1
|
Li T, Niu M, Zhou J, Wu K, Yi M. The enhanced antitumor activity of bispecific antibody targeting PD-1/PD-L1 signaling. Cell Commun Signal 2024; 22:179. [PMID: 38475778 PMCID: PMC10935874 DOI: 10.1186/s12964-024-01562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
The programmed cell death 1 (PD-1) signaling pathway, a key player in immune checkpoint regulation, has become a focal point in cancer immunotherapy. In the context of cancer, upregulated PD-L1 on tumor cells can result in T cell exhaustion and immune evasion, fostering tumor progression. The advent of PD-1/PD-L1 inhibitor has demonstrated clinical success by unleashing T cells from exhaustion. Nevertheless, challenges such as resistance and adverse effects have spurred the exploration of innovative strategies, with bispecific antibodies (BsAbs) emerging as a promising frontier. BsAbs offer a multifaceted approach to cancer immunotherapy by simultaneously targeting PD-L1 and other immune regulatory molecules. We focus on recent advancements in PD-1/PD-L1 therapy with a particular emphasis on the development and potential of BsAbs, especially in the context of solid tumors. Various BsAb products targeting PD-1 signaling are discussed, highlighting their unique mechanisms of action and therapeutic potential. Noteworthy examples include anti-TGFβ × PD-L1, anti-CD47 × PD-L1, anti-VEGF × PD-L1, anti-4-1BB × PD-L1, anti-LAG-3 × PD-L1, and anti-PD-1 × CTLA-4 BsAbs. Besides, we summarize ongoing clinical studies evaluating the efficacy and safety of these innovative BsAb agents. By unraveling the intricacies of the tumor microenvironment and harnessing the synergistic effects of anti-PD-1/PD-L1 BsAbs, there exists the potential to elevate the precision and efficacy of cancer immunotherapy, ultimately enabling the development of personalized treatment strategies tailored to individual patient profiles.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
| | - Ming Yi
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
2
|
Zhao WB, Shen Y, Cai GX, Li YM, Liu WH, Wu JC, Xu YC, Chen SQ, Zhou Z. Superantigen-fused T cell engagers for tumor antigen-mediated robust T cell activation and tumor cell killing. Mol Ther 2024; 32:490-502. [PMID: 38098228 PMCID: PMC10861957 DOI: 10.1016/j.ymthe.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/26/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023] Open
Abstract
Inadequate T cell activation has severely limited the success of T cell engager (TCE) therapy, especially in solid tumors. Enhancing T cell activity while maintaining the tumor specificity of TCEs is the key to improving their clinical efficacy. However, currently, there needs to be more effective strategies in clinical practice. Here, we design novel superantigen-fused TCEs that display robust tumor antigen-mediated T cell activation effects. These innovative drugs are not only armed with the powerful T cell activation ability of superantigens but also retain the dependence of TCEs on tumor antigens, realizing the ingenious combination of the advantages of two existing drugs. Superantigen-fused TCEs have been preliminarily proven to have good (>30-fold more potent) and specific (>25-fold more potent) antitumor activity in vitro and in vivo. Surprisingly, they can also induce the activation of T cell chemotaxis signals, which may promote T cell infiltration and further provide an additional guarantee for improving TCE efficacy in solid tumors. Overall, this proof-of-concept provides a potential strategy for improving the clinical efficacy of TCEs.
Collapse
Affiliation(s)
- Wen-Bin Zhao
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China
| | - Ying Shen
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China
| | - Guo-Xin Cai
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi-Ming Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Hui Liu
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing-Cheng Wu
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying-Chun Xu
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Qing Chen
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zhan Zhou
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China; The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China.
| |
Collapse
|
3
|
Kamrani A, Nasiri H, Hassanzadeh A, Ahmadian Heris J, Mohammadinasab R, Sadeghvand S, Sadeghi M, Valedkarimi Z, Hosseinzadeh R, Shomali N, Akbari M. New immunotherapy approaches for colorectal cancer: focusing on CAR-T cell, BiTE, and oncolytic viruses. Cell Commun Signal 2024; 22:56. [PMID: 38243252 PMCID: PMC10799490 DOI: 10.1186/s12964-023-01430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/09/2023] [Indexed: 01/21/2024] Open
Abstract
Colorectal cancer is one of the most common causes of mortality worldwide. There are several potential risk factors responsible for the initiation and progression of colorectal cancer, including age, family history, a history of inflammatory bowel disease, and lifestyle factors such as physical activity and diet. For decades, there has been a vast amount of study on treatment approaches for colorectal cancer, which has led to conventional therapies such as chemotherapy, surgery, etc. Considering the high prevalence and incidence rate, scholars believe there is an urgent need for an alternative, more efficacious treatment with fewer adverse effects than the abovementioned treatments. Immunotherapy has emerged as a potential treatment alternative in a few years and has become one of the fastest-evolving therapeutic methods. Immunotherapy works by activating or enhancing the immune system's power to identify and attack cancerous cells. This review summarizes the most crucial new immunotherapy methods under investigation for colorectal cancer treatment, including Immune checkpoint inhibitors, CAR-T cell therapy, BiTEs, Tumor-infiltrating lymphocytes, and Oncolytic virus therapy. Furthermore, this study discusses the application of combination therapy, precision medicine, biomarker discovery, overcoming resistance, and immune-related adverse effects. Video Abstract.
Collapse
Affiliation(s)
- Amin Kamrani
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Sadeghvand
- Pediatrics Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Sadeghi
- Department of Molecular Medicine, Tabriz university of medical science, Tabriz, Iran
| | - Zahra Valedkarimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Ding Z, Sun S, Wang X, Yang X, Shi W, Huang X, Xie S, Mo F, Hou X, Liu A, Jiang X, Tang Z, Lu X. Nanobody-based trispecific T cell engager (Nb-TriTE) enhances therapeutic efficacy by overcoming tumor-mediated immunosuppression. J Hematol Oncol 2023; 16:115. [PMID: 38031188 PMCID: PMC10688028 DOI: 10.1186/s13045-023-01507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND T cell engagers (TCEs) have been established as an emerging modality for hematologic malignancies, but solid tumors remain refractory. However, the upregulation of programmed cell death 1 (PD-1) is correlated with T cell dysfunction that confer tumor-mediated immunosuppression. Developing a novel nanobody-based trispecific T cell engager (Nb-TriTE) would be a potential strategy to improve therapeutic efficacy. METHODS Given the therapeutic potential of nanobodies (Nbs), we first screened Nb targeting fibroblast activation protein (FAP) and successfully generated a Nb-based bispecific T cell engager (Nb-BiTE) targeting FAP. Then, we developed a Nb-TriTE by fusing an anti-PD-1 Nb to the Nb-BiTE. The biological activity and antitumor efficacy of the Nb-TriTE were evaluated in vitro and in both cell line-derived and patient-derived xenograft mouse models. RESULTS We had for the first time successfully selected a FAP Nb for the generation of novel Nb-BiTE and Nb-TriTE, which showed good binding ability to their targets. Nb-TriTE not only induced robust tumor antigen-specific killing, potent T cell activation and enhanced T cell function in vitro, but also suppressed tumor growth, improved survival and mediated more T cell infiltration than Nb-BiTE in mouse models of different solid tumors without toxicity. CONCLUSIONS This novel Nb-TriTE provides a promising and universal platform to overcome tumor-mediated immunosuppression and improve patient outcomes in the future.
Collapse
Affiliation(s)
- Ziqiang Ding
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Shuyang Sun
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaomei Yang
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Wei Shi
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xianing Huang
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Shenxia Xie
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Fengzhen Mo
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoqiong Hou
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Aiqun Liu
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhuoran Tang
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China.
| | - Xiaoling Lu
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
5
|
Snell D, Gunde T, Warmuth S, Chatterjee B, Brock M, Hess C, Johansson M, Simonin A, Spiga FM, Weinert C, Kirk N, Bassler N, Campos Carrascosa L, Flückiger N, Heiz R, Wagen S, Giezendanner N, Alberti A, Yaman Y, Mahler D, Diem D, Lichtlen P, Urech D. An engineered T-cell engager with selectivity for high mesothelin-expressing cells and activity in the presence of soluble mesothelin. Oncoimmunology 2023; 12:2233401. [PMID: 37456982 PMCID: PMC10339761 DOI: 10.1080/2162402x.2023.2233401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/13/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
Mesothelin (MSLN) is an attractive immuno-oncology target, but the development of MSLN-targeting therapies has been impeded by tumor shedding of soluble MSLN (sMSLN), on-target off-tumor activity, and an immunosuppressive tumor microenvironment. We sought to engineer an antibody-based, MSLN-targeted T-cell engager (αMSLN/αCD3) with enhanced ability to discriminate high MSLN-expressing tumors from normal tissue, and activity in the presence of sMSLN. We also studied the in vivo antitumor efficacy of this molecule (NM28-2746) alone and in combination with the multifunctional checkpoint inhibitor/T-cell co-activator NM21-1480 (αPD-L1/α4-1BB). Cytotoxicity and T-cell activation induced by NM28-2746 were studied in co-cultures of peripheral blood mononuclear cells and cell lines exhibiting different levels of MSLN expression, including in the presence of soluble MSLN. Xenotransplant models of human pancreatic cancer were used to study the inhibition of tumor growth and stimulation of T-cell infiltration into tumors induced by NM28-2746 alone and in combination with NM21-1480. The bivalent αMSLN T-cell engager NM28-2746 potently induced T-cell activation and T-cell mediated cytotoxicity of high MSLN-expressing cells but had much lower potency against low MSLN-expressing cells. A monovalent counterpart of NM28-2746 had much lower ability to discriminate high MSLN-expressing from low MSLN-expressing cells. The bivalent molecule retained this discriminant ability in the presence of high concentrations of sMSLN. In xenograft models, NM28-2746 exhibited significant tumor suppressing activity, which was significantly enhanced by combination therapy with NM21-1480. NM28-2746, alone or in combination with NM21-1480, may overcome shortcomings of previous MSLN-targeted immuno-oncology drugs, exhibiting enhanced discrimination of high MSLN-expressing cell activity in the presence of sMSLN.
Collapse
Affiliation(s)
| | - Tea Gunde
- Numab Therapeutics AG, Horgen, Switzerland
| | | | | | | | | | | | | | | | | | - Niels Kirk
- Numab Therapeutics AG, Horgen, Switzerland
| | | | | | | | - Robin Heiz
- Numab Therapeutics AG, Horgen, Switzerland
| | | | | | | | | | | | - Dania Diem
- Numab Therapeutics AG, Horgen, Switzerland
| | | | | |
Collapse
|
6
|
van de Donk NWCJ, Zweegman S. T-cell-engaging bispecific antibodies in cancer. Lancet 2023; 402:142-158. [PMID: 37271153 DOI: 10.1016/s0140-6736(23)00521-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/06/2023] [Accepted: 03/02/2023] [Indexed: 06/06/2023]
Abstract
T-cell-engaging bispecific antibodies (BsAbs) simultaneously bind to antigens on tumour cells and CD3 subunits on T cells. This simultaneous binding results in the recruitment of T cells to the tumour, followed by T-cell activation and degranulation, and tumour cell elimination. T-cell-engaging BsAbs have shown substantial activity in several haematological malignancies by targeting CD19 in acute lymphoblastic leukaemia, CD20 in B-cell non-Hodgkin lymphoma, and BCMA and GPRC5D in multiple myeloma. Progress with solid tumours has been slower, in part due to the paucity of therapeutic targets with a tumour-specific expression profile, which is needed to limit on-target off-tumour side-effects. Nevertheless, BsAb-mediated recognition of a peptide fragment of gp100 presented by HLA-A2:01 molecules has shown marked activity in patients with unresectable or metastatic uveal melanoma. Cytokine release syndrome is the most frequent toxicity associated with BsAb treatment and is caused by activated T cells secreting proinflammatory cytokines. Understanding of resistance mechanisms has resulted in the development of new T cell-redirecting formats and novel combination strategies, which are expected to further improve depth and duration of response.
Collapse
Affiliation(s)
- Niels W C J van de Donk
- Amsterdam University Medical Centres, Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands.
| | - Sonja Zweegman
- Amsterdam University Medical Centres, Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Raza A, Mohsen R, Kanbour A, Zar Gul AR, Philip A, Vijayakumar S, Hydrose S, Prabhu KS, Al-Suwaidi AK, Inchakalody VP, Merhi M, Abo El-Ella DM, Tauro MA, Akbar S, Al-Bozom I, Abualainin W, Al-Abdulla R, Sirriya SA, Hassnad S, Uddin S, Mohamed Ibrahim MI, Al Homsi U, Demime S. Serum immune mediators as novel predictors of response to anti-PD-1/PD-L1 therapy in non-small cell lung cancer patients with high tissue-PD-L1 expression. Front Immunol 2023; 14:1157100. [PMID: 37256148 PMCID: PMC10225547 DOI: 10.3389/fimmu.2023.1157100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/13/2023] [Indexed: 06/01/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related morbidity and mortality worldwide. Immune checkpoint inhibitors (ICIs) including anti-PD-1 and anti-PD-L1 antibodies, have significantly changed the treatment outcomes with better overall survival, but only 15-40% of the patients respond to ICIs therapy. The search for predictive biomarkers of responses is warranted for better clinical outcomes. We aim here to identify pre-treatment soluble immune molecules as surrogate biomarkers for tissue PD-L1 (TPD-L1) status and as predictors of response to anti-PD-1/PD-L1 therapy in NSCLC patients. Sera from 31 metastatic NSCLC patients, eligible for anti-PD-1/PD-L1 or combined chemoimmunotherapy, were collected prior to treatment. Analysis of soluble biomarkers with TPD-L1 status showed significant up/down regulation of the immune inhibitory checkpoint markers (sSiglec7, sSiglec9, sULBP4 and sPD-L2) in patients with higher TPD-L1 (TPD-L1 >50%) expression. Moreover, correlation analysis showed significant positive linear correlation of soluble PD-L1 (sPD-L1) with higher TPD-L1 expression. Interestingly, only responders in the TPD-L1 >50% group showed significant down regulation of the immune inhibitory markers (sPD-L2, sTIMD4, sNectin2 and CEA). When responders vs. non-responders were compared, significant down regulation of other immune inhibitory biomarkers (sCD80, sTIMD4 and CEA) was recorded only in responding patients. In this, the optimal cut-off values of CD80 <91.7 pg/ml and CEA <1614 pg/ml were found to be significantly associated with better progression free survival (PFS). Indeed, multivariate analysis identified the cutoff-value of CEA <1614 pg/ml as an independent predictor of response in our patients. We identified here novel immune inhibitory/stimulatory soluble mediators as potential surrogate/predictive biomarkers for TPD-L1 status, treatment response and PFS in NSCLC patients treated with anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Afsheen Raza
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Reyad Mohsen
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Aladdin Kanbour
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Rehman Zar Gul
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Anite Philip
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Suma Vijayakumar
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shereena Hydrose
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S. Prabhu
- Translational Research Institute (TRI), Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Aisha Khamis Al-Suwaidi
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Dina M. Abo El-Ella
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Shayista Akbar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Issam Al-Bozom
- Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Wafa Abualainin
- Diagnostic Genomic Division , Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Rajaa Al-Abdulla
- Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Shaza Abu Sirriya
- Diagnostic Genomic Division , Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Suparna Hassnad
- Department of Radiation Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad, Medical Corporation, Doha, Qatar
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Mohamed Izham Mohamed Ibrahim
- Clinical Pharmacy and Practice Department, College of Pharmacy, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Ussama Al Homsi
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Demime
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
8
|
Lopedote P, Shadman M. Targeted Treatment of Relapsed or Refractory Follicular Lymphoma: Focus on the Therapeutic Potential of Mosunetuzumab. Cancer Manag Res 2023; 15:257-264. [PMID: 36941881 PMCID: PMC10024536 DOI: 10.2147/cmar.s381493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Follicular lymphoma is the most common indolent non-Hodgkin's lymphoma, and because of the incurable nature of this disorder, new therapies are constantly needed. The recently approved T-cell-dependent bispecific antibody mosunetuzumab showed promising results and manageable toxicities for patients with relapsed or refractory follicular lymphoma. Namely, as opposed to cellular immunotherapy options, this agent has the potential of being effective in patients with unfavorable features with a tolerable rate and severity of cytokine release syndrome, immune effector cell-associated neurotoxicity, and infectious complications. Given the recent withdrawal from the market of PI3K inhibitors and the practical challenges in utilizing with chimeric antigen receptor T-cells (CAR-T) for some patients, mosunetuzumab represents a "breath of fresh air" for both patients and hemato-oncologists. More data are required to better define the real potential of this molecule, either alone or in combination with other agents, including antibody drug conjugates, immunomodulators, and checkpoint inhibitors. Future studies will also shed light on the efficacy of mosunetuzumab compared with CAR-T, in well-designed registries or ideally in randomized controlled trials.
Collapse
Affiliation(s)
- Paolo Lopedote
- Department of Medicine, St Elizabeth’s Medical Center, Boston, MA, USA
| | - Mazyar Shadman
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Correspondence: Mazyar Shadman, Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, WA, 98109, USA, Tel +1 206-667-5467, Email
| |
Collapse
|
9
|
Bispecific Antibodies: A Novel Approach for the Treatment of Solid Tumors. Pharmaceutics 2022; 14:pharmaceutics14112442. [PMID: 36432631 PMCID: PMC9694302 DOI: 10.3390/pharmaceutics14112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Advancement in sequencing technologies allows for the identification of molecular pathways involved in tumor progression and treatment resistance. Implementation of novel agents targeting these pathways, defined as targeted therapy, significantly improves the prognosis of cancer patients. Targeted therapy also includes the use of monoclonal antibodies (mAbs). These drugs recognize specific oncogenic proteins expressed in cancer cells. However, as with many other types of targeting agents, mAb-based therapy usually fails in the long-term control of cancer progression due to the development of resistance. In many cases, resistance is caused by the activation of alternative pathways involved in cancer progression and the development of immune evasion mechanisms. To overcome this off-target resistance, bispecific antibodies (bsAbs) were developed to simultaneously target differential oncogenic pathway components, tumor-associated antigens (TAA) and immune regulatory molecules. As a result, in the last few years, several bsAbs have been tested or are being tested in cancer patients. A few of them are currently approved for the treatment of some hematologic malignancies but no bsAbs are approved in solid tumors. In this review, we will provide an overview of the state-of-the-art of bsAbs for the treatment of solid malignancies outlining their classification, design, main technologies utilized for production, mechanisms of action, updated clinical evidence and potential limitations.
Collapse
|
10
|
Saoudi Gonzalez N, López D, Gómez D, Ros J, Baraibar I, Salva F, Tabernero J, Élez E. Pharmacokinetics and pharmacodynamics of approved monoclonal antibody therapy for colorectal cancer. Expert Opin Drug Metab Toxicol 2022; 18:755-767. [PMID: 36582117 DOI: 10.1080/17425255.2022.2160316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The introduction of monoclonal antibodies to the chemotherapy backbone treatment has challenged the paradigm of metastatic colorectal cancer (mCRC) treatment. Their mechanism of action and pharmacokinetics are complex but important to understand in order to improve patient selection and treatment outcomes for mCRC population. AREAS COVERED This review examines the scientific data, pharmacodynamics, and pharmacokinetics of approved monoclonal antibodies used to treat mCRC patients, including agents targeting signaling via VEGFR (bevacizumab and ramucirumab), EGFR (cetuximab and panitumumab), HER2/3 target therapy, and immunotherapy agents such as pembrolizumab or nivolumab. Efficacy and mechanism of action of bispecific antibodies are also covered. EXPERT OPINION mCRC is a heterogeneous disease and the optimal selection and sequence of treatments is challenging. Monoclonal antibodies have complex pharmacokinetics and pharmacodynamics, with important interactions between them. The arrival of bioequivalent molecules to the market increases the need for the characterization of pharmacokinetics and pharmacodynamics of classic monoclonal antibodies to reach bioequivalent novel molecules.
Collapse
Affiliation(s)
- Nadia Saoudi Gonzalez
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Daniel López
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Diego Gómez
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Javier Ros
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Iosune Baraibar
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Francesc Salva
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Elena Élez
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| |
Collapse
|
11
|
Long M, Mims AS, Li Z. Factors Affecting the Cancer Immunotherapeutic Efficacy of T Cell Bispecific Antibodies and Strategies for Improvement. Immunol Invest 2022; 51:2176-2214. [PMID: 36259611 DOI: 10.1080/08820139.2022.2131569] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
T-cell bispecific antibodies (T-BsAbs) are a new class of cancer immunotherapy drugs that can simultaneously bind to tumor-associated antigens on target cells and to the CD3 subunit of the T-cell receptor (TCR) on T cells. In the last decade, numerous T-BsAbs have been developed for the treatment of both hematological malignancies and solid tumors. Among them, blinatumomab has been successfully used to treat CD19 positive malignancies and has been approved by the FDA as standard care for acute lymphoblastic leukemia (ALL). However, in many clinical scenarios, the efficacy of T-BsAbs remains unsatisfactory. To further improve T-BsAb therapy, it will be crucial to better understand the factors affecting treatment efficacy and the nature of the T-BsAb-induced immune response. Herein, we first review the studies on the potential mechanisms by which T-BsAbs activate T-cells and how they elicit efficient target killing despite suboptimal costimulatory support. We focus on analyzing reports from clinical trials and preclinical studies, and summarize the factors that have been identified to impact the efficacy of T-BsAbs. Lastly, we review current and propose new approaches to improve the clinical efficacy of T-BsAbs.
Collapse
Affiliation(s)
- Meixiao Long
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
12
|
Sánchez J, Nicolini V, Fahrni L, Waldhauer I, Walz AC, Jamois C, Fowler S, Simon S, Klein C, Umaña P, Friberg L, Frances N. Preclinical InVivo Data Integrated in a Modeling Network Informs a Refined Clinical Strategy for a CD3 T-Cell Bispecific in Combination with Anti-PD-L1. AAPS J 2022; 24:106. [PMID: 36207642 DOI: 10.1208/s12248-022-00755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
TYRP1-TCB is a CD3 T-cell bispecific (CD3-TCB) antibody for the treatment of advanced melanoma. A tumor growth inhibition (TGI) model was developed using mouse xenograft data with TYRP1-TCB monotherapy or TYRP1-TCB plus anti-PD-L1 combination. The model was translated to humans to inform a refined clinical strategy. From xenograft mouse data, we estimated an EC50 of 0.345 mg/L for TYRP1-TCB, close to what was observed in vitro using the same tumor cell line. The model showed that, though increasing the dose of TYRP1-TCB in monotherapy delays the time to tumor regrowth and promotes higher tumor cell killing, it also induces a faster rate of tumor regrowth. Combination with anti-PD-L1 extended the time to tumor regrowth by 25% while also decreasing the tumor regrowth rate by 69% compared to the same dose of TYRP1-TCB alone. The model translation to humans predicts that if patients' tumors were scanned every 6 weeks, only 46% of the monotherapy responders would be detected even at a TYRP1-TCB dose resulting in exposures above the EC90. However, combination of TYRP1-TCB and anti-PD-L1 in the clinic is predicted to more than double the overall response rate (ORR), duration of response (DoR) and progression-free survival (PFS) compared to TYRP1-TCB monotherapy. As a result, it is highly recommended to consider development of CD3-TCBs as part of a combination therapy from the outset, without the need to escalate the CD3-TCB up to the Maximum Tolerated Dose (MTD) in monotherapy and without gating the combination only on RECIST-derived efficacy metrics.
Collapse
Affiliation(s)
- Javier Sánchez
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland. .,Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | - Valeria Nicolini
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Linda Fahrni
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Inja Waldhauer
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Antje-Christine Walz
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Candice Jamois
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Stephen Fowler
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Silke Simon
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Pablo Umaña
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Lena Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Nicolas Frances
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
13
|
Xu G, Luo Y, Wang H, Wang Y, Liu B, Wei J. Therapeutic bispecific antibodies against intracellular tumor antigens. Cancer Lett 2022; 538:215699. [PMID: 35487312 DOI: 10.1016/j.canlet.2022.215699] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022]
Abstract
Bispecific antibodies (BsAbs)-based therapeutics have been identified to be one of the most promising immunotherapy strategies. However, their target repertoire is mainly restricted to cell surface antigens rather than intracellular antigens, resulting in a relatively limited scope of applications. Intracellular tumor antigens are identified to account for a large proportion of tumor antigen profiles. Recently, bsAbs that target intracellular oncoproteins have raised much attention, broadening the targeting scope of tumor antigens and improving the efficacy of traditional antibody-based therapeutics. Consequently, this review will focus on this emerging field and discuss related research advances. We introduce the classification, characteristics, and clinical applications of bsAbs, the theoretical basis for targeting intracellular antigens, delivery systems of bsAbs, and the latest preclinical and clinical advances of bsAbs targeting several intracellular oncotargets, including those of cancer-testis antigens, differentiation antigens, neoantigens, and other antigens. Moreover, we summarize the limitations of current bsAbs, and propose several potential strategies against immune escape and T cell exhaustion as well as some future perspectives.
Collapse
Affiliation(s)
- Guanghui Xu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Yuting Luo
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Hanbing Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Yue Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
14
|
Thoreau F, Chudasama V. Enabling the next steps in cancer immunotherapy: from antibody-based bispecifics to multispecifics, with an evolving role for bioconjugation chemistry. RSC Chem Biol 2022; 3:140-169. [PMID: 35360884 PMCID: PMC8826860 DOI: 10.1039/d1cb00082a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
In the past two decades, immunotherapy has established itself as one of the leading strategies for cancer treatment, as illustrated by the exponentially growing number of related clinical trials. This trend was, in part, prompted by the clinical success of both immune checkpoint modulation and immune cell engagement, to restore and/or stimulate the patient's immune system's ability to fight the disease. These strategies were sustained by progress in bispecific antibody production. However, despite the decisive progress made in the treatment of cancer, toxicity and resistance are still observed in some cases. In this review, we initially provide an overview of the monoclonal and bispecific antibodies developed with the objective of restoring immune system functions to treat cancer (cancer immunotherapy), through immune checkpoint modulation, immune cell engagement or a combination of both. Their production, design strategy and impact on the clinical trial landscape are also addressed. In the second part, the concept of multispecific antibody formats, notably MuTICEMs (Multispecific Targeted Immune Cell Engagers & Modulators), as a possible answer to current immunotherapy limitations is investigated. We believe it could be the next step to take for cancer immunotherapy research and expose why bioconjugation chemistry might play a key role in these future developments.
Collapse
Affiliation(s)
- Fabien Thoreau
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
15
|
Lynch KT, Squeo GC, Kane WJ, Meneveau MO, Petroni G, Olson WC, Chianese-Bullock KA, Slingluff CL, Foley EF, Friel CM. A pilot trial of vaccination with Carcinoembryonic antigen and Her2/neu peptides in advanced colorectal cancer. Int J Cancer 2022; 150:164-173. [PMID: 34480368 DOI: 10.1002/ijc.33793] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
Checkpoint-blockade therapy (CBT) is approved for select colorectal cancer (CRC) patents, but additional immunotherapeutic options are needed. We hypothesized that vaccination with carcinoembryonic antigen (CEA) and Her2/neu (Her2) peptides would be immunogenic and well tolerated by participants with advanced CRC. A pilot clinical trial (NCT00091286) was conducted in HLA-A2+ or -A3+ Stage IIIC-IV CRC patients. Participants were vaccinated weekly with CEA and Her2 peptides plus tetanus peptide and GM-CSF emulsified in Montanide ISA-51 adjuvant for 3 weeks. Adverse events (AEs) were recorded per NIH Common Terminology Criteria for Adverse Events version 3. Immunogenicity was evaluated by interferon-gamma ELISpot assay of in vitro sensitized peripheral blood mononuclear cells and lymphocytes from the sentinel immunized node. Eleven participants were enrolled and treated; one was retrospectively found to be ineligible due to HLA type. All 11 participants were included in AEs and survival analyses, and the 10 eligible participants were evaluated for immunogenicity. All participants reported AEs: 82% were Grade 1-2, most commonly fatigue or injection site reactions. Two participants (18%) experienced treatment-related dose-limiting Grade 3 AEs; both were self-limiting. Immune responses to Her2 or CEA peptides were detected in 70% of participants. Median overall survival (OS) was 16 months; among those enrolled with no evidence of disease (n = 3), median OS was not reached after 10 years of follow-up. These data demonstrate that vaccination with CEA or Her2 peptides is well tolerated and immunogenic. Further study is warranted to assess potential clinical benefits of vaccination in advanced CRC either alone or in combination with CBT.
Collapse
Affiliation(s)
- Kevin T Lynch
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Gabriella C Squeo
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - William J Kane
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Max O Meneveau
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Gina Petroni
- Department of Public Health Sciences, University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Walter C Olson
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | | | - Craig L Slingluff
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Eugene F Foley
- Department of Surgery, University of Wisconsin, Madison, Wisconsin, USA
| | - Charles M Friel
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
16
|
Baraibar I, Mirallas O, Saoudi N, Ros J, Salvà F, Tabernero J, Élez E. Combined Treatment with Immunotherapy-Based Strategies for MSS Metastatic Colorectal Cancer. Cancers (Basel) 2021; 13:6311. [PMID: 34944931 PMCID: PMC8699573 DOI: 10.3390/cancers13246311] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, deepening knowledge of the complex interactions between the immune system and cancer cells has led to the advent of effective immunotherapies that have revolutionized the therapeutic paradigm of several cancer types. However, colorectal cancer (CRC) is one of the tumor types in which immunotherapy has proven less effective. While there is solid clinical evidence for the therapeutic role of immune checkpoint inhibitors in mismatch repair-deficient (dMMR) and in highly microsatellite instable (MSI-H) metastatic CRC (mCRC), blockade of CTLA-4 or PD-L1/PD-1 as monotherapy has not conferred any major clinical benefit to patients with MMR-proficient (pMMR) or microsatellite stable (MSS) mCRC, reflecting 95% of the CRC population. There thus remains a high unmet medical need for the development of novel immunotherapy approaches for the vast majority of patients with pMMR or MSS/MSI-low (MSI-L) mCRC. Defining the molecular mechanisms for immunogenicity in mCRC and mediating immune resistance in MSS mCRC is needed to develop predictive biomarkers and effective therapeutic combination strategies. Here we review available clinical data from combinatorial therapeutic approaches using immunotherapy-based strategies for MSS mCRC.
Collapse
Affiliation(s)
- Iosune Baraibar
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Oriol Mirallas
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
| | - Nadia Saoudi
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Javier Ros
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Francesc Salvà
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Josep Tabernero
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Elena Élez
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| |
Collapse
|
17
|
T Cell Bispecific Antibodies: An Antibody-Based Delivery System for Inducing Antitumor Immunity. Pharmaceuticals (Basel) 2021; 14:ph14111172. [PMID: 34832954 PMCID: PMC8619951 DOI: 10.3390/ph14111172] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
As a breakthrough immunotherapy, T cell bispecific antibodies (T-BsAbs) are a promising antibody therapy for various kinds of cancer. In general, T-BsAbs have dual-binding specificity to a tumor-associated antigen and a CD3 subunit forming a complex with the TCR. This enables T-BsAbs to crosslink tumor cells and T cells, inducing T cell activation and subsequent tumor cell death. Unlike immune checkpoint inhibitors, which release the brake of the immune system, T-BsAbs serve as an accelerator of T cells by stimulating their immune response via CD3 engagement. Therefore, they can actively redirect host immunity toward tumors, including T cell recruitment from the periphery to the tumor site and immunological synapse formation between tumor cells and T cells. Although the low immunogenicity of solid tumors increases the challenge of cancer immunotherapy, T-BsAbs capable of immune redirection can greatly benefit patients with such tumors. To investigate the detailed relationship between T-BsAbs delivery and their T cell redirection activity, it is necessary to determine how T-BsAbs deliver antitumor immunity to the tumor site and bring about tumor cell death. This review article discusses T-BsAb properties, specifically their pharmacokinetics, redirection of anticancer immunity, and local mechanism of action within tumor tissues, and discuss further challenges to expediting T-BsAb development.
Collapse
|
18
|
Blanco B, Domínguez-Alonso C, Alvarez-Vallina L. Bispecific Immunomodulatory Antibodies for Cancer Immunotherapy. Clin Cancer Res 2021; 27:5457-5464. [PMID: 34108185 PMCID: PMC9306338 DOI: 10.1158/1078-0432.ccr-20-3770] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/25/2021] [Accepted: 05/21/2021] [Indexed: 01/07/2023]
Abstract
The recent advances in the field of immuno-oncology have dramatically changed the therapeutic strategy against advanced malignancies. Bispecific antibody-based immunotherapies have gained momentum in preclinical and clinical investigations following the regulatory approval of the T cell-redirecting antibody blinatumomab. In this review, we focus on emerging and novel mechanisms of action of bispecific antibodies interacting with immune cells with at least one of their arms to regulate the activity of the immune system by redirecting and/or reactivating effector cells toward tumor cells. These molecules, here referred to as bispecific immunomodulatory antibodies, have the potential to improve clinical efficacy and safety profile and are envisioned as a second wave of cancer immunotherapies. Currently, there are more than 50 bispecific antibodies under clinical development for a range of indications, with promising signs of therapeutic activity. We also discuss two approaches for in vivo secretion, direct gene delivery, and infusion of ex vivo gene-modified cells, which may become instrumental for the clinical application of next-generation bispecific immunomodulatory antibodies.
Collapse
Affiliation(s)
- Belén Blanco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Carmen Domínguez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Luis Alvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain.,Corresponding Author: Luis Alvarez-Vallina, Cancer Immunotherapy Unit, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain. E-mail:
| |
Collapse
|
19
|
Al-Baradie RS. Nanobodies as versatile tools: A focus on targeted tumor therapy, tumor imaging and diagnostics. Hum Antibodies 2021; 28:259-272. [PMID: 32831197 DOI: 10.3233/hab-200425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Monoclonal antibodies and vaccines have widely been studied for the immunotherapy of cancer, though their large size appears to limit their functionality in solid tumors, in large part due to unique properties of tumor microenvironment. Smaller formats of antibodies have been developed to throw such restrictions. These small format antibodies include antigen binding fragments, single-chain variable fragments, single variable domain of camelid antibody (so-called nanobody (Nb) or VHH). Since their serendipitous discovery, nanobodies have been studies at length in the fields of research, diagnostics and therapy. These antigen binding fragments, originating from camelid heavy-chain antibodies, possess unusual hallmarks in terms of (small) size, stability, solubility and specificity, hence allowing cost-effective production and sometimes out performing monoclonal antibodies. In addition, these small camelid heavy-chain antibodies are highly adaptable tools for cancer research as they enable specific modulation of targets, enzymatic and non-enzymatic proteins alike. Molecular imaging studies benefit from the rapid, homogeneous tumor accumulation of nanobodies and their fast blood clearance, permitting previously unattainable fast tumor visualization. Moreover, they are endowed with considerable therapeutic potential as inhibitors of receptor-ligand pairs and deliverers of drugs or drug-loaded nanoparticles towards tumors. In this review, we shed light on the current status of nanobodies in diagnosis and imaging of tumor and exploiting nanobodies revert immunosuppressive events, modulation of immune checkpoints, and as deliverers of drugs for targeted tumor therapy.
Collapse
|
20
|
Neutralization of the induced VEGF-A potentiates the therapeutic effect of an anti-VEGFR2 antibody on gastric cancer in vivo. Sci Rep 2021; 11:15125. [PMID: 34302038 PMCID: PMC8302577 DOI: 10.1038/s41598-021-94584-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
The vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) axis is an essential regulator of angiogenesis and important therapeutic target in cancer. Ramucirumab is an anti-VEGFR2 monoclonal antibody used for the treatment of several cancers. Increased circulating VEGF-A levels after ramucirumab administration are associated with a worse prognosis, suggesting that excess VEGF-A induced by ramucirumab negatively affects treatment efficacy and that neutralizing VEGF-A may improve treatment outcomes. Here, we evaluated the effect of combination treatment with an anti-VEGFR2 antibody and anti-VEGF-A antibody on gastric tumor progression and normal tissues using a preclinical BALB/c-nu/nu mouse xenograft model. After anti-VEGFR2 antibody treatment in mice, a significant increase in plasma VEGF-A levels was observed, mirroring the clinical response. The elevated VEGF-A was host-derived. Anti-VEGF-A antibody co-administration enhanced the anti-tumor effect of the anti-VEGFR2-antibody without exacerbating the toxicity. Mechanistically, the combination treatment induced intra-tumor molecular changes closely related to angiogenesis inhibition and abolished the gene expression changes specifically induced by anti-VEGFR2 antibody treatment alone. We particularly identified the dual treatment-selective downregulation of ZEB1 expression, which was critical for gastric cancer cell proliferation. These data indicate that the dual blockade of VEGF-A and VEGFR2 is a rational strategy to ensure the anti-tumor effect of angiogenesis-targeting therapy.
Collapse
|
21
|
Lim SM, Pyo KH, Soo RA, Cho BC. The promise of bispecific antibodies: Clinical applications and challenges. Cancer Treat Rev 2021; 99:102240. [PMID: 34119803 DOI: 10.1016/j.ctrv.2021.102240] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
The development of cancer therapies using monoclonal antibodies has been successful during the last 30 years. Recently much progress was achieved with technologies involving bispecific and multi-specific antibodies. Bispecific antibodies (BsAbs) are antibodies that bind two distinct epitopes, and a large number of potential clinical applications of BsAbs have been described. Here we review mechanism of action, clinical development and future challenges of BsAbs which could be a serve as a valuable arsenal in cancer patients.
Collapse
Affiliation(s)
- Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore.
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
22
|
Crawford A, Chiu D. Targeting Solid Tumors Using CD3 Bispecific Antibodies. Mol Cancer Ther 2021; 20:1350-1358. [PMID: 34045228 DOI: 10.1158/1535-7163.mct-21-0073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Immunotherapies to treat cancer have made tremendous progress over the past decade. In particular, T cell-directed therapies have gained considerable attention with CD3 bispecific antibodies and CAR T cells showing potent responses against hematologic tumors. At present, the ability to adapt these therapeutics to treat solid tumors is less established. Herein, we discuss recent advances in T cell-engaging CD3 bispecific antibodies targeting solid tumors, potential mechanisms of resistance, and future prospects. A better understanding of the mechanisms of immune evasion in solid tumors will enable the development of strategies to overcome this resistance and inform choices of therapeutic combinations.
Collapse
Affiliation(s)
| | - Danica Chiu
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| |
Collapse
|
23
|
Bioassay Development for Bispecific Antibodies-Challenges and Opportunities. Int J Mol Sci 2021; 22:ijms22105350. [PMID: 34069573 PMCID: PMC8160952 DOI: 10.3390/ijms22105350] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/25/2022] Open
Abstract
Antibody therapeutics are expanding with promising clinical outcomes, and diverse formats of antibodies are further developed and available for patients of the most challenging disease areas. Bispecific antibodies (BsAbs) have several significant advantages over monospecific antibodies by engaging two antigen targets. Due to the complicated mechanism of action, diverse structural variations, and dual-target binding, developing bioassays and other types of assays to characterize BsAbs is challenging. Developing bioassays for BsAbs requires a good understanding of the mechanism of action of the molecule, principles and applications of different bioanalytical methods, and phase-appropriate considerations per regulatory guidelines. Here, we review recent advances and case studies to provide strategies and insights for bioassay development for different types of bispecific molecules.
Collapse
|
24
|
Lumish MA, Cercek A. Immunotherapy for the treatment of colorectal cancer. J Surg Oncol 2021; 123:760-774. [PMID: 33595891 DOI: 10.1002/jso.26357] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibition (ICI) has transformed the management of metastatic colorectal cancer (mCRC) with mismatch-repair deficiency (dMMR) and microsatellite instability (MSI-H), though this constitutes on average less than 5% of mCRC, and ICI is ineffective in preserved MMR/microsatellite stable disease (pMMR/MSS). Here we review the efficacy of ICI in dMMR/MSI-H mCRC, poor response to ICI in pMMR/MSS mCRC, role for ICI in locally advanced disease, biomarkers of response, novel immunotherapies, and future directions in targeting resistance mechanisms.
Collapse
Affiliation(s)
| | - Andrea Cercek
- Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
25
|
Zhu M, Wang H, Zhou S, Wei J, Ding N, Shao J, Yu L, Feng Z, Liu B. Combination Therapy with iRGD-antiCD3 and PD-1 Blockade Enhances Antitumor Potency of Cord Blood-Derived T Cells. Onco Targets Ther 2021; 14:835-844. [PMID: 33574677 PMCID: PMC7873023 DOI: 10.2147/ott.s291086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/19/2021] [Indexed: 11/23/2022] Open
Abstract
Background T cell-redirecting bispecific antibodies (BsAbs) are emerging as a potent cancer therapy that crosslinks tumor cells and T cells by simultaneously binding to tumor-associated antigen and CD3ε. However, immune inhibitory molecules can be remarkably upregulated after BsAbs treatment, leading to a suppressive tumor microenvironment and treatment resistance. This can be partially reversed by combination with immune checkpoint inhibitors. In our previous work, we successfully constructed the recombinant protein iRGD-antiCD3 and demonstrated that it promoted antitumor efficacy of transferred T cells by promoting T cell activation and infiltration. Methods We detected the levels of both PD-1 and PD-L1 as resistance to iRGD-antiCD3 treatment. Using cord blood-derived T cells, we assessed the activation and effects of iRGD-antiCD3 combined with PD-1 as evidenced by activation markers, Th1/Th2-cytokines, and killing capability against tumor cells in vitro. Moreover, to better mimic the physiological characteristics of in vivo solid tumors, we generated 3D spheroids from target cell lines. Spheroids were stained with a Viability/Cytotoxicity Assay Kit and examined by confocal microscopy to study the in vitro antitumor effect of T cells co-administered with combination iRGD-antiCD3 and PD-1 blockade. The mouse peritoneal metastatic gastric tumor model was employed. The synergistic antitumor effect and safety profiles in vivo were evaluated by tumor and body weight of tumor-bearing mice. Results We found that expression of both PD-1 and PD-L1 were increased as resistance to iRGD-antiCD3 treatment. We found that PD-1 blockade partially restored T cell activation as evidenced by elevated activation markers, Th1-cytokines, and killing capability against tumor cells in vitro. The combination of PD-1 blockade consistently and significantly increased cord blood-derived T cell cytotoxicity against 3D tumor spheroids. In vivo, we observed synergistic antitumor activity without obvious side effects. Conclusion These results demonstrated that combining iRGD-antiCD3 with PD-1 blockade could further improve antitumor efficacy of T cells, and this strategy holds great potential for the treatment of solid malignancies.
Collapse
Affiliation(s)
- Mei Zhu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210008, People's Republic of China.,The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China.,Department of Oncology, Xuzhou Cancer Hospital, Xuzhou, Jiangsu, 221005, People's Republic of China
| | - Hongmei Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210008, People's Republic of China.,The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Shujuan Zhou
- The Department of Radiation Oncology, Fudan University Shanghai Cancer Centre, Shanghai, 200032, People's Republic of China
| | - Jia Wei
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Naiqing Ding
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Jie Shao
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Zhenqing Feng
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.,Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210008, People's Republic of China.,The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China
| |
Collapse
|
26
|
Wang X, Zhang Y, Zheng J, Yao C, Lu X. LncRNA UCA1 attenuated the killing effect of cytotoxic CD8 + T cells on anaplastic thyroid carcinoma via miR-148a/PD-L1 pathway. Cancer Immunol Immunother 2021; 70:2235-2245. [PMID: 33486611 DOI: 10.1007/s00262-020-02753-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND LncRNAs play an important role in the regulation of the killing effect of cytotoxic CD8 + T cells in various cancers. However, the role and underlying mechanisms of UCA1 in the killing effect of cytotoxic CD8 + T cells in anaplastic thyroid carcinoma (ATC) are not clear. METHODS UCA1, miR-148a, and PD-L1 expression were detected by quantitative real-time PCR and/or Western blot. The ratio of PD-L1+ATC cells/ATC cells was determined using flow cytometry. The ability of CD8 + T cells to kill target ATC cells was detected by Chromium-51 (51Cr) release assay. The targeted relationship between UCA1 and miR-148a was confirmed by dual-luciferase reporter gene assay. RESULTS UCA1 and PD-L1 expression levels were elevated in ATC tissues and cells. Silencing UCA1 and PD-L1 enhanced the killing effect of cytotoxic CD8 + T cells on ATC cells. UCA1 negatively regulated the expression of miR-148a, and miR-148a targeted PD-L1 to down-regulate its expression. Besides, we found that UCA1 attenuated the killing effect of cytotoxic CD8 + T cells and reduced cytokine secretion through PD-L1 and miR-148a. Finally, silencing UCA1 or PD-L1 in ATC cells restored the suppression of the killing effect of CD8 + T cells in vivo. CONCLUSION UCA1 attenuated the killing effect of cytotoxic CD8 + T cells on ATC cells through the miR-148a/PD-L1 pathway.
Collapse
Affiliation(s)
- Xiaoming Wang
- Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China.,Key Laboratory of Thyroid Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yan Zhang
- Operation Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jian Zheng
- Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China.,Key Laboratory of Thyroid Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Cuixian Yao
- Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China.,Key Laboratory of Thyroid Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiubo Lu
- Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China. .,Key Laboratory of Thyroid Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
27
|
Middelburg J, Kemper K, Engelberts P, Labrijn AF, Schuurman J, van Hall T. Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors. Cancers (Basel) 2021; 13:287. [PMID: 33466732 PMCID: PMC7829968 DOI: 10.3390/cancers13020287] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy of cancer with CD3-bispecific antibodies is an approved therapeutic option for some hematological malignancies and is under clinical investigation for solid cancers. However, the treatment of solid tumors faces more pronounced hurdles, such as increased on-target off-tumor toxicities, sparse T-cell infiltration and impaired T-cell quality due to the presence of an immunosuppressive tumor microenvironment, which affect the safety and limit efficacy of CD3-bispecific antibody therapy. In this review, we provide a brief status update of the CD3-bispecific antibody therapy field and identify intrinsic hurdles in solid cancers. Furthermore, we describe potential combinatorial approaches to overcome these challenges in order to generate selective and more effective responses.
Collapse
Affiliation(s)
- Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Kristel Kemper
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Patrick Engelberts
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Aran F. Labrijn
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Janine Schuurman
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
28
|
Sam J, Colombetti S, Fauti T, Roller A, Biehl M, Fahrni L, Nicolini V, Perro M, Nayak T, Bommer E, Schoenle A, Karagianni M, Le Clech M, Steinhoff N, Klein C, Umaña P, Bacac M. Combination of T-Cell Bispecific Antibodies With PD-L1 Checkpoint Inhibition Elicits Superior Anti-Tumor Activity. Front Oncol 2020; 10:575737. [PMID: 33330050 PMCID: PMC7735156 DOI: 10.3389/fonc.2020.575737] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/29/2020] [Indexed: 12/31/2022] Open
Abstract
T-cell Bispecific Antibodies (TCBs) elicit anti-tumor responses by cross-linking T-cells to tumor cells and mediate polyclonal T-cell expansion that is independent of T-cell receptor specificity. TCBs thus offer great promise for patients who lack antigen-specific T-cells or have non-inflamed tumors, which are parameters known to limit the response of checkpoint inhibitors. The current study deepens the understanding of TCB mode of action and elaborates on one of the adaptive resistance mechanisms following its treatment in vivo in humanized mice and syngeneic pre-clinical tumor models. Single-agent TCB treatment reduced tumor growth compared with controls and led to a 2-10-fold increase in tumor-infiltrating T-cells, regardless of the baseline tumor immune cell infiltration. TCB treatment strongly induced the secretion of CXCL10 and increased the frequency of intra-tumor CXCR3+ T-cells pointing to the potential role of the CXCL10-CXCR3 pathway as one of the mechanisms for T-cell recruitment to tumors upon TCB treatment. Tumor-infiltrating T-cells displayed a highly activated and proliferating phenotype, resulting in the generation of a highly inflamed tumor microenvironment. A molecular signature of TCB treatment was determined (CD8, PD-1, MIP-a, CXCL10, CXCL13) to identify parameters that most robustly characterize TCB activity. Parallel to T-cell activation, TCB treatment also led to a clear upregulation of PD-1 on T-cells and PD-L1 on tumor cells and T-cells. Combining TCB treatment with anti-PD-L1 blocking antibody improved anti-tumor efficacy compared to either agent given as monotherapy, increasing the frequency of intra-tumoral T-cells. Together, the data of the current study expand our knowledge of the molecular and cellular features associated with TCB activity and provide evidence that the PD-1/PD-L1 axis is one of the adaptive resistance mechanisms associated with TCB activity. This mechanism can be managed by the combination of TCB with anti-PD-L1 blocking antibody translating into more efficacious anti-tumor activity and prolonged control of the tumor outgrowth. The elucidation of additional resistance mechanisms beyond the PD-1/PD-L1 axis will constitute an important milestone for our understanding of factors determining tumor escape and deepening of TCB anti-tumor responses in both solid tumors and hematological disorders.
Collapse
Affiliation(s)
- Johannes Sam
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Sara Colombetti
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Tanja Fauti
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Andreas Roller
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Marlene Biehl
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Linda Fahrni
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Valeria Nicolini
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Mario Perro
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Tapan Nayak
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Esther Bommer
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Anne Schoenle
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Maria Karagianni
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Marine Le Clech
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Nathalie Steinhoff
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Christian Klein
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Pablo Umaña
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Marina Bacac
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Bathula NV, Bommadevara H, Hayes JM. Nanobodies: The Future of Antibody-Based Immune Therapeutics. Cancer Biother Radiopharm 2020; 36:109-122. [PMID: 32936001 DOI: 10.1089/cbr.2020.3941] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Targeted therapy is a fast evolving treatment strategy to reduce unwanted damage to healthy tissues, while increasing efficacy and specificity. Driven by state-of-the-art technology, this therapeutic approach is especially true of cancer. Antibodies with their remarkable specificity have revolutionized therapeutic strategies for autoimmune conditions and cancer, particularly blood-borne cancers, but have severe limitations in treating solid tumors. This is mainly due to their large molecular size, low stability, tumor-tissue penetration difficulties, and pharmacokinetic properties. The tumor microenvironment, rich in immune-suppressing molecules is also a major barrier in targeting solid tumors by antibody-based drugs. Nanobodies have recently emerged as an alternative therapeutic agent to overcome some of the drawbacks of traditional antibody treatment. Nanobodies are the VHH domains found on the heavy-chain only antibodies of camelids and are the smallest naturally available antibody fragments with excellent antigen-binding specificity and affinity, equivalent to conventional antibodies but with molecular weights as low as 15 kDa. The compact size, high stability, enhanced hydrophilicity, particularly in framework regions, excellent epitope interactions with protruding CDR3 regions, and improved tissue penetration make nanobodies the next-generation therapeutics (Nano-BioDrugs). In this review, the authors discuss the interesting properties of nanobodies and their advantages over their conventional counterparts and provide insight into how nanobodies are being utilized as agonists and antagonists, bispecific constructs, and drug and enzyme-conjugates to combat the tumor microenvironment and treat disease.
Collapse
Affiliation(s)
- Nuthan V Bathula
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Hemashree Bommadevara
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Jerrard M Hayes
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Mueller R, Yasmin-Karim S, DeCosmo K, Vazquez-Pagan A, Sridhar S, Kozono D, Hesser J, Ngwa W. Increased carcinoembryonic antigen expression on the surface of lung cancer cells using gold nanoparticles during radiotherapy. Phys Med 2020; 76:236-242. [PMID: 32731132 PMCID: PMC7500560 DOI: 10.1016/j.ejmp.2020.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/09/2020] [Accepted: 06/27/2020] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Tumor-associated antigens are a promising target of immunotherapy approaches for cancer treatments but rely on sufficient expression of the target antigen. This study investigates the expression of the carcinoembryonic antigen (CEA) on the surface of irradiated lung cancer cells in vitro using gold nanoparticles as radio-enhancer. METHODS Human lung carcinoma cells A549 were irradiated and expression of CEA on the cell surface measured by flow cytometry 3 h, 24 h, and 72 h after irradiation to doses of 2 Gy, 6 Gy, 10 Gy, and 20 Gy in the presence or absence of 0.1 mg/ml or 0.5 mg/ml gold nanoparticles. CEA expression was measured as median fluorescent intensity and percentage of CEA-positive cells. RESULTS An increase in CEA expression was observed with both increasing radiation dose and time. There was doubling in median fluorescent intensity 24 h after 20 Gy irradiation and 72 h after 6 Gy irradiation. Use of gold nanoparticles resulted in additional significant increase in CEA expression. Change in cell morphology included swelling of cells and increased internal complexity in accordance with change in CEA expression. CONCLUSIONS This study showed an increase in CEA expression on human lung carcinoma cells following irradiation. Increase in expression was observed with increasing radiation dose and in a time dependent manner up to 72 h post irradiation. The results further showed that gold nanoparticles can significantly increase CEA expression following radiotherapy.
Collapse
Affiliation(s)
- Romy Mueller
- Data Analysis and Modeling in Medicine, Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, 69117 Heidelberg, Germany; Heidelberg University, 69117 Heidelberg, Germany; Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | - Sayeda Yasmin-Karim
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Kaylie DeCosmo
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Health Science, Northeastern University, Boston, MA 02115, USA
| | - Ana Vazquez-Pagan
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Srinivas Sridhar
- Harvard Medical School, Boston, MA 02115, USA; Northeastern University, Boston, MA 02115, USA
| | - David Kozono
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Juergen Hesser
- Data Analysis and Modeling in Medicine, Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, 69117 Heidelberg, Germany; Heidelberg University, 69117 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany; Central Institute for Computer Engineering (ZITI), Heidelberg University, 68159 Mannheim, Germany
| | - Wilfred Ngwa
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
31
|
Janssen E, Subtil B, de la Jara Ortiz F, Verheul HMW, Tauriello DVF. Combinatorial Immunotherapies for Metastatic Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12071875. [PMID: 32664619 PMCID: PMC7408881 DOI: 10.3390/cancers12071875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent and deadly forms of cancer. About half of patients are affected by metastasis, with the cancer spreading to e.g., liver, lungs or the peritoneum. The majority of these patients cannot be cured despite steady advances in treatment options. Immunotherapies are currently not widely applicable for this disease, yet show potential in preclinical models and clinical translation. The tumour microenvironment (TME) has emerged as a key factor in CRC metastasis, including by means of immune evasion-forming a major barrier to effective immuno-oncology. Several approaches are in development that aim to overcome the immunosuppressive environment and boost anti-tumour immunity. Among them are vaccination strategies, cellular transplantation therapies, and targeted treatments. Given the complexity of the system, we argue for rational design of combinatorial therapies and consider the implications of precision medicine in this context.
Collapse
Affiliation(s)
- Eline Janssen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; (E.J.); (B.S.); (F.d.l.J.O.)
| | - Beatriz Subtil
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; (E.J.); (B.S.); (F.d.l.J.O.)
| | - Fàtima de la Jara Ortiz
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; (E.J.); (B.S.); (F.d.l.J.O.)
| | - Henk M. W. Verheul
- Department of Medical Oncology, Radboud University Medical Center, PO Box 9101, 6500 HBNijmegen, The Netherlands;
| | - Daniele V. F. Tauriello
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; (E.J.); (B.S.); (F.d.l.J.O.)
- Correspondence:
| |
Collapse
|
32
|
Hipp S, Voynov V, Drobits-Handl B, Giragossian C, Trapani F, Nixon AE, Scheer JM, Adam PJ. A Bispecific DLL3/CD3 IgG-Like T-Cell Engaging Antibody Induces Antitumor Responses in Small Cell Lung Cancer. Clin Cancer Res 2020; 26:5258-5268. [PMID: 32554516 DOI: 10.1158/1078-0432.ccr-20-0926] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/12/2020] [Accepted: 06/15/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Small cell lung cancer (SCLC) is the most lethal and aggressive subtype of lung carcinoma characterized by highly chemotherapy-resistant recurrence in the majority of patients. To effectively treat SCLC, we have developed a unique and novel IgG-like T-cell engaging bispecific antibody (ITE) that potently redirects T-cells to specifically lyse SCLC cells expressing Delta-like ligand 3 (DLL3), an antigen that is frequently expressed on the cell surface of SCLC cells, with no to very little detectable expression in normal tissues. EXPERIMENTAL DESIGN The antitumor activity and mode of action of DLL3/CD3 ITE was evaluated in vitro using SCLC cell lines and primary human effector cells and in vivo in an SCLC xenograft model reconstituted with human CD3+ T-cells. RESULTS Selective binding of DLL3/CD3 ITE to DLL3-positive tumor cells and T-cells induces formation of an immunological synapse resulting in tumor cell lysis and activation of T-cells. In a human T-cell engrafted xenograft model, the DLL3/CD3 ITE leads to an increase in infiltration of T-cells into the tumor tissue resulting in apoptosis of the tumor cells and tumor regression. Consistent with the mode of action, the DLL3/CD3 ITE treatment led to upregulation of PD-1, PD-L1, and LAG-3. CONCLUSIONS This study highlights the ability of the DLL3/CD3 ITE to induce strictly DLL3-dependent T-cell redirected lysis of tumor cells and recruitment of T-cells into noninflamed tumor tissues leading to tumor regression in a preclinical in vivo model. These data support clinical testing of the DLL3/CD3 ITE in patients with SCLC.
Collapse
Affiliation(s)
- Susanne Hipp
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut.
| | - Vladimir Voynov
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Connecticut
| | - Barbara Drobits-Handl
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Pharmacology and Disease Positioning, Vienna, Austria
| | - Craig Giragossian
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Connecticut
| | - Francesca Trapani
- Boehringer Ingelheim RCV, GmbH & Co KG., Oncology Translational Science, Vienna, Austria
| | - Andrew E Nixon
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Connecticut
| | - Justin M Scheer
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Connecticut
| | - Paul J Adam
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| |
Collapse
|
33
|
Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics. Cell Mol Immunol 2020; 17:451-461. [PMID: 32313210 DOI: 10.1038/s41423-020-0417-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Bispecific antibodies (bsAbs) refer to a large family of molecules that recognize two different epitopes or antigens. Although a series of challenges, especially immunogenicity and chain mispairing issues, once hindered the development of bsAbs, they have been gradually overcome with the help of rapidly developing technologies in the past 5 decades. In the meantime, an increasing number of bsAb platforms have been designed to satisfy different clinical demands. Currently, numerous preclinical and clinical trials are underway, portraying a promising future for bsAb-based cancer treatment. Nevertheless, bsAb drugs still face enormous challenges in their application as cancer therapeutics, including tumor heterogeneity and mutational burden, intractable tumor microenvironment (TME), insufficient costimulatory signals to activate T cells, the necessity for continuous injection, fatal systemic side effects, and off-target toxicities to adjacent normal cells. Therefore, we provide several strategies as solutions to these issues, which comprise generating multispecific bsAbs, discovering neoantigens, combining bsAbs with other anticancer therapies, exploiting natural killer (NK)-cell-based bsAbs and producing bsAbs in situ. In this review, we mainly discuss previous and current challenges in bsAb development and underscore corresponding strategies, with a brief introduction of several typical bsAb formats.
Collapse
|
34
|
Kreidieh M, Mukherji D, Temraz S, Shamseddine A. Expanding the Scope of Immunotherapy in Colorectal Cancer: Current Clinical Approaches and Future Directions. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9037217. [PMID: 32090113 PMCID: PMC7008242 DOI: 10.1155/2020/9037217] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022]
Abstract
The success of immune checkpoint inhibitors (ICIs) in an increasing range of heavily mutated tumor types such as melanoma has culminated in their exploration in different subsets of patients with metastatic colorectal cancer (mCRC). As a result of their dramatic and durable response rates in patients with chemorefractory, mismatch repair-deficient-microsatellite instability-high (dMMR-MSI-H) mCRC, ICIs have become potential alternatives to classical systemic therapies. The anti-programmed death-1 (PD-1) agents, Pembrolizumab and Nivolumab, have been granted FDA approval for this subset of patients. Unfortunately, however, not all CRC cases with the dMMR-MSI-H phenotype respond well to ICIs, and ongoing studies are currently exploring biomarkers that can predict good response to them. Another challenge lies in developing novel treatment strategies for the subset of patients with the mismatch repair-proficient-microsatellite instability-low (pMMR-MSI-L) phenotype that comprises 95% of all mCRC cases in whom treatment with currently approved ICIs has been largely unsuccessful. Approaches aiming at overcoming the resistance of tumors in this subset of patients are being developed including combining different checkpoint inhibitors with either chemotherapy, anti-angiogenic agents, cancer vaccines, adoptive cell transfer (ACT), or bispecific T-cell (BTC) antibodies. This review describes the rationale behind using immunotherapeutics in CRC. It sheds light on the progress made in the use of immunotherapy in the treatment of patients with dMMR-MSI-H CRC. It also discusses emerging approaches and proposes potential strategies for targeting the immune microenvironment in patients with pMMR-MSI-L CRC tumors in an attempt to complement immune checkpoint inhibition.
Collapse
Affiliation(s)
- Malek Kreidieh
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Deborah Mukherji
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Sally Temraz
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Shamseddine
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
35
|
Kujawski M, Li L, Bhattacharya S, Wong P, Lee WH, Williams L, Li H, Chea J, Poku K, Bowles N, Vaidehi N, Yazaki P, Shively JE. Generation of dual specific bivalent BiTEs (dbBIspecific T-cell engaging antibodies) for cellular immunotherapy. BMC Cancer 2019; 19:882. [PMID: 31488104 PMCID: PMC6727398 DOI: 10.1186/s12885-019-6056-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/19/2019] [Indexed: 01/12/2023] Open
Abstract
Background Bispecific T-cell engaging antibodies (BiTES), comprising dual anti-CD3 and anti-tumor antigen scFv fragments, are important therapeutic agents for the treatment of cancer. The dual scFv construct for BiTES requires proper protein folding while their small molecular size leads to rapid kidney clearance. Methods An intact (150 kDa) anti-tumor antigen antibody to CEA was joined in high yield (ca. 30%) to intact (150 kDa) anti-murine and anti-human CD3 antibodies using hinge region specific Click chemistry to form dual-specific, bivalent BiTES (dbBiTES, 300 kDa). dbBiTEs were tested in vitro by EM, flow cytometry and cell cytoxicity and in vivo by PET tumor imaging and redirected T-cell therapy. Results The interlocked hinge regions are compatible with a structural model that fits the electron micrographs of 300 kDa particles. Compared to intact anti-CEA antibody, dbBiTES exhibit high in vitro cytotoxicity, high in vivo tumor targeting as demonstrated by PET imaging, and redirected dbBiTE coated T-cells (1 microgram/10 million cells) that kill CEA+ target cells in vivo in CEA transgenic mice. Conclusion dbBiTE redirected T-cell therapy is a promising, efficient approach for targeting and killing cancer cells. Electronic supplementary material The online version of this article (10.1186/s12885-019-6056-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maciej Kujawski
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Lin Li
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Patty Wong
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Wen-Hui Lee
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Lindsay Williams
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Harry Li
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Junie Chea
- Radiopharmacy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Kofi Poku
- Radiopharmacy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Nicole Bowles
- Radiopharmacy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Paul Yazaki
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - John E Shively
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
36
|
Kim A, Han CJ, Driver I, Olow A, Sewell AK, Zhang Z, Ouyang W, Egen JG, Yu X. LILRB1 Blockade Enhances Bispecific T Cell Engager Antibody-Induced Tumor Cell Killing by Effector CD8 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1076-1087. [PMID: 31253728 PMCID: PMC6680066 DOI: 10.4049/jimmunol.1801472] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
Elicitation of tumor cell killing by CD8+ T cells is an effective therapeutic approach for cancer. In addition to using immune checkpoint blockade to reinvigorate existing but unresponsive tumor-specific T cells, alternative therapeutic approaches have been developed, including stimulation of polyclonal T cell cytolytic activity against tumors using bispecific T cell engager (BiTE) molecules that simultaneously engage the TCR complex and a tumor-associated Ag. BiTE molecules are efficacious against hematologic tumors and are currently being explored as an immunotherapy for solid tumors. To understand mechanisms regulating BiTE molecule--mediated CD8+ T cell activity against solid tumors, we sought to define human CD8+ T cell populations that efficiently respond to BiTE molecule stimulation and identify factors regulating their cytolytic activity. We find that human CD45RA+CCR7- CD8+ T cells are highly responsive to BiTE molecule stimulation, are enriched in genes associated with cytolytic effector function, and express multiple unique inhibitory receptors, including leukocyte Ig-like receptor B1 (LILRB1). LILRB1 and programmed cell death protein 1 (PD1) were found to be expressed by distinct CD8+ T cell populations, suggesting different roles in regulating the antitumor response. Engaging LILRB1 with its ligand HLA-G on tumor cells significantly inhibited BiTE molecule-induced CD8+ T cell activation. Blockades of LILRB1 and PD1 induced greater CD8+ T cell activation than either treatment alone. Together, our data suggest that LILRB1 functions as a negative regulator of human CD8+ effector T cells and that blocking LILRB1 represents a unique strategy to enhance BiTE molecule therapeutic activity against solid tumors.
Collapse
Affiliation(s)
- Aeryon Kim
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA 94080
| | - Chia-Jung Han
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA 94080
| | - Ian Driver
- Genome Analysis Unit, Amgen Research, Amgen Inc., South San Francisco, CA 94080
| | - Aleksandra Olow
- Research Informatics, Amgen Research, Amgen Inc., South San Francisco, CA 94080
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; and
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenjun Ouyang
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA 94080
| | - Jackson G Egen
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA 94080
| | - Xin Yu
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA 94080;
| |
Collapse
|
37
|
Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 2019; 18:585-608. [DOI: 10.1038/s41573-019-0028-1] [Citation(s) in RCA: 493] [Impact Index Per Article: 98.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Yang Y, Zhang X, Lin F, Xiong M, Fan D, Yuan X, Lu Y, Song Y, Zhang Y, Hao M, Ye Z, Zhang Y, Wang J, Xiong D. Bispecific CD3-HAC carried by E1A-engineered mesenchymal stromal cells against metastatic breast cancer by blocking PD-L1 and activating T cells. J Hematol Oncol 2019; 12:46. [PMID: 31023384 PMCID: PMC6482514 DOI: 10.1186/s13045-019-0723-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Background PD-1/PD-L1 blockade can confer durable benefits in the treatment of metastatic cancers, but the response rate remains modest and potential adverse effects occur sometimes. Concentrating immunotherapeutic agents at the site of disease was believed to break local immune tolerance and reduce systemic toxicity. E1A-engineered mesenchymal stromal cell (MSC.E1A) was an attractive transfer system that preferentially homing and treating cancer metastasis, through which the tumor cells were modified by locally replicated adenoviruses to release CD3-HAC, a bifunctional fusion protein that anti-CD3 scfv linked with high-affinity consensus (HAC) PD-1. Subsequently, CD3-HAC, wbich was bound on PD-L1-positive breast cancer cells, recruited T cells to exhibit a potent antitumor immunity incombination with immune checkpoint blockade. Methods We constructed the CD3-HAC gene driven by human telomerase reverse transcriptase (hTERT) promoter into an adenoviral vector and the E1A gene into the lentiviral vector. The homing property of MSCs in vivo was analyzed with firefly luciferase-labeled MSCs (MSC.Luc) by bioluminescent imaging (BLI). The cytotoxicity of T cells induced by CD3-HAC towards PD-L1-positive cells was detected in vitro and in vivo in combination with 5-FU. Results Our data suggest that CD3-HAC could specifically bind to PD-L1-positive tumor cells and induce lymphocyte-mediated lysis effectively both in vitro and in vivo. The intervention with HAC diminished the effects of PD-1/PD-L1 axis on T cells exposed to MDA-MB-231 cells and increased lymphocytes activation. MSCs infected by AdCD3-HAC followed by LentiR.E1A could specially migrate to metastasis of breast cancer and produce adenoviruses in the tumor sites. Furthermore, treatment with MSC.CD3-HAC.E1A in combination with 5-FU significantly inhibited the tumor growth in mice. Conclusions This adenovirus-loaded MSC.E1A system provides a promising strategy for the identification and elimination of metastasis with locally released immuno-modulator. Electronic supplementary material The online version of this article (10.1186/s13045-019-0723-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuanyuan Yang
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300020, People's Republic of China
| | - Xiaolong Zhang
- Department of Pharmacy, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Fangzhen Lin
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300020, People's Republic of China
| | - Mengshang Xiong
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300020, People's Republic of China
| | - Dongmei Fan
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300020, People's Republic of China
| | - Xiangfei Yuan
- Tianjin Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, People's Republic of China
| | - Yang Lu
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300020, People's Republic of China
| | - Yuewen Song
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300020, People's Republic of China
| | - Yizi Zhang
- Central Hospital of Karamay, Karamay, Xinjiang, 834000, People's Republic of China
| | - Mu Hao
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300020, People's Republic of China
| | - Zhou Ye
- Central Hospital of Karamay, Karamay, Xinjiang, 834000, People's Republic of China.
| | - Yanjun Zhang
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300020, People's Republic of China.
| | - Jianxiang Wang
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300020, People's Republic of China.
| | - Dongsheng Xiong
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300020, People's Republic of China.
| |
Collapse
|
39
|
Suurs FV, Lub-de Hooge MN, de Vries EGE, de Groot DJA. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol Ther 2019; 201:103-119. [PMID: 31028837 DOI: 10.1016/j.pharmthera.2019.04.006] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/27/2019] [Indexed: 01/06/2023]
Abstract
Bispecific antibodies (bsAbs) are antibodies that bind two distinct epitopes to cancer.. For use in oncology, one bsAb has been approved and 57 bsAbs are in clinical trials, none of which has reached phase 3. These bsAbs show great variability in design and mechanism of action. The various designs are often linked to the mechanisms of actions. The majority of bsAbs engage immune cells to destroy tumor cells. However, some bsAbs are also used to deliver payloads to tumors or to block tumor signaling pathways. This review provides insight into the choice of construct for bsAbs, summarizes the clinical development of bsAbs in oncology and identifies subsequent challenges.
Collapse
Affiliation(s)
- Frans V Suurs
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Derk Jan A de Groot
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
40
|
Bai Y, Hui P, Du X, Su X. Updates to the antitumor mechanism of oncolytic virus. Thorac Cancer 2019; 10:1031-1035. [PMID: 30900824 PMCID: PMC6501037 DOI: 10.1111/1759-7714.13043] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 02/24/2019] [Accepted: 02/24/2019] [Indexed: 12/24/2022] Open
Abstract
Oncolytic viruses (OVs) are promising new therapeutic agents in the field of malignant tumor treatment. OVs can achieve the goal of targeted therapy by selectively killing tumor cells and inducing specific antitumor immunity. The key roles of OVs are tumor targeting and tumor killing mechanisms. Recently, molecular biotechnology has been used to optimize the transformation of wild virus strains in order to ensure a stronger oncolytic effect and lower adverse reactions, to enable testing in clinical trials as an antitumor drug. The main purpose of this review is to provide a description of oncolytic mechanisms, clinical studies, combination therapies, current challenges, and future prospects of OVs.
Collapse
Affiliation(s)
- Yang Bai
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Peng Hui
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyu Du
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Xing Su
- The Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Khair DO, Bax HJ, Mele S, Crescioli S, Pellizzari G, Khiabany A, Nakamura M, Harris RJ, French E, Hoffmann RM, Williams IP, Cheung A, Thair B, Beales CT, Touizer E, Signell AW, Tasnova NL, Spicer JF, Josephs DH, Geh JL, MacKenzie Ross A, Healy C, Papa S, Lacy KE, Karagiannis SN. Combining Immune Checkpoint Inhibitors: Established and Emerging Targets and Strategies to Improve Outcomes in Melanoma. Front Immunol 2019; 10:453. [PMID: 30941125 PMCID: PMC6435047 DOI: 10.3389/fimmu.2019.00453] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
The immune system employs several checkpoint pathways to regulate responses, maintain homeostasis and prevent self-reactivity and autoimmunity. Tumor cells can hijack these protective mechanisms to enable immune escape, cancer survival and proliferation. Blocking antibodies, designed to interfere with checkpoint molecules CTLA-4 and PD-1/PD-L1 and counteract these immune suppressive mechanisms, have shown significant success in promoting immune responses against cancer and can result in tumor regression in many patients. While inhibitors to CTLA-4 and the PD-1/PD-L1 axis are well-established for the clinical management of melanoma, many patients do not respond or develop resistance to these interventions. Concerted efforts have focused on combinations of approved therapies aiming to further augment positive outcomes and survival. While CTLA-4 and PD-1 are the most-extensively researched targets, results from pre-clinical studies and clinical trials indicate that novel agents, specific for checkpoints such as A2AR, LAG-3, IDO and others, may further contribute to the improvement of patient outcomes, most likely in combinations with anti-CTLA-4 or anti-PD-1 blockade. This review discusses the rationale for, and results to date of, the development of inhibitory immune checkpoint blockade combination therapies in melanoma. The clinical potential of new pipeline therapeutics, and possible future therapy design and directions that hold promise to significantly improve clinical prognosis compared with monotherapy, are discussed.
Collapse
Affiliation(s)
- Duaa O. Khair
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Heather J. Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Silvia Mele
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Giulia Pellizzari
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Atousa Khiabany
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Mano Nakamura
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | | | - Elise French
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Ricarda M. Hoffmann
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Iwan P. Williams
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, United Kingdom
| | - Benjamin Thair
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Charlie T. Beales
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Emma Touizer
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Adrian W. Signell
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Nahrin L. Tasnova
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - James F. Spicer
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Debra H. Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Jenny L. Geh
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Alastair MacKenzie Ross
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Ciaran Healy
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Sophie Papa
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Katie E. Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Sophia N. Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| |
Collapse
|
42
|
Yaghoubi N, Soltani A, Ghazvini K, Hassanian SM, Hashemy SI. PD-1/ PD-L1 blockade as a novel treatment for colorectal cancer. Biomed Pharmacother 2019; 110:312-318. [DOI: 10.1016/j.biopha.2018.11.105] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/10/2018] [Accepted: 11/25/2018] [Indexed: 12/14/2022] Open
|
43
|
Hou W, Yuan Q, Yuan X, Wang Y, Mo W, Wang H, Yu M. A novel tetravalent bispecific antibody targeting programmed death 1 and tyrosine-protein kinase Met for treatment of gastric cancer. Invest New Drugs 2018; 37:876-889. [PMID: 30511201 DOI: 10.1007/s10637-018-0689-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022]
Abstract
Background Redirecting T cells to tumor cells using bispecific antibodies (BsAbs) is emerging as a potent cancer therapy. The main concept of this strategy is to cross-link tumor cells and T cells by simultaneously binding to cell surface tumor-associated antigen (TAA) and the CD3ƹ chain. However, immune checkpoint programmed cell death ligand-1 (PD-L1) on tumor cells or other myeloid cells upreglulated remarkablely after the treatment of CD3-binding BsAbs, leads to the generation of suppressed microenvironment for immune evasion and tumor progression. Although this resistance could be partially reversed by anti-PD-L1 treatment, targeting two pathways through one antibody-based molecule may provide a strategic advantage over the combination of BsAbs and immune checkpoint inhibitors. Methods We developed two novel BsAbs PD-1/c-Met DVD-Ig and IgG-scFv both targeting PD-1 to restore the immune effector function of T cells and engaging them to tumor cells via binding to cellular-mesenchymal to epithelial transition factor (c-Met). Binding activities, T cell activation and proliferation were analyzed by flow cytometry. Cell Cytotoxicity and cytokine release were measured using LDH release assay and ELISA, respectively. Anti-tumor response in vivo was evaluated by generate xenograft models in NOD-SCID mice. Results These bispecific antibodies exhibited effective antitumor activity against high- and low- c-Met-expressing gastric cancer cell lines in vitro and mediated strong tumor growth inhibition in human gastric cancer xenograft models. Conclusion The engagement of the PD-1/PD-L1 blockade to c-Met-overexpressing cancer cells is a promising strategy for the treatment of gastric cancer and potentially other malignancies.
Collapse
Affiliation(s)
- Weihua Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, P.O. Box #238 No. 138 Yi Xue Yuan Road, Shanghai, China
| | - Qingyun Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, P.O. Box #238 No. 138 Yi Xue Yuan Road, Shanghai, China
| | - Xingxing Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, P.O. Box #238 No. 138 Yi Xue Yuan Road, Shanghai, China
| | - Yuxiong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, P.O. Box #238 No. 138 Yi Xue Yuan Road, Shanghai, China
| | - Wei Mo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, P.O. Box #238 No. 138 Yi Xue Yuan Road, Shanghai, China
| | - Huijie Wang
- Department of Medical Oncology, Shanghai Cancer Center, School of Basic Medicine, Fudan University, P.O. Box #238 No. 138 Yi Xue Yuan Road, Shanghai, China.
| | - Min Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, P.O. Box #238 No. 138 Yi Xue Yuan Road, Shanghai, China.
| |
Collapse
|
44
|
Overman MJ, Ernstoff MS, Morse MA. Where We Stand With Immunotherapy in Colorectal Cancer: Deficient Mismatch Repair, Proficient Mismatch Repair, and Toxicity Management. Am Soc Clin Oncol Educ Book 2018; 38:239-247. [PMID: 30231358 DOI: 10.1200/edbk_200821] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
With the recent U.S. Food and Drug Administration approvals of pembrolizumab and nivolumab for refractory deficient mismatch repair metastatic colorectal cancer, immune checkpoint inhibitors have now entered into clinical care for gastrointestinal cancers. Extensive ongoing efforts are exploring additional combinations of therapy in both deficient and proficient mismatch repair colorectal cancer. This review will outline the current status of such efforts and discuss the critical aspects of recognition and management of immune-related toxicities from checkpoint inhibitors.
Collapse
Affiliation(s)
- Michael J Overman
- From the Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Roswell Park Cancer Center, Buffalo, NY, Division of Hematology Oncology, Department of Medicine, University of Buffalo, Buffalo, NY; Department of Medicine, Duke University Medical Center, Durham, NC
| | - Marc S Ernstoff
- From the Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Roswell Park Cancer Center, Buffalo, NY, Division of Hematology Oncology, Department of Medicine, University of Buffalo, Buffalo, NY; Department of Medicine, Duke University Medical Center, Durham, NC
| | - Michael A Morse
- From the Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Roswell Park Cancer Center, Buffalo, NY, Division of Hematology Oncology, Department of Medicine, University of Buffalo, Buffalo, NY; Department of Medicine, Duke University Medical Center, Durham, NC
| |
Collapse
|
45
|
Fabozzi G, Pegu A, Koup RA, Petrovas C. Bispecific antibodies: Potential immunotherapies for HIV treatment. Methods 2018; 154:118-124. [PMID: 30352254 DOI: 10.1016/j.ymeth.2018.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Bispecific (bs) antibodies (Abs, bsAbs) are engineered immunoglobulins that contain two different antigen-binding sites in one molecule. bsAbs can be divided in two molecular formats; the IgG-like and non-IgG like. The structural elements of each format have implications for engaging the immune system. Elimination of HIV will need sophisticated approaches with immunotherapies being one of the strategies under investigation. Furthermore, HIV genetic variability and functional compromise of the adaptive CTL response complicate the potential usefulness of some immunotherapeutic strategies. Inclusion of novel HIV neutralizing Abs with high potency and breadth as components of bsAbs could represent alternative strategies for virus elimination by harnessing the adaptive immune response in vivo.
Collapse
|
46
|
Kobold S, Pantelyushin S, Rataj F, Vom Berg J. Rationale for Combining Bispecific T Cell Activating Antibodies With Checkpoint Blockade for Cancer Therapy. Front Oncol 2018; 8:285. [PMID: 30090763 PMCID: PMC6068270 DOI: 10.3389/fonc.2018.00285] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022] Open
Abstract
T cells have been established as core effectors for cancer therapy; this has moved the focus of therapeutic endeavors to effectively enhance or restore T cell tumoricidal activity rather than directly target cancer cells. Both antibodies targeting the checkpoint inhibitory molecules programmed death receptor 1 (PD1), PD-ligand 1 (PD-L1) and cytotoxic lymphocyte activated antigen 4 (CTLA4), as well as bispecific antibodies targeting CD3 and CD19 are now part of the standard of care. In particular, antibodies to checkpoint molecules have gained broad approval in a number of solid tumor indications, such as melanoma or non-small cell lung cancer based on their unparalleled efficacy. In contrast, the efficacy of bispecific antibody-derivatives is much more limited and evidence is emerging that their activity is regulated through diverse checkpoint molecules. In either case, both types of compounds have their limitations and most patients will not benefit from them in the long run. A major aspect under investigation is the lack of baseline antigen-specific T cells in certain patient groups, which is thought to render responses to checkpoint inhibition less likely. On the other hand, bispecific antibodies are also restricted by induced T cell anergy. Based on these considerations, combination of bispecific antibody mediated on-target T cell activation and reversal of anergy bears high promise. Here, we will review current evidence for such combinatorial approaches, as well as ongoing clinical investigations in this area. We will also discuss potential evidence-driven future avenues for testing.
Collapse
Affiliation(s)
- Sebastian Kobold
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | | | - Felicitas Rataj
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Waaijer SJH, Warnders FJ, Stienen S, Friedrich M, Sternjak A, Cheung HK, van Scheltinga AGTT, Schröder CP, de Vries EGE, Lub-de Hooge MN. Molecular Imaging of Radiolabeled Bispecific T-Cell Engager 89Zr-AMG211 Targeting CEA-Positive Tumors. Clin Cancer Res 2018; 24:4988-4996. [PMID: 29980531 DOI: 10.1158/1078-0432.ccr-18-0786] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/28/2018] [Accepted: 07/02/2018] [Indexed: 01/10/2023]
Abstract
Purpose: AMG 211, a bispecific T-cell engager (BiTE) antibody construct, targets carcinoembryonic antigen (CEA) and the CD3 epsilon subunit of the human T-cell receptor. AMG 211 was labeled with zirconium-89 (89Zr) or fluorescent dye to evaluate the tumor-targeting properties.Experimental Design: 89Zr-AMG211 was administered to mice bearing CEA-positive xenograft tumors of LS174T colorectal adenocarcinoma or BT474 breast cancer cells, as well as CEA-negative HL-60 promyelocytic leukemia xenografts. Biodistribution studies with 2- to 10-μg 89Zr-AMG211 supplemented with unlabeled AMG 211 up to 500-μg protein dose were performed. A BiTE that does not bind CEA, 89Zr-Mec14, served as a negative control. 89Zr-AMG211 integrity was determined in tumor lysates ex vivo Intratumoral distribution was studied with IRDye800CW-AMG211. Moreover, 89Zr-AMG211 was manufactured according to Good Manufacturing Practice (GMP) guidelines for clinical trial NCT02760199Results: 89Zr-AMG211 demonstrated dose-dependent tumor uptake at 6 hours. The highest tumor uptake was observed with a 2-μg dose, and the lowest tumor uptake was observed with a 500-μg dose. After 24 hours, higher uptake of 10-μg 89Zr-AMG211 occurred in CEA-positive xenografts, compared with CEA-negative xenografts. Although the blood half-life of 89Zr-AMG211 was approximately 1 hour, tumor retention persisted for at least 24 hours. 89Zr-Mec14 showed no tumor accumulation beyond background level. Ex vivo autoradiography revealed time-dependent disintegration of 89Zr-AMG211. 800CW-AMG211 was specifically localized in CEA-expressing viable tumor tissue. GMP-manufactured 89Zr-AMG211 fulfilled release specifications.Conclusions: 89Zr-AMG211 showed dose-dependent CEA-specific tumor targeting and localization in viable tumor tissue. Our data enabled its use to clinically evaluate AMG 211 in vivo behavior. Clin Cancer Res; 24(20); 4988-96. ©2018 AACR.
Collapse
Affiliation(s)
- Stijn J H Waaijer
- Department of Medical Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Frank J Warnders
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | | | | | | | - Carolien P Schröder
- Department of Medical Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
48
|
Xu JW, Wang L, Cheng YG, Zhang GY, Hu SY, Zhou B, Zhan HX. Immunotherapy for pancreatic cancer: A long and hopeful journey. Cancer Lett 2018; 425:143-151. [PMID: 29605510 DOI: 10.1016/j.canlet.2018.03.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/28/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Multiple therapeutic strategies have been developed to treat pancreatic cancer. However, the outcomes of these approaches are disappointing. Due to deeper understandings of the pivotal roles of the immune system in pancreatic cancer tumorigenesis and progression, novel therapeutic strategies based on immune cells and the tumor microenvironment are being investigated. Some of these approaches, such as checkpoint inhibitors, chimeric antigen receptor T-cell therapy, and BiTE antibodies, have achieved exciting outcomes in preclinical and clinical trials. The current review describes the roles of immune cells and the immunosuppressive microenvironment in the development of pancreatic cancer, as well as the preclinical and clinical outcomes and benefits of recent immunotherapeutic approaches, which may help us further disclose the mechanisms of pancreatic cancer progression and the dialectical views of feasibility and effectiveness of immunotherapy in treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jian-Wei Xu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Lei Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Yu-Gang Cheng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Guang-Yong Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - San-Yuan Hu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Bin Zhou
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China.
| | - Han-Xiang Zhan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
49
|
Pan H, Liu J, Deng W, Xing J, Li Q, Wang Z. Site-specific PEGylation of an anti-CEA/CD3 bispecific antibody improves its antitumor efficacy. Int J Nanomedicine 2018; 13:3189-3201. [PMID: 29881272 PMCID: PMC5985803 DOI: 10.2147/ijn.s164542] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction Bispecific antibodies that engage immune cells to kill cancer cells are actively pursued in cancer immunotherapy. Different types of bispecific antibodies, including single-chain fragments, Fab fragments, nanobodies, and immunoglobulin Gs (IgGs), have been studied. However, the low molecular weight of bispecific antibodies with single-chain or Fab fragments generally leads to their rapid clearance in vivo, which limits the therapeutic potential of these bispecific antibodies. Materials and methods In this study, we used a site-specific PEGylation strategy to modify the bispecific single-domain antibody-linked Fab (S-Fab), which was designed by linking an anticarcinoembryonic antigen (anti-CEA) nanobody with an anti-CD3 Fab. Results The half-life (t1/2) of PEGylated S-Fab (polyethylene glycol-S-Fab) was increased 12-fold in vivo with a slightly decreased tumor cell cytotoxicity in vitro as well as more potent tumor growth inhibition in vivo compared to S-Fab. Conclusion This study demonstrated that PEGylation is an effective approach to enhance the antitumor efficacy of bispecific antibodies.
Collapse
Affiliation(s)
- Haitao Pan
- School of Pharmaceutical Sciences.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jiayu Liu
- School of Pharmaceutical Sciences.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wentong Deng
- School of Pharmaceutical Sciences.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jieyu Xing
- School of Pharmaceutical Sciences.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Qing Li
- School of Pharmaceutical Sciences.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhong Wang
- School of Pharmaceutical Sciences.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
50
|
Lin L, Li L, Zhou C, Li J, Liu J, Shu R, Dong B, Li Q, Wang Z. A HER2 bispecific antibody can be efficiently expressed in Escherichia coli with potent cytotoxicity. Oncol Lett 2018; 16:1259-1266. [PMID: 29963199 DOI: 10.3892/ol.2018.8698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 03/07/2018] [Indexed: 12/26/2022] Open
Abstract
Bispecific antibodies have been actively studied for cancer therapy due to their potent cytotoxicity against tumor cells. A number of bispecific antibody formats have exhibited strong tumor cytotoxicity in vitro and in vivo. However, effective production of bispecific antibodies remains challenging for the majority of bispecific antibody formats. In the present study, a bispecific antibody was designed that links a conventional antigen-binding fragment (Fab) against cluster of differentiation 3 antigen (CD3) to a camel single domain antibody (VHH) against human epidermal growth factor receptor 2 (HER2). This bispecific antibody may be secreted and purified efficiently from Escherichia coli culture medium. The purified bispecific antibody is able to trigger T cell-mediated HER2-specific cytotoxicity in vitro and in vivo. The data gathered in the present study suggest that this bispecific format may be applied to other tumor antigens to produce bispecific antibodies more efficiently.
Collapse
Affiliation(s)
- Limin Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Li Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Changhua Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Jing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Jiayu Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Rui Shu
- Ying Rui, Inc., Guangzhou, Guangdong 510009, P.R. China
| | - Bin Dong
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510009, P.R. China
| | - Qing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Zhong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|