1
|
Tang S, Cao J, Jiang D, Zhu L, Luo Z, Shan S, Zhou J, Ying J, Wu J, Song P, Li W. Global, regional and national temporal trends in incidence and mortality of non-Hodgkin lymphoma from 1992 to 2021: an age-period-cohort analysis. Ann Hematol 2025:10.1007/s00277-025-06261-w. [PMID: 39992428 DOI: 10.1007/s00277-025-06261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
OBJECTIVES This study aimed to provide an overview of temporal trends in incidence and mortality of non-Hodgkin lymphoma (NHL) from 1992 to 2021 at global, regional, and national levels, with a special focus on their associations with age, period and cohort. METHODS Data were obtained from the Global Burden of Disease Study 2021. We presented temporal trends in NHL incidence and mortality for the world and 204 countries and territories from 1992 to 2021. An age-period-cohort (APC) model was adopted to estimate net drifts (overall annual percentage change), local drifts (annual percentage change in each age group), longitudinal age curves (expected longitudinal age-specific rate), and period (cohort) relative risks. RESULTS The global age-standardized incidence rate (ASIR) and age-standardized mortality rate (ASMR) for NHL were 7.14 (95% uncertainty interval [UI]: 6.58, 7.66) and 3.19 (95% UI: 2.93, 3.44) per 100,000 population in 2021, respectively. From 1992 to 2021, the global net drift of incidence rate was 0.11% (95% confidential intervals [CI]: 0.07%, 0.15%) per year, ranging from - 0.60% (95% CI: -0.66%, -0.54%) in high socio-demographic index (SDI) region to 1.51% (95% CI: 1.46%, 1.57%) in middle SDI region, with 100 countries and territories presenting increasing trends. Similar patterns can be found in the net drift of mortality rate, with 19 countries and territories showing upward trends. Age effects illustrated that incidence and mortality risks progressively increased with advancing age across different SDI regions. Period effects on incidence presented rising risks in high-middle, middle and low-middle SDI regions, whereas on mortality exhibited persistent downward trends in high and high-middle SDI regions. High-middle and middle SDI regions presented initially unfavourable and then favourable trends in incidence and mortality risks across successive birth cohorts. A strong heterogeneity was found in age, period and cohort effects on incidence and mortality across countries. CONCLUSIONS Despite observing an increasing temporal trend in NHL incidence, coupled with a declining trend in mortality, NHL represented a substantial public health challenge worldwide. Temporal trends in NHL were not completely commensurate with socioeconomic development and varied widely across countries. Timely intervention should be conducted, especially for middle-aged and aged individuals.
Collapse
Affiliation(s)
- Shanshan Tang
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jin Cao
- Department of Big Data in Health Science, School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Denan Jiang
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Longzhu Zhu
- Department of Big Data in Health Science, School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zeyu Luo
- Department of Big Data in Health Science, School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shiyi Shan
- Department of Big Data in Health Science, School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiali Zhou
- Department of Big Data in Health Science, School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiayao Ying
- Department of Big Data in Health Science, School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wu
- Department of Big Data in Health Science, School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peige Song
- Center for Clinical Big Data and Statistics of the Second Affiliated Hospital Zhejiang University School of Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wei Li
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| |
Collapse
|
2
|
Gui H, Nie Y, Yuan H, Wang M, Li L, Zhu L, Chen S, Jing Q, Wan Q, Lv H, Nie Y, Zhang X. Ansofaxine suppressed NSCLC progression by increasing sensitization to combination immunotherapy. Int Immunopharmacol 2025; 146:113918. [PMID: 39718058 DOI: 10.1016/j.intimp.2024.113918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION Depression negatively impacts the prognosis of various cancers, including lung cancer, by influencing antitumor immune responses and impairing immune cell function. Antidepressants may modulate the tumor immune microenvironment, enhancing immunotherapy efficacy. However, the specific mechanisms remain unclear. This study investigates the effects of the antidepressant Ansofaxine on immune therapy in non-small cell lung cancer (NSCLC) mice with comorbid depression. METHODS Chronic unpredictable mild stress (CUMS) and Lewis lung cancer cells (LLC) model was established in mice. Ansofaxine and a combination of triple immunotherapy (anti-PD-1, anti-TNFR2, and anti-PTP1B) were treated in mice to monitor tumor growth and survival rates. Flow cytometry and immunohistochemistry were employed to analyze the dynamics of the immune system, while ELISA kits were used to quantify neurotransmitter levels. RESULTS Depression accelerated NSCLC progression, evidenced by increased tumor volume, spleen size, and reduced survival rates. Flow cytometry analysis demonstrated a reduction in the population of immune effector cells, with an increase in the proportion of immunosuppressive cells. Ansofaxine inhibited LLC cell proliferation and migration, enhancing apoptosis more effectively than venlafaxine and fluoxetine. Combined with triple immunotherapy, Ansofaxine improved survival rates and enhanced immune responses, increasing CD8+ T cell proportions and decreasing Tregs. Ansofaxine also restored serum serotonin and norepinephrine levels in depressed mice, reduced corticosterone, and decreased PD-L1 and TNFR2 expression in tumor tissues. CONCLUSION The findings suggest that Ansofaxine may represent a promising therapeutic approach for NSCLC patients with comorbid depression, potentially enhancing both mental well-being and cancer-related outcomes.
Collapse
Affiliation(s)
- Huan Gui
- School of Medicine, Guizhou University, Guiyang 550025, China; Department of Hyperbaric Oxygen, People's Hospital of Qianxinan Prefecture, Xingyi 562400, China
| | - Yujie Nie
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Haohua Yuan
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Mengjiao Wang
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Linzhao Li
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Lan Zhu
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Shuanghui Chen
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Qianyu Jing
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Quan Wan
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Hang Lv
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yingjie Nie
- School of Medicine, Guizhou University, Guiyang 550025, China; Shenzhen Hospital, The University of Hongkong, Shenzhen 518053, China.
| | - Xiangyan Zhang
- School of Medicine, Guizhou University, Guiyang 550025, China; NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| |
Collapse
|
3
|
Yaniv D, Mattson B, Talbot S, Gleber-Netto FO, Amit M. Targeting the peripheral neural-tumour microenvironment for cancer therapy. Nat Rev Drug Discov 2024; 23:780-796. [PMID: 39242781 DOI: 10.1038/s41573-024-01017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
As the field of cancer neuroscience expands, the strategic targeting of interactions between neurons, cancer cells and other elements in the tumour microenvironment represents a potential paradigm shift in cancer treatment, comparable to the advent of our current understanding of tumour immunology. Cancer cells actively release growth factors that stimulate tumour neo-neurogenesis, and accumulating evidence indicates that tumour neo-innervation propels tumour progression, inhibits tumour-related pro-inflammatory cytokines, promotes neovascularization, facilitates metastasis and regulates immune exhaustion and evasion. In this Review, we give an up-to-date overview of the dynamics of the tumour microenvironment with an emphasis on tumour innervation by the peripheral nervous system, as well as current preclinical and clinical evidence of the benefits of targeting the nervous system in cancer, laying a scientific foundation for further clinical trials. Combining empirical data with a biomarker-driven approach to identify and hone neuronal targets implicated in cancer and its spread can pave the way for swift clinical integration.
Collapse
Affiliation(s)
- Dan Yaniv
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandi Mattson
- The Neurodegeneration Consortium, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Craig T, Napolitano A, Brown M. Cancer survivors and cancer pain. BJA Educ 2024; 24:309-317. [PMID: 39234155 PMCID: PMC11368595 DOI: 10.1016/j.bjae.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 09/06/2024] Open
Affiliation(s)
- T. Craig
- The Royal Marsden Hospital, London, UK
| | | | - M. Brown
- The Royal Marsden Hospital, London, UK
| |
Collapse
|
5
|
Zuo S, Wang Z, Jiang X, Zhao Y, Wen P, Wang J, Li J, Tanaka M, Dan S, Zhang Y, Wang Z. Regulating tumor innervation by nanodrugs potentiates cancer immunochemotherapy and relieve chemotherapy-induced neuropathic pain. Biomaterials 2024; 309:122603. [PMID: 38713972 DOI: 10.1016/j.biomaterials.2024.122603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Sympathetic nerves play a pivotal role in promoting tumor growth through crosstalk with tumor and stromal cells. Chemotherapy exacerbates the infiltration of sympathetic nerves into tumors, thereby providing a rationale for inhibiting sympathetic innervation to enhance chemotherapy. Here, we discovered that doxorubicin increases the density and activity of sympathetic nerves in breast cancer mainly by upregulating the expression of nerve growth factors (NGFs) in cancer cells. To address this, we developed a combination therapy by co-encapsulating small interfering RNA (siRNA) and doxorubicin within breast cancer-targeted poly (lactic-co-glycolic acid) (PLGA) nanoparticles, aiming to suppress NGF expression post-chemotherapy. Incorporating NGF blockade into the nanoplatform for chemotherapy effectively mitigated the chemotherapy-induced proliferation of sympathetic nerves. This not only bolstered the tumoricidal activity of chemotherapy, but also amplified its stimulatory impact on the antitumor immune response by increasing the infiltration of immunostimulatory cells into tumors while concurrently reducing the frequency of immunosuppressive cells. Consequently, the combined nanodrug approach, when coupled with anti-PD-L1 treatment, exhibited a remarkable suppression of primary and deeply metastatic tumors with minimal systematic toxicity. Importantly, the nanoplatform relieved chemotherapy-induced peripheral neuropathic pain (CIPNP) by diminishing the expression of pain mediator NGFs. In summary, this research underscores the significant potential of NGF knockdown in enhancing immunochemotherapy outcomes and presents a nanoplatform for the highly efficient and low-toxicity treatment of breast cancer.
Collapse
Affiliation(s)
- Shuting Zuo
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Zhenyu Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Xiaoman Jiang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Panyue Wen
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Junjie Li
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shao Dan
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Yan Zhang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, 130041, PR China.
| | - Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China.
| |
Collapse
|
6
|
Santos-Sousa AL, Kayahara GM, Bastos DB, Sarafim-Silva BAM, Crivelini MM, Valente VB, Corrente JE, Xavier-Júnior JCC, Miyahara GI, Bernabé DG. Expression of β 1- and β 2-adrenergic receptors in oral squamous cell carcinoma and their association with psychological and clinical factors. Arch Oral Biol 2024; 162:105939. [PMID: 38490087 DOI: 10.1016/j.archoralbio.2024.105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Psychological stressors have been related to tumor progression through the activation of beta-adrenergic receptors (β-AR) in several types of cancer. PURPOSE This study aimed to investigate the expressions of β1- and β2-AR and their association with psychological and clinicopathological variables in patients with oral squamous cell carcinoma. METHODS Tumor samples from 99 patients diagnosed with OSCC were subjected to immunohistochemical reaction to detect the expression of β1-AR and β2-AR. Anxiety and depression symptoms were assessed using the Beck Anxiety Inventory and Beck Depression Inventory (BDI), respectively. The Brunel Mood Scale was used for measuring affective mood states. RESULTS Univariate analyzes revealed that higher expression of β1-AR was associated with increased alcohol consumption (p = 0.032), higher education (p = 0.042), worse sleep quality (p = 0.044) and increased levels of pain related to the primary tumor (p < 0.001). Higher expression of β2-AR was related with regional metastasis (p = 0.014), increased levels of pain related to the primary tumor (p = 0.044), anxiety (p < 0.001) and depressive (p = 0.010) symptoms and higher mood scores of angry (p = 0.010) and fatigue (p = 0.010). Multivariate analysis identified that patients with advanced clinical stage had lower β1-AR expression (OR=0.145, 95% CI=0.025-0.828, p = 0.003). Higher anxiety symptoms and higher mood fatigue are independent factors for increased β2-AR expression (OR=4256, 95% CI=1439-12606, p = 0.009; OR=3816, 95% CI=1258-11,573, p = 0.018, respectively). CONCLUSION This study reveal that anxiety, fatigue symptoms, and clinical staging are associated with tumor expression of beta-adrenergic receptors in patients with oral cancer.
