1
|
Zohud O, Lone IM, Nashef A, Iraqi FA. Towards system genetics analysis of head and neck squamous cell carcinoma using the mouse model, cellular platform, and clinical human data. Animal Model Exp Med 2023; 6:537-558. [PMID: 38129938 PMCID: PMC10757216 DOI: 10.1002/ame2.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Head and neck squamous cell cancer (HNSCC) is a leading global malignancy. Every year, More than 830 000 people are diagnosed with HNSCC globally, with more than 430 000 fatalities. HNSCC is a deadly diverse malignancy with many tumor locations and biological characteristics. It originates from the squamous epithelium of the oral cavity, oropharynx, nasopharynx, larynx, and hypopharynx. The most frequently impacted regions are the tongue and larynx. Previous investigations have demonstrated the critical role of host genetic susceptibility in the progression of HNSCC. Despite the advances in our knowledge, the improved survival rate of HNSCC patients over the last 40 years has been limited. Failure to identify the molecular origins of development of HNSCC and the genetic basis of the disease and its biological heterogeneity impedes the development of new therapeutic methods. These results indicate a need to identify more genetic factors underlying this complex disease, which can be better used in early detection and prevention strategies. The lack of reliable animal models to investigate the underlying molecular processes is one of the most significant barriers to understanding HNSCC tumors. In this report, we explore and discuss potential research prospects utilizing the Collaborative Cross mouse model and crossing it to mice carrying single or double knockout genes (e.g. Smad4 and P53 genes) to identify genetic factors affecting the development of this complex disease using genome-wide association studies, epigenetics, microRNA, long noncoding RNA, lncRNA, histone modifications, methylation, phosphorylation, and proteomics.
Collapse
Affiliation(s)
- Osayd Zohud
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Aysar Nashef
- Department of Oral and Maxillofacial SurgeryBaruch Padeh Medical CenterPoriyaIsrael
- Azrieli Faculty of MedicineBar‐Ilan UniversityRamat GanIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| |
Collapse
|
2
|
Shore D, Griggs N, Graffeo V, Amin ARMR, Zha XM, Xu Y, McAleer JP. GPR68 limits the severity of chemical-induced oral epithelial dysplasia. Sci Rep 2023; 13:353. [PMID: 36611126 PMCID: PMC9825365 DOI: 10.1038/s41598-023-27546-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Head and neck cancer is the sixth most common malignancy, and there is an urgent need to identify physiological processes contributing to tumorigenesis. Extracellular acidification caused by aerobic glycolysis within tumor microenvironments can stimulate proton-sensing receptors. GPR68, or ovarian cancer G protein-coupled receptor 1, responds to extracellular acidity and is highly expressed in head and neck squamous cell carcinoma (HNSCC) as well as normal esophageal tissue. To study the role of GPR68 in oral dysplasia, wild-type and GPR68-/- mice were treated with 4-Nitroquinoline N-oxide (4NQO) in drinking water for 11-13 weeks, followed by normal water for 11-12 weeks. 4NQO treatment resulted in 45 percent of GPR68-/- mice developing severe dysplasia or squamous cell carcinoma compared to only 10.5 percent of GPR68+/+ mice. This correlated with increased frequencies of regulatory T cells in the spleens of male GPR68-/- mice. Dysplastic regions of the tongue had increased CD31 staining compared to normal regions in both GPR68-/- and GPR68+/+ mice, suggesting that angiogenesis was GPR68-independent. RNA knockdown studies using HNSCC cell lines demonstrated no direct effect of GPR68 on survival or growth. Overall, we demonstrate that GPR68-deficiency worsens the severity of chemical-induced oral dysplasia, suggesting a protective role for this gene in tumorigenesis.
