1
|
Tang X, He L, Wang X, Liu S, Liu X, Shen X, Shu Y, Yang K, Zhou Q, Shan Z, Wang Y, Wu C, Jia Z, Liu T, Wang Y, Liao HX, Xia Y. Isolation of anti-tumor monoclonal antibodies targeting on MICA/B α3 domain by single B cell technology for colon cancer therapy. Heliyon 2024; 10:e35697. [PMID: 39170144 PMCID: PMC11336886 DOI: 10.1016/j.heliyon.2024.e35697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Colon cancer (CC) is one of the most common gastrointestinal malignancies. Effectiveness of the existing therapies is limited. Immunotherapy is a promising complementary treatment approach for CC. Major histocompatibility complex class I-related protein A and B (MICA/B) are ligands for NK cells. Shedding of MICA/B from the surface of tumor cells by cleavage of MICA/B at the membrane proxial region in MICA/B α3 structural domain is one of immune evasion strategies leading to escape of cancer cells from immunosurveillance. In this study, we generated a panel of MICA/B monoclonal antibodies (mAbs) and identified one of mAbs, mAb RDM028, that had high binding affinity to MICA/B and recognized a site on MICA/B α3 structural domain that is critically important for cleavage of MICA/B. Our study has further demonstrated that RDM028 augmented the surface expression of MICA/B on HCT-116 human CC cells by inhibiting the MICA/B shedding resulting in the enhanced cyotoxicity of NK cells against HCT-116 human CC cells and mediated anti-tumor activity in nude mouse model of colon cancer. These results indicate that mAb RDM028 could be explored for developing as an effective immuno therapy against CC by targeting the MICA/B α3 domain to promot immunosurveillance mediated by MICA/B-NKG2D interaction.
Collapse
Affiliation(s)
- Xueyi Tang
- The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Xishuangbanna Dai Nationality Autonomous Prefecture, Yunnan, China
| | - Linhai He
- The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Xishuangbanna Dai Nationality Autonomous Prefecture, Yunnan, China
| | - Xiaoli Wang
- Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, Guangdong, China
| | - Shuaichao Liu
- Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, Guangdong, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangning Liu
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangzhou, China
| | - Xiaorui Shen
- The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Xishuangbanna Dai Nationality Autonomous Prefecture, Yunnan, China
| | - Yun Shu
- The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Xishuangbanna Dai Nationality Autonomous Prefecture, Yunnan, China
| | - Ke Yang
- The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Xishuangbanna Dai Nationality Autonomous Prefecture, Yunnan, China
| | - Qionghua Zhou
- The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Xishuangbanna Dai Nationality Autonomous Prefecture, Yunnan, China
| | - Zujian Shan
- The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Xishuangbanna Dai Nationality Autonomous Prefecture, Yunnan, China
| | - Yueming Wang
- Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, Guangdong, China
| | - Changwen Wu
- Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, Guangdong, China
| | - Zhenxing Jia
- Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, Guangdong, China
| | - Tong Liu
- Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, Guangdong, China
| | - Yayu Wang
- Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, Guangdong, China
| | - Hua-Xin Liao
- Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, Guangdong, China
| | - Yun Xia
- The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Xishuangbanna Dai Nationality Autonomous Prefecture, Yunnan, China
| |
Collapse
|
2
|
Nabors LB, Lamb LS, Goswami T, Rochlin K, Youngblood SL. Adoptive cell therapy for high grade gliomas using simultaneous temozolomide and intracranial mgmt-modified γδ t cells following standard post-resection chemotherapy and radiotherapy: current strategy and future directions. Front Immunol 2024; 15:1299044. [PMID: 38384458 PMCID: PMC10880006 DOI: 10.3389/fimmu.2024.1299044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Cellular therapies, including chimeric antigen receptor T cell therapies (CAR-T), while generally successful in hematologic malignancies, face substantial challenges against solid tumors such as glioblastoma (GBM) due to rapid growth, antigen heterogeneity, and inadequate depth of response to cytoreductive and immune therapies, We have previously shown that GBM constitutively express stress associated NKG2D ligands (NKG2DL) recognized by gamma delta (γδ) T cells, a minor lymphocyte subset that innately recognize target molecules via the γδ T cell receptor (TCR), NKG2D, and multiple other mechanisms. Given that NKG2DL expression is often insufficient on GBM cells to elicit a meaningful response to γδ T cell immunotherapy, we then demonstrated that NKG2DL expression can be transiently upregulated by activation of the DNA damage response (DDR) pathway using alkylating agents such as Temozolomide (TMZ). TMZ, however, is also toxic to γδ T cells. Using a p140K/MGMT lentivector, which confers resistance to TMZ by expression of O(6)-methylguanine-DNA-methyltransferase (MGMT), we genetically engineered γδ T cells that maintain full effector function in the presence of therapeutic doses of TMZ. We then validated a therapeutic system that we termed Drug Resistance Immunotherapy (DRI) that combines a standard regimen of TMZ concomitantly with simultaneous intracranial infusion of TMZ-resistant γδ T cells in a first-in-human Phase I clinical trial (NCT04165941). This manuscript will discuss DRI as a rational therapeutic approach to newly diagnosed GBM and the importance of repeated administration of DRI in combination with the standard-of-care Stupp regimen in patients with stable minimal residual disease.
Collapse
Affiliation(s)
- L B Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - L S Lamb
- IN8Bio, Inc., New York, NY, United States
| | - T Goswami
- IN8Bio, Inc., New York, NY, United States
| | - K Rochlin
- IN8Bio, Inc., New York, NY, United States
| | | |
Collapse
|
3
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
4
|
Chitadze G, Kabelitz D. Immune surveillance in glioblastoma: role of the NKG2D system and novel cell-based therapeutic approaches. Scand J Immunol 2022; 96:e13201. [PMID: 35778892 DOI: 10.1111/sji.13201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022]
Abstract
Glioblastoma, formerly known as Glioblastoma multiforme (GBM) is the most frequent and most aggressive brain tumor in adults. The brain is an immunopriviledged organ and the blood brain barrier shields the brain from immune surveillance. In this review we discuss the composition of the immunosuppressive tumor micromilieu and potential immune escape mechanisms in GBM. In this respect, we focus on the role of the NKG2D receptor/ligand system. NKG2D ligands are frequently expressed on GBM tumor cells and can activate NKG2D-expressing killer cells including NK cells and γδ T cells. Soluble NKG2D ligands, however, contribute to tumor escape from immunological attack. We also discuss the current immunotherapeutic strategies to improve the survival of GBM patients. Such approaches include the modulation of the NKG2D receptor/ligand system, the application of checkpoint inhibitors, the adoptive transfer of ex vivo expanded and/or modified immune cells, or the application of antibodies and antibody constructs to target cytotoxic effector cells in vivo. In view of the multitude of pursued strategies, there is hope for improved overall survival of GBM patients in the future.
Collapse
Affiliation(s)
- Guranda Chitadze
- Unit for Hematological Diagnostics, Department of Internal Medicine II
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| |
Collapse
|
5
|
Jones AB, Rocco A, Lamb LS, Friedman GK, Hjelmeland AB. Regulation of NKG2D Stress Ligands and Its Relevance in Cancer Progression. Cancers (Basel) 2022; 14:2339. [PMID: 35565467 PMCID: PMC9105350 DOI: 10.3390/cancers14092339] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Under cellular distress, multiple facets of normal homeostatic signaling are altered or disrupted. In the context of the immune landscape, external and internal stressors normally promote the expression of natural killer group 2 member D (NKG2D) ligands that allow for the targeted recognition and killing of cells by NKG2D receptor-bearing effector populations. The presence or absence of NKG2D ligands can heavily influence disease progression and impact the accessibility of immunotherapy options. In cancer, tumor cells are known to have distinct regulatory mechanisms for NKG2D ligands that are directly associated with tumor progression and maintenance. Therefore, understanding the regulation of NKG2D ligands in cancer will allow for targeted therapeutic endeavors aimed at exploiting the stress response pathway. In this review, we summarize the current understanding of regulatory mechanisms controlling the induction and repression of NKG2D ligands in cancer. Additionally, we highlight current therapeutic endeavors targeting NKG2D ligand expression and offer our perspective on considerations to further enhance the field of NKG2D ligand biology.
Collapse
Affiliation(s)
- Amber B. Jones
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Abbey Rocco
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | | | - Gregory K. Friedman
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
6
|
Immune tumoral microenvironment in gliomas: focus on CD3 + T cells, Vδ1 + T cells, and microglia/macrophages. Immunol Res 2022; 70:224-239. [PMID: 35006549 DOI: 10.1007/s12026-022-09260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 12/31/2021] [Indexed: 11/05/2022]
Abstract
Gliomas are histologically defined as low-grade gliomas (LGG) and high-grade gliomas (HGG). The most common type of HGG is the glioblastoma (GBM). We aimed to determine the immunological characteristics of CD3 T-cells, Vδ1 T-cells, and microglia/macrophages infiltrating brain gliomas. We collected 24 formalin-fixed paraffin-embedded samples issued from 19 cases of GBM and 5 cases of LGG. An immunohistochemical analysis was performed using anti-CD3, anti-Vδ1, and anti-iba-1 antibodies. Labelling indexes (LI) of CD3 and Vδ1 were evaluated quantitatively, and other CD3, Vδ1, and iba-1 staining characteristics were evaluated qualitatively. The median age of patients was 49 years in GBM and 52 years in LGG. The sex ratio was 1.4 and GBM predominated in males (p = 0.05). In GBM, the medians of CD3-LI and Vδ1-LI were 30 and 3.5 respectively. CD3-LI inversely correlated with survival in GBM cases (r = - 0.543; p = 0.016). CD3 staining intensity correlated with CD3-LI (p < 0.0001) and with the survival in GBM cases (p = 0.003). Compared to LGG, the CD3-LI, the intensity of intra-tumoral Vδ1 staining, and the amount of iba-1 were higher in GBM (p = 0.042; p = 0.014; and p = 0.001 respectively). The iba-1 organization was more amoeboid in older patients and more branched in younger patients (p = 0.028) and tended to be more amoeboid in cases with high iba-1 amount (p = 0.09). Our results suggest that a high level of CD3-LI and a strong intra-tumoral infiltration of Vδ1 T-cells as well as a high involvement of TAM can be considered potential markers of poor prognosis of GBM. However, this requires further studies on more balanced GBM-LGG sample, including an expanded panel of biomarkers.
Collapse
|
7
|
Kabelitz D, Serrano R, Kouakanou L, Peters C, Kalyan S. Cancer immunotherapy with γδ T cells: many paths ahead of us. Cell Mol Immunol 2020; 17:925-939. [PMID: 32699351 PMCID: PMC7609273 DOI: 10.1038/s41423-020-0504-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
γδ T cells play uniquely important roles in stress surveillance and immunity for infections and carcinogenesis. Human γδ T cells recognize and kill transformed cells independently of human leukocyte antigen (HLA) restriction, which is an essential feature of conventional αβ T cells. Vγ9Vδ2 γδ T cells, which prevail in the peripheral blood of healthy adults, are activated by microbial or endogenous tumor-derived pyrophosphates by a mechanism dependent on butyrophilin molecules. γδ T cells expressing other T cell receptor variable genes, notably Vδ1, are more abundant in mucosal tissue. In addition to the T cell receptor, γδ T cells usually express activating natural killer (NK) receptors, such as NKp30, NKp44, or NKG2D which binds to stress-inducible surface molecules that are absent on healthy cells but are frequently expressed on malignant cells. Therefore, γδ T cells are endowed with at least two independent recognition systems to sense tumor cells and to initiate anticancer effector mechanisms, including cytokine production and cytotoxicity. In view of their HLA-independent potent antitumor activity, there has been increasing interest in translating the unique potential of γδ T cells into innovative cellular cancer immunotherapies. Here, we discuss recent developments to enhance the efficacy of γδ T cell-based immunotherapy. This includes strategies for in vivo activation and tumor-targeting of γδ T cells, the optimization of in vitro expansion protocols, and the development of gene-modified γδ T cells. It is equally important to consider potential synergisms with other therapeutic strategies, notably checkpoint inhibitors, chemotherapy, or the (local) activation of innate immunity.
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany.
| | - Ruben Serrano
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Léonce Kouakanou
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Shirin Kalyan
- Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
8
|
IL-21 Increases the Reactivity of Allogeneic Human Vγ9Vδ2 T Cells Against Primary Glioblastoma Tumors. J Immunother 2019; 41:224-231. [PMID: 29683891 DOI: 10.1097/cji.0000000000000225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glioblastoma multiforme (GBM) remains the most frequent and deadliest primary brain tumor in adults despite aggressive treatments, because of the persistence of infiltrative and resistant tumor cells. Nonalloreactive human Vγ9Vδ2 T lymphocytes, the major peripheral γδ T-cell subset in adults, represent attractive effectors for designing immunotherapeutic strategies to track and eliminate brain tumor cells, with limited side effects. We analyzed the effects of ex vivo sensitizations of Vγ9Vδ2 T cells by IL-21, a modulating cytokine, on their cytolytic reactivity. We first showed that primary human GBM-1 cells were naturally eliminated by allogeneic Vγ9Vδ2 T lymphocytes, through a perforin/granzyme-mediated cytotoxicity. IL-21 increased both intracellular granzyme B levels and cytotoxicity of allogeneic human Vγ9Vδ2 T lymphocytes in vitro. Importantly, IL-21-enhanced cytotoxicity was rapid, which supports the development of sensitization(s) of γδ T lymphocytes before adoptive transfer, a process that avoids any deleterious effect associated with direct administrations of IL-21. Finally, we showed, for the first time, that IL-21-sensitized allogeneic Vγ9Vδ2 T cells significantly eliminated GBM tumor cells that developed in the brain after orthotopic administrations in vivo. Altogether our observations pave the way for novel efficient stereotaxic immunotherapies in GBM patients by using IL-21-sensitized allogeneic human Vγ9Vδ2 T cells.
Collapse
|
9
|
Chauvin C, Joalland N, Perroteau J, Jarry U, Lafrance L, Willem C, Retière C, Oliver L, Gratas C, Gautreau-Rolland L, Saulquin X, Vallette FM, Vié H, Scotet E, Pecqueur C. NKG2D Controls Natural Reactivity of Vγ9Vδ2 T Lymphocytes against Mesenchymal Glioblastoma Cells. Clin Cancer Res 2019; 25:7218-7228. [PMID: 31506386 DOI: 10.1158/1078-0432.ccr-19-0375] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/28/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Cellular immunotherapies are currently being explored to eliminate highly invasive and chemoradioresistant glioblastoma (GBM) cells involved in rapid relapse. We recently showed that concomitant stereotactic injections of nonalloreactive allogeneic Vγ9Vδ2 T lymphocytes eradicate zoledronate-primed human GBM cells. In the present study, we investigated the spontaneous reactivity of allogeneic human Vγ9Vδ2 T lymphocytes toward primary human GBM cells, in vitro and in vivo, in the absence of any prior sensitization. EXPERIMENTAL DESIGN Through functional and transcriptomic analyses, we extensively characterized the immunoreactivity of human Vγ9Vδ2 T lymphocytes against various primary GBM cultures directly derived from patient tumors. RESULTS We evidenced that GBM cells displaying a mesenchymal signature are spontaneously eliminated by allogeneic human Vγ9Vδ2 T lymphocytes, a reactivity process being mediated by γδ T-cell receptor (TCR) and tightly regulated by cellular stress-associated NKG2D pathway. This led to the identification of highly reactive Vγ9Vδ2 T lymphocyte populations, independently of a specific TCR repertoire signature. Moreover, we finally provide evidence of immunotherapeutic efficacy in vivo, in the absence of any prior tumor cell sensitization. CONCLUSIONS By identifying pathways implicated in the selective natural recognition of mesenchymal GBM cell subtypes, accounting for 30% of primary diagnosed and 60% of recurrent GBM, our results pave the way for novel targeted cellular immunotherapies.
Collapse
Affiliation(s)
- Cynthia Chauvin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Noémie Joalland
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Jeanne Perroteau
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Ulrich Jarry
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Laura Lafrance
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Catherine Willem
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Etablissement Français du Sang, Nantes, France
| | - Christelle Retière
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Etablissement Français du Sang, Nantes, France
| | - Lisa Oliver
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Centre Hospitalier-Universitaire (CHU) de Nantes, Nantes, France
| | - Catherine Gratas
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Centre Hospitalier-Universitaire (CHU) de Nantes, Nantes, France
| | - Laetitia Gautreau-Rolland
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Xavier Saulquin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - François M Vallette
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France.,Institut de Cancérologie de l'Ouest (ICO), St Herblain, France
| | - Henri Vié
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Emmanuel Scotet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France. .,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Claire Pecqueur
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France. .,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| |
Collapse
|
10
|
Jarry U, Joalland N, Chauvin C, Clemenceau B, Pecqueur C, Scotet E. Stereotactic Adoptive Transfer of Cytotoxic Immune Cells in Murine Models of Orthotopic Human Glioblastoma Multiforme Xenografts. J Vis Exp 2018. [PMID: 30222164 DOI: 10.3791/57870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most frequent and aggressive primary brain cancer in adults, is generally associated with a poor prognosis, and scarce efficient therapies have been proposed over the last decade. Among the promising candidates for designing novel therapeutic strategies, cellular immunotherapies have been targeted to eliminate highly invasive and chemo-radioresistant tumor cells, likely involved in a rapid and fatal relapse of this cancer. Thus, administration(s) of allogeneic GBM-reactive immune cell effectors, such as human Vϒ9Vδ2 T lymphocytes, in the vicinity of the tumor would represents a unique opportunity to deliver efficient and highly concentrated therapeutic agents directly into the site of brain malignancies. Here, we present a protocol for the preparation and the stereotaxic administration of allogeneic human lymphocytes in immunodeficient mice carrying orthotopic human primary brain tumors. This study provides a preclinical proof-of-concept for both the feasibility and the antitumor efficacy of these cellular immunotherapies that rely on stereotactic injections of allogeneic human lymphocytes within intrabrain tumor beds.
Collapse
Affiliation(s)
- Ulrich Jarry
- INSERM, CNRS, Université d'Angers, Université de Nantes, CRCINA; Immunotherapy, Graft, Oncology, LabEx IGO
| | - Noémie Joalland
- INSERM, CNRS, Université d'Angers, Université de Nantes, CRCINA; Immunotherapy, Graft, Oncology, LabEx IGO
| | - Cynthia Chauvin
- INSERM, CNRS, Université d'Angers, Université de Nantes, CRCINA; Immunotherapy, Graft, Oncology, LabEx IGO
| | - Béatrice Clemenceau
- INSERM, CNRS, Université d'Angers, Université de Nantes, CRCINA; Immunotherapy, Graft, Oncology, LabEx IGO; Hopital de Nantes, Hotel Dieu
| | - Claire Pecqueur
- INSERM, CNRS, Université d'Angers, Université de Nantes, CRCINA; Immunotherapy, Graft, Oncology, LabEx IGO
| | - Emmanuel Scotet
- INSERM, CNRS, Université d'Angers, Université de Nantes, CRCINA; Immunotherapy, Graft, Oncology, LabEx IGO;
| |
Collapse
|
11
|
Prinzing BL, Gottschalk SM, Krenciute G. CAR T-cell therapy for glioblastoma: ready for the next round of clinical testing? Expert Rev Anticancer Ther 2018; 18:451-461. [PMID: 29533108 PMCID: PMC6191291 DOI: 10.1080/14737140.2018.1451749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The outcome for patients with glioblastoma (GBM) remains poor, and there is an urgent need to develop novel therapeutic approaches. T cells genetically modified with chimeric antigen receptors (CARs) hold the promise to improve outcomes since they recognize and kill cells through different mechanisms than conventional therapeutics. Areas covered: This article reviews CAR design, tumor associated antigens expressed by GBMs that can be targeted with CAR T cells, preclinical and clinical studies conducted with CAR T cells, and genetic approaches to enhance their effector function. Expert commentary: While preclinical studies have highlighted the potent anti-GBM activity of CAR T cells, the initial foray of CAR T-cell therapies into the clinic resulted only in limited benefits for GBM patients. Additional genetic modification of CAR T cells has resulted in a significant increase in their anti-GBM activity in preclinical models. We are optimistic that clinical testing of these enhanced CAR T cells will be safe and result in improved anti-glioma activity in GBM patients.
Collapse
Affiliation(s)
- Brooke L. Prinzing
- Integrative Molecular and Biomedical Science Graduate Program, Baylor College of Medicine, Houston, Texas 77030
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Stephen M. Gottschalk
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Giedre Krenciute
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105
| |
Collapse
|
12
|
NKG2D ligands in glioma stem-like cells: expression in situ and in vitro. Histochem Cell Biol 2018; 149:219-233. [PMID: 29356965 DOI: 10.1007/s00418-018-1633-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2018] [Indexed: 01/29/2023]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor. Tumor stem cells have a major influence on tumor malignancy, and immunological escape mechanisms, involving the Natural Killer Group 2, member D (NKG2D) receptor-ligand-system, are key elements in tumor immuno-surveillance. We analyzed the expression profile and localization of NKG2D ligands (NKG2DL) and embryonic and neural stem cell markers in solid human GBM and stem-like cells isolated from glioma cell lines by qRT-PCR and immunohistochemistry, including quantitative analysis. We also evaluated the effect of Temozolomide (TMZ), the standard chemotherapeutic agent used in GBM therapy, on NKG2DL expression. NKG2DL-positive cells were mostly found scattered and isolated, were detectable in glial fibrillary acidic protein (GFAP)-positive tumor regions and partly in the penumbra of tumor vessels. NKG2DL were found in a distinct tumor stem-like cell subpopulation and were broadly costained with each other. Quantitative analysis revealed, that dependent on the individual NKG2DL investigated, cell portions costained with different stem cell markers varied between small (Musashi-1) and high (KLf-4) amounts. However, a costaining of NKG2DL with CD3γ, typically found in T cells, was also observable, whereas CD11b as a marker for tumor micoglia cells was only rarely costained with NKG2DL. Stem-like cells derived from the glioma cell lines T98G and U251MG showed a distinct expression pattern of NKG2DL and stem cell markers, which seemed to be balanced in a cell line-specific way. With differentiation, T98G displayed less NKG2DL, whereas in U251MG, only expression of most stem cell markers decreased. In addition, stimulation with TMZ led to a significant upregulation of NKG2DL in stem-like cells of both lines. As stem-like glioma cells tend to show a higher expression of NKG2DL than more differentiated tumor cells and TMZ treatment supports upregulation of NKG2DL, the NKG2D system might play an important role in tumor stem cell survival and in GBM therapy.
Collapse
|
13
|
Chitadze G, Flüh C, Quabius ES, Freitag-Wolf S, Peters C, Lettau M, Bhat J, Wesch D, Oberg HH, Luecke S, Janssen O, Synowitz M, Held-Feindt J, Kabelitz D. In-depth immunophenotyping of patients with glioblastoma multiforme: Impact of steroid treatment. Oncoimmunology 2017; 6:e1358839. [PMID: 29147621 DOI: 10.1080/2162402x.2017.1358839] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023] Open
Abstract
Despite aggressive treatment regimens based on surgery and radiochemotherapy, the prognosis of patients with grade IV glioblastoma multiforme (GBM) remains extremely poor, calling for alternative options such as immunotherapy. Immunological mechanisms including the Natural Killer Group 2 member D (NKG2D) receptor-ligand system play an important role in tumor immune surveillance and targeting the NKG2D system might be beneficial. However, before considering any kind of immunotherapy, a precise characterization of the immune system is important, particularly in GBM patients where conventional therapies with impact on the immune system are frequently co-administered. Here we performed an in-depth immunophenotyping of GBM patients and age-matched healthy controls and analyzed NKG2D ligand expression on primary GBM cells ex vivo. We report that GBM patients have a compromised innate immune system irrespective of steroid (dexamethasone) medication. However, dexamethasone drastically reduced the number of immune cells in the blood of GBM patients. Moreover, higher counts of immune cells influenced by dexamethasone like CD45+ lymphocytes and non-Vδ2 γδ T cells were associated with better overall survival. Higher levels of NKG2D ligands on primary GBM tumor cells were observed in patients who received radiochemotherapy, pointing towards increased immunogenic potential of GBM cells following standard radiochemotherapy. This study sheds light on how steroids and radiochemotherapy affect immune cell parameters of GBM patients, a pre-requisite for the development of new therapeutic strategies targeting the immune system in these patients.
Collapse
Affiliation(s)
- Guranda Chitadze
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Charlotte Flüh
- Dept. of Neurosurgery, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Elgar Susanne Quabius
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany.,Dept. of Oto-Rhino-Laryngology, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Schleswig-Hostein, Germany
| | - Christian Peters
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Jaydeep Bhat
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Stefanie Luecke
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Ottmar Janssen
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Michael Synowitz
- Dept. of Neurosurgery, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Janka Held-Feindt
- Dept. of Neurosurgery, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| |
Collapse
|
14
|
Cheng Z, Zheng YZ, Li YQ, Wong CS. Cellular Senescence in Mouse Hippocampus After Irradiation and the Role of p53 and p21. J Neuropathol Exp Neurol 2017; 76:260-269. [DOI: 10.1093/jnen/nlx006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
15
|
Li YQ, Cheng ZC, Liu SW, Aubert I, Wong CS. P53 regulates disruption of neuronal development in the adult hippocampus after irradiation. Cell Death Discov 2016; 2:16072. [PMID: 27752364 PMCID: PMC5045962 DOI: 10.1038/cddiscovery.2016.72] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/19/2016] [Indexed: 01/01/2023] Open
Abstract
Inhibition of hippocampal neurogenesis is implicated in neurocognitive dysfunction after cranial irradiation for brain tumors. How irradiation results in impaired neuronal development remains poorly understood. The Trp53 (p53) gene is known to regulate cellular DNA damage response after irradiation. Whether it has a role in disruption of late neuronal development remains unknown. Here we characterized the effects of p53 on neuronal development in adult mouse hippocampus after irradiation. Different bromodeoxyuridine incorporation paradigms and a transplantation study were used for cell fate mapping. Compared with wild-type mice, we observed profound inhibition of hippocampal neurogenesis after irradiation in mice deficient in p53 despite the absence of acute apoptosis of neuroblasts. The putative neural stem cells were apoptosis resistant after irradiation regardless of p53 genotype. Cell fate mapping using different bromodeoxyuridine incorporation paradigms revealed enhanced activation of neural stem cells and their consequential exhaustion in the absence of p53 after irradiation. Both p53-knockout and wild-type mice demonstrated similar extent of microglial activation in the hippocampus after irradiation. Impairment of neuronal differentiation of neural progenitors transplanted in irradiated hippocampus was not altered by p53 genotype of the recipient mice. We conclude that by inhibiting neural progenitor activation, p53 serves to mitigate disruption of neuronal development after irradiation independent of apoptosis and perturbation of the neural stem cell niche. These findings suggest for the first time that p53 may have a key role in late effects in brain after irradiation.
Collapse
Affiliation(s)
- Y-Q Li
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto , Toronto, ON, Canada
| | - Zw-C Cheng
- Institute of Medical Science, University of Toronto , Toronto, ON, Canada
| | - Sk-W Liu
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto , Toronto, ON, Canada
| | - I Aubert
- Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto , Toronto, ON, Canada
| | - C S Wong
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto , Toronto, ON, Canada
| |
Collapse
|
16
|
Abstract
INTRODUCTION Cancer immunotherapy has made much progress in recent years. Clinical trials evaluating a variety of immunotherapeutic approaches are underway in patients with malignant gliomas. Thanks to recent advancements in cell engineering technologies, infusion of ex vivo prepared immune cells have emerged as promising strategies of cancer immunotherapy. AREAS COVERED Herein, the authors review recent and current studies using cellular immunotherapies for malignant gliomas. Specifically, they cover the following areas: a) cellular vaccine approaches using tumor cell-based or dendritic cell (DC)-based vaccines, and b) adoptive cell transfer (ACT) approaches, including lymphokine-activated killer (LAK) cells, γδ T cells, tumor-infiltrating lymphocytes (TIL), chimeric antigen receptor (CAR)-T cells and T-cell receptor (TCR) transduced T cells. EXPERT OPINION While some of the recent studies have shown promising results, the ultimate success of cellular immunotherapy in brain tumor patients would require improvements in the following areas: 1) feasibility in producing cellular therapeutics; 2) identification and characterization of targetable antigens given the paucity and heterogeneity of tumor specific antigens; 3) the development of strategies to promote effector T-cell trafficking; 4) overcoming local and systemic immune suppression, and 5) proper interpretation of imaging data for brain tumor patients receiving immunotherapy.
Collapse
Affiliation(s)
- Yi Lin
- a Neurological Surgery , University of California San Francisco , San Francisco , CA , USA
| | - Hideho Okada
- a Neurological Surgery , University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
17
|
Effects of Aging on Hippocampal Neurogenesis After Irradiation. Int J Radiat Oncol Biol Phys 2016; 94:1181-9. [DOI: 10.1016/j.ijrobp.2015.12.364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022]
|
18
|
Jarry U, Chauvin C, Joalland N, Léger A, Minault S, Robard M, Bonneville M, Oliver L, Vallette FM, Vié H, Pecqueur C, Scotet E. Stereotaxic administrations of allogeneic human Vγ9Vδ2 T cells efficiently control the development of human glioblastoma brain tumors. Oncoimmunology 2016; 5:e1168554. [PMID: 27471644 DOI: 10.1080/2162402x.2016.1168554] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) represents the most frequent and deadliest primary brain tumor. Aggressive treatment still fails to eliminate deep brain infiltrative and highly resistant tumor cells. Human Vγ9Vδ2 T cells, the major peripheral blood γδ T cell subset, react against a wide array of tumor cells and represent attractive immune effector T cells for the design of antitumor therapies. This study aims at providing a preclinical rationale for immunotherapies in GBM based on stereotaxic administration of allogeneic human Vγ9Vδ2 T cells. The feasibility and the antitumor efficacy of stereotaxic Vγ9Vδ2 T cell injections have been investigated in orthotopic GBM mice model using selected heterogeneous and invasive primary human GBM cells. Allogeneic human Vγ9Vδ2 T cells survive and patrol for several days within the brain parenchyma following adoptive transfer and can successfully eliminate infiltrative GBM primary cells. These striking observations pave the way for optimized stereotaxic antitumor immunotherapies targeting human allogeneic Vγ9Vδ2 T cells in GBM patients.
Collapse
Affiliation(s)
- Ulrich Jarry
- INSERM, U892, Nantes, France, Univ Nantes, Nantes, France, CNRS, UMR 6299, Nantes, France; LabEx IGO, "Immunotherapy Graft Oncology", Nantes, France
| | - Cynthia Chauvin
- INSERM, U892, Nantes, France, Univ Nantes, Nantes, France, CNRS, UMR 6299, Nantes, France; LabEx IGO, "Immunotherapy Graft Oncology", Nantes, France
| | - Noémie Joalland
- INSERM, U892, Nantes, France, Univ Nantes, Nantes, France, CNRS, UMR 6299, Nantes, France; LabEx IGO, "Immunotherapy Graft Oncology", Nantes, France
| | - Alexandra Léger
- INSERM, U892, Nantes, France, Univ Nantes, Nantes, France, CNRS, UMR 6299, Nantes, France; LabEx IGO, "Immunotherapy Graft Oncology", Nantes, France
| | - Sandrine Minault
- INSERM, U892, Nantes, France, Univ Nantes, Nantes, France, CNRS, UMR 6299 , Nantes, France
| | - Myriam Robard
- Cellular and Tissular Imaging Core Facility of Nantes University (MicroPICell), Structure Fédérative de Recherche François Bonamy, University of Nantes , Nantes, France
| | - Marc Bonneville
- INSERM, U892, Nantes, France, Univ Nantes, Nantes, France, CNRS, UMR 6299, Nantes, France; LabEx IGO, "Immunotherapy Graft Oncology", Nantes, France
| | - Lisa Oliver
- INSERM, U892, Nantes, France, Univ Nantes, Nantes, France, CNRS, UMR 6299, Nantes, France; LabEx IGO, "Immunotherapy Graft Oncology", Nantes, France; Hotel Dieu, Hôpital de Nantes, Nantes, F-44000, France
| | - François M Vallette
- INSERM, U892, Nantes, France, Univ Nantes, Nantes, France, CNRS, UMR 6299, Nantes, France; LabEx IGO, "Immunotherapy Graft Oncology", Nantes, France
| | - Henri Vié
- INSERM, U892, Nantes, France, Univ Nantes, Nantes, France, CNRS, UMR 6299, Nantes, France; LabEx IGO, "Immunotherapy Graft Oncology", Nantes, France
| | - Claire Pecqueur
- INSERM, U892, Nantes, France, Univ Nantes, Nantes, France, CNRS, UMR 6299, Nantes, France; LabEx IGO, "Immunotherapy Graft Oncology", Nantes, France
| | - Emmanuel Scotet
- INSERM, U892, Nantes, France, Univ Nantes, Nantes, France, CNRS, UMR 6299, Nantes, France; LabEx IGO, "Immunotherapy Graft Oncology", Nantes, France
| |
Collapse
|