Collapse
Affiliation(s)
- Ana Lívia Santos-Sousa
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Giseli Mitsuy Kayahara
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil; Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Daniela Brito Bastos
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Bruna Amélia Moreira Sarafim-Silva
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Marcelo Macedo Crivelini
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Vítor Bonetti Valente
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil; Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School (UNESP), Botucatu, São Paulo, Brazil
| | | | - Glauco Issamu Miyahara
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil; Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Daniel Galera Bernabé
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil; Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
7
|
Zhang H, Yang Y, Cao Y, Guan J. Effects of chronic stress on cancer development and the therapeutic prospects of adrenergic signaling regulation. Biomed Pharmacother 2024; 175:116609. [PMID: 38678960 DOI: 10.1016/j.biopha.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Long-term chronic stress is an important factor in the poor prognosis of cancer patients. Chronic stress reduces the tissue infiltration of immune cells in the tumor microenvironment (TME) by continuously activating the adrenergic signaling, inhibits antitumor immune response and tumor cell apoptosis while also inducing epithelial-mesenchymal transition (EMT) and tumor angiogenesis, promoting tumor invasion and metastasis. This review first summarizes how adrenergic signaling activates intracellular signaling by binding different adrenergic receptor (AR) heterodimers. Then, we focused on reviewing adrenergic signaling to regulate multiple functions of immune cells, including cell differentiation, migration, and cytokine secretion. In addition, the article discusses the mechanisms by which adrenergic signaling exerts pro-tumorigenic effects by acting directly on the tumor itself. It also highlights the use of adrenergic receptor modulators in cancer therapy, with particular emphasis on their potential role in immunotherapy. Finally, the article reviews the beneficial effects of stress intervention measures on cancer treatment. We think that enhancing the body's antitumor response by adjusting adrenergic signaling can enhance the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China; Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| | - Yuwei Yang
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Yan Cao
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Jingzhi Guan
- Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| |
Collapse
|
8
|
Wang X, Zhang L, Zhou Y, Wang Y, Wang X, Zhang Y, Quan A, Mao Y, Zhang Y, Qi J, Ren Z, Gu L, Yu R, Zhou X. Chronic Stress Exacerbates the Immunosuppressive Microenvironment and Progression of Gliomas by Reducing Secretion of CCL3. Cancer Immunol Res 2024; 12:516-529. [PMID: 38437646 DOI: 10.1158/2326-6066.cir-23-0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/17/2023] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
As understanding of cancer has deepened, increasing attention has been turned to the roles of psychological factors, especially chronic stress-induced depression, in the occurrence and development of tumors. However, whether and how depression affects the progression of gliomas are still unclear. In this study, we have revealed that chronic stress inhibited the recruitment of tumor-associated macrophages (TAM) and other immune cells, especially M1-type TAMs and CD8+ T cells, and decreased the level of proinflammatory cytokines in gliomas, leading to an immunosuppressive microenvironment and glioma progression. Mechanistically, by promoting the secretion of stress hormones, chronic stress inhibited the secretion of the chemokine CCL3 and the recruitment of M1-type TAMs in gliomas. Intratumoral administration of CCL3 reprogrammed the immune microenvironment of gliomas and abolished the progression of gliomas induced by chronic stress. Moreover, levels of CCL3 and M1-type TAMs were decreased in the tumor tissues of glioma patients with depression, and CCL3 administration enhanced the antitumor effect of anti-PD-1 therapy in orthotopic models of gliomas undergoing chronic stress. In conclusion, our study has revealed that chronic stress exacerbates the immunosuppressive microenvironment and progression of gliomas by reducing the secretion of CCL3. CCL3 alone or in combination with an anti-PD-1 may be an effective immunotherapy for the treatment of gliomas with depression. See related Spotlight by Cui and Kang, p. 514.
Collapse
Affiliation(s)
- Xu Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Long Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yi Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiang Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yining Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ankang Quan
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yufei Mao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ji Qi
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhongyu Ren
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Linbo Gu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
9
|
Switzer B, Puzanov I, Gandhi S, Repasky EA. Targeting beta-adrenergic receptor pathways in melanoma: how stress modulates oncogenic immunity. Melanoma Res 2024; 34:89-95. [PMID: 38051781 PMCID: PMC10906201 DOI: 10.1097/cmr.0000000000000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023]
Abstract
The intricate pathways of the sympathetic nervous system hold an inherently protective role in the setting of acute stress. This is achieved through dynamic immunomodulatory and neurobiological networks. However, excessive and chronic exposure to these stress-induced stimuli appears to cause physiologic dysfunction through several mechanisms that may impair psychosocial, neurologic, and immunologic health. Numerous preclinical observations have identified the beta-2 adrenergic receptor (β2-AR) subtype to possess the strongest impact on immune dysfunction in the setting of chronic stressful stimuli. This prolonged expression of β2-ARs appears to suppress immune surveillance and promote tumorigenesis within multiple cancer types. This occurs through several pathways, including (1) decreasing the frequency and function of CD8 + T-cells infiltrating the tumor microenvironment (TME) via inhibition of metabolic reprogramming during T cell activation, and (2) establishing an immunosuppressive profile within the TME including promotion of an exhausted T cell phenotype while simultaneously enhancing local and paracrine metastatic potential. The use of nonselective β-AR antagonists appears to reverse many chronic stress-induced tumorigenic pathways and may also provide an additive therapeutic benefit for various immune checkpoint modulating agents including commonly utilized immune checkpoint inhibitors. Here we review the translational and clinical observations highlighting the foundational hypotheses that chronic stress-induced β-AR signaling promotes a pro-tumoral immunophenotype and that blockade of these pathways may augment the therapeutic response of immune checkpoint inhibition within the scope of melanoma.
Collapse
Affiliation(s)
- Benjamin Switzer
- Department of Medicine, Roswell Park Comprehensive Cancer Center
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center
| | - Shipra Gandhi
- Department of Medicine, Roswell Park Comprehensive Cancer Center
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
10
|
Jackson KM, Jones PC, Fluke LM, Fischer TD, Thompson JF, Cochran AJ, Stern SL, Faries MB, Hoon DSB, Foshag LJ. Smoking Status and Survival in Patients With Early-Stage Primary Cutaneous Melanoma. JAMA Netw Open 2024; 7:e2354751. [PMID: 38319662 PMCID: PMC10848058 DOI: 10.1001/jamanetworkopen.2023.54751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/21/2023] [Indexed: 02/07/2024] Open
Abstract
Importance While smoking is associated with a decreased incidence of cutaneous melanoma, the association of smoking with melanoma progression and death is not well defined. Objective To determine the association of smoking with survival in patients with early-stage primary cutaneous melanoma. Design, Setting, and Participants This cohort study performed a post hoc analysis of data derived from the randomized, multinational first and second Multicenter Selective Lymphadenectomy Trials (MSLT-I and MSLT-II). Participants were accrued for MSLT-I from January 20, 1994, to March 29, 2002; MSLT-II, from December 21, 2004, to March 31, 2014. Median follow-up was 110.0 (IQR, 53.4-120.0) months for MSLT-I and 67.6 (IQR, 25.8-110.2) months for MSLT-II. Patients aged 18 to 75 years with clinical stages I or II melanoma with a Breslow thickness of 1.00 mm or greater or Clark level IV to V and available standard prognostic and smoking data were included. Analyses were performed from October 4, 2022, to March 31, 2023. Exposure Current, former, and never smoking. Main Outcomes and Measures Melanoma-specific survival of patients with current, former, and never smoking status was assessed for the entire cohort and for nodal observation and among subgroups with sentinel lymph node biopsy (SLNB)-negative and SLNB-positive findings. Results Of 6279 included patients, 3635 (57.9%) were men, and mean (SD) age was 52.7 (13.4) years. The most common tumor location was an extremity (2743 [43.7%]), and mean (SD) Breslow thickness was 2.44 (2.06) mm. Smoking status included 1077 (17.2%) current, 1694 (27.0%) former, and 3508 (55.9%) never. Median follow-up was 78.4 (IQR, 30.5-119.6) months. Current smoking was associated with male sex, younger age, trunk site, thicker tumors, tumor ulceration, and SLNB positivity. Current smoking was associated with a greater risk of melanoma-associated death by multivariable analysis for the entire study (hazard ratio [HR], 1.48 [95% CI, 1.26-1.75]; P < .001). Former smoking was not. The increased risk of melanoma-specific mortality associated with current smoking was greatest for patients with SLNB-negative melanoma (HR, 1.85 [95% CI, 1.35-2.52]; P < .001), but also present for patients with SLNB-positive melanoma (HR, 1.29 [95% CI, 1.04-1.59]; P = .02) and nodal observation (HR, 1.68 [95% CI, 1.09-2.61]; P = .02). Smoking at least 20 cigarettes/d doubled the risk of death due to melanoma for patients with SLNB-negative disease (HR, 2.06 [95% CI, 1.36-3.13]; P < .001). Conclusions and Relevance The findings of this cohort study suggest that patients with clinical stage I and II melanoma who smoked had a significantly increased risk of death due to melanoma. Smoking status should be assessed at time of melanoma diagnosis and may be considered a risk factor for disease progression.
Collapse
Affiliation(s)
- Katherine M. Jackson
- Department of Surgical Oncology, Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, California
| | - Peter C. Jones
- Department of Surgical Oncology, Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, California
| | - Laura M. Fluke
- Department of Surgical Oncology, Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, California
| | - Trevan D. Fischer
- Department of Surgical Oncology, Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, California
| | | | - Alistair J. Cochran
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles
| | - Stacey L. Stern
- Translational Molecular Medicine and Biostatistics, Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, California
| | - Mark B. Faries
- The Angeles Clinic and Research Institute, Los Angeles, California
| | - Dave S. B. Hoon
- Translational Molecular Medicine and Biostatistics, Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, California
| | - Leland J. Foshag
- Department of Surgical Oncology, Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, California
| |
Collapse
|
11
|
Pasha A, Tondo A, Favre C, Calvani M. Inside the Biology of the β3-Adrenoceptor. Biomolecules 2024; 14:159. [PMID: 38397396 PMCID: PMC10887351 DOI: 10.3390/biom14020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Since the first discovery in 1989, the β3-adrenoceptor (β3-AR) has gained great attention because it showed the ability to regulate many physiologic and metabolic activities, such as thermogenesis and lipolysis in brown and white adipose tissue, respectively (BAT, WAT), negative inotropic effects in cardiomyocytes, and relaxation of the blood vessels and the urinary bladder. The β3-AR has been suggested as a potential target for cancer treatment, both in adult and pediatric tumors, since under hypoxia its upregulation in the tumor microenvironment (TME) regulates stromal cell differentiation, tumor growth and metastases, signifying that its agonism/antagonism could be useful for clinical benefits. Promising results in cancer research have proposed the β3-AR being targeted for the treatment of many conditions, with some drugs, at present, undergoing phase II and III clinical trials. In this review, we report the scientific journey followed by the research from the β3-Ars' discovery, with focus on the β3-Ars' role in cancer initiation and progression that elects it an intriguing target for novel antineoplastic approaches. The overview highlights the great potential of the β3-AR, both in physiologic and pathologic conditions, with the intention to display the possible benefits of β3-AR modulation in cancer reality.
Collapse
Affiliation(s)
- Amada Pasha
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| | - Claudio Favre
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| | - Maura Calvani
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| |
Collapse
|
12
|
Duarte Mendes A, Freitas AR, Vicente R, Ferreira R, Martins T, Ramos MJ, Baptista C, Silva BM, Margarido I, Vitorino M, Silva M, Braga S. Beta-Adrenergic Blockade in Advanced Non-Small Cell Lung Cancer Patients Receiving Immunotherapy: A Multicentric Study. Cureus 2024; 16:e52194. [PMID: 38348009 PMCID: PMC10859721 DOI: 10.7759/cureus.52194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction The standard treatment of cancer has dramatically improved with immune checkpoint inhibitors (ICIs). Despite their proven advantage, many patients fail to exhibit a meaningful and lasting response. The beta-adrenergic signalling pathway may hold significant promise due to its role in promoting an immunosuppressive milieu within the tumour microenvironment. Inhibiting β-adrenergic signalling could enhance ICI activity; however, blocking this pathway for this purpose has yielded conflicting results. The primary objective of this study was to evaluate the effect of beta-blocker use on overall survival and progression-free survival during ICI therapy. Methods A multicentric, retrospective, observational study was conducted in four Portuguese institutions. Patients with advanced non-small cell lung cancer treated with ICIs between January 2018 and December 2019 were included. Those using beta blockers for non-oncological reasons were compared with non-users. Results Among the 171 patients included, 36 concomitantly received beta blockers and ICIs. No significant increase was found in progression-free survival among patients who took β-blockers (HR 0.74, 95% confidence interval (CI) 0.48-1.12, p = 0.151), and no statistically significant difference was found in overall survival. An apparent trend was observed towards better outcomes in the beta-blocker group, with a median overall survival of 9.93 months in the group not taking β-blockers versus 14.90 months in the β-blocker group (p = 0.291) and a median progression-free survival of 5.37 in the group not taking β-blockers versus 10.87 months in the β-blocker group (p = 0.151). Nine (25%) patients in the beta-blocker group and 16 (12%) in the non-beta-blocker group were progressive disease-free at the end of follow-up. This difference between the two groups is statistically significant (p = 0.047). Conclusion Our study found no statistically significant evidence that beta blockers enhance the effectiveness of immunotherapy. Using adrenergic blockade to modulate the immune system shows promise, warranting the need to develop prospective clinical studies.
Collapse
Affiliation(s)
- Ana Duarte Mendes
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Ana Rita Freitas
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Rodrigo Vicente
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Ricardo Ferreira
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Telma Martins
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Maria João Ramos
- Medical Oncology Department, Centro Hospitalar Universitário de Santo António, Porto, PRT
| | - Carlota Baptista
- Medical Oncology Department, Hospital Beatriz Ângelo, Loures, PRT
| | | | - Inês Margarido
- Medical Oncology Department, Hospital da Luz Lisboa, Lisboa, PRT
| | - Marina Vitorino
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Michelle Silva
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Sofia Braga
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| |
Collapse
|
13
|
Joghataei MT, Bakhtiarzadeh F, Dehghan S, Ketabforoush AHME, Golab F, Zarbakhsh S, Ahmadirad N. The role of neurotransmitters in glioblastoma multiforme-associated seizures. Int J Dev Neurosci 2023; 83:677-690. [PMID: 37563091 DOI: 10.1002/jdn.10294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
GBM, or glioblastoma multiforme, is a brain tumor that poses a great threat to both children and adults, being the primary cause of death related to brain tumors. GBM is often associated with epilepsy, which can be debilitating. Seizures and the development of epilepsy are the primary symptoms that have a severe impact on the quality of life for GBM patients. It is increasingly apparent that the nervous system plays an essential role in the tumor microenvironment for all cancer types, including GBM. In recent years, there has been a growing understanding of how neurotransmitters control the progression of gliomas. Evidence suggests that neurotransmitters and neuromodulators found in the tumor microenvironment play crucial roles in the excitability, proliferation, quiescence, and differentiation of neurons, glial cells, and neural stem cells. The involvement of neurotransmitters appears to play a significant role in various stages of GBM. In this review, the focus is on presenting updated knowledge and emerging ideas regarding the interplay between neurotransmitters and neuromodulators, such as glutamate, GABA, norepinephrine, dopamine, serotonin, adenosine, and their relationship with GBM and the seizures induced by this condition. The review aims to explore the current understanding and provide new insights into the complex interactions between these neurotransmitters and neuromodulators in the context of GBM-related seizures.
Collapse
Affiliation(s)
| | - Fatemeh Bakhtiarzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Dehghan
- Eye Research Center, The Five Senses Institute, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Lempesis IG, Georgakopoulou VE, Papalexis P, Chrousos GP, Spandidos DA. Role of stress in the pathogenesis of cancer (Review). Int J Oncol 2023; 63:124. [PMID: 37711028 PMCID: PMC10552722 DOI: 10.3892/ijo.2023.5572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Stress is a state of disrupted homeostasis, triggered by intrinsic or extrinsic factors, the stressors, which are counteracted by various physiological and behavioural adaptive responses. Stress has been linked to cancer development and incidence for decades; however, epidemiological studies and clinical trials have yielded contradictory results. The present review discusses the effects of stress on cancer development and the various underlying mechanisms. Animal studies have revealed a clear link between stress and cancer progression, revealing molecular, cellular and endocrine processes that are implicated in these effects. Thus, stress hormones, their receptor systems and their intracellular molecular pathways mediate the effects of stress on cancer initiation, progression and the development of metastases. The mechanisms linking stress and cancer progression can either be indirect, mediated by changes in the cancer microenvironment or immune system dysregulation, or direct, through the binding of neuroendocrine stress‑related signalling molecules to cancer cell receptors. Stress affects numerous anti‑ and pro‑cancer immune system components, including host resistance to metastasis, tumour retention and/or immune suppression. Chronic psychological stress through the elevation of catecholamine levels may increase cancer cell death resistance. On the whole, stress is linked to cancer development and incidence, with psychological stressors playing a crucial role. Animal studies have revealed a better link than human ones, with stress‑related hormones influencing tumour development, migration, invasion and cell proliferation. Randomized controlled trials are required to further evaluate the long‑term cancer outcomes of stress and its management.
Collapse
Affiliation(s)
- Ioannis G. Lempesis
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Georgios P. Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
15
|
Farahbakht E, Alsinani Y, Safari M, Hofmeister M, Rezaie R, Sharifabadi A, Jahromi MK. Immunoinflammatory Response to Acute Noise Stress in Male Rats Adapted with Different Exercise Training. Noise Health 2023; 25:226-235. [PMID: 38358238 PMCID: PMC10849015 DOI: 10.4103/nah.nah_23_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 02/16/2024] Open
Abstract
Objective Noise pollution is a kind of stress that impairs various physiological functions. This study evaluated the effect of high-intensity interval training (HIIT) and moderate-intensity continuous training (MCT) on corticosterone, interleukin-6 (IL-6), and monocyte responses to acute noise stress in male rats. Design Forty-two male Wistar rats were divided into seven groups, including control which was assessed at the beginning, control time which was assessed simultaneously with experimental groups (CT), HIIT, MCT, HIIT followed by noise stress (HIIT+S), MCT followed by noise stress (MCT+S), and noise stress. HIIT and MCT were performed for 8 weeks. Noise stress was induced for one session. Blood samples were taken 48 hours after the last exercise session in training and CT groups and immediately after acute noise stress in stress groups of HIIT+S, MCT+S, and noise stress. Results In response to acute noise stress, MCT and HIIT adaptations increased corticosterone, while reduced monocytes compared to CT. MCT increased basal corticosterone and IL-6 and decreased monocytes; however, in response to acute noise stress, corticosterone was higher and monocyte count was lower in the HIIT+S group. Regarding the effect of training, corticosterone and monocytes in MCT were higher than in HIIT. The serum level of IL-6 was lower in MCT than CT group, while it was not significantly different between stress groups. Conclusion In response to noise stress, previous exercise, especially HIIT, increased stress while did not increase inflammatory and innate immune response.
Collapse
Affiliation(s)
- Elaheh Farahbakht
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz, Iran
| | | | - Mohammadamin Safari
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Martin Hofmeister
- Department Food and Nutrition, Consumer Centre of the German Federal State of Bavaria, Munich, Germany
| | - Rasoul Rezaie
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Alireza Sharifabadi
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Maryam Koushkie Jahromi
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz, Iran
| |
Collapse
|
16
|
Schuster C, Akslen LA, Straume O. β2-adrenergic receptor expression in patients receiving bevacizumab therapy for metastatic melanoma. Cancer Med 2023; 12:17891-17900. [PMID: 37551424 PMCID: PMC10524038 DOI: 10.1002/cam4.6424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) was initially known as vascular permeability factor and identified as a driver of tumour angiogenesis. Recently, its role in supporting an immunosuppressive tumour microenvironment was demonstrated, and anti-VEGF treatment combined with immune checkpoint blockade is currently investigated. Further, beta-adrenergic signalling as a modifier of cancer hallmarks like immune response, angiogenesis and metastasis gained increased attention during past years. METHODS Focusing on the aspect of immunosuppression in upregulated beta-adrenergic signalling, we investigated predictive markers in patients with metastatic melanoma who received bevacizumab monotherapy, a specific VEGF-A binding antibody. We explored the expression of beta-2 adrenergic receptor (β2-AR), interleukin 6-receptor (IL6-R), cyclooxygenase 2 (COX2) and VEGF-A by immunohistochemistry in melanoma to assess the correlation between these proteins in melanoma cells and response to treatment. RESULTS Strong β2-AR expression in metastases was associated with clinical benefit of bevacizumab. Furthermore, expression of the latter was positively linked to expression of VEGF-A and COX2. β2-AR expression in melanoma metastasis appears to distinguish a subgroup of patients that might benefit from anti-VEGF treatment. CONCLUSION Our results strengthen further exploration of anti-VEGF therapy in combination with immune checkpoint blockade in clinical studies and the investigation of β2-AR as predictive marker.
Collapse
Affiliation(s)
- Cornelia Schuster
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIOUniversity of BergenBergenNorway
- Department of Oncology and Medical PhysicsHaukeland University HospitalBergenNorway
| | - Lars A. Akslen
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIOUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| | - Oddbjørn Straume
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIOUniversity of BergenBergenNorway
- Department of Oncology and Medical PhysicsHaukeland University HospitalBergenNorway
| |
Collapse
|
17
|
Broso F, Gatto P, Sidarovich V, Ambrosini C, De Sanctis V, Bertorelli R, Zaccheroni E, Ricci B, Destefanis E, Longhi S, Sebastiani E, Tebaldi T, Adami V, Quattrone A. Alpha-1 Adrenergic Antagonists Sensitize Neuroblastoma to Therapeutic Differentiation. Cancer Res 2023; 83:2733-2749. [PMID: 37289021 DOI: 10.1158/0008-5472.can-22-1913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 03/28/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Neuroblastoma (NB) is an aggressive childhood tumor, with high-risk cases having a 5-year overall survival probability of approximately 50%. The multimodal therapeutic approach for NB includes treatment with the retinoid isotretinoin (13-cis retinoic acid; 13cRA), which is used in the post-consolidation phase as an antiproliferation and prodifferentiation agent to minimize residual disease and prevent relapse. Through small-molecule screening, we identified isorhamnetin (ISR) as a synergistic compound with 13cRA in inhibiting up to 80% of NB cell viability. The synergistic effect was accompanied by a marked increase in the expression of the adrenergic receptor α1B (ADRA1B) gene. Genetic knockout of ADRA1B or its specific blockade using α1/α1B adrenergic antagonists led to selective sensitization of MYCN-amplified NB cells to cell viability reduction and neural differentiation induced by 13cRA, thus mimicking ISR activity. Administration of doxazosin, a safe α1-antagonist used in pediatric patients, in combination with 13cRA in NB xenografted mice exerted marked control of tumor growth, whereas each drug alone was ineffective. Overall, this study identified the α1B adrenergic receptor as a pharmacologic target in NB, supporting the evaluation of adding α1-antagonists to the post-consolidation therapy of NB to more efficiently control residual disease. SIGNIFICANCE Targeting α-adrenergic receptors synergizes with isotretinoin to suppress growth and to promote differentiation of neuroblastoma, revealing a combinatorial approach for more effective management of the disease and prevention of relapse.
Collapse
Affiliation(s)
- Francesca Broso
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Pamela Gatto
- High-Throughput Screening (HTS) and Validation Core Facility, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Viktoryia Sidarovich
- High-Throughput Screening (HTS) and Validation Core Facility, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Chiara Ambrosini
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Veronica De Sanctis
- Next Generation Sequencing (NGS) Core Facility LaBSSAH, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Roberto Bertorelli
- Next Generation Sequencing (NGS) Core Facility LaBSSAH, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Elena Zaccheroni
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Benedetta Ricci
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Eliana Destefanis
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Sara Longhi
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Enrico Sebastiani
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Toma Tebaldi
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Valentina Adami
- High-Throughput Screening (HTS) and Validation Core Facility, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
18
|
Gui H, Chen X, Li L, Zhu L, Jing Q, Nie Y, Zhang X. Psychological distress influences lung cancer: Advances and perspectives on the immune system and immunotherapy. Int Immunopharmacol 2023; 121:110251. [PMID: 37348230 DOI: 10.1016/j.intimp.2023.110251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 06/24/2023]
Abstract
Lung cancer has the highest incidence rate and mortality worldwide. Moreover, multiple factors may cause heterogeneity in the efficacy of immunotherapy for lung cancer, and preclinical studies have gradually uncovered the promotive effects of psychological distress (PD) on tumor hallmarks. Therefore, treatment targeted at PD may be a vital factor in adjusting and improving immunotherapy for lung cancer. Here, by focusing on the central nervous system, as well as stress-related crucial neurotransmitters and hormones, we highlight the effects of PD on the lung immune system, the lung tumor microenvironment (TME) and immunotherapy, which brings a practicable means and psychosocial perspective to lung cancer treatment.
Collapse
Affiliation(s)
- Huan Gui
- Department of Hyperbaric Oxygen, People`s Hospital of Qianxinan Buyi and Miao Minority Autonomous Prefecture, Xingyi 562400, China; School of Medicine, Guizhou University, Guiyang 550025, China
| | - Xulong Chen
- School of Medicine, Guizhou University, Guiyang 550025, China; Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Linzhao Li
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Lan Zhu
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Qianyu Jing
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yingjie Nie
- School of Medicine, Guizhou University, Guiyang 550025, China; NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Xiangyan Zhang
- School of Medicine, Guizhou University, Guiyang 550025, China; NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| |
Collapse
|
19
|
Zhu J, Naulaerts S, Boudhan L, Martin M, Gatto L, Van den Eynde BJ. Tumour immune rejection triggered by activation of α2-adrenergic receptors. Nature 2023:10.1038/s41586-023-06110-8. [PMID: 37286594 DOI: 10.1038/s41586-023-06110-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/20/2023] [Indexed: 06/09/2023]
Abstract
Immunotherapy based on immunecheckpoint blockade (ICB) using antibodies induces rejection of tumours and brings clinical benefit in patients with various cancer types1. However, tumours often resist immune rejection. Ongoing efforts trying to increase tumour response rates are based on combinations of ICB with compounds that aim to reduce immunosuppression in the tumour microenvironment but usually have little effect when used as monotherapies2,3. Here we show that agonists of α2-adrenergic receptors (α2-AR) have very strong anti-tumour activity when used as monotherapies in multiple immunocompetent tumour models, including ICB-resistant models, but not in immunodeficient models. We also observed marked effects in human tumour xenografts implanted in mice reconstituted with human lymphocytes. The anti-tumour effects of α2-AR agonists were reverted by α2-AR antagonists, and were absent in Adra2a-knockout (encoding α2a-AR) mice, demonstrating on-target action exerted on host cells, not tumour cells. Tumours from treated mice contained increased infiltrating T lymphocytes and reduced myeloid suppressor cells, which were more apoptotic. Single-cell RNA-sequencing analysis revealed upregulation of innate and adaptive immune response pathways in macrophages and T cells. To exert their anti-tumour effects, α2-AR agonists required CD4+ T lymphocytes, CD8+ T lymphocytes and macrophages. Reconstitution studies in Adra2a-knockout mice indicated that the agonists acted directly on macrophages, increasing their ability to stimulate T lymphocytes. Our results indicate that α2-AR agonists, some of which are available clinically, could substantially improve the clinical efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Jingjing Zhu
- Ludwig Institute for Cancer Research, Brussels, Belgium.
- de Duve Institute, UCLouvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium.
| | - Stefan Naulaerts
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Loubna Boudhan
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| | - Manon Martin
- de Duve Institute, UCLouvain, Brussels, Belgium
- Computational Biology and Bioinformatics, UCLouvain, Brussels, Belgium
| | - Laurent Gatto
- de Duve Institute, UCLouvain, Brussels, Belgium
- Computational Biology and Bioinformatics, UCLouvain, Brussels, Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Cui Q, Jiang D, Zhang Y, Chen C. The tumor-nerve circuit in breast cancer. Cancer Metastasis Rev 2023; 42:543-574. [PMID: 36997828 PMCID: PMC10349033 DOI: 10.1007/s10555-023-10095-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/16/2023] [Indexed: 04/01/2023]
Abstract
It is well established that innervation is one of the updated hallmarks of cancer and that psychological stress promotes the initiation and progression of cancer. The breast tumor environment includes not only fibroblasts, adipocytes, endothelial cells, and lymphocytes but also neurons, which is increasingly discovered important in breast cancer progression. Peripheral nerves, especially sympathetic, parasympathetic, and sensory nerves, have been reported to play important but different roles in breast cancer. However, their roles in the breast cancer progression and treatment are still controversial. In addition, the brain is one of the favorite sites of breast cancer metastasis. In this review, we first summarize the innervation of breast cancer and its mechanism in regulating cancer growth and metastasis. Next, we summarize the neural-related molecular markers in breast cancer diagnosis and treatment. In addition, we review drugs and emerging technologies used to block the interactions between nerves and breast cancer. Finally, we discuss future research directions in this field. In conclusion, the further research in breast cancer and its interactions with innervated neurons or neurotransmitters is promising in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Qiuxia Cui
- Affiliated Hospital of Guangdong Medical University Science & Technology of China, Zhanjiang, 524000, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuanqi Zhang
- Affiliated Hospital of Guangdong Medical University Science & Technology of China, Zhanjiang, 524000, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China.
| |
Collapse
|
21
|
Zhang E, Phan P, Zhao Z. Cellular nanovesicles for therapeutic immunomodulation: A perspective on engineering strategies and new advances. Acta Pharm Sin B 2023; 13:1789-1827. [PMID: 37250173 PMCID: PMC10213819 DOI: 10.1016/j.apsb.2022.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases. Here we review emerging concepts and new advances in leveraging cellular nanovesicles to activate or suppress immune responses, with the aim to explicate their applications for immunomodulation. We overview the general considerations and principles for the design of engineered cellular nanovesicles with tailored immunomodulatory activities. We also discuss new advances in engineering cellular nanovesicles as immunotherapies for treating major diseases.
Collapse
Affiliation(s)
- Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
22
|
Bruno G, Nastasi N, Subbiani A, Boaretto A, Ciullini Mannurita S, Mattei G, Nardini P, Della Bella C, Magi A, Pini A, De Marco E, Tondo A, Favre C, Calvani M. β3-adrenergic receptor on tumor-infiltrating lymphocytes sustains IFN-γ-dependent PD-L1 expression and impairs anti-tumor immunity in neuroblastoma. Cancer Gene Ther 2023:10.1038/s41417-023-00599-x. [PMID: 36854895 DOI: 10.1038/s41417-023-00599-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023]
Abstract
Neuroblastoma (NB) is a heterogeneous extracranial tumor occurring in childhood. A distinctive feature of NB tumors is their neuroendocrine ability to secrete catecholamines, which in turn, via β-adrenergic receptors ligation, may affect different signaling pathways in tumor microenvironment (TME). It was previously demonstrated that specific antagonism of β3-adrenergic receptor (β3-AR) on NB tumor cells affected tumor growth and progression. Here, in a murine syngeneic model of NB, we aimed to investigate whether the β3-AR modulation influenced the host immune system response against tumor. Results demonstrated that β3-AR antagonism lead to an immune response reactivation, partially dependent on the PD-1/PD-L1 signaling axis involvement. Indeed, β3-AR blockade on tumor-infiltrating lymphocytes (TILs) dampened their ability to secrete IFN-γ, which in turn reduced the PD-L1 expression, caused by TILs infiltration, on NB tumor cells. Further investigations, through a genomic analysis on NB patients, showed that high ADRB3 gene expression correlates with worse clinical outcome compared to the low expression group, and that ADRB3 gene expression affects different immune-related pathways. Overall, results indicate that β3-AR in NB TME is able to modulate the interaction between tumor and host immune system, and that its antagonism hits multiple pro-tumoral signaling pathways.
Collapse
Affiliation(s)
- Gennaro Bruno
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy. .,Department of Health Sciences, University of Florence, Florence, Italy.
| | - Nicoletta Nastasi
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Angela Subbiani
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Alessia Boaretto
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Sara Ciullini Mannurita
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Gianluca Mattei
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alberto Magi
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Emanuela De Marco
- Pediatric Hematology and Oncology, University Hospital of Pisa, Pisa, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Claudio Favre
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Maura Calvani
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| |
Collapse
|
23
|
Jardim SR, de Souza LMP, de Souza HSP. The Rise of Gastrointestinal Cancers as a Global Phenomenon: Unhealthy Behavior or Progress? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3640. [PMID: 36834334 PMCID: PMC9962127 DOI: 10.3390/ijerph20043640] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The overall burden of cancer is rapidly increasing worldwide, reflecting not only population growth and aging, but also the prevalence and spread of risk factors. Gastrointestinal (GI) cancers, including stomach, liver, esophageal, pancreatic, and colorectal cancers, represent more than a quarter of all cancers. While smoking and alcohol use are the risk factors most commonly associated with cancer development, a growing consensus also includes dietary habits as relevant risk factors for GI cancers. Current evidence suggests that socioeconomic development results in several lifestyle modifications, including shifts in dietary habits from local traditional diets to less-healthy Western diets. Moreover, recent data indicate that increased production and consumption of processed foods underlies the current pandemics of obesity and related metabolic disorders, which are directly or indirectly associated with the emergence of various chronic noncommunicable conditions and GI cancers. However, environmental changes are not restricted to dietary patterns, and unhealthy behavioral features should be analyzed with a holistic view of lifestyle. In this review, we discussed the epidemiological aspects, gut dysbiosis, and cellular and molecular characteristics of GI cancers and explored the impact of unhealthy behaviors, diet, and physical activity on developing GI cancers in the context of progressive societal changes.
Collapse
Affiliation(s)
- Silvia Rodrigues Jardim
- Division of Worker’s Health, Universidade Federal do Rio de Janeiro, Rio de Janeiro 22290-140, RJ, Brazil
| | - Lucila Marieta Perrotta de Souza
- Departamento de Clínica Médica, Hospital Universitário, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro 21941-913, RJ, Brazil
| | - Heitor Siffert Pereira de Souza
- Departamento de Clínica Médica, Hospital Universitário, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro 21941-913, RJ, Brazil
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, RJ, Brazil
| |
Collapse
|
24
|
Sleurs C, Amidi A, Wu LM, Kiesl D, Zimmer P, Lange M, Rogiers A, Giffard B, Binarelli G, Borghgraef C, Deprez S, Duivon M, De Ruiter M, Schagen S, Ahmed-Lecheheb D, Castel H, Buskbjerg CR, Dos Santos M, Joly F, Perrier J. Cancer-related cognitive impairment in non-CNS cancer patients: Targeted review and future action plans in Europe. Crit Rev Oncol Hematol 2022; 180:103859. [DOI: 10.1016/j.critrevonc.2022.103859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
|
25
|
Yan X, Liu P, Li D, Hu R, Tao M, Zhu S, Wu W, Yang M, Qu X. Novel evidence for the prognostic impact of β-blockers in solid cancer patients receiving immune checkpoint inhibitors. Int Immunopharmacol 2022; 113:109383. [DOI: 10.1016/j.intimp.2022.109383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/12/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
|
26
|
Cao L, Liu Q, Ma Y, Shao F, Zhao Z, Deng X, Zhou J, Wang S. Expression of ADRB2 in children with neuroblastoma and its influence on prognosis. Front Surg 2022; 9:1026156. [DOI: 10.3389/fsurg.2022.1026156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
ObjectiveNeuroblastoma (NB), originating from sympathetic spinal tissue, is a serious threat to the life of children. Especially in the high-risk group, an overall five-year survival rate less than 50% indicates an extremely poor clinical outcome. Here, the expression the of β-2 adrenergic (ADRB2) receptor gene in tumor tissues of children with NB was detected and the correlation between its expression and clinical characteristics and prognosis was analyzed.MethodsForty-five tumor tissue samples and forty-eight paraffin sections of NB were obtained from Children’s Hospital of Chongqing Medical University from 2015 to 2021. Real-time fluorescence quantitative polymerase chain reaction (RT–qPCR) was utilized to detect the expression of ADRB2 at the mRNA level and immunohistochemistry (IHC) at the protein level.ResultsFor the RT–qPCR, the analysis showed that the expression of ADRB2 in the high-risk group was significantly lower (P = 0.0003); in addition, there were also statistically significant differences in Shimada classification (P = 0.0025) and N-MYC amplification (P = 0.0011). Survival prognosis analysis showed that the prognosis was better with high ADRB2 expression (P = 0.0125), and the ROC curve showed that ADRB2 has a certain accuracy in predicting prognosis (AUC = 0.707, CI: 0.530–0.884). Moreover, the expression of ADRB2, N-MYC amplification and bone marrow metastasis were the factors that independently affected prognosis, and at the protein level, the results showed that the differential expression of ADRB2 was conspicuous in risk (P = 0.0041), Shimada classification (P = 0.0220) and N-MYC amplification (P = 0.0166). In addition, Kaplan–Meier curves showed that the prognosis in the group with high expression of ADRB2 was better (P = 0.0287), and the ROC curve showed that the score of ADRB2 had poor accuracy in predicting prognosis (AUC = 0.662, CI: 0.505–0.820).ConclusionADRB2 is a protective potential biomarker and is expected to become a new prognostic biomolecular marker of NB.
Collapse
|
27
|
Crosstalk between Depression and Breast Cancer via Hepatic Epoxide Metabolism: A Central Comorbidity Mechanism. Molecules 2022; 27:molecules27217269. [PMID: 36364213 PMCID: PMC9655600 DOI: 10.3390/molecules27217269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Breast cancer (BC) is a serious global challenge, and depression is one of the risk factors and comorbidities of BC. Recently, the research on the comorbidity of BC and depression has focused on the dysfunction of the hypothalamic–pituitary–adrenal axis and the persistent stimulation of the inflammatory response. However, the further mechanisms for comorbidity remain unclear. Epoxide metabolism has been shown to have a regulatory function in the comorbid mechanism with scattered reports. Hence, this article reviews the role of epoxide metabolism in depression and BC. The comprehensive review discloses the imbalance in epoxide metabolism and its downstream effect shared by BC and depression, including overexpression of inflammation, upregulation of toxic diols, and disturbed lipid metabolism. These downstream effects are mainly involved in the construction of the breast malignancy microenvironment through liver regulation. This finding provides new clues on the mechanism of BC and depression comorbidity, suggesting in particular a potential relationship between the liver and BC, and provides potential evidence of comorbidity for subsequent studies on the pathological mechanism.
Collapse
|
28
|
Hernandez S, Serrano AG, Solis Soto LM. The Role of Nerve Fibers in the Tumor Immune Microenvironment of Solid Tumors. Adv Biol (Weinh) 2022; 6:e2200046. [PMID: 35751462 DOI: 10.1002/adbi.202200046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/12/2022] [Indexed: 01/28/2023]
Abstract
The importance of neurons and nerve fibers in the tumor microenvironment (TME) of solid tumors is now acknowledged after being unexplored for a long time; this is possible due to the development of new technologies that allow in situ characterization of the TME. Recent studies have shown that the density and types of nerves that innervate tumors can predict a patient's clinical outcome and drive several processes of tumor biology. Nowadays, several efforts in cancer research and neuroscience are taking place to elucidate the mechanisms that drive tumor-associated innervation and nerve-tumor and nerve-immune interaction. Assessment of neurons and nerves within the context of the TME can be performed in situ, in tumor tissue, using several pathology-based strategies that utilize histochemical and immunohistochemistry principles, hi-plex technologies, and computational pathology approaches to identify measurable histopathological characteristics of nerves. These features include the number and type of tumor associated nerves, topographical location and microenvironment of neural invasion of malignant cells, and investigation of neuro-related biomarker expression in nerves, tumor cells, and cells of the TME. A deeper understanding of these complex interactions and the impact of nerves in tumor biology will guide the design of better strategies for targeted therapy in clinical trials.
Collapse
Affiliation(s)
- Sharia Hernandez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX, 77030, USA
| | - Alejandra G Serrano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX, 77030, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX, 77030, USA
| |
Collapse
|
29
|
James CM, Olejniczak SH, Repasky EA. How murine models of human disease and immunity are influenced by housing temperature and mild thermal stress. Temperature (Austin) 2022; 10:166-178. [PMID: 37332306 PMCID: PMC10274546 DOI: 10.1080/23328940.2022.2093561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 10/17/2022] Open
Abstract
At the direction of The Guide and Use of Laboratory Animals, rodents in laboratory facilities are housed at ambient temperatures between 20°C and 26°C, which fall below their thermoneutral zone (TNZ). TNZ is identified as a range of ambient temperatures that allow an organism to regulate body temperature without employing additional thermoregulatory processes (e.g. metabolic heat production driven by norepinephrine), thus leading to mild, chronic cold stress. For mice, this chronic cold stress leads to increased serum levels of the catecholamine norepinephrine, which has direct effects on various immune cells and several aspects of immunity and inflammation. Here, we review several studies that have revealed that ambient temperature significantly impacts outcomes in various murine models of human diseases, particularly those in which the immune system plays a major role in its pathogenesis. The impact of ambient temperature on experimental outcomes raises questions regarding the clinical relevance of some murine models of human disease, since studies examining rodents housed within thermoneutral ambient temperatures revealed that rodent disease pathology more closely resembled that of humans. Unlike laboratory rodents, humans can modify their surroundings accordingly - by adjusting their clothing, the thermostat, or their physical activity - to live within the appropriate TNZ, offering a possible explanation for why many studies using murine models of human disease conducted at thermoneutrality better represent patient outcomes. Thus, it is strongly recommended that ambient housing temperature in such studies be consistently and accurately reported and recognized as an important experimental variable.
Collapse
Affiliation(s)
- Caitlin M. James
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | |
Collapse
|
30
|
Pantziarka P, Blagden S. Inhibiting the Priming for Cancer in Li-Fraumeni Syndrome. Cancers (Basel) 2022; 14:cancers14071621. [PMID: 35406393 PMCID: PMC8997074 DOI: 10.3390/cancers14071621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/20/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Li-Fraumeni Syndrome (LFS) is a rare cancer pre-disposition syndrome associated with a germline mutation in the TP53 tumour suppressor gene. People with LFS have a 90% chance of suffering one or more cancers in their lifetime. No treatments exist to reduce this cancer risk. This paper reviews the evidence for how cancers start in people with LFS and proposes that a series of commonly used non-cancer drugs, including metformin and aspirin, can help reduce that lifetime risk of cancer. Abstract The concept of the pre-cancerous niche applies the ‘seed and soil’ theory of metastasis to the initial process of carcinogenesis. TP53 is at the nexus of this process and, in the context of Li-Fraumeni Syndrome (LFS), is a key determinant of the conditions in which cancers are formed and progress. Important factors in the creation of the pre-cancerous niche include disrupted tissue homeostasis, cellular metabolism and chronic inflammation. While druggability of TP53 remains a challenge, there is evidence that drug re-purposing may be able to address aspects of pre-cancerous niche formation and thereby reduce the risk of cancer in individuals with LFS.
Collapse
Affiliation(s)
- Pan Pantziarka
- The George Pantziarka TP53 Trust, London KT1 2JP, UK
- The Anti-Cancer Fund, Brusselsesteenweg 11, 1860 Meise, Belgium
- Correspondence:
| | - Sarah Blagden
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| |
Collapse
|
31
|
Fjæstad KY, Rømer AMA, Goitea V, Johansen AZ, Thorseth ML, Carretta M, Engelholm LH, Grøntved L, Junker N, Madsen DH. Blockade of beta-adrenergic receptors reduces cancer growth and enhances the response to anti-CTLA4 therapy by modulating the tumor microenvironment. Oncogene 2022; 41:1364-1375. [PMID: 35017664 PMCID: PMC8881216 DOI: 10.1038/s41388-021-02170-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022]
Abstract
The development of immune checkpoint inhibitors (ICI) marks an important breakthrough of cancer therapies in the past years. However, only a limited fraction of patients benefit from such treatments, prompting the search for immune modulating agents that can improve the therapeutic efficacy. The nonselective beta blocker, propranolol, which for decades has been prescribed for the treatment of cardiovascular conditions, has recently been used successfully to treat metastatic angiosarcoma. These results have led to an orphan drug designation by the European Medicines Agency for the treatment of soft tissue sarcomas. The anti-tumor effects of propranolol are suggested to involve the reduction of cancer cell proliferation as well as angiogenesis. Here, we show that oral administration of propranolol delays tumor progression of MCA205 fibrosarcoma model and MC38 colon cancer model and increases the survival rate of tumor bearing mice. Propranolol works by reducing tumor angiogenesis and facilitating an anti-tumoral microenvironment with increased T cell infiltration and reduced infiltration of myeloid-derived suppressor cells (MDSCs). Using T cell deficient mice, we demonstrate that the full anti-tumor effect of propranolol requires the presence of T cells. Flow cytometry-based analysis and RNA sequencing of FACS-sorted cells show that propranolol treatment leads to an upregulation of PD-L1 on tumor associated macrophages (TAMs) and changes in their chemokine expression profile. Lastly, we observe that the co-administration of propranolol significantly enhances the efficacy of anti-CTLA4 therapy. Our results identify propranolol as an immune modulating agent, which can improve immune checkpoint inhibitor therapies in soft tissue sarcoma patients and potentially in other cancers.
Collapse
Affiliation(s)
- Klaire Yixin Fjæstad
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anne Mette Askehøj Rømer
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Victor Goitea
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Astrid Zedlitz Johansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Marie-Louise Thorseth
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Marco Carretta
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Lars Henning Engelholm
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Niels Junker
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Daniel Hargbøl Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Filippi L, Pini A, Cammalleri M, Bagnoli P, Dal Monte M. β3-Adrenoceptor, a novel player in the round-trip from neonatal diseases to cancer: Suggestive clues from embryo. Med Res Rev 2021; 42:1179-1201. [PMID: 34967048 PMCID: PMC9303287 DOI: 10.1002/med.21874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/29/2021] [Accepted: 12/15/2021] [Indexed: 01/19/2023]
Abstract
The role of the β-adrenoceptors (β-ARs) in hypoxia-driven diseases has gained visibility after the demonstration that propranolol promotes the regression of infantile hemangiomas and ameliorates the signs of retinopathy of prematurity (ROP). Besides the role of β2-ARs, preclinical studies in ROP have also revealed that β3-ARs are upregulated by hypoxia and that they are possibly involved in retinal angiogenesis. In a sort of figurative round trip, peculiarities typical of ROP, where hypoxia drives retinal neovascularization, have been then translated to cancer, a disease equally characterized by hypoxia-driven angiogenesis. In this step, investigating the role of β3-ARs has taken advantage of the assumption that cancer growth uses a set of strategies in common with embryo development. The possibility that hypoxic induction of β3-ARs may represent one of the mechanisms through which primarily embryo (and then cancer, as an astute imitator) adapts to grow in an otherwise hostile environment, has grown evidence. In both cancer and embryo, β3-ARs exert similar functions by exploiting a metabolic shift known as the Warburg effect, by acquiring resistance against xenobiotics, and by inducing a local immune tolerance. An additional potential role of β3-AR as a marker of stemness has been suggested by the finding that its antagonism induces cancer cell differentiation evoking that β3-ARs may help cancer to grow in a nonhospital environment, a strategy also exploited by embryos. From cancer, the round trip goes back to neonatal diseases for which new possible interpretative keys and potential pharmacological perspectives have been suggested.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Clinical and Experimental Medicine, Neonatology and Neonatal Intensive Care UnitUniversity of PisaPisaItaly
| | - Alessandro Pini
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Maurizio Cammalleri
- Department of Biology, Unit of General PhysiologyUniversity of PisaPisaItaly
| | - Paola Bagnoli
- Department of Biology, Unit of General PhysiologyUniversity of PisaPisaItaly
| | - Massimo Dal Monte
- Department of Biology, Unit of General PhysiologyUniversity of PisaPisaItaly
| |
Collapse
|
33
|
Zheng Y, Zhang J, Huang W, Zhong LLD, Wang N, Wang S, Yang B, Wang X, Pan B, Situ H, Lin Y, Liu X, Shi Y, Wang Z. Sini San Inhibits Chronic Psychological Stress-Induced Breast Cancer Stemness by Suppressing Cortisol-Mediated GRP78 Activation. Front Pharmacol 2021; 12:714163. [PMID: 34912211 PMCID: PMC8667778 DOI: 10.3389/fphar.2021.714163] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic psychological stress is closely correlated with breast cancer growth and metastasis. Sini San (SNS) formula is a classical prescription for relieving depression-related symptoms in traditional Chinese medicine (TCM). Current researches have suggested that chronic psychological stress is closely correlated with cancer stem cells (CSCs) and endoplasmic reticulum (ER) stress. This study aimed to investigate the effects of chronic psychological stress on ER stress-mediated breast cancer stemness and the therapeutic implication of SNS. Chronic psychological stress promoted lung metastasis in 4T1 breast tumor-bearing mice and increased the stem cell-like populations and stemness-related gene expression. Meanwhile, GRP78, a marker of ER stress, was significantly increased in the breast tumors and lung metastases under chronic psychological stress. As a biochemical hallmark of chronic psychological stress, cortisol dramatically enhanced the stem cell-like populations and mammospheres formation by activating GRP78 transcriptionally. However, GRP78 inhibitors or shRNA attenuated the stemness enhancement mediated by cortisol. Similarly, SNS inhibited chronic psychological stress-induced lung metastasis and stemness of breast cancer cells, as well as reversed cortisol-induced stem cell-like populations and mammospheres formation by attenuating GRP78 expression. Co-localization and co-immunoprecipitation experiments showed that SNS interrupted the interaction between GRP78 and LRP5 on the cell surface, thus inhibiting the Wnt/β-catenin signaling of breast CSCs. Altogether, this study not only uncovers the biological influence and molecular mechanism of chronic psychological stress on breast CSCs but also highlights SNS as a promising strategy for relieving GRP78-induced breast cancer stemness via inhibiting GRP78 activation.
Collapse
Affiliation(s)
- Yifeng Zheng
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juping Zhang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanqing Huang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linda L D Zhong
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Chinese Medicine, Hong Kong Baptist University, Kowloon, China
| | - Neng Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengqi Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Bowen Yang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuan Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Pan
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Situ
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Lin
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Liu
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yafei Shi
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyu Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
34
|
Psychological intervention to treat distress: An emerging frontier in cancer prevention and therapy. Biochim Biophys Acta Rev Cancer 2021; 1877:188665. [PMID: 34896258 DOI: 10.1016/j.bbcan.2021.188665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023]
Abstract
Psychological distress, such as chronic depression and anxiety, is a topical problem. In the context of cancer patients, prevalence rates of psychological distress are four-times higher than in the general population and often confer worse outcomes. In addition to evidence from epidemiological studies confirming the links between psychological distress and cancer progression, a growing body of cellular and molecular studies have also revealed the complex signaling networks which are modulated by psychological distress-derived chronic stress during cancer progression. In this review, aiming to uncover the intertwined networks of chronic stress-driven oncogenesis and progression, we summarize physiological stress response pathways, like the HPA, SNS, and MGB axes, that modulate the release of stress hormones with potential carcinogenic properties. Furthermore, we discuss in detail the mechanisms behind these chronic stimulations contributing to the initiation and progression of cancer through direct regulation of cancer hallmarks-related signaling or indirect promotion of cancer risk factors (including obesity, disordered circadian rhythms, and premature senescence), suggesting a novel research direction into cancer prevention and therapy on the basis of psychological interventions.
Collapse
|
35
|
Reijmen E, De Mey S, Van Damme H, De Ridder K, Gevaert T, De Blay E, Bouwens L, Collen C, Decoster L, De Couck M, Laoui D, De Grève J, De Ridder M, Gidron Y, Goyvaerts C. Transcutaneous Vagal Nerve Stimulation Alone or in Combination With Radiotherapy Stimulates Lung Tumor Infiltrating Lymphocytes But Fails to Suppress Tumor Growth. Front Immunol 2021; 12:772555. [PMID: 34925341 PMCID: PMC8671299 DOI: 10.3389/fimmu.2021.772555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Abstract
The combination of radiotherapy (RT) with immunotherapy represents a promising treatment modality for non-small cell lung cancer (NSCLC) patients. As only a minority of patients shows a persistent response today, a spacious optimization window remains to be explored. Previously we showed that fractionated RT can induce a local immunosuppressive profile. Based on the evolving concept of an immunomodulatory role for vagal nerve stimulation (VNS), we tested its therapeutic and immunological effects alone and in combination with fractionated RT in a preclinical-translational study. Lewis lung carcinoma-bearing C57Bl/6 mice were treated with VNS, fractionated RT or the combination while a patient cohort with locally advanced NSCLC receiving concurrent radiochemotherapy (ccRTCT) was enrolled in a clinical trial to receive either sham or effective VNS daily during their 6 weeks of ccRTCT treatment. Preclinically, VNS alone or with RT showed no therapeutic effect yet VNS alone significantly enhanced the activation profile of intratumoral CD8+ T cells by upregulating their IFN-γ and CD137 expression. In the periphery, VNS reduced the RT-mediated rise of splenic, but not blood-derived, regulatory T cells (Treg) and monocytes. In accordance, the serological levels of protumoral CXCL5 next to two Treg-attracting chemokines CCL1 and CCL22 were reduced upon VNS monotherapy. In line with our preclinical findings on the lack of immunological changes in blood circulating immune cells upon VNS, immune monitoring of the peripheral blood of VNS treated NSCLC patients (n=7) did not show any significant changes compared to ccRTCT alone. As our preclinical data do suggest that VNS intensifies the stimulatory profile of the tumor infiltrated CD8+ T cells, this favors further research into non-invasive VNS to optimize current response rates to RT-immunotherapy in lung cancer patients.
Collapse
MESH Headings
- Aged
- Animals
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/radiotherapy
- Carcinoma, Lewis Lung/therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/radiotherapy
- Carcinoma, Non-Small-Cell Lung/therapy
- Combined Modality Therapy
- Female
- Humans
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/radiotherapy
- Lung Neoplasms/therapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Mice, Inbred C57BL
- Middle Aged
- Tumor Burden
- Vagus Nerve Stimulation
- Mice
Collapse
Affiliation(s)
- Eva Reijmen
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sven De Mey
- Department of Radiotherapy, Oncology Centre University Hospital Brussels (Universitair Ziekenhuis (UZ) Brussel), Brussels, Belgium
| | - Helena Van Damme
- Myeloid Cell Immunology Lab, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kirsten De Ridder
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Oncology Centre University Hospital Brussels (Universitair Ziekenhuis (UZ) Brussel), Brussels, Belgium
| | - Emmy De Blay
- Cell Differentiation Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc Bouwens
- Cell Differentiation Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christine Collen
- Department of Radiotherapy, Oncology Centre University Hospital Brussels (Universitair Ziekenhuis (UZ) Brussel), Brussels, Belgium
| | - Lore Decoster
- Laboratory of Medical and Molecular Oncology (LMMO), Department of Medical Oncology, Oncologisch Centrum, Universitair Ziekenhuis (UZ) Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Marijke De Couck
- Department of Public Health, Mental Health and Wellbeing Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
- Faculty of Health Care, University College Odisee, Aalst, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Lab, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jacques De Grève
- Laboratory of Medical and Molecular Oncology (LMMO), Department of Medical Oncology, Oncologisch Centrum, Universitair Ziekenhuis (UZ) Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Oncology Centre University Hospital Brussels (Universitair Ziekenhuis (UZ) Brussel), Brussels, Belgium
| | - Yori Gidron
- Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
36
|
Eckerling A, Ricon-Becker I, Sorski L, Sandbank E, Ben-Eliyahu S. Stress and cancer: mechanisms, significance and future directions. Nat Rev Cancer 2021; 21:767-785. [PMID: 34508247 DOI: 10.1038/s41568-021-00395-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
The notion that stress and cancer are interlinked has dominated lay discourse for decades. More recent animal studies indicate that stress can substantially facilitate cancer progression through modulating most hallmarks of cancer, and molecular and systemic mechanisms mediating these effects have been elucidated. However, available clinical evidence for such deleterious effects is inconsistent, as epidemiological and stress-reducing clinical interventions have yielded mixed effects on cancer mortality. In this Review, we describe and discuss specific mediating mechanisms identified by preclinical research, and parallel clinical findings. We explain the discrepancy between preclinical and clinical outcomes, through pointing to experimental strengths leveraged by animal studies and through discussing methodological and conceptual obstacles that prevent clinical studies from reflecting the impacts of stress. We suggest approaches to circumvent such obstacles, based on targeting critical phases of cancer progression that are more likely to be stress-sensitive; pharmacologically limiting adrenergic-inflammatory responses triggered by medical procedures; and focusing on more vulnerable populations, employing personalized pharmacological and psychosocial approaches. Recent clinical trials support our hypothesis that psychological and/or pharmacological inhibition of excess adrenergic and/or inflammatory stress signalling, especially alongside cancer treatments, could save lives.
Collapse
Affiliation(s)
- Anabel Eckerling
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Itay Ricon-Becker
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Liat Sorski
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elad Sandbank
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
37
|
Bernabé DG. Catecholamines Mediate Psychologic Stress-Induced Cancer Progression. Cancer Res 2021; 81:5144-5146. [PMID: 34654699 DOI: 10.1158/0008-5472.can-21-3077] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
Catecholamines, which are involved in response to physical or emotional stress, have emerged as one of the main mediators of the relationship between chronic stress and cancer progression. The study in this issue of Cancer Research by Liu and colleagues reveals a new mechanism by which psychologic stress stimulates cancer progression through the D2 dopamine receptor and activation of the oxygen-independent HIF1α pathway. Although most investigations so far have focused on the action of the stress-related catecholamines norepinephrine and epinephrine on tumor cells, this study shows that dopamine and its receptor can be a potential therapeutic target. The findings broaden the understanding of the interaction of catecholamines with the tumor microenvironment and reinforces the need to look at psychologic stress as a modulator of cancer progression.See related article by Liu et al., p. 5353.
Collapse
Affiliation(s)
- Daniel G Bernabé
- Psychosomatic and Education Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
38
|
Jennings MR, Munn D, Blazeck J. Immunosuppressive metabolites in tumoral immune evasion: redundancies, clinical efforts, and pathways forward. J Immunother Cancer 2021; 9:e003013. [PMID: 34667078 PMCID: PMC8527165 DOI: 10.1136/jitc-2021-003013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Tumors accumulate metabolites that deactivate infiltrating immune cells and polarize them toward anti-inflammatory phenotypes. We provide a comprehensive review of the complex networks orchestrated by several of the most potent immunosuppressive metabolites, highlighting the impact of adenosine, kynurenines, prostaglandin E2, and norepinephrine and epinephrine, while discussing completed and ongoing clinical efforts to curtail their impact. Retrospective analyses of clinical data have elucidated that their activity is negatively associated with prognosis in diverse cancer indications, though there is a current paucity of approved therapies that disrupt their synthesis or downstream signaling axes. We hypothesize that prior lukewarm results may be attributed to redundancies in each metabolites' synthesis or signaling pathway and highlight routes for how therapeutic development and patient stratification might proceed in the future.
Collapse
Affiliation(s)
- Maria Rain Jennings
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - David Munn
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - John Blazeck
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
39
|
Liu C, Yang Y, Chen C, Li L, Li J, Wang X, Chu Q, Qiu L, Ba Q, Li X, Wang H. Environmental eustress modulates β-ARs/CCL2 axis to induce anti-tumor immunity and sensitize immunotherapy against liver cancer in mice. Nat Commun 2021; 12:5725. [PMID: 34593796 PMCID: PMC8484272 DOI: 10.1038/s41467-021-25967-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 09/01/2021] [Indexed: 01/22/2023] Open
Abstract
Although psycho-social stress is a well-known factor that contributes to the development of cancer, it remains largely unclear whether and how environmental eustress influences malignant diseases and regulates cancer-related therapeutic responses. Using an established eustress model, we demonstrate that mice living in an enriched environment (EE) are protected from carcinogen-induced liver neoplasia and transplantable syngeneic liver tumors, owning to a CD8+ T cell-dependent tumor control. We identify a peripheral Neuro-Endocrine-Immune pathway in eustress, including Sympathetic nervous system (SNS)/β-adrenergic receptors (β-ARs)/CCL2 that relieves tumor immunosuppression and overcomes PD-L1 resistance to immunotherapy. Notably, EE activates peripheral SNS and β-ARs signaling in tumor cells and tumor infiltrated myeloid cells, leading to suppression of CCL2 expression and activation of anti-tumor immunity. Either blockade of CCL2/CCR2 or β-AR signaling in EE mice lose the tumor protection capability. Our study reveales that environmental eustress via EE stimulates anti-tumor immunity, resulting in more efficient tumor control and a better outcome of immunotherapy.
Collapse
Affiliation(s)
- Chaobao Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yang Yang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cheng Chen
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ling Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaonan Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiao Chu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoguang Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
40
|
Long JE, Jankovic M, Maddalo D. Drug discovery oncology in a mouse: concepts, models and limitations. Future Sci OA 2021; 7:FSO737. [PMID: 34295539 PMCID: PMC8288236 DOI: 10.2144/fsoa-2021-0019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/27/2021] [Indexed: 02/08/2023] Open
Abstract
The utilization of suitable mouse models is a critical step in the drug discovery oncology workflow as their generation and use are important for target identification and validation as well as toxicity and efficacy assessments. Current murine models have been instrumental in furthering insights into the mode of action of drugs before transitioning into the clinic. Recent advancements in genome editing with the development of the CRISPR/Cas9 system and the possibility of applying such technology directly in vivo have expanded the toolkit of preclinical models available. In this review, a brief presentation of the current models used in drug discovery will be provided with a particular emphasis on the novel CRISPR/Cas9 models.
Collapse
Affiliation(s)
- Jason E Long
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Maja Jankovic
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Montréal, QC, H4A 3J1, Canada
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
- Pharmaceutical Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, 4070, Switzerland
- Author for correspondence:
| |
Collapse
|
41
|
Abate M, Citro M, Caputo M, Pisanti S, Martinelli R. Psychological stress and cancer: new evidence of an increasingly strong link. TRANSLATIONAL MEDICINE AT UNISA 2021. [PMID: 33457324 PMCID: PMC8370516 DOI: 10.37825/2239-9747.1010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To date stress, a highly complex process that disrupts homeostasis and involves environmental and psychosocial factors, is considered as one of the most crucial factor that affects our daily life, especially urban dweller’s life. Clinical and experimental studies widely support the notion that adrenergic stimulation due to chronic stress affects inflammation and metabolism. In this work, supported by several recent scientific evidences, we show how stress plays a positive role in cancer initiation, progression and cancer metastasis, a negative role for anti-tumor immune function and therapy response. Understanding the intricacies of this interaction could provide an additional help on how act in cancer prevention and therapy.
Collapse
Affiliation(s)
- M Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - M Citro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - M Caputo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - S Pisanti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - R Martinelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| |
Collapse
|
42
|
Zhou Q, Qian Z, Ding W, Jiang G, Sun C, Xu K. Chronic Psychological Stress Attenuates the Efficacy of anti-PD-L1 Immunotherapy for Bladder Cancer in Immunocompetent Mice. Cancer Invest 2021; 39:571-581. [PMID: 34148483 DOI: 10.1080/07357907.2021.1943746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We aimed to explore whether chronic psychological stress affects the efficacy of immune checkpoint inhibitors (ICIs) immunotherapy in bladder cancer. The chronic unpredictable mild stress (CUMS) process was applied during the administration of anti-PD-L1 for subcutaneous tumors in mice. Tumor regression was obviously shown in anti-PD-L1 therapy groups, while this effect was notably attenuated by CUMS. Additionally, increased infiltration of regulatory T-cells, decreased amount of CD8+ lymphocytes, and reduced levels of tumor-associated cytokines in tumor sites were observed in mice treated with anti-PD-L1 under CUMS. Therefore, chronic psychological stress could weaken the potency of anti-PD-L1 immunotherapy for bladder cancer.
Collapse
Affiliation(s)
- Qidong Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiyu Qian
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weihong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Guangliang Jiang
- Department of Urology, Ruijin Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Chuanyu Sun
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Yi W, Cheng J, Wei Q, Pan R, Song S, He Y, Tang C, Liu X, Zhou Y, Su H. Disparities of weather type and geographical location in the impacts of temperature variability on cancer mortality: A multicity case-crossover study in Jiangsu Province, China. ENVIRONMENTAL RESEARCH 2021; 197:110985. [PMID: 33744269 DOI: 10.1016/j.envres.2021.110985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Considering the serious health burden caused by adverse weather events, increasing researches focused on the relationship between temperature variability (TV) and cause-specific mortality, but its association with cancer was not well explored. We aimed to investigate the impacts of TV on cancer mortality and examine the modifying effects of weather type and geographical location as well as other characteristics. MATERIALS AND METHODS Daily city-specific data of cancer deaths, mean temperature (Tmean), maximum and minimum temperatures (Tmax and Tmin), relative humidity (RH), rainfall, and air pollutants were collected during 2016-2017 in 13 cities in Jiangsu Province, China. TV0-t was defined as the standard deviation of the daily Tmax and Tmin on the exposure 0-t days. A two-stage analysis was applied. First, a time-stratified case-crossover design was used to examine the odds ratio (OR) and attributable fraction of cancer mortality per 1 °C increase in TV by adjusting for potential confounders. Random effect meta-analysis was used to summarize the pooled ORs. Second, stratified analysis was performed for weather type, geographical location, demographics, and other city-level characteristics. The weather was defined as four types according to days during warm or cold season combined with high or low RH. RESULTS A total of 303670 cases were included in our study. Meta-analysis showed that the ORs of cancer mortality per 1 °C increase in TV0-t significantly increased and peaked in TV0-2 (OR=1.0098, 95% CI: 1.0039-1.0157). The attributable fraction of TV0-2 on cancer mortality was 4.74%, accounting for 14395 deaths in the study period. Significant ORs of TV-related cancer mortality were found during the warm season combined with high RH and in the northern region of Jiangsu. Susceptible groups of TV-related cancer mortality were identified as female patients, patients aged 45-65 years, and those living in cities with lower per capita green area. CONCLUSIONS TV can significantly increase the risk of cancer mortality, especially during warm and humid days and in the northern region of Jiangsu. Findings are of great significance to formulate urban planning, resource allocation, and health intervention to prolong the life of cancer patients.
Collapse
Affiliation(s)
- Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Qiannan Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Shasha Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Chao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Xiangguo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yu Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China.
| |
Collapse
|
44
|
Unveiling the pathogenesis of perineural invasion from the perspective of neuroactive molecules. Biochem Pharmacol 2021; 188:114547. [PMID: 33838132 DOI: 10.1016/j.bcp.2021.114547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Perineural invasion (PNI) is characterized by an encounter between the cancer cells and neuronal fibers and holds an extremely poor prognosis for malignant tumors. The exact molecular mechanism behind PNI yet remains to be explored. However, it is worth-noting that an involvement of the neuroactive molecules plays a major part in this process. A complex signaling network comprising the interplay between immunological cascades and neurogenic molecules such as tumor-derived neurotrophins, neuromodulators, and growth factors constitutes an active microenvironment for PNI associated with malignancy. The present review aims at discussing the following points in relation to PNI: a) Communication between PNI and neuroplasticity mechanisms can explain the pathophysiology of poor, short and long-term outcomes in cancer patients; b) Neuroactive molecules can significantly alter the neurons and cancer cells so as to sustain PNI progression; c) Finally, careful manipulation of neurogenic pathways and/or their crosstalk with the immunological molecules implicated in PNI could provide a potential breakthrough in cancer therapeutics.
Collapse
|
45
|
Qiao G, Chen M, Mohammadpour H, MacDonald CR, Bucsek MJ, Hylander BL, Barbi JJ, Repasky EA. Chronic Adrenergic Stress Contributes to Metabolic Dysfunction and an Exhausted Phenotype in T Cells in the Tumor Microenvironment. Cancer Immunol Res 2021; 9:651-664. [PMID: 33762351 DOI: 10.1158/2326-6066.cir-20-0445] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/10/2020] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
Metabolic dysfunction and exhaustion in tumor-infiltrating T cells have been linked to ineffectual antitumor immunity and the failure of immune checkpoint inhibitor therapy. We report here that chronic stress plays a previously unrecognized role in regulating the state of T cells in the tumor microenvironment (TME). Using two mouse tumor models, we found that blocking chronic adrenergic stress signaling using the pan β-blocker propranolol or by using mice lacking the β2-adrenergic receptor (β2-AR) results in reduced tumor growth rates with significantly fewer tumor-infiltrating T cells that express markers of exhaustion, with a concomitant increase in progenitor exhausted T cells. We also report that blocking β-AR signaling in mice increases glycolysis and oxidative phosphorylation in tumor-infiltrating lymphocytes (TIL), which associated with increased expression of the costimulatory molecule CD28 and increased antitumor effector functions, including increased cytokine production. Using T cells from Nur77-GFP reporter mice to monitor T-cell activation, we observed that stress-induced β-AR signaling suppresses T-cell receptor (TCR) signaling. Together, these data suggest that chronic stress-induced adrenergic receptor signaling serves as a "checkpoint" of immune responses and contributes to immunosuppression in the TME by promoting T-cell metabolic dysfunction and exhaustion. These results also support the possibility that chronic stress, which unfortunately is increased in many patients with cancer following their diagnoses, could be exerting a major negative influence on the outcome of therapies that depend upon the status of TILs and support the use of strategies to reduce stress or β-AR signaling in combination with immunotherapy.
Collapse
Affiliation(s)
- Guanxi Qiao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Minhui Chen
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Hemn Mohammadpour
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Cameron R MacDonald
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mark J Bucsek
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Bonnie L Hylander
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joseph J Barbi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
46
|
The role of ADRB2 gene polymorphisms in malignancies. Mol Biol Rep 2021; 48:2741-2749. [PMID: 33675465 DOI: 10.1007/s11033-021-06250-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/24/2021] [Indexed: 12/30/2022]
Abstract
Beta-2-adrenergic receptor is a member of the G protein-coupled receptor superfamily, which is highly expressed in most malignancies. There is increasing evidence showing that beta-2-adrenergic receptors are associated with carcinogenesis, proliferation, immune regulation, invasion, angiogenesis, clinical prognosis and treatment resistance in malignancies. Polymorphisms of the ADRB2 gene have been confirmed to be associated with transcriptional activity, mRNA translation, and beta-2-adrenergic receptor expression and sensitivity. This review discusses clinically relevant examples of single nucleotide polymorphisms of ADRB2 in malignancies and the effects of these polymorphisms on cancer susceptibility, prognosis and treatment response of cancer patients.
Collapse
|
47
|
Jangid A, Malik MZ, Ramaswamy R, Singh RKB. Transition and identification of pathological states in p53 dynamics for therapeutic intervention. Sci Rep 2021; 11:2349. [PMID: 33504910 PMCID: PMC7840995 DOI: 10.1038/s41598-021-82054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
We study a minimal model of the stress-driven p53 regulatory network that includes competition between active and mutant forms of the tumor-suppressor gene p53. Depending on the nature and level of the external stress signal, four distinct dynamical states of p53 are observed. These states can be distinguished by different dynamical properties which associate to active, apoptotic, pre-malignant and cancer states. Transitions between any two states, active, apoptotic, and cancer, are found to be unidirectional and irreversible if the stress signal is either oscillatory or constant. When the signal decays exponentially, the apoptotic state vanishes, and for low stress the pre-malignant state is bounded by two critical points, allowing the system to transition reversibly from the active to the pre-malignant state. For significantly large stress, the range of the pre-malignant state expands, and the system moves to irreversible cancerous state, which is a stable attractor. This suggests that identification of the pre-malignant state may be important both for therapeutic intervention as well as for drug delivery.
Collapse
Affiliation(s)
- Amit Jangid
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Md Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ram Ramaswamy
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - R K Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
48
|
Iftikhar A, Islam M, Shepherd S, Jones S, Ellis I. Cancer and Stress: Does It Make a Difference to the Patient When These Two Challenges Collide? Cancers (Basel) 2021; 13:cancers13020163. [PMID: 33418900 PMCID: PMC7825104 DOI: 10.3390/cancers13020163] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Head and neck cancers are the sixth most common cancer in the world. The burden of the disease has remained challenging over recent years despite the advances in treatments of other malignancies. The very use of the word malignancy brings about a stress response in almost all adult patients. Being told you have a tumour is not a word anyone wants to hear. We have embarked on a study which will investigate the effect of stress pathways on head and neck cancer patients and which signalling pathways may be involved. In the future, this will allow clinicians to better manage patients with head and neck cancer and reduce the patients’ stress so that this does not add to their tumour burden. Abstract A single head and neck Cancer (HNC) is a globally growing challenge associated with significant morbidity and mortality. The diagnosis itself can affect the patients profoundly let alone the complex and disfiguring treatment. The highly important functions of structures of the head and neck such as mastication, speech, aesthetics, identity and social interactions make a cancer diagnosis in this region even more psychologically traumatic. The emotional distress engendered as a result of functional and social disruption is certain to negatively affect health-related quality of life (HRQoL). The key biological responses to stressful events are moderated through the combined action of two systems, the hypothalamus–pituitary–adrenal axis (HPA) which releases glucocorticoids and the sympathetic nervous system (SNS) which releases catecholamines. In acute stress, these hormones help the body to regain homeostasis; however, in chronic stress their increased levels and activation of their receptors may aid in the progression of cancer. Despite ample evidence on the existence of stress in patients diagnosed with HNC, studies looking at the effect of stress on the progression of disease are scarce, compared to other cancers. This review summarises the challenges associated with HNC that make it stressful and describes how stress signalling aids in the progression of cancer. Growing evidence on the relationship between stress and HNC makes it paramount to focus future research towards a better understanding of stress and its effect on head and neck cancer.
Collapse
|
49
|
Wang Y, Wu B, Long S, QiangLiu, Li G. WNK3 promotes the invasiveness of glioma cell lines under hypoxia by inducing the epithelial-to-mesenchymal transition. Transl Neurosci 2021; 12:320-329. [PMID: 34513083 PMCID: PMC8389507 DOI: 10.1515/tnsci-2020-0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022] Open
Abstract
Background The primary features of malignant glioma include high rates of mortality and recurrence, uncontrollable invasiveness, strong angiogenesis, and widespread hypoxia. The hypoxic microenvironment is an important factor affecting the malignant progression of glioma. However, the molecular mechanisms underlying glioma adaption in hypoxic microenvironments are poorly understood. Objective The work presented in this paper focuses on the role of WNK3 gene in glioma invasion under hypoxic conditions. Furthermore, we aim to explore its role in epithelial-to-mesenchymal transition (EMT). Methods ShRNA targeting WNK3 transfection was used to knockdown the WNK3 expression in U87 cells. We used western blot analysis to detect the relative expression of proteins in U87 cells. The effect of WNK3 on cell migration was explored using a transwell assay in the U87 cell line. We also evaluated WNK3 expression levels in glioma samples by immunohistochemistry analysis. Results WNK3 expression was significantly higher in high-grade (III and IV) gliomas than in low-grade (I and II) gliomas. WNK3 expression was up-regulated in U87 cells when cultured in a hypoxic environment in addition; WNK3 knockdown inhibited the invasion of U87 glioma cells by regulating the EMT, especially under hypoxic conditions. Conclusion These findings suggested that WNK3 plays an important role in the hypoxic microenvironment of glioma and might also be a candidate for therapeutic application in the treatment of glioma.
Collapse
Affiliation(s)
- Yue Wang
- Department of Neurosurgery, Weifang People's Hospital, Weifang, China
| | - Bingbing Wu
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Shengrong Long
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - QiangLiu
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Guangyu Li
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
50
|
Gosain R, Gage-Bouchard E, Ambrosone C, Repasky E, Gandhi S. Stress reduction strategies in breast cancer: review of pharmacologic and non-pharmacologic based strategies. Semin Immunopathol 2020; 42:719-734. [PMID: 32948909 PMCID: PMC7704484 DOI: 10.1007/s00281-020-00815-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most common cancer diagnosed in women. It is associated with multiple symptoms in both patients and caregivers, such as stress, anxiety, depression, sleep disturbance, and fatigue. Stress appears to promote cancer progression via activation of the sympathetic nervous system releasing epinephrine and norepinephrine as well as activation of hypothalamic-pituitary-adrenal axis releasing cortisol. These stress hormones have been shown to promote the proliferation of cancer cells. This review focuses on stress-reducing strategies which may decrease cancer progression by abrogating these pathways, with a main focus on the β-adrenergic signaling pathway. Patients utilize both non-pharmacologic and pharmacologic strategies to reduce stress. Non-pharmacologic stress-reduction strategies include complementary and alternative medicine techniques, such as meditation, yoga, acupuncture, exercise, use of natural products, support groups and psychology counseling, herbal compounds, and multivitamins. Pharmacologic strategies include abrogating the β2-adrenergic receptor signaling pathway to antagonize epinephrine and norepinephrine action on tumor and immune cells. β-Blocker drugs may play a role in weakening the pro-migratory and pro-metastatic effects induced by stress hormones in cancer and strengthening the anti-tumor immune response. Preclinical models have shown that non-selective β1/2-blocker use is associated with a decrease in tumor growth and metastases and clinical studies have suggested their positive impact on decreasing breast cancer recurrence and mortality. Thus, non-pharmacological approaches, along with pharmacological therapies part of clinical trials are available to cancer patients to reduce stress, and have promise to break the cycle of cancer and stress.
Collapse
Affiliation(s)
- Rohit Gosain
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- Department of Medicine, UPMC Hillman Cancer Center, Chautauqua, NY, USA.
| | - Elizabeth Gage-Bouchard
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Elizabeth Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shipra Gandhi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|