse
|
46
|
Bloy N, Pol J, Aranda F, Eggermont A, Cremer I, Fridman WH, Fučíková J, Galon J, Tartour E, Spisek R, Dhodapkar MV, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based anticancer therapy. Oncoimmunology 2014; 3:e963424. [PMID: 25941593 DOI: 10.4161/21624011.2014.963424] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023] Open
Abstract
The use of patient-derived dendritic cells (DCs) as a means to elicit therapeutically relevant immune responses in cancer patients has been extensively investigated throughout the past decade. In this context, DCs are generally expanded, exposed to autologous tumor cell lysates or loaded with specific tumor-associated antigens (TAAs), and then reintroduced into patients, often in combination with one or more immunostimulatory agents. As an alternative, TAAs are targeted to DCs in vivo by means of monoclonal antibodies, carbohydrate moieties or viral vectors specific for DC receptors. All these approaches have been shown to (re)activate tumor-specific immune responses in mice, often mediating robust therapeutic effects. In 2010, the first DC-based preparation (sipuleucel-T, also known as Provenge®) has been approved by the US Food and Drug Administration (FDA) for use in humans. Reflecting the central position occupied by DCs in the regulation of immunological tolerance and adaptive immunity, the interest in harnessing them for the development of novel immunotherapeutic anticancer regimens remains high. Here, we summarize recent advances in the preclinical and clinical development of DC-based anticancer therapeutics.
Collapse
Key Words
- DC, dendritic cell
- DC-based vaccination
- FDA, Food and Drug Administration
- IFN, interferon
- MRC1, mannose receptor, C type 1
- MUC1, mucin 1
- TAA, tumor-associated antigen
- TLR, Toll-like receptor
- Toll-like receptor agonists
- Treg, regulatory T cell
- WT1, Wilms tumor 1
- antigen cross-presentation
- autophagy
- iDC, immature DC
- immunogenic cell death
- mDC, mature DC
- pDC, plasmacytoid DC
- regulatory T cells
Collapse
Affiliation(s)
- Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris-Sud/Paris XI ; Orsay, France
| | - Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France
| | - Fernando Aranda
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France
| | | | - Isabelle Cremer
- INSERM , U1138; Paris France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France
| | - Wolf Hervé Fridman
- INSERM , U1138; Paris France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France
| | - Jitka Fučíková
- Department of Immunology; 2nd Medical School Charles University and University Hospital Motol ; Prague, Czech Republic ; Sotio a.s. ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM , U1138; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France ; INSERM , U970; Paris France ; Pôle de Biologie; Hôpital Européen Georges Pompidou, AP-HP ; Paris France
| | - Radek Spisek
- Department of Immunology; 2nd Medical School Charles University and University Hospital Motol ; Prague, Czech Republic ; Sotio a.s. ; Prague, Czech Republic
| | - Madhav V Dhodapkar
- Department of Medicine; Immunobiology and Yale Cancer Center; Yale University ; New Haven, CT USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1015, CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France ; Pôle de Biologie; Hôpital Européen Georges Pompidou, AP-HP ; Paris France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France
| |
Collapse
|
47
|
De Keersmaecker B, Fostier K, Corthals J, Wilgenhof S, Heirman C, Aerts JL, Thielemans K, Schots R. Immunomodulatory drugs improve the immune environment for dendritic cell-based immunotherapy in multiple myeloma patients after autologous stem cell transplantation. Cancer Immunol Immunother 2014; 63:1023-36. [PMID: 24947180 PMCID: PMC11028612 DOI: 10.1007/s00262-014-1571-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
Abstract
Multiple myeloma (MM) is characterized by a malignant proliferation of plasma cells in the bone marrow with associated organ damage. Although the prognosis of MM has improved recently, the disease remains incurable for the large majority of patients. The eradication of residual disease in the bone marrow is a main target on the road toward cure. Immune cells play a role in the control of cancer and can be tools to attack residual MM cells. However, the myeloma-associated immune deficiency is a major hurdle to immunotherapy. We evaluated ex vivo the effects of low doses of the immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide on several immune cell types from MM patients after autologous stem cell transplantation and with low tumor burden. We observed that these drugs increased CD4(+) and CD8(+) T-cell proliferation and cytokine production, enhanced the lytic capacity of cytotoxic T lymphocytes and reduced the suppressive effects of regulatory T cells on CD8(+) T-cell responses. In addition, we found that functional dendritic cells (DCs) can be generated from mononuclear cells from MM patients. The presence of IMiDs improved the quality of antigen-specific T cells induced or expanded by these DCs as evidenced by a higher degree of T-cell polyfunctionality. Our results provide a rationale for the design of early phase clinical studies to assess the efficacy of DC-based immunotherapy in combination with posttransplant maintenance treatment with IMiDs in MM.
Collapse
Affiliation(s)
- Brenda De Keersmaecker
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium,
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang L, Jin N, Schmitt A, Greiner J, Malcherek G, Hundemer M, Mani J, Hose D, Raab MS, Ho AD, Chen BA, Goldschmidt H, Schmitt M. T cell-based targeted immunotherapies for patients with multiple myeloma. Int J Cancer 2014; 136:1751-68. [PMID: 25195787 DOI: 10.1002/ijc.29190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 12/17/2022]
Abstract
Despite high-dose chemotherapy followed by autologs stem-cell transplantation as well as novel therapeutic agents, multiple myeloma (MM) remains incurable. Following the general trend towards personalized therapy, targeted immunotherapy as a new approach in the therapy of MM has emerged. Better progression-free survival and overall survival after tandem autologs/allogeneic stem cell transplantation suggest a graft versus myeloma effect strongly supporting the usefulness of immunological therapies for MM patients. How to induce a powerful antimyeloma effect is the key issue in this field. Pivotal is the definition of appropriate tumor antigen targets and effective methods for expansion of T cells with clinical activity. Besides a comprehensive list of tumor antigens for T cell-based approaches, eight promising antigens, CS1, Dickkopf-1, HM1.24, Human telomerase reverse transcriptase, MAGE-A3, New York Esophageal-1, Receptor of hyaluronic acid mediated motility and Wilms' tumor gene 1, are described in detail to provide a background for potential clinical use. Results from both closed and on-going clinical trials are summarized in this review. On the basis of the preclinical and clinical data, we elaborate on three encouraging therapeutic options, vaccine-enhanced donor lymphocyte infusion, chimeric antigen receptors-transfected T cells as well as vaccines with multiple antigen peptides, to pave the way towards clinically significant immune responses against MM.
Collapse
Affiliation(s)
- Lei Wang
- Department of Internal Medicine V, University Clinic Heidelberg, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rosean TR, Tompkins VS, Tricot G, Holman CJ, Olivier AK, Zhan F, Janz S. Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma. Immunol Res 2014; 59:188-202. [PMID: 24845460 PMCID: PMC4209159 DOI: 10.1007/s12026-014-8528-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies on the biologic and molecular genetic underpinnings of multiple myeloma (MM) have identified the pleiotropic, pro-inflammatory cytokine, interleukin-6 (IL-6), as a factor crucial to the growth, proliferation and survival of myeloma cells. IL-6 is also a potent stimulator of osteoclastogenesis and a sculptor of the tumor microenvironment in the bone marrow of patients with myeloma. This knowledge has engendered considerable interest in targeting IL-6 for therapeutic purposes, using a variety of antibody- and small-molecule-based therapies. However, despite the early recognition of the importance of IL-6 for myeloma and the steady progress in our knowledge of IL-6 in normal and malignant development of plasma cells, additional efforts will be required to translate the promise of IL-6 as a target for new myeloma therapies into significant clinical benefits for patients with myeloma. This review summarizes published research on the role of IL-6 in myeloma development and describes ongoing efforts by the University of Iowa Myeloma Multidisciplinary Oncology Group to develop new approaches to the design and testing of IL-6-targeted therapies and preventions of MM.
Collapse
Affiliation(s)
- Timothy R Rosean
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Pham VQ, Nguyen ST, Mai TT, Phan NK, Van Pham P. Breast cancer tumor growth is efficiently inhibited by dendritic cell transfusion in a murine model. BIOMEDICAL RESEARCH AND THERAPY 2014. [DOI: 10.7603/s40730-014-0014-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|