Collapse
Affiliation(s)
- David Shore
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| | - Nosakhere Griggs
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| | - Vincent Graffeo
- grid.36425.360000 0001 2216 9681Marshall University Joan C. Edwards School of Medicine, Huntington, WV USA
| | - A. R. M. Ruhul Amin
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| | - Xiang-ming Zha
- grid.266756.60000 0001 2179 926XUniversity of Missouri-Kansas City School of Pharmacy, Kansas City, MO USA
| | - Yan Xu
- grid.257413.60000 0001 2287 3919Indiana University School of Medicine, Indianapolis, IN USA
| | - Jeremy P. McAleer
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| |
Collapse
|
3
|
Ryan NM, Lamenza FF, Upadhaya P, Pracha H, Springer A, Swingler M, Siddiqui A, Oghumu S. Black raspberry extract inhibits regulatory T-cell activity in a murine model of head and neck squamous cell carcinoma chemoprevention. Front Immunol 2022; 13:932742. [PMID: 36016924 PMCID: PMC9395668 DOI: 10.3389/fimmu.2022.932742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are one of the most diagnosed malignancies globally, with a 5-year survival rate of approximately 40% to 50%. Current therapies are limited to highly invasive surgery, aggressive radiation, and chemotherapies. Recent reports have demonstrated the potential phytochemical properties of black raspberries in inhibiting the progression of various cancers including HNSCCs. However, the effects of black raspberry extracts on immune cells of the tumor microenvironment, specifically regulatory T cells during HNSCC, have not been investigated. We used a mouse model of 4-nitroquinoline-1-oxide (4NQO) chemically induced HNSCC carcinogenesis to determine these effects. C57BL/6 mice were exposed to 4NQO for 16 weeks and regular water for 8 weeks. 4NQO-exposed mice were fed the AIN-76A control mouse diet or the AIN76 diet supplemented with black raspberry extract. At terminal sacrifice, tumor burdens and immune cell recruitment and activity were analyzed in the tumor microenvironment, draining lymph nodes, and spleens. Mice fed the BRB extract-supplemented diet displayed decreased tumor burden compared to mice provided the AIN-76A control diet. Black raspberry extract administration did not affect overall T-cell populations as well as Th1, Th2, or Th17 differentiation in spleens and tumor draining lymph nodes. However, dietary black raspberry extract administration inhibited regulatory T-cell recruitment to HNSCC tumor sites. This was associated with an increased cytotoxic immune response in the tumor microenvironment characterized by increased CD8+ T cells and enhanced Granzyme B production during BRB extract-mediated HNSCC chemoprevention. Interestingly, this enhanced CD8+ T-cell antitumoral response was localized at the tumor sites but not at spleens and draining lymph nodes. Furthermore, we found decreased levels of PD-L1 expression by myeloid populations in draining lymph nodes of black raspberry-administered carcinogen-induced mice. Taken together, our findings demonstrate that black raspberry extract inhibits regulatory T-cell recruitment and promotes cytotoxic CD8 T-cell activity at tumor sites during HNSCC chemoprevention. These results demonstrate the immunomodulatory potential of black raspberry extracts and support the use of black raspberry-derived phytochemicals as a complementary approach to HNSCC chemoprevention and treatment.
Collapse
Affiliation(s)
- Nathan M. Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Felipe F. Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Anna Springer
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Michael Swingler
- Department of Microbiology, Immunology, and Inflammation, Center of Neurovirology and Gene Editing, School of Medicine, Temple University, Philadelphia, PA, United States
| | - Arham Siddiqui
- Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY, United States
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- *Correspondence: Steve Oghumu,
| |
Collapse
|
4
|
Kujan O, Agag M, Smaga M, Vaishnaw Y, Idrees M, Shearston K, Farah CS. PD-1/PD-L1, Treg-related proteins, and tumour-infiltrating lymphocytes are associated with the development of oral squamous cell carcinoma. Pathology 2021; 54:409-416. [PMID: 34872754 DOI: 10.1016/j.pathol.2021.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022]
Abstract
Cancer immunomodulation has been implicated in the development of oral squamous cell carcinoma (OSCC), however the role of specific immunomodulatory proteins is not completely understood, particularly in the early stages of the disease. Oral potentially malignant disorders such as leukoplakia commonly precede OSCC but not all will undergo malignant transformation. The aim of this study was to evaluate the diagnostic utility of specific immunomodulator proteins and their role in the progression of OSCC. Samples from 101 patients were included in the study. Cases were classified based on histopathology into four groups: non-dysplastic epithelial hyperplasia/keratosis, low-grade dysplasia, high-grade dysplasia, and OSCC. The PD-1/PD-L1 pathway, as well as regulatory T cell (Treg)-related proteins including FOXP3, TