1
|
Lei D, Wang W, Zhao J, Zhou Y, Chen Y, Dai J, Qiu Y, Qi H, Li C, Liang B, Liu B, Wang Q, Li R. An injectable gambogic acid loaded nanocomposite hydrogel enhances antitumor effect by reshaping immunosuppressive tumor microenvironment. Mater Today Bio 2025; 31:101611. [PMID: 40104652 PMCID: PMC11919334 DOI: 10.1016/j.mtbio.2025.101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Gambogic acid(GA)is a natural compound that exhibits strong antitumor activity against a variety of tumors. However, its poor water solubility, low specificity, and high toxicity lead to inevitable systemic adverse effects. To minimize side effects, combining gambogic acid (GA) with delivery systems such as nanohydrogels to develop an in situ vaccine system (ISV) shows great promise. In this study, we loaded GA into a novel in situ nanocomposite hydrogel vaccine system (Gel-NPs@GA) along with a near-infrared (NIR) fluorescent dye, IR-1061. The Gel-NPs@GA system allowed for temperature-triggered gelation, simplifying injection and the in vivo formation of a drug-releasing gel, with near-infrared monitoring for drug metabolism. Slow, continuous release of gelatinase-targeted GA nanoparticles from the hydrogel occurs, followed by cleavage of mPEG-peptide-PCL conjugates by gelatinase, causing particle aggregation for endocytosis by tumor cells. This approach tackled solubility issues and curbs excessive GA release, boosting therapeutic drug levels. The sustained GA release induces tumor cell apoptosis, releasing tumor antigens and reprogramming the immune-suppressive tumor microenvironment. In the CT26 colorectal cancer mice model, this in situ vaccine system significantly inhibited tumor growth. By integrating information about immune cell clusters within the tumor microenvironment with RNA sequencing results, we hypothesized that Gel-NPs@GA could synergistically stimulate the immune response through various pathways, promote the maturation of dendritic cells (DCs), increase the infiltration of T cells, and thereby remodel the tumor's immune microenvironment.
Collapse
Affiliation(s)
- Dan Lei
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wanru Wang
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianhang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Yingling Zhou
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Juanjuan Dai
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuling Qiu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haoyue Qi
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chunhua Li
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Baorui Liu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, China
| | - Qin Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, China
| | - Rutian Li
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, China
| |
Collapse
|
2
|
Liu H, Gou X, Tan Y, Fan Q, Chen J. Immunotherapy and delivery systems for melanoma. Hum Vaccin Immunother 2024; 20:2394252. [PMID: 39286868 PMCID: PMC11409522 DOI: 10.1080/21645515.2024.2394252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Melanoma is a highly malignant tumor of melanocyte origin that is prone to early metastasis and has a very poor prognosis. Early melanoma treatment modalities are mainly surgical, and treatment strategies for advanced or metastatic melanoma contain chemotherapy, radiotherapy, targeted therapy and immunotherapy. The efficacy of chemotherapy and radiotherapy has been unsatisfactory due to low sensitivity and strong toxic side effects. And targeted therapy is prone to drug resistance, so its clinical application is limited. Melanoma has always been the leader of immunotherapy for solid tumors, and how to maximize the role of immunotherapy and how to implement immunotherapy more accurately are still urgent to be explored. This review summarizes the common immunotherapies and applications for melanoma, illustrates the current research status of melanoma immunotherapy delivery systems, and discusses the advantages and disadvantages of each delivery system and its prospects for clinical application.
Collapse
Affiliation(s)
- Hui Liu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xi Gou
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuanfang Tan
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qiuying Fan
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Juanjuan Chen
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Shen M, Li Z, Wang J, Xiang H, Xie Q. Traditional Chinese herbal medicine: harnessing dendritic cells for anti-tumor benefits. Front Immunol 2024; 15:1408474. [PMID: 39364399 PMCID: PMC11446781 DOI: 10.3389/fimmu.2024.1408474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Chinese Herbal Medicine (CHM) is being more and more used in cancer treatment because of its ability to regulate the immune system. Chinese Herbal Medicine has several advantages over other treatment options, including being multi-component, multi-target, and having fewer side effects. Dendritic cells (DCs) are specialized antigen presenting cells that play a vital part in connecting the innate and adaptive immune systems. They are also important in immunotherapy. Recent evidence suggests that Chinese Herbal Medicine and its components can positively impact the immune response by targeting key functions of dendritic cells. In this review, we have summarized the influences of Chinese Herbal Medicine on the immunobiological feature of dendritic cells, emphasized an anti-tumor effect of CHM-treated DCs, and also pointed out deficiencies in the regulation of DC function by Chinese Herbal Medicine and outlined future research directions.
Collapse
Affiliation(s)
- Mengyi Shen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhen Li
- School of Preventive Medicine Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - Hongjie Xiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qi Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
4
|
Chandra S, Wilson JC, Good D, Wei MQ. mRNA vaccines: a new era in vaccine development. Oncol Res 2024; 32:1543-1564. [PMID: 39308511 PMCID: PMC11413818 DOI: 10.32604/or.2024.043987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/02/2024] [Indexed: 09/25/2024] Open
Abstract
The advent of RNA therapy, particularly through the development of mRNA cancer vaccines, has ushered in a new era in the field of oncology. This article provides a concise overview of the key principles, recent advancements, and potential implications of mRNA cancer vaccines as a groundbreaking modality in cancer treatment. mRNA cancer vaccines represent a revolutionary approach to combatting cancer by leveraging the body's innate immune system. These vaccines are designed to deliver specific mRNA sequences encoding cancer-associated antigens, prompting the immune system to recognize and mount a targeted response against malignant cells. This personalized and adaptive nature of mRNA vaccines holds immense potential for addressing the heterogeneity of cancer and tailoring treatments to individual patients. Recent breakthroughs in the development of mRNA vaccines, exemplified by the success of COVID-19 vaccines, have accelerated their application in oncology. The mRNA platform's versatility allows for the rapid adaptation of vaccine candidates to various cancer types, presenting an agile and promising avenue for therapeutic intervention. Clinical trials of mRNA cancer vaccines have demonstrated encouraging results in terms of safety, immunogenicity, and efficacy. Pioneering candidates, such as BioNTech's BNT111 and Moderna's mRNA-4157, have exhibited promising outcomes in targeting melanoma and solid tumors, respectively. These successes underscore the potential of mRNA vaccines to elicit robust and durable anti-cancer immune responses. While the field holds great promise, challenges such as manufacturing complexities and cost considerations need to be addressed for widespread adoption. The development of scalable and cost-effective manufacturing processes, along with ongoing clinical research, will be pivotal in realizing the full potential of mRNA cancer vaccines. Overall, mRNA cancer vaccines represent a cutting-edge therapeutic approach that holds the promise of transforming cancer treatment. As research progresses, addressing challenges and refining manufacturing processes will be crucial in advancing these vaccines from clinical trials to mainstream oncology practice, offering new hope for patients in the fight against cancer.
Collapse
Affiliation(s)
- Shubhra Chandra
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| | - Jennifer C Wilson
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| | - David Good
- School of Allied Health, Australian Catholic University, Brisbane, QLD-4014, Australia
| | - Ming Q Wei
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| |
Collapse
|
5
|
Li NN, Lun DX, Gong N, Meng G, Du XY, Wang H, Bao X, Li XY, Song JW, Hu K, Li L, Li SY, Liu W, Zhu W, Zhang Y, Li J, Yao T, Mou L, Han X, Hao F, Hu Y, Liu L, Zhu H, Wu Y, Liu B. Targeting the chromatin structural changes of antitumor immunity. J Pharm Anal 2024; 14:100905. [PMID: 38665224 PMCID: PMC11043877 DOI: 10.1016/j.jpha.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 04/28/2024] Open
Abstract
Epigenomic imbalance drives abnormal transcriptional processes, promoting the onset and progression of cancer. Although defective gene regulation generally affects carcinogenesis and tumor suppression networks, tumor immunogenicity and immune cells involved in antitumor responses may also be affected by epigenomic changes, which may have significant implications for the development and application of epigenetic therapy, cancer immunotherapy, and their combinations. Herein, we focus on the impact of epigenetic regulation on tumor immune cell function and the role of key abnormal epigenetic processes, DNA methylation, histone post-translational modification, and chromatin structure in tumor immunogenicity, and introduce these epigenetic research methods. We emphasize the value of small-molecule inhibitors of epigenetic modulators in enhancing antitumor immune responses and discuss the challenges of developing treatment plans that combine epigenetic therapy and immunotherapy through the complex interaction between cancer epigenetics and cancer immunology.
Collapse
Affiliation(s)
- Nian-nian Li
- Weifang People's Hospital, Weifang, Shandong, 261000, China
- School of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deng-xing Lun
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Ningning Gong
- Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, 261000, China
| | - Gang Meng
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang, Shaanxi, 725000, China
| | - Xin-ying Du
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - He Wang
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xiangxiang Bao
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xin-yang Li
- Guizhou Education University, Guiyang, 550018, China
| | - Ji-wu Song
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Kewei Hu
- Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, 261000, China
| | - Lala Li
- Guizhou Normal University, Guiyang, 550025, China
| | - Si-ying Li
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Wenbo Liu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Wanping Zhu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yunlong Zhang
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Jikai Li
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, Tianjin, 300299, China
| | - Ting Yao
- School of Life Sciences, Nankai University, Tianjin, 300071, China
- Teda Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin, 300457, China
| | - Leming Mou
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xiaoqing Han
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Furong Hao
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yongcheng Hu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Lin Liu
- School of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongguang Zhu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yuyun Wu
- Xinqiao Hospital of Army Military Medical University, Chongqing, 400038, China
| | - Bin Liu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
- School of Life Sciences, Nankai University, Tianjin, 300071, China
- Teda Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin, 300457, China
| |
Collapse
|
6
|
Sauerer T, Albrecht L, Sievers NM, Gerer KF, Hoyer S, Dörrie J, Schaft N. Electroporation of mRNA as a Universal Technology Platform to Transfect a Variety of Primary Cells with Antigens and Functional Proteins. Methods Mol Biol 2024; 2786:219-235. [PMID: 38814397 DOI: 10.1007/978-1-0716-3770-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than two decades to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs) and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II. Next to that, functional proteins like adhesion receptors, T-cell receptors (TCRs), chimeric antigen receptors (CARs), constitutively active signal transducers (i.e. caIKK), and others were successfully expressed. We have also established this protocol under full GMP compliance as part of a manufacturing license to produce mRNA-electroporated DCs and mRNA-electroporated T cells for therapeutic applications in clinical trials. Therefore, we here want to share our universal mRNA electroporation protocol and the experience we have gathered with this method. The advantages of the transfection method presented here are: (1) easy adaptation to different cell types; (2) scalability from 106 to approximately 108 cells per shot; (3) high transfection efficiency (80-99%); (4) homogenous protein expression; (5) GMP compliance if the EP is performed in a class A clean room; and (6) no transgene integration into the genome. The provided protocol involves: OptiMEM® as EP medium, a square-wave pulse with 500 V, and 4 mm cuvettes. To adapt the protocol to differently sized cells, simply the pulse time has to be altered. Thus, we share an overview of proven electroporation settings (including recovery media), which we have established for various cell types. Next to the basic protocol, we also provide an extensive list of hints and tricks, which, in our opinion, are of great value for everyone who intends to use this transfection technique.
Collapse
Affiliation(s)
- Tatjana Sauerer
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Leoni Albrecht
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Nico M Sievers
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Kerstin F Gerer
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Novartis Pharma GmbH, Nuremberg, Germany
| | - Stefanie Hoyer
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Department of Palliative Medicine, Universitätsklinikum Erlangen, Comprehensive Cancer Center CCC Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jan Dörrie
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Niels Schaft
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.
| |
Collapse
|
7
|
Han R, Wang Y, Lu L. Sensitizing the Efficiency of ICIs by Neoantigen mRNA Vaccines for HCC Treatment. Pharmaceutics 2023; 16:59. [PMID: 38258070 PMCID: PMC10821464 DOI: 10.3390/pharmaceutics16010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
This study builds upon the groundbreaking mRNA vaccine Nobel Prize win in 2023 for COVID-19 prevention, paving the way for next-generation mRNA cancer vaccines to revolutionize immunotherapy. Despite the existing challenges, such as the presence of a suppressive tumor microenvironment and the identification of cancer-associated antigens, recent results from the KEYNOTE-942 trial have successfully demonstrated the effectiveness of mRNA-based cancer treatments, providing clinical evidence for the first time. This trial aimed to evaluate the efficacy and safety of combining immune checkpoint inhibitors with mRNA-based therapies in treating cancer. This advancement undeniably represents new hope for hepatocellular carcinoma (HCC) patients. However, progress in this field remains limited. In this article, we summarized the current state of applying immune checkpoint inhibitors (ICIs) combined with neoantigen mRNA vaccines. Additionally, we discussed potential targets for designing novel mRNA vaccines and potential mRNA vaccine delivery vehicles. The objective of this article is to inspire enthusiasm for the exploration of innovative therapeutic strategies that combine ICIs with neoantigen mRNA vaccines for HCC treatment and HCC prevention.
Collapse
Affiliation(s)
- Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Oncology, The First Hospital Affiliated to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT 06520-8034, USA
| | - Yuqian Wang
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT 06520-8034, USA
- School of Medicine, Center for Biomedical Data Science, New Haven, CT 06520-8034, USA
- Yale Cancer Center, Yale University, New Haven, CT 06520-8034, USA
| |
Collapse
|
8
|
Qiu K, Duan X, Mao M, Song Y, Rao Y, Cheng D, Feng L, Shao X, Jiang C, Huang H, Wang Y, Li H, Chen X, Wu S, Luo D, Chen F, Peng X, Zheng Y, Wang H, Liu J, Zhao Y, Song X, Ren J. mRNA-LNP vaccination-based immunotherapy augments CD8 + T cell responses against HPV-positive oropharyngeal cancer. NPJ Vaccines 2023; 8:144. [PMID: 37773254 PMCID: PMC10542330 DOI: 10.1038/s41541-023-00733-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023] Open
Abstract
Although mRNA vaccines are known as potent activators of antigen-specific immune responses against infectious diseases, limited understanding of how they drive the functional commitment of CD8+ T cells in tumor microenvironment (TME) and secondary lymphoid organs hinders their broader application in cancer immunotherapy. Here, we systematically evaluated the immunological effects of a lipid nanoparticle (LNP)-encapsulated mRNA vaccine that encodes human papillomavirus E7 protein (HPV mRNA-LNP), a tumor-specific antigen of HPV-positive oropharyngeal squamous cell carcinoma (OPSCC). HPV mRNA-LNP vaccination activated overall and HPV-specific CD8+ T cells, as well as differentially drove the functional commitment of CD8+ T cells through distinct IFN-response and exhaustion trajectories in the spleen and TME, respectively. Combination therapies of HPV mRNA-LNP vaccination with immune checkpoint blockades boosted HPV-specific CD8+ T cells while maintaining their anti-tumor function, thus further promoting tumor regression. Our results showed that the HPV mRNA-LNP vaccination combined with immune checkpoint blockade is a promising approach for immunotherapy of HPV-positive OPSCC.
Collapse
Affiliation(s)
- Ke Qiu
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Duan
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Minzi Mao
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yao Song
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yufang Rao
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Danni Cheng
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lan Feng
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiuli Shao
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanhuan Jiang
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai Huang
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Li
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuemei Chen
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sisi Wu
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Luo
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Chen
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongbo Zheng
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Wang
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Liu
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhao
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xiangrong Song
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jianjun Ren
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Zhang G, Tang T, Chen Y, Huang X, Liang T. mRNA vaccines in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:365. [PMID: 37726283 PMCID: PMC10509165 DOI: 10.1038/s41392-023-01579-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/01/2023] [Accepted: 07/30/2023] [Indexed: 09/21/2023] Open
Abstract
mRNA vaccines have emerged as highly effective strategies in the prophylaxis and treatment of diseases, thanks largely although not totally to their extraordinary performance in recent years against the worldwide plague COVID-19. The huge superiority of mRNA vaccines regarding their efficacy, safety, and large-scale manufacture encourages pharmaceutical industries and biotechnology companies to expand their application to a diverse array of diseases, despite the nonnegligible problems in design, fabrication, and mode of administration. This review delves into the technical underpinnings of mRNA vaccines, covering mRNA design, synthesis, delivery, and adjuvant technologies. Moreover, this review presents a systematic retrospective analysis in a logical and well-organized manner, shedding light on representative mRNA vaccines employed in various diseases. The scope extends across infectious diseases, cancers, immunological diseases, tissue damages, and rare diseases, showcasing the versatility and potential of mRNA vaccines in diverse therapeutic areas. Furthermore, this review engages in a prospective discussion regarding the current challenge and potential direction for the advancement and utilization of mRNA vaccines. Overall, this comprehensive review serves as a valuable resource for researchers, clinicians, and industry professionals, providing a comprehensive understanding of the technical aspects, historical context, and future prospects of mRNA vaccines in the fight against various diseases.
Collapse
Affiliation(s)
- Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yinfeng Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Lee KW, Yam JWP, Mao X. Dendritic Cell Vaccines: A Shift from Conventional Approach to New Generations. Cells 2023; 12:2147. [PMID: 37681880 PMCID: PMC10486560 DOI: 10.3390/cells12172147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
In the emerging era of cancer immunotherapy, immune checkpoint blockades (ICBs) and adoptive cell transfer therapies (ACTs) have gained significant attention. However, their therapeutic efficacies are limited due to the presence of cold type tumors, immunosuppressive tumor microenvironment, and immune-related side effects. On the other hand, dendritic cell (DC)-based vaccines have been suggested as a new cancer immunotherapy regimen that can address the limitations encountered by ICBs and ACTs. Despite the success of the first generation of DC-based vaccines, represented by the first FDA-approved DC-based therapeutic cancer vaccine Provenge, several challenges remain unsolved. Therefore, new DC vaccine strategies have been actively investigated. This review addresses the limitations of the currently most adopted classical DC vaccine and evaluates new generations of DC vaccines in detail, including biomaterial-based, immunogenic cell death-inducing, mRNA-pulsed, DC small extracellular vesicle (sEV)-based, and tumor sEV-based DC vaccines. These innovative DC vaccines are envisioned to provide a significant breakthrough in cancer immunotherapy landscape and are expected to be supported by further preclinical and clinical studies.
Collapse
Affiliation(s)
- Kyu-Won Lee
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; (K.-W.L.); (J.W.P.Y.)
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; (K.-W.L.); (J.W.P.Y.)
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| |
Collapse
|
11
|
Cui Z, Liang Z, Song B, Zhu Y, Chen G, Gu Y, Liang B, Ma J, Song B. Machine learning-based signature of necrosis-associated lncRNAs for prognostic and immunotherapy response prediction in cutaneous melanoma and tumor immune landscape characterization. Front Endocrinol (Lausanne) 2023; 14:1180732. [PMID: 37229449 PMCID: PMC10203625 DOI: 10.3389/fendo.2023.1180732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023] Open
Abstract
Background Cutaneous melanoma (CM) is one of the malignant tumors with a relative high lethality. Necroptosis is a novel programmed cell death that participates in anti-tumor immunity and tumor prognosis. Necroptosis has been found to play an important role in tumors like CM. However, the necroptosis-associated lncRNAs' potential prognostic value in CM has not been identified. Methods The RNA sequencing data collected from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression Project (GTEx) was utilized to identify differentially expressed genes in CM. By using the univariate Cox regression analysis and machine learning LASSO algorithm, a prognostic risk model had been built depending on 5 necroptosis-associated lncRNAs and was verified by internal validation. The performance of this prognostic model was assessed by the receiver operating characteristic curves. A nomogram was constructed and verified by calibration. Furthermore, we also performed sub-group K-M analysis to explore the 5 lncRNAs' expression in different clinical stages. Function enrichment had been analyzed by GSEA and ssGSEA. In addition, qRT-PCR was performed to verify the five lncRNAs' expression level in CM cell line (A2058 and A375) and normal keratinocyte cell line (HaCaT). Results We constructed a prognostic model based on five necroptosis-associated lncRNAs (AC245041.1, LINC00665, AC018553.1, LINC01871, and AC107464.3) and divided patients into high-risk group and low-risk group depending on risk scores. A predictive nomogram had been built to be a prognostic indicator to clinical factors. Functional enrichment analysis showed that immune functions had more relationship and immune checkpoints were more activated in low-risk group than that in high-risk group. Thus, the low-risk group would have a more sensitive response to immunotherapy. Conclusion This risk score signature could be used to divide CM patients into low- and high-risk groups, and facilitate treatment strategy decision making that immunotherapy is more suitable for those in low-risk group, providing a new sight for CM prognostic evaluation.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhen Liang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Binyu Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuhan Zhu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guo Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanan Gu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Baoyan Liang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jungang Ma
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
12
|
Opposite Effects of mRNA-Based and Adenovirus-Vectored SARS-CoV-2 Vaccines on Regulatory T Cells: A Pilot Study. Biomedicines 2023; 11:biomedicines11020511. [PMID: 36831046 PMCID: PMC9953737 DOI: 10.3390/biomedicines11020511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/12/2023] Open
Abstract
New-generation mRNA and adenovirus vectored vaccines against SARS-CoV-2 spike protein are endowed with immunogenic, inflammatory and immunomodulatory properties. Recently, BioNTech developed a noninflammatory tolerogenic mRNA vaccine (MOGm1Ψ) that induces in mice robust expansion of antigen-specific regulatory T (Treg) cells. The Pfizer/BioNTech BNT162b2 mRNA vaccine against SARS-CoV-2 is identical to MOGm1Ψ except for the lipid carrier, which differs for containing lipid nanoparticles rather than lipoplex. Here we report that vaccination with BNT162b2 led to an increase in the frequency and absolute count of CD4posCD25highCD127low putative Treg cells; in sharp contrast, vaccination with the adenovirus-vectored ChAdOx1 nCoV-19 vaccine led to a significant decrease of CD4posCD25high cells. This pilot study is very preliminary, suffers from important limitations and, frustratingly, very hardly can be refined in Italy because of the >90% vaccination coverage. Thus, the provocative perspective that BNT162b2 and MOGm1Ψ may share the capacity to promote expansion of Treg cells deserves confirmatory studies in other settings.
Collapse
|
13
|
Nakahashi-Ouchida R, Fujihashi K, Kurashima Y, Yuki Y, Kiyono H. Nasal vaccines: solutions for respiratory infectious diseases. Trends Mol Med 2023; 29:124-140. [PMID: 36435633 DOI: 10.1016/j.molmed.2022.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022]
Abstract
Nasal vaccines induce pathogen-specific dual protective immunity at mucosal surfaces and systemically throughout the body. Consequently, nasal vaccines both prevent pathogen invasion and reduce disease severity. Because of these features, nasal vaccines are considered to be a next-generation tool for preventing respiratory infectious diseases, including COVID-19. However, nasal vaccines must overcome key safety concerns given the anatomic proximity of the central nervous system (CNS) via the olfactory bulbs which lie next to the nasal cavity. This review summarizes current efforts to develop safe and effective nasal vaccines and delivery systems, as well as their clinical applications for the prevention of respiratory infections. We also discuss various concerns regarding the safety of nasal vaccines and introduce a system for evaluating them.
Collapse
Affiliation(s)
- Rika Nakahashi-Ouchida
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; Research Institute of Disaster Medicine, Chiba University, Chiba, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; Research Institute of Disaster Medicine, Chiba University, Chiba, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan; Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yosuke Kurashima
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan; Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan; Institute for Advanced Academic Research, Chiba University, Chiba, Japan; Chiba University-University of California San Diego (CU-UCSD) Center for Mucosal Immunology, Allergy, and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
| | - Yoshikazu Yuki
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; HanaVax Inc., Tokyo, Japan
| | - Hiroshi Kiyono
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; Research Institute of Disaster Medicine, Chiba University, Chiba, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan; Institute for Advanced Academic Research, Chiba University, Chiba, Japan; Chiba University-University of California San Diego (CU-UCSD) Center for Mucosal Immunology, Allergy, and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA; Future Medicine Education and Research Organization, Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan.
| |
Collapse
|
14
|
Zhou J, Li L, Jia M, Liao Q, Peng G, Luo G, Zhou Y. Dendritic cell vaccines improve the glioma microenvironment: Influence, challenges, and future directions. Cancer Med 2022; 12:7207-7221. [PMID: 36464889 PMCID: PMC10067114 DOI: 10.1002/cam4.5511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Gliomas, especially the glioblastomas, are one of the most aggressive intracranial tumors with poor prognosis. This might be explained by the heterogeneity of tumor cells and the inhibitory immunological microenvironment. Dendritic cells (DCs), as the most potent in vivo functional antigen-presenting cells, link innate immunity with adaptive immunity. However, their function is suppressed in gliomas. Therefore, overcoming the dysfunction of DCs in the TME might be critical to treat gliomas. METHOD In this paper we proposed the specificity of the glioma microenvironment, analyzed the pathways leading to the dysfunction of DCs in tumor microenvironment of patients with glioma, summarized influence of DC-based immunotherapy on the tumor microenvironment and proposed new development directions and possible challenges of DC vaccines. RESULT DC vaccines can improve the immunosuppressive microenvironment of glioma patients. It will bring good treatment prospects to patients. We also proposed new development directions and possible challenges of DC vaccines, thus providing an integrated understanding of efficacy on DC vaccines for glioma treatment.
Collapse
Affiliation(s)
- Jing Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Luohong Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Minqi Jia
- Department of Radiation Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Guiping Peng
- Xiangya School of Medicine Central South University Changsha China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine Central South University Changsha Hunan China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| |
Collapse
|
15
|
Wang D, Cui Q, Yang YJ, Liu AQ, Zhang G, Yu JC. Application of dendritic cells in tumor immunotherapy and progress in the mechanism of anti-tumor effect of Astragalus polysaccharide (APS) modulating dendritic cells: a review. Biomed Pharmacother 2022; 155:113541. [PMID: 36127221 DOI: 10.1016/j.biopha.2022.113541] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that are essential in mediating the body's natural and adaptive immune responses. The body can regulate the function of DCs in various ways to enhance their antitumor effects. In the tumour microenvironment (TME), antigen-specific T cell responses are initiated through DC processing and delivery of tumour-associated antigens (TAAs); conversely, tumour cells inhibit DC recruitment by releasing metabolites, cytokines and other regulatory TME and function. Different subpopulations of DCs exist in tumour tissues, and their functions vary. Insight into DC subgroups in TME allows assessment of the effectiveness of tumour immunotherapy. Astragalus polysaccharide (APS) is the main component of the Chinese herb Astragalus membranaceus. The study found that the antitumor effects of APS are closely related to DCs. APS can promote the expression of surface molecules CD80 and CD86, promote the maturation of DCs, and activate CTL to exert antitumor effects. We reviewed the application of DCs in tumor immunotherapy and the mechanism of modulation of DCs by Astragalus polysaccharide to provide new directions and strategies for tumor therapy and new drug development.
Collapse
Affiliation(s)
- Dong Wang
- Department of Oncology, First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin, China
| | - Qian Cui
- Department of Oncology, First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin, China
| | - Yan Jie Yang
- Department of Oncology, First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin, China
| | - A Qing Liu
- Department of Oncology, First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin, China
| | - Guan Zhang
- Department of Oncology, First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin, China
| | - Jian Chun Yu
- Department of Oncology, First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China.
| |
Collapse
|
16
|
Duan LJ, Wang Q, Zhang C, Yang DX, Zhang XY. Potentialities and Challenges of mRNA Vaccine in Cancer Immunotherapy. Front Immunol 2022; 13:923647. [PMID: 35711457 PMCID: PMC9196868 DOI: 10.3389/fimmu.2022.923647] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has become the breakthrough strategies for treatment of cancer in recent years. The application of messenger RNA in cancer immunotherapy is gaining tremendous popularity as mRNA can function as an effective vector for the delivery of therapeutic antibodies on immune targets. The high efficacy, decreased toxicity, rapid manufacturing and safe administration of mRNA vaccines have great advantages over conventional vaccines. The unprecedent success of mRNA vaccines against infection has proved its effectiveness. However, the instability and inefficient delivery of mRNA has cast a shadow on the wide application of this approach. In the past decades, modifications on mRNA structure and delivery methods have been made to solve these questions. This review summarizes recent advancements of mRNA vaccines in cancer immunotherapy and the existing challenges for its clinical application, providing insights on the future optimization of mRNA vaccines for the successful treatment of cancer.
Collapse
Affiliation(s)
- Li-Juan Duan
- Medical School, Huanghe Science and Technology College, Zhengzhou, China
| | - Qian Wang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Cuilian Zhang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong-Xiao Yang
- Medical School, Huanghe Science and Technology College, Zhengzhou, China
| | - Xu-Yao Zhang
- Medical School, Huanghe Science and Technology College, Zhengzhou, China
| |
Collapse
|
17
|
Gp-100 as a Novel Therapeutic Target in Uveal Melanoma. Cancers (Basel) 2021; 13:cancers13235968. [PMID: 34885078 PMCID: PMC8656894 DOI: 10.3390/cancers13235968] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023] Open
Abstract
Simple Summary Glycoprotein 100 (Gp-100) is a protein highly expressed in melanoma tissue that has recently been effectively targeted by tebentafusp, a first-in-class bispecific protein of the immune-mobilizing monoclonal T cell receptors against cancer (ImmTACs) family. Recently, a randomized phase III trial reported an overall survival benefit for tebentafusp in patients with untreated metastatic uveal melanoma. Abstract Uveal melanoma is a rare neoplasm with poor prognosis in the metastatic setting. Unlike cutaneous melanoma, treatment with kinase inhibitors or immune checkpoint inhibitors is not effective. Glycoprotein 100 (Gp-100) is a protein highly expressed in melanocytes and melanoma that has recently been effectively targeted by tebentafusp, a first-in-class bispecific protein of the immune-mobilizing monoclonal T cell receptors against cancer (ImmTACs) family. Tebentafusp targets tumor cells that express a peptide of Gp-100 presented by HLA*A0201, creating an immune synapse that kills targeted tumor cells. Recently, a randomized phase III trial reported an overall survival benefit for tebentafusp in patients with untreated metastatic uveal melanoma. The aim of this comprehensive review is to summarize evidence of Gp-100 as a therapeutic target in melanoma, and the preclinical and clinical development of tebentafusp as a novel therapeutic strategy for patients with uveal melanoma.
Collapse
|
18
|
Salah A, Wang H, Li Y, Ji M, Ou WB, Qi N, Wu Y. Insights Into Dendritic Cells in Cancer Immunotherapy: From Bench to Clinical Applications. Front Cell Dev Biol 2021; 9:686544. [PMID: 34262904 PMCID: PMC8273339 DOI: 10.3389/fcell.2021.686544] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/11/2021] [Indexed: 01/05/2023] Open
Abstract
Dendritic cells (DCs) are efficient antigen-presenting cells (APCs) and potent activators of naïve T cells. Therefore, they act as a connective ring between innate and adaptive immunity. DC subsets are heterogeneous in their ontogeny and functions. They have proven to potentially take up and process tumor-associated antigens (TAAs). In this regard, researchers have developed strategies such as genetically engineered or TAA-pulsed DC vaccines; these manipulated DCs have shown significant outcomes in clinical and preclinical models. Here, we review DC classification and address how DCs are skewed into an immunosuppressive phenotype in cancer patients. Additionally, we present the advancements in DCs as a platform for cancer immunotherapy, emphasizing the technologies used for in vivo targeting of endogenous DCs, ex vivo generated vaccines from peripheral blood monocytes, and induced pluripotent stem cell-derived DCs (iPSC-DCs) to boost antitumoral immunity.
Collapse
Affiliation(s)
- Ahmed Salah
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, China.,Asia Stem Cell Therapies Co., Limited, Shanghai, China
| | - Yanqin Li
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Meng Ji
- Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, China
| | - Wen-Bin Ou
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nianmin Qi
- Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, China.,Asia Stem Cell Therapies Co., Limited, Shanghai, China
| | - Yuehong Wu
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
19
|
Cao W, Ma X, Fischer JV, Sun C, Kong B, Zhang Q. Immunotherapy in endometrial cancer: rationale, practice and perspectives. Biomark Res 2021; 9:49. [PMID: 34134781 PMCID: PMC8207707 DOI: 10.1186/s40364-021-00301-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor immunotherapy has attracted more and more attention nowadays, and multiple clinical trials have confirmed its effect in a variety of solid tumors. Immune checkpoint inhibitors (ICIs), cancer vaccines, adoptive cell transfer (ACT), and lymphocyte-promoting cytokines are the main immunotherapy methods. Endometrial cancer (EC) is one of the most frequent tumors in women and the prognosis of recurrent or metastatic EC is poor. Since molecular classification has been applied to EC, immunotherapy for different EC subtypes (especially POLE and MSI-H) has gradually attracted attention. In this review, we focus on the expression and molecular basis of the main biomarkers in the immunotherapy of EC firstly, as well as their clinical application significance and limitations. Blocking tumor immune checkpoints is one of the most effective strategies for cancer treatment in recent years, and has now become the focus in the field of tumor research and treatment. We summarized clinical date of planned and ongoing clinical trials and introduced other common immunotherapy methods in EC, such as cancer vaccine and ACT. Hormone aberrations, metabolic syndrome (MetS) and p53 mutant and that affect the immunotherapy of endometrial cancer will also be discussed in this review.
Collapse
Affiliation(s)
- Wenyu Cao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China
| | - Xinyue Ma
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China
| | - Jean Victoria Fischer
- Department of Pathology, Northwestern Medicine, Gynecologic Pathology Fellow, Chicago, Illinois, USA
| | - Chenggong Sun
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China. .,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China.
| |
Collapse
|
20
|
Heine A, Juranek S, Brossart P. Clinical and immunological effects of mRNA vaccines in malignant diseases. Mol Cancer 2021; 20:52. [PMID: 33722265 PMCID: PMC7957288 DOI: 10.1186/s12943-021-01339-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
In vitro-transcribed messenger RNA-based therapeutics represent a relatively novel and highly efficient class of drugs. Several recently published studies emphasize the potential efficacy of mRNA vaccines in treating different types of malignant and infectious diseases where conventional vaccine strategies and platforms fail to elicit protective immune responses. mRNA vaccines have lately raised high interest as potent vaccines against SARS-CoV2. Direct application of mRNA or its electroporation into dendritic cells was shown to induce polyclonal CD4+ and CD8+ mediated antigen-specific T cell responses as well as the production of protective antibodies with the ability to eliminate transformed or infected cells. More importantly, the vaccine composition may include two or more mRNAs coding for different proteins or long peptides. This enables the induction of polyclonal immune responses against a broad variety of epitopes within the encoded antigens that are presented on various MHC complexes, thus avoiding the restriction to a certain HLA molecule or possible immune escape due to antigen-loss. The development and design of mRNA therapies was recently boosted by several critical innovations including the development of technologies for the production and delivery of high quality and stable mRNA. Several technical obstacles such as stability, delivery and immunogenicity were addressed in the past and gradually solved in the recent years.This review will summarize the most recent technological developments and application of mRNA vaccines in clinical trials and discusses the results, challenges and future directions with a special focus on the induced innate and adaptive immune responses.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Drug Delivery Systems
- Gene Expression Regulation, Neoplastic
- Gene Transfer Techniques
- Humans
- Immunity
- Immunotherapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Neoplasms/etiology
- Neoplasms/pathology
- Neoplasms/therapy
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Annkristin Heine
- Medical Clinic III for Oncology, Hematology, Immune-Oncology and Rheumatology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Stefan Juranek
- Medical Clinic III for Oncology, Hematology, Immune-Oncology and Rheumatology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Peter Brossart
- Medical Clinic III for Oncology, Hematology, Immune-Oncology and Rheumatology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
21
|
Van Hoecke L, Verbeke R, Dewitte H, Lentacker I, Vermaelen K, Breckpot K, Van Lint S. mRNA in cancer immunotherapy: beyond a source of antigen. Mol Cancer 2021; 20:48. [PMID: 33658037 PMCID: PMC7926200 DOI: 10.1186/s12943-021-01329-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
mRNA therapeutics have become the focus of molecular medicine research. Various mRNA applications have reached major milestones at high speed in the immuno-oncology field. This can be attributed to the knowledge that mRNA is one of nature's core building blocks carrying important information and can be considered as a powerful vector for delivery of therapeutic proteins to the patient.For a long time, the major focus in the use of in vitro transcribed mRNA was on development of cancer vaccines, using mRNA encoding tumor antigens to modify dendritic cells ex vivo. However, the versatility of mRNA and its many advantages have paved the path beyond this application. In addition, due to smart design of both the structural properties of the mRNA molecule as well as pharmaceutical formulations that improve its in vivo stability and selective targeting, the therapeutic potential of mRNA can be considered as endless.As a consequence, many novel immunotherapeutic strategies focus on the use of mRNA beyond its use as the source of tumor antigens. This review aims to summarize the state-of-the-art on these applications and to provide a rationale for their clinical application.
Collapse
Affiliation(s)
- Lien Van Hoecke
- VIB-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Karim Vermaelen
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Tumor Immunology Laboratory, Department of Respiratory Medicine and Immuno-Oncology Network Ghent, Ghent University Hospital, Corneel Heymanslaan 10 MRB2, 9000 Ghent, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103 Building E, 1090 Brussels, Belgium
| | - Sandra Van Lint
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Tumor Immunology Laboratory, Department of Respiratory Medicine and Immuno-Oncology Network Ghent, Ghent University Hospital, Corneel Heymanslaan 10 MRB2, 9000 Ghent, Belgium
| |
Collapse
|
22
|
De Lombaerde E, De Wever O, De Geest BG. Delivery routes matter: Safety and efficacy of intratumoral immunotherapy. Biochim Biophys Acta Rev Cancer 2021; 1875:188526. [PMID: 33617921 DOI: 10.1016/j.bbcan.2021.188526] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023]
Abstract
Many anticancer immunotherapeutic agents, including the monoclonal immune checkpoint blocking antibodies, toll-like receptor (TLR) agonists, cytokines and immunostimulatory mRNA are commonly administrated by the intravenous route. Unfortunately, this route is prone to inducing, often life-threatening, side effects through accumulation of these immunotherapeutic agents at off-target tissues. Moreover, additional biological barriers need to be overcome before reaching the tumor microenvironment. By contrast, direct intratumoral injection allows for accomplishing local immune activation and multiple (pre)clinical studies have demonstrated decreased systemic toxicity, improved efficacy as well as abscopal effects. The approval of the oncolytic herpes simplex virus type 1 talimogene laherparepvec (T-VEC) as first approved intratumoral oncolytic virotherapy has fueled the interest to study intensively other immunotherapeutic approaches in preclinical models as well as in clinical context. Moreover, it has been shown that intratumoral administration of immunostimulatory agents successfully synergizes with immune checkpoint inhibitor therapy. Here we review the current state of the art in (pre)clinical intratumoral immunotherapy.
Collapse
Affiliation(s)
- Emily De Lombaerde
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
| |
Collapse
|
23
|
Van Den Eeckhout B, Tavernier J, Gerlo S. Interleukin-1 as Innate Mediator of T Cell Immunity. Front Immunol 2021; 11:621931. [PMID: 33584721 PMCID: PMC7873566 DOI: 10.3389/fimmu.2020.621931] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
The three-signal paradigm tries to capture how the innate immune system instructs adaptive immune responses in three well-defined actions: (1) presentation of antigenic peptides in the context of MHC molecules, which allows for a specific T cell response; (2) T cell co-stimulation, which breaks T cell tolerance; and (3) secretion of polarizing cytokines in the priming environment, thereby specializing T cell immunity. The three-signal model provides an empirical framework for innate instruction of adaptive immunity, but mainly discusses STAT-dependent cytokines in T cell activation and differentiation, while the multi-faceted roles of type I IFNs and IL-1 cytokine superfamily members are often neglected. IL-1α and IL-1β are pro-inflammatory cytokines, produced following damage to the host (release of DAMPs) or upon innate recognition of PAMPs. IL-1 activity on both DCs and T cells can further shape the adaptive immune response with variable outcomes. IL-1 signaling in DCs promotes their ability to induce T cell activation, but also direct action of IL-1 on both CD4+ and CD8+ T cells, either alone or in synergy with prototypical polarizing cytokines, influences T cell differentiation under different conditions. The activities of IL-1 form a direct bridge between innate and adaptive immunity and could therefore be clinically translatable in the context of prophylactic and therapeutic strategies to empower the formation of T cell immunity. Understanding the modalities of IL-1 activity during T cell activation thus could hold major implications for rational development of the next generation of vaccine adjuvants.
Collapse
Affiliation(s)
- Bram Van Den Eeckhout
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Sarah Gerlo
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Payandeh Z, Mohammadkhani N, Nabi Afjadi M, Khalili S, Rajabibazl M, Houjaghani Z, Dadkhah M. The immunology of SARS-CoV-2 infection, the potential antibody based treatments and vaccination strategies. Expert Rev Anti Infect Ther 2020; 19:899-910. [PMID: 33307883 DOI: 10.1080/14787210.2020.1863144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a potentially fatal agent for a new emerging viral disease (COVID-19) is of great global public health emergency. Herein, we represented potential antibody-based treatments especially monoclonal antibodies (mAbs) that may exert a potential role in treatment as well as developing vaccination strategies against COVID-19.Areas covered: We used PubMed, Google Scholar, and clinicaltrials.gov search strategies for relevant papers. We demonstrated some agents with potentially favorable efficacy as well as favorable safety. Several therapies are under assessment to evaluate their efficacy and safety for COVID19. However, the development of different strategies such as SARS-CoV-2-based vaccines and antibody therapy are urgently required beside other effective therapies such as plasma, anticoagulants, and immune as well as antiviral therapies. We encourage giving more attention to antibody-based treatments as an immediate strategy. Although there has not been any approved specific vaccine until now, developing vaccination strategies may have a protective effect against COVID-19.Expert opinion: An antiviral mAbs could be a safe and high-quality therapeutic intervention which is greatly recommended for COVID-19. Additionally, the high sequence homology between the SARS-CoV-2 and SARS/MERS viruses could shed light on developing to design a vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Hospital of Xi'an Jiaotong University (Xibei Hospital), 710004 Xi'an, China
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi Afjadi
- Institute of Biochemistry and Biophysics, Tehran University, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Houjaghani
- Department of Pharmacy Education, EMUPSS, Eastern Mediterranean University, Famagusta, N.Cyprus
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
25
|
Esprit A, de Mey W, Bahadur Shahi R, Thielemans K, Franceschini L, Breckpot K. Neo-Antigen mRNA Vaccines. Vaccines (Basel) 2020; 8:E776. [PMID: 33353155 PMCID: PMC7766040 DOI: 10.3390/vaccines8040776] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The interest in therapeutic cancer vaccines has caught enormous attention in recent years due to several breakthroughs in cancer research, among which the finding that successful checkpoint blockade treatments reinvigorate neo-antigen-specific T cells and that successful adoptive cell therapies are directed towards neo-antigens. Neo-antigens are cancer-specific antigens, which develop from somatic mutations in the cancer cell genome that can be highly immunogenic and are not subjected to central tolerance. As the majority of neo-antigens are unique to each patient's cancer, a vaccine technology that is flexible and potent is required to develop personalized neo-antigen vaccines. In vitro transcribed mRNA is such a technology platform and has been evaluated for delivery of neo-antigens to professional antigen-presenting cells both ex vivo and in vivo. In addition, strategies that support the activity of T cells in the tumor microenvironment have been developed. These represent a unique opportunity to ensure durable T cell activity upon vaccination. Here, we comprehensively review recent progress in mRNA-based neo-antigen vaccines, summarizing critical milestones that made it possible to bring the promise of therapeutic cancer vaccines within reach.
Collapse
Affiliation(s)
| | | | | | | | | | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel, B-1090 Brussels, Belgium; (A.E.); (W.d.M.); (R.B.S.); (K.T.); (L.F.)
| |
Collapse
|
26
|
Harizaj A, De Smedt SC, Lentacker I, Braeckmans K. Physical transfection technologies for macrophages and dendritic cells in immunotherapy. Expert Opin Drug Deliv 2020; 18:229-247. [PMID: 32985919 DOI: 10.1080/17425247.2021.1828340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Dendritic cells (DCs) and macrophages, two important antigen presenting cells (APCs) of the innate immune system, are being explored for the use in cell-based cancer immunotherapy. For this application, the therapeutic potential of patient-derived APCs is increased by delivering different types of functional macromolecules, such as mRNA and pDNA, into their cytosol. Compared to the use of viral and non-viral delivery vectors, physical intracellular delivery techniques are known to be more straightforward, more controllable, faster and generate high delivery efficiencies. AREAS COVERED This review starts with electroporation as the most traditional physical transfection method, before continuing with the more recent technologies such as sonoporation, nanowires and microfluidic cell squeezing. A description is provided of each of those intracellular delivery technologies with their strengths and weaknesses, especially paying attention to delivery efficiency and safety profile. EXPERT OPINION Given the common use of electroporation for the production of therapeutic APCs, it is recommended that more detailed studies are performed on the effect of electroporation on APC fitness, even down to the genetic level. Newer intracellular delivery technologies seem to have less impact on APC functionality but further work is needed to fully uncover their suitability to transfect APCs with different types of macromolecules.
Collapse
Affiliation(s)
- Aranit Harizaj
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Faghfuri E, Pourfarzi F, Faghfouri AH, Abdoli Shadbad M, Hajiasgharzadeh K, Baradaran B. Recent developments of RNA-based vaccines in cancer immunotherapy. Expert Opin Biol Ther 2020; 21:201-218. [PMID: 32842798 DOI: 10.1080/14712598.2020.1815704] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cancer immunotherapy is more dependent on monoclonal antibodies, proteins, and cells, as therapeutic agents, to attain prominent outcomes. However, cancer immunotherapy's clinical benefits need to be enhanced, as many patients still do not respond well to existing treatments, or their diseases may relapse after temporary control. RNA-based approaches have provided new options for advancing cancer immunotherapy. Moreover, considerable efforts have been made to utilize RNA for vaccine production. RNA vaccines, which encode tumor-associated or specific epitopes, stimulate adaptive immunity. This adaptive immune response is capable of elimination or reduction of tumor burden. It is crucial to develop effective RNA transfer technologies that penetrate the lipid bilayer to reach the cytoplasm for translation into functional proteins. Two important delivery methods include the loading of mRNA into dendritic cells ex vivo; and direct injection of naked RNA with or without a carrier. AREAS COVERED The latest results of pre-clinical and clinical studies with RNA vaccines in cancer immunotherapy are summarized in this review. EXPERT OPINION RNA vaccines are now in early clinical development with promising safety and efficacy outcomes. Also, the translation capacity and durability of these vaccines can be increased with chemical modifications and sequence engineering.
Collapse
Affiliation(s)
- Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences , Ardabil, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences , Ardabil, Iran
| | - Amir Hossein Faghfouri
- Student's Research Committee, Department of Nutrition, Tabriz University of Medical Science , Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| |
Collapse
|
28
|
Roy S, Sethi TK, Taylor D, Kim YJ, Johnson DB. Breakthrough concepts in immune-oncology: Cancer vaccines at the bedside. J Leukoc Biol 2020; 108:1455-1489. [PMID: 32557857 DOI: 10.1002/jlb.5bt0420-585rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Clinical approval of the immune checkpoint blockade (ICB) agents for multiple cancer types has reinvigorated the long-standing work on cancer vaccines. In the pre-ICB era, clinical efforts focused on the Ag, the adjuvants, the formulation, and the mode of delivery. These translational efforts on therapeutic vaccines range from cell-based (e.g., dendritic cells vaccine Sipuleucel-T) to DNA/RNA-based platforms with various formulations (liposome), vectors (Listeria monocytogenes), or modes of delivery (intratumoral, gene gun, etc.). Despite promising preclinical results, cancer vaccine trials without ICB have historically shown little clinical activity. With the anticipation and expansion of combinatorial immunotherapeutic trials with ICB, the cancer vaccine field has entered the personalized medicine arena with recent advances in immunogenic neoantigen-based vaccines. In this article, we review the literature to organize the different cancer vaccines in the clinical space, and we will discuss their advantages, limits, and recent progress to overcome their challenges. Furthermore, we will also discuss recent preclinical advances and clinical strategies to combine vaccines with checkpoint blockade to improve therapeutic outcome and present a translational perspective on future directions.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tarsheen K Sethi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David Taylor
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Young J Kim
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
29
|
Baldin AV, Savvateeva LV, Bazhin AV, Zamyatnin AA. Dendritic Cells in Anticancer Vaccination: Rationale for Ex Vivo Loading or In Vivo Targeting. Cancers (Basel) 2020; 12:cancers12030590. [PMID: 32150821 PMCID: PMC7139354 DOI: 10.3390/cancers12030590] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) have shown great potential as a component or target in the landscape of cancer immunotherapy. Different in vivo and ex vivo strategies of DC vaccine generation with different outcomes have been proposed. Numerous clinical trials have demonstrated their efficacy and safety in cancer patients. However, there is no consensus regarding which DC-based vaccine generation method is preferable. A problem of result comparison between trials in which different DC-loading or -targeting approaches have been applied remains. The employment of different DC generation and maturation methods, antigens and administration routes from trial to trial also limits the objective comparison of DC vaccines. In the present review, we discuss different methods of DC vaccine generation. We conclude that standardized trial designs, treatment settings and outcome assessment criteria will help to determine which DC vaccine generation approach should be applied in certain cancer cases. This will result in a reduction in alternatives in the selection of preferable DC-based vaccine tactics in patient. Moreover, it has become clear that the application of a DC vaccine alone is not sufficient and combination immunotherapy with recent advances, such as immune checkpoint inhibitors, should be employed to achieve a better clinical response and outcome.
Collapse
Affiliation(s)
- Alexey V. Baldin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
| | - Lyudmila V. Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, 81377 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Department of Cell Signaling, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +74-956-229-843
| |
Collapse
|
30
|
Therapeutic Cancer Vaccination with Ex Vivo RNA-Transfected Dendritic Cells-An Update. Pharmaceutics 2020; 12:pharmaceutics12020092. [PMID: 31979205 PMCID: PMC7076681 DOI: 10.3390/pharmaceutics12020092] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/18/2020] [Indexed: 12/19/2022] Open
Abstract
Over the last two decades, dendritic cell (DC) vaccination has been studied extensively as active immunotherapy in cancer treatment and has been proven safe in all clinical trials both with respect to short and long-term side effects. For antigen-loading of dendritic cells (DCs) one method is to introduce mRNA coding for the desired antigens. To target the whole antigenic repertoire of a tumor, even the total tumor mRNA of a macrodissected biopsy sample can be used. To date, reports have been published on a total of 781 patients suffering from different tumor entities and HIV-infection, who have been treated with DCs loaded with mRNA. The majority of those were melanoma patients, followed by HIV-infected patients, but leukemias, brain tumors, prostate cancer, renal cell carcinomas, pancreatic cancers and several others have also been treated. Next to antigen-loading, mRNA-electroporation allows a purposeful manipulation of the DCs’ phenotype and function to enhance their immunogenicity. In this review, we intend to give a comprehensive summary of what has been published regarding clinical testing of ex vivo generated mRNA-transfected DCs, with respect to safety and risk/benefit evaluations, choice of tumor antigens and RNA-source, and the design of better DCs for vaccination by transfection of mRNA-encoded functional proteins.
Collapse
|
31
|
Jong WD, Leal L, Buyze J, Pannus P, Guardo A, Salgado M, Mothe B, Molto J, Moron-Lopez S, Gálvez C, Florence E, Vanham G, Gorp EV, Brander C, Allard S, Thielemans K, Martinez-Picado J, Plana M, García F, Gruters RA. Therapeutic Vaccine in Chronically HIV-1-Infected Patients: A Randomized, Double-Blind, Placebo-Controlled Phase IIa Trial with HTI-TriMix. Vaccines (Basel) 2019; 7:E209. [PMID: 31817794 PMCID: PMC6963294 DOI: 10.3390/vaccines7040209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
Therapeutic vaccinations aim to re-educate human immunodeficiency virus (HIV)-1-specific immune responses to achieve durable control of HIV-1 replication in virally suppressed infected individuals after antiretroviral therapy (ART) is interrupted. In a double blinded, placebo-controlled phase IIa multicenter study, we investigated the safety and immunogenicity of intranodal administration of the HIVACAT T cell Immunogen (HTI)-TriMix vaccine. It consists of naked mRNA based on cytotoxic T lymphocyte (CTL) targets of subdominant and conserved HIV-1 regions (HTI), in combination with mRNAs encoding constitutively active TLR4, the ligand for CD40 and CD70 as adjuvants (TriMix). We recruited HIV-1-infected individuals under stable ART. Study-arms HTI-TriMix, TriMix or Water for Injection were assigned in an 8:3:3 ratio. Participants received three vaccinations at weeks 0, 2, and 4 in an inguinal lymph node. Two weeks after the last vaccination, immunogenicity was evaluated using ELISpot assay. ART was interrupted at week 6 to study the effect of the vaccine on viral rebound. The vaccine was considered safe and well tolerated. Eighteen percent (n = 37) of the AEs were considered definitely related to the study product (grade 1 or 2). Three SAEs occurred: two were unrelated to the study product, and one was possibly related to ART interruption (ATI). ELISpot assays to detect T cell responses using peptides covering the HTI sequence showed no significant differences in immunogenicity between groups. There were no significant differences in viral load rebound dynamics after ATI between groups. The vaccine was safe and well tolerated. We were not able to demonstrate immunogenic effects of the vaccine.
Collapse
Affiliation(s)
- Wesley de Jong
- Department of Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
| | - Lorna Leal
- Infectious Diseases Department, Hospital Clínic-HIVACAT, University of Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-HIVACAT, 08036 Barcelona, Spain
| | - Jozefien Buyze
- Clinical trials unit, Clinical Sciences Department, Institute of Tropical Medicine of Antwerp, 2000 Antwerp, Belgium
| | - Pieter Pannus
- Virology Unit, Biomedical Sciences Department, Institute of Tropical Medicine of Antwerp, 2000 Antwerp, Belgium
| | - Alberto Guardo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-HIVACAT, 08036 Barcelona, Spain
| | - Maria Salgado
- IrsiCaixa AIDS Research Institute- HIVACAT, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute- HIVACAT, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
- Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
- University of Vic - Central University of Catalonia (UVic-UCC), 085000 Vic, Spain
| | - Jose Molto
- Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Sara Moron-Lopez
- IrsiCaixa AIDS Research Institute- HIVACAT, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Cristina Gálvez
- IrsiCaixa AIDS Research Institute- HIVACAT, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Eric Florence
- Virology Unit, Biomedical Sciences Department, Institute of Tropical Medicine of Antwerp, 2000 Antwerp, Belgium
| | - Guido Vanham
- Virology Unit, Biomedical Sciences Department, Institute of Tropical Medicine of Antwerp, 2000 Antwerp, Belgium
| | - Eric van Gorp
- Department of Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
- Department of Infectious Diseases, Erasmus MC, 3015 Rotterdam, The Netherlands
| | - Christian Brander
- IrsiCaixa AIDS Research Institute- HIVACAT, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
- University of Vic - Central University of Catalonia (UVic-UCC), 085000 Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Sabine Allard
- Department of Internal Medicine and Infectious Diseases, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | - Kris Thielemans
- eTheRNA, BVBA (eTheRNA), 2845 Niel, Belgium
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute- HIVACAT, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
- University of Vic - Central University of Catalonia (UVic-UCC), 085000 Vic, Spain
- eTheRNA, BVBA (eTheRNA), 2845 Niel, Belgium
| | - Montserrat Plana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-HIVACAT, 08036 Barcelona, Spain
| | - Felipe García
- Infectious Diseases Department, Hospital Clínic-HIVACAT, University of Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-HIVACAT, 08036 Barcelona, Spain
| | - Rob A Gruters
- Department of Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
| |
Collapse
|
32
|
de Jong W, Aerts J, Allard S, Brander C, Buyze J, Florence E, van Gorp E, Vanham G, Leal L, Mothe B, Thielemans K, Plana M, Garcia F, Gruters R. iHIVARNA phase IIa, a randomized, placebo-controlled, double-blinded trial to evaluate the safety and immunogenicity of iHIVARNA-01 in chronically HIV-infected patients under stable combined antiretroviral therapy. Trials 2019; 20:361. [PMID: 31208472 PMCID: PMC6580477 DOI: 10.1186/s13063-019-3409-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 05/06/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND HIV therapeutic vaccination aims to improve the immune responses against HIV in order to control viral replication without the need for combined antiretroviral therapy (cART). iHIVARNA-01 is a novel vaccine combining mRNA delivery and T-cell immunogen (HTI) based on conserved targets of effective antiviral T-cell responses. In addition, it holds adequate stimuli required for activating antigen presenting cells (APC)s and co-activating specific T-cells (TriMix), including human CD40L, constitutively active TLR4 (caTLR4) and CD70. We propose that in-vivo targeting of dendritic cells (DCs) by direct administration of a HIV mRNA encoding these immune modulating proteins might be an attractive alternative to target DCs in vitro. METHODS/DESIGN This is a phase-IIa, randomized, double-blinded, placebo-controlled, multicenter study in chronically HIV-1 infected patients under stable cART. One of the three study arms is randomly allocated to subjects. Three vaccinations with either HIVACAT T-cell immunogen (HTI)-TriMix (iHIVARNA-01), TriMix or water for injection (WFI) (weeks 0, 2 and 4) are administered by intranodal injection in the inguinal region. Two weeks after the last immunization (week 6) cART is stopped for 12 weeks. The two primary endpoints are: (1) safety and tolerability of intranodal iHIVARNA-01 vaccination compared with TriMix or WFI and (2) induced immunogenicity, i.e., increase in the frequency of HIV-specific T-cell responses between baseline, week 6 and 12 weeks after treatment interruption in iHIVARNA-01-treated patients as compared to the control groups, immunized with TriMix-mRNA or WFI measured by an IFNγ ELISPOT assay. Secondary endpoints include the evaluation of time to viral rebound, plasma viral load (pVL) at w18, the proportion of patients with control of viral load, induction of T-cell responses to new HIV epitopes, polyfunctionality of HIV-specific T-cells, CD8+ T-cell in-vitro HIV suppressive capacity, the effect on viral reservoir (measured by proviral DNA and cell-associated RNA), assessment of viral immune escape by mutation and mRNA expression profiles of host immune genes. DISCUSSION This trial aims to direct target DC in situ with mRNA encoding HTI and TriMix for co-stimulation. Intranodal injection circumvents laborious DC isolation and handling in the laboratory. The trial extends on the safety results of a phase-I dose-escalating trial. This candidate vaccine could complement or even replace cART for chronic HIV infection and could be applicable to improve the care and cost of HIV infection. TRIAL REGISTRATION EudraCT 2016-002724-83 (22 September 2016); ClinicalTrials.gov, ID: NCT02888756 . Registered on 23 August 2016.
Collapse
Affiliation(s)
- Wesley de Jong
- Department of Viroscience, Erasmus MC, Room Ee-1726, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - Joeri Aerts
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sabine Allard
- Department of Internal Medicine and Infectious Diseases, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Christian Brander
- Infectious Diseases Unit, IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,AELIX Therapeutics, Parc Científic de Barcelona, Barcelona, Spain.,University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Jozefien Buyze
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine and, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Eric Florence
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine and, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Eric van Gorp
- Department of Viroscience, Erasmus MC, Room Ee-1726, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - Guido Vanham
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine and, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Lorna Leal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel, 170, 08036, Barcelona, Spain.,Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
| | - Beatriz Mothe
- Infectious Diseases Unit, IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain.,University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Montse Plana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel, 170, 08036, Barcelona, Spain
| | - Félipe Garcia
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel, 170, 08036, Barcelona, Spain. .,Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain.
| | - Rob Gruters
- Department of Viroscience, Erasmus MC, Room Ee-1726, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.
| | | |
Collapse
|
33
|
Wylie B, Macri C, Mintern JD, Waithman J. Dendritic Cells and Cancer: From Biology to Therapeutic Intervention. Cancers (Basel) 2019; 11:E521. [PMID: 30979057 PMCID: PMC6521027 DOI: 10.3390/cancers11040521] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 12/16/2022] Open
Abstract
Inducing effective anti-tumor immunity has become a major therapeutic strategy against cancer. Dendritic cells (DC) are a heterogenous population of antigen presenting cells that infiltrate tumors. While DC play a critical role in the priming and maintenance of local immunity, their functions are often diminished, or suppressed, by factors encountered in the tumor microenvironment. Furthermore, DC populations with immunosuppressive activities are also recruited to tumors, limiting T cell infiltration and promoting tumor growth. Anti-cancer therapies can impact the function of tumor-associated DC and/or alter their phenotype. Therefore, the design of effective anti-cancer therapies for clinical translation should consider how best to boost tumor-associated DC function to drive anti-tumor immunity. In this review, we discuss the different subsets of tumor-infiltrating DC and their role in anti-tumor immunity. Moreover, we describe strategies to enhance DC function within tumors and harness these cells for effective tumor immunotherapy.
Collapse
Affiliation(s)
- Ben Wylie
- Phylogica, Harry Perkins Institute, QEII Medical Centre, Nedlands, WA 6009, Australia.
| | - Christophe Macri
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21, Molecular Science and Biotechnology Institute, Parkville, VIC 3010, Australia.
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21, Molecular Science and Biotechnology Institute, Parkville, VIC 3010, Australia.
| | - Jason Waithman
- Telethon Kids Institute, University of Western Australia, Northern Entrance, Perth Children's Hospital, Nedlands, WA 6009, Australia.
| |
Collapse
|
34
|
Abstract
In the current era of checkpoint inhibitors, some patients with metastatic melanoma have shown a significant improvement in survival. However, optimization of immunotherapy is an ongoing effort. Monocyte-derived dendritic cell (MODC) vaccines have been shown in clinical trials to be safe and capable of inducing tumor-specific immunity as well as occasional objective clinical responses. Here, we conducted a three-arm pilot clinical study in 15 patients with metastatic melanoma to evaluate three types of MODC vaccines, differing only by strategies of tumor antigen delivery. MODCs were isolated from each patient and loaded with patients' own melanoma cells as sources of antigens. Antigen loading was achieved ex vivo by fusing melanoma cells with MODCs, co-culturing melanoma cells with MODCs, or by pulsing MODCs with melanoma cell lysates. The vaccines were then injected into superficial lymph nodes using high-resolution ultrasound guidance. Primary end points included delayed-type hypersensitivity responses and positive ELISpot result, which measures interferon-γ production. Five of 15 patients achieved delayed-type hypersensitivity responses and six of 15 patients had positive ELISpot results. We demonstrated that the vaccines were safe and well-tolerated by all patients and produced immunological responses in all arms. Although MODC vaccine monotherapy has limited efficacy, combining this vaccine with other immunotherapies, such as checkpoint inhibitors, to engage multiple components of the immune system may be an effective and viable future approach.
Collapse
|
35
|
Saxena M, Bhardwaj N. Re-Emergence of Dendritic Cell Vaccines for Cancer Treatment. Trends Cancer 2018; 4:119-137. [PMID: 29458962 DOI: 10.1016/j.trecan.2017.12.007] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) are essential in immunity owing to their role in activating T cells, thereby promoting antitumor responses. Tumor cells, however, hijack the immune system, causing T cell exhaustion and DC dysfunction. Tumor-induced T cell exhaustion may be reversed through immune checkpoint blockade (ICB); however, this treatment fails to show clinical benefit in many patients. While ICB serves to reverse T cell exhaustion, DCs are still necessary to prime, activate, and direct the T cells to target tumor cells. In this review we provide a brief overview of DC function, describe mechanisms by which DC functions are disrupted by the tumor microenvironment, and highlight recent developments in DC cancer vaccines.
Collapse
Affiliation(s)
- Mansi Saxena
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA; Parker Institute of Cancer Immunotherapy, San Francisco, CA 94129, USA.
| |
Collapse
|
36
|
Terán-Navarro H, Calderon-Gonzalez R, Salcines-Cuevas D, García I, Marradi M, Freire J, Salmon E, Portillo-Gonzalez M, Frande-Cabanes E, García-Castaño A, Martinez-Callejo V, Gomez-Roman J, Tobes R, Rivera F, Yañez-Diaz S, Álvarez-Domínguez C. Pre-clinical development of Listeria-based nanovaccines as immunotherapies for solid tumours: insights from melanoma. Oncoimmunology 2018; 8:e1541534. [PMID: 30713801 PMCID: PMC6343812 DOI: 10.1080/2162402x.2018.1541534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 01/28/2023] Open
Abstract
Gold glyconanoparticles loaded with the listeriolysin O peptide 91-99 (GNP-LLO91-99), a bacterial peptide with anti-metastatic properties, are vaccine delivery platforms facilitating immune cell targeting and increasing antigen loading. Here, we present proof of concept analyses for the consideration of GNP-LLO91-99 nanovaccines as a novel immunotherapy for cutaneous melanoma. Studies using mouse models of subcutaneous melanoma indicated that GNP-LLO91-99 nanovaccines recruite and modulate dendritic cell (DC) function within the tumour, alter tumour immunotolerance inducing melanoma-specific cytotoxic T cells, cause complete remission and improve survival. GNP-LLO91-99 nanovaccines showed superior tumour regression and survival benefits, when combined with anti-PD-1 or anti-CTLA-4 checkpoint inhibitors, resulting in an improvement in the efficacy of these immunotherapies. Studies on monocyte-derived DCs from patients with stage IA, IB or IIIB melanoma confirmed the ability of GNP-LLO91-99 nanovaccines to complement the action of checkpoint inhibitors, by not only reducing the expression of cell-death markers on DCs, but also potentiating DC antigen-presentation. We propose that GNP-LLO91-99 nanovaccines function as immune stimulators and immune effectors and serve as safe cancer therapies, alone or in combination with other immunotherapies.
Collapse
Affiliation(s)
- Hector Terán-Navarro
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Ricardo Calderon-Gonzalez
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - David Salcines-Cuevas
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Isabel García
- Bionanoplasmonics Laboratory, CIC biomaGUNE and Biomedical Research Networking Center in Bioengineering, Nanomaterials and Nanomedicine (CIBER-BBN), Donostia-San Sebastián, Gipuzkoa, Spain
| | - Marco Marradi
- Bionanoplasmonics Laboratory, CIC biomaGUNE and Biomedical Research Networking Center in Bioengineering, Nanomaterials and Nanomedicine (CIBER-BBN), Donostia-San Sebastián, Gipuzkoa, Spain
| | - Javier Freire
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Erwan Salmon
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Mar Portillo-Gonzalez
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Elisabet Frande-Cabanes
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Almudena García-Castaño
- Servicio de Oncología Médica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Virginia Martinez-Callejo
- Servicio de Farmacia Hospitalaria, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Javier Gomez-Roman
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Raquel Tobes
- Oh no Sequences! Research Group, Era7 Bioinformatics, Granada, Andalucia, Spain
| | - Fernando Rivera
- Servicio de Oncología Médica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Sonsoles Yañez-Diaz
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
- Servicio de Dermatología, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Carmen Álvarez-Domínguez
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| |
Collapse
|
37
|
Van der Jeught K, De Koker S, Bialkowski L, Heirman C, Tjok Joe P, Perche F, Maenhout S, Bevers S, Broos K, Deswarte K, Malard V, Hammad H, Baril P, Benvegnu T, Jaffrès PA, Kooijmans SAA, Schiffelers R, Lienenklaus S, Midoux P, Pichon C, Breckpot K, Thielemans K. Dendritic Cell Targeting mRNA Lipopolyplexes Combine Strong Antitumor T-Cell Immunity with Improved Inflammatory Safety. ACS NANO 2018; 12:9815-9829. [PMID: 30256609 DOI: 10.1021/acsnano.8b00966] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In vitro transcribed mRNA constitutes a versatile platform to encode antigens and to evoke CD8 T-cell responses. Systemic delivery of mRNA packaged into cationic liposomes (lipoplexes) has proven particularly powerful in achieving effective antitumor immunity in animal models. Yet, T-cell responses to mRNA lipoplexes critically depend on the induction of type I interferons (IFN), potent pro-inflammatory cytokines, which inflict dose-limiting toxicities. Here, we explored an advanced hybrid lipid polymer shell mRNA nanoparticle (lipopolyplex) endowed with a trimannose sugar tree as an alternative delivery vehicle for systemic mRNA vaccination. Like mRNA lipoplexes, mRNA lipopolyplexes were extremely effective in conferring antitumor T-cell immunity upon systemic administration. Conversely to mRNA lipoplexes, mRNA lipopolyplexes did not rely on type I IFN for effective T-cell immunity. This differential mode of action of mRNA lipopolyplexes enabled the incorporation of N1 methyl pseudouridine nucleoside modified mRNA to reduce inflammatory responses without hampering T-cell immunity. This feature was attributed to mRNA lipopolyplexes, as the incorporation of thus modified mRNA into lipoplexes resulted in strongly weakened T-cell immunity. Taken together, we have identified lipopolyplexes containing N1 methyl pseudouridine nucleoside modified mRNA as potent yet low-inflammatory alternatives to the mRNA lipoplexes currently explored in early phase clinical trials.
Collapse
Affiliation(s)
- Kevin Van der Jeught
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences , Vrije Universiteit Brussel (VUB) , Brussels 1090 , Belgium
| | | | - Lukasz Bialkowski
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences , Vrije Universiteit Brussel (VUB) , Brussels 1090 , Belgium
| | - Carlo Heirman
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences , Vrije Universiteit Brussel (VUB) , Brussels 1090 , Belgium
| | - Patrick Tjok Joe
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences , Vrije Universiteit Brussel (VUB) , Brussels 1090 , Belgium
| | - Federico Perche
- Centre de Biophysique Moléculaire, CNRS UPR 4301, University and Inserm , Orléans 45071 , France
| | | | - Sanne Bevers
- eTheRNA Immunotherapies NV , Niel 2845 , Belgium
| | - Katrijn Broos
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences , Vrije Universiteit Brussel (VUB) , Brussels 1090 , Belgium
| | - Kim Deswarte
- VIB Inflammation Research Center , UGent , Ghent 9052 , Belgium
| | - Virginie Malard
- Centre de Biophysique Moléculaire, CNRS UPR 4301, University and Inserm , Orléans 45071 , France
| | - Hamida Hammad
- VIB Inflammation Research Center , UGent , Ghent 9052 , Belgium
| | - Patrick Baril
- Centre de Biophysique Moléculaire, CNRS UPR 4301, University and Inserm , Orléans 45071 , France
| | - Thierry Benvegnu
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR6226 , Rennes 35708 , France
| | - Paul-Alain Jaffrès
- CEMA, CNRS UMR 6521, SFR148 ScInBioS , Université de Brest , Brest 29238 , France
| | - Sander A A Kooijmans
- University Medical Center Utrecht, Universiteit Utrecht , Utrecht 3584 , Netherlands
| | - Raymond Schiffelers
- University Medical Center Utrecht, Universiteit Utrecht , Utrecht 3584 , Netherlands
| | | | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR 4301, University and Inserm , Orléans 45071 , France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR 4301, University and Inserm , Orléans 45071 , France
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences , Vrije Universiteit Brussel (VUB) , Brussels 1090 , Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences , Vrije Universiteit Brussel (VUB) , Brussels 1090 , Belgium
| |
Collapse
|
38
|
Zheng F, Dang J, Zhang H, Xu F, Ba D, Zhang B, Cheng F, Chang AE, Wicha MS, Li Q. Cancer Stem Cell Vaccination With PD-L1 and CTLA-4 Blockades Enhances the Eradication of Melanoma Stem Cells in a Mouse Tumor Model. J Immunother 2018; 41:361-368. [PMID: 30063587 PMCID: PMC6128768 DOI: 10.1097/cji.0000000000000242] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Immune checkpoint inhibitors and monoclonal antibodies reinvigorate cancer immunotherapy. However, these immunotherapies only benefit a subset of patients. We previously reported that ALDH tumor cells were highly enriched for cancer stem cells (CSCs), and ALDH CSC lysate-pulsed dendritic cell (CSC-DC) vaccine was shown to induce CSC-specific cytotoxic T lymphocytes. In this study, we investigated the CSC targeting effect of the CSC-DC vaccine combined with a dual blockade of programmed death-ligand 1 and cytotoxic T-lymphocyte-associated protein (CTLA-4) in B16-F10 murine melanoma tumor model. Our data showed that animals treated with the dual blockade of programmed death-ligand 1 and CTLA-4 and CSC-DC vaccine conferred significantly more tumor regression than the CSC-DC vaccine alone. Importantly, the triple combination treatment dramatically eliminated ALDH CSCs in vivo. We observed that CSC-DC vaccine in combination with anti-PD-L1 and anti-CTLA-4 administration resulted in ∼1.7-fold fewer PD-1CD8 T cells and ∼2.5-fold fewer CTLA-4CD8 T cells than the populations observed following the CSC-DC vaccination alone. Moreover, significant antitumor effects and dramatically eliminated ALDH CSCs following the triple combination treatment were accompanied by significantly enhanced T-cell expansion, suppressed transforming growth factor β secretion, enhanced IFN-γ secretion, and significantly enhanced host specific CD8 T-cell response against CSCs. Collectively, these data showed that administration of a-PD-L1 and a-CTLA-4 combined with CSC-DC vaccine may represent an effective immunotherapeutic strategy for cancer patients in clinical.
Collapse
Affiliation(s)
- Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Jianzhong Dang
- Department of geriatrics, Renmin Hospitial of Wuhan University, Wuhan,430020
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen,518036
| | - Fangzhou Xu
- The Clinical Trial Institute, 14th Floor of the Physicians Building, Peking University Shenzhen Hospital, Shenzhen,518036
| | - Diandian Ba
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Bingyu Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Alfred E. Chang
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Max S. Wicha
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Qiao Li
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| |
Collapse
|
39
|
Pastor F, Berraondo P, Etxeberria I, Frederick J, Sahin U, Gilboa E, Melero I. An RNA toolbox for cancer immunotherapy. Nat Rev Drug Discov 2018; 17:751-767. [DOI: 10.1038/nrd.2018.132] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Brabants E, Heyns K, De Smet S, Devreker P, Ingels J, De Cabooter N, Debacker V, Dullaers M, VAN Meerbeeck JP, Vandekerckhove B, Vermaelen KY. An accelerated, clinical-grade protocol to generate high yields of type 1-polarizing messenger RNA-loaded dendritic cells for cancer vaccination. Cytotherapy 2018; 20:1164-1181. [PMID: 30122654 DOI: 10.1016/j.jcyt.2018.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/24/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Many efforts have been devoted to improve the performance of dendritic cell (DC)-based cancer vaccines. Ideally, a DC vaccine should induce robust type 1-polarized T-cell responses and efficiently expand antigen (Ag)-specific cytotoxic T-cells, while being applicable regardless of patient human leukocyte antigen (HLA) type. Production time should be short, while maximally being good manufacturing practice (GMP)-compliant. We developed a method that caters to all of these demands and demonstrated the superiority of the resulting product compared with DCs generated using a well-established "classical" protocol. METHODS Immunomagnetically purified monocytes were cultured in a closed system for 3 days in GMP-compliant serum-free medium and cytokines, and matured for 24 h using monophosphoryl lipid A (MPLA)+ interferon-gamma (IFN-γ). Mature DCs were electroporated with messenger RNA (mRNA) encoding full-length antigen and cryopreserved. "Classical" DCs were cultured for 8 days in flasks, with one round of medium and cytokine supplementation, and matured with tumor necrosis factor alpha (TNF-α) + prostaglandin E2 (PGE2) during the last 2 days. RESULTS Four-day MPLA/IFN-γ-matured DCs were superior to 8-day TNF-α/PGE2-matured DCs in terms of yield, co-stimulatory/co-inhibitory molecule expression, resilience to electroporation and cryopreservation and type 1-polarizing cytokine and chemokine release after cell thawing. Electroporated and cryopreserved DCs according to our protocol efficiently present epitopes from tumor antigen-encoding mRNA, inducing a strong expansion of antigen-specific CD8+ T-cells with full cytolytic capacity. CONCLUSION We demonstrate using a GMP-compliant culture protocol the feasibility of generating high yields of mature DCs in a short time, with a superior immunogenic profile compared with 8-day TNF-α/PGE2-matured DCs, and capable of inducing vigorous cytotoxic T-cell responses to antigen from electroporated mRNA. This method is now being applied in our clinical trial program.
Collapse
Affiliation(s)
- E Brabants
- Tumor Immunology Laboratory, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.
| | - K Heyns
- Tumor Immunology Laboratory, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - S De Smet
- Cell Therapy Unit, Department of Regenerative Medicine, Ghent University Hospital, Ghent, Belgium
| | - P Devreker
- Cell Therapy Unit, Department of Regenerative Medicine, Ghent University Hospital, Ghent, Belgium
| | - J Ingels
- Cell Therapy Unit, Department of Regenerative Medicine, Ghent University Hospital, Ghent, Belgium
| | - N De Cabooter
- Tumor Immunology Laboratory, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium; Primary Immunodeficiencies Research Laboratory, Department of Pediatric Lung Diseases;-Immunodeficiencies; and-Infectious Diseases, Ghent University Hospital, Ghent, Belgium
| | - V Debacker
- Tumor Immunology Laboratory, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium; Primary Immunodeficiencies Research Laboratory, Department of Pediatric Lung Diseases;-Immunodeficiencies; and-Infectious Diseases, Ghent University Hospital, Ghent, Belgium
| | - M Dullaers
- Tumor Immunology Laboratory, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium; Primary Immunodeficiencies Research Laboratory, Department of Pediatric Lung Diseases;-Immunodeficiencies; and-Infectious Diseases, Ghent University Hospital, Ghent, Belgium
| | - J P VAN Meerbeeck
- Center for Oncological Research, Department of Pulmonology, Antwerp University Hospital, Antwerp, Belgium
| | - B Vandekerckhove
- Cell Therapy Unit, Department of Regenerative Medicine, Ghent University Hospital, Ghent, Belgium
| | - K Y Vermaelen
- Tumor Immunology Laboratory, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
41
|
Saxena M, Balan S, Roudko V, Bhardwaj N. Towards superior dendritic-cell vaccines for cancer therapy. Nat Biomed Eng 2018; 2:341-346. [PMID: 30116654 PMCID: PMC6089533 DOI: 10.1038/s41551-018-0250-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mansi Saxena
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Sreekumar Balan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Vladimir Roudko
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
42
|
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17:261-279. [PMID: 29326426 DOI: 10.1038/nrd.2017.243] [Citation(s) in RCA: 2628] [Impact Index Per Article: 375.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
mRNA vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. However, their application has until recently been restricted by the instability and inefficient in vivo delivery of mRNA. Recent technological advances have now largely overcome these issues, and multiple mRNA vaccine platforms against infectious diseases and several types of cancer have demonstrated encouraging results in both animal models and humans. This Review provides a detailed overview of mRNA vaccines and considers future directions and challenges in advancing this promising vaccine platform to widespread therapeutic use.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael J Hogan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Frederick W Porter
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
43
|
Dillman RO. An update on the relevance of vaccine research for the treatment of metastatic melanoma. Melanoma Manag 2017; 4:203-215. [PMID: 30190926 PMCID: PMC6094615 DOI: 10.2217/mmt-2017-0021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/03/2017] [Indexed: 01/17/2023] Open
Abstract
Signal transduction inhibitors and anticheckpoint antibodies have significantly improved survival for metastatic melanoma patients, but most still die within 5 years. Vaccine approaches to induce immunity to well-characterized melanoma-associated antigens, or to antigens expressed on allogeneic tumor cell lines, have not resulted in approved agents. Despite the limitations associated with the immunosuppressive tumor microenvironment, there now is one intralesional autologous vaccine approved for patients who have primarily soft-tissue metastases. There is continued interest in patient-specific vaccines, especially dendritic cell vaccines that utilize ex vivo loading of autologous antigen, thus bypassing certain in vivo immunosuppressive cells and cytokines. Because of their mechanism of action and limited toxicity, they are potentially synergistic or additive to other antimelanoma therapies.
Collapse
Affiliation(s)
- Robert O Dillman
- Chief Medical Officer, AIVITA Biomedical, Inc; Clinical Professor of Medicine, University of California Irvine, Irvine, CA 92612, USA
| |
Collapse
|
44
|
Periodically Pulsed Immunotherapy in a Mathematical Model of Tumor, CD4 + T Cells, and Antitumor Cytokine Interactions. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2017; 2017:2906282. [PMID: 29250133 PMCID: PMC5700558 DOI: 10.1155/2017/2906282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/15/2017] [Accepted: 10/12/2017] [Indexed: 11/26/2022]
Abstract
Immunotherapy is one of the most recent approaches for controlling and curing malignant tumors. In this paper, we consider a mathematical model of periodically pulsed immunotherapy using CD4+ T cells and an antitumor cytokine. Mathematical analyses are performed to determine the threshold of a successful treatment. The interindividual variability is explored by one-, two-, and three-parameter bifurcation diagrams for a nontreatment case. Numerical simulation conducted in this paper shows that (i) the tumor can be regulated by administering CD4+ T cells alone in a patient with a strong immune system or who has been diagnosed at an early stage, (ii) immunotherapy with a large amount of an antitumor cytokine can boost the immune system to remit or even to suppress tumor cells completely, and (iii) through polytherapy the tumor can be kept at a smaller size with reduced dosages.
Collapse
|
45
|
Alvarez-Dominguez C, Calderón-Gonzalez R, Terán-Navarro H, Salcines-Cuevas D, Garcia-Castaño A, Freire J, Gomez-Roman J, Rivera F. Dendritic cell therapy in melanoma. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:386. [PMID: 29114544 DOI: 10.21037/atm.2017.06.13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cell (DC) vaccines are cancer vaccines used currently as melanoma therapies. They act as adjuvants initiating the immune responses, but not only as they can also have effector activities redirecting cytotoxic CD8+ T cells against melanoma. Ex vivo preparation of monocyte derived DCs has been implemented to produce large numbers of DCs for clinical therapy, highlighting the necessity of activate DC s to produce Th1 cytokines, especially TNF-a and IL-12 with potent anti-tumour actions. Several clinical trials both in the European Union and USA are open currently using DC vaccines, alone or in combination with other immunotherapies. The type of antigen is also an active area of investigation involving tumour antigens and bacterial epitopes, both providing good responses. Bacterial epitopes presented the advantage versus tumour antigens that they can prepare the vaccination site as they induce innate and specific immune responses as they are potent recall antigens that expand cytotoxic responses.
Collapse
Affiliation(s)
| | | | - Hector Terán-Navarro
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Cantabria, Spain
| | - David Salcines-Cuevas
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Cantabria, Spain
| | - Almudena Garcia-Castaño
- Servicio de Oncología Médica, Hospital Universitario Marqués de Valdecilla, Santander 39008, Cantabria, Spain
| | - Javier Freire
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander 39008, Cantabria, Spain
| | - Javier Gomez-Roman
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander 39008, Cantabria, Spain
| | - Fernando Rivera
- Servicio de Oncología Médica, Hospital Universitario Marqués de Valdecilla, Santander 39008, Cantabria, Spain
| |
Collapse
|
46
|
Van Acker HH, Beretta O, Anguille S, De Caluwé L, Papagna A, Van den Bergh JM, Willemen Y, Goossens H, Berneman ZN, Van Tendeloo VF, Smits EL, Foti M, Lion E. Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells. Oncotarget 2017; 8:13652-13665. [PMID: 28099143 PMCID: PMC5355127 DOI: 10.18632/oncotarget.14622] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 01/03/2017] [Indexed: 11/25/2022] Open
Abstract
Success of dendritic cell (DC) therapy in treating malignancies is depending on the DC capacity to attract immune effector cells, considering their reciprocal crosstalk is partially regulated by cell-contact-dependent mechanisms. Although critical for therapeutic efficacy, immune cell recruitment is a largely overlooked aspect regarding optimization of DC vaccination. In this paper we have made a head-to-head comparison of interleukin (IL)-15-cultured DCs and conventional IL-4-cultured DCs with regard to their proficiency in the recruitment of (innate) immune effector cells. Here, we demonstrate that IL-4 DCs are suboptimal in attracting effector lymphocytes, while IL15 DCs provide a favorable chemokine milieu for recruiting CD8+ T cells, natural killer (NK) cells and gamma delta (γδ) T cells. Gene expression analysis revealed that IL-15 DCs exhibit a high expression of chemokines involved in antitumor immune effector cell attraction, while IL-4 DCs display a more immunoregulatory profile characterized by the expression of Th2 and regulatory T cell-attracting chemokines. This is confirmed by functional data indicating an enhanced recruitment of granzyme B+ effector lymphocytes by IL-15 DCs, as compared to IL-4 DCs, and subsequent superior killing of tumor cells by the migrated lymphocytes. Elevated CCL4 gene expression in IL-15 DCs and lowered CCR5 expression on both migrated γδ T cells and NK cells, led to validation of increased CCL4 secretion by IL15 DCs. Moreover, neutralization of CCR5 prior to migration resulted in an important inhibition of γδ T cell and NK cell recruitment by IL-15 DCs. These findings further underscore the strong immunotherapeutic potential of IL-15 DCs.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Ottavio Beretta
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Lien De Caluwé
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.,Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Angela Papagna
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Johan M Van den Bergh
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Yannick Willemen
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium.,Center for Oncological Research (CORE), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Maria Foti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Eva Lion
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
47
|
Ramachandran M, Dimberg A, Essand M. The cancer-immunity cycle as rational design for synthetic cancer drugs: Novel DC vaccines and CAR T-cells. Semin Cancer Biol 2017; 45:23-35. [DOI: 10.1016/j.semcancer.2017.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/26/2017] [Indexed: 01/18/2023]
|
48
|
Abraham RS, Mitchell DA. Gene-modified dendritic cell vaccines for cancer. Cytotherapy 2017; 18:1446-1455. [PMID: 27745604 DOI: 10.1016/j.jcyt.2016.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/16/2016] [Indexed: 12/13/2022]
Abstract
Dendritic cell (DC) vaccines are an immunotherapeutic approach to cancer treatment that use the antigen-presentation machinery of DCs to activate an endogenous anti-tumor response. In this treatment strategy, DCs are cultured ex vivo, exposed to tumor antigens and administered to the patient. The ex vivo culturing provides a unique and powerful opportunity to modify and enhance the DCs. As such, a variety of genetic engineering approaches have been employed to optimize DC vaccines, including the introduction of messenger RNA and small interfering RNA, viral gene transduction, and even fusion with whole tumor cells. In general, these modifications aim to improve targeting, enhance immunogenicity, and reduce susceptibility to the immunosuppressive tumor microenvironment. It has been demonstrated that several of these modifications can be employed in tandem, allowing for fine-tuning and optimization of the DC vaccine across multiple metrics. Thus, the application of genetic engineering techniques to the dendritic cell vaccine platform has the potential to greatly enhance its efficacy in the clinic.
Collapse
Affiliation(s)
- Rebecca S Abraham
- UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Department of Neurosurgery, University of Florida, Gainesville, FL 32605
| | - Duane A Mitchell
- UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Department of Neurosurgery, University of Florida, Gainesville, FL 32605.
| |
Collapse
|
49
|
Turbocharging vaccines: emerging adjuvants for dendritic cell based therapeutic cancer vaccines. Curr Opin Immunol 2017; 47:35-43. [PMID: 28732279 DOI: 10.1016/j.coi.2017.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/22/2017] [Indexed: 12/19/2022]
Abstract
Development of therapeutic cancer vaccines has been hindered by the many pro-tumorigenic mechanisms at play in cancer patients that serve to suppress both antigen presenting cells and T cells. In face of these obstacles, cancer vaccines are most likely to promote anti-tumorigenic immune responses only when formulated with strong adjuvants, and in combination with new immune interventions designed to reverse immune suppression and exhaustion of T cells in the tumor microenvironment. Dendritic cells (DCs) are often termed 'nature's adjuvant' due to their exceptional capacity for initiating both innate and adaptive immune responses. Hence, the past decade has witnessed a flurry of activity in testing DC based immunotherapies for cancer intervention. In this review we will discuss advances in conventional adjuvants and provide insight into new adjuvants as they pertain to DC cancer therapy.
Collapse
|
50
|
Gato-Cañas M, Arasanz H, Blanco-Luquin I, Glaría E, Arteta-Sanchez V, Kochan G, Escors D. Novel immunotherapies for the treatment of melanoma. Immunotherapy 2017; 8:613-32. [PMID: 27140413 DOI: 10.2217/imt-2015-0024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Immunotherapies are achieving clinical success for the treatment of many cancers. However, it has taken a long time to exploit the potential of the immune system for the treatment of human cancers. We cannot forget that this has been the consequence of very extensive work in basic research in preclinical models and in human patients. Thus, it is rather hard to compile all of it while giving a comprehensive view on this subject. Here we have attempted to give an overall perspective in immunotherapy of melanoma. A brief overview on current therapies is provided, followed by adoptive cell therapies. Gene engineering strategies to improve these therapies are also explained, finishing with therapies based on interference with immune checkpoint pathways.
Collapse
Affiliation(s)
- Maria Gato-Cañas
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Hugo Arasanz
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Idoia Blanco-Luquin
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Estíbaliz Glaría
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Virginia Arteta-Sanchez
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Grazyna Kochan
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - David Escors
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain.,Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| |
Collapse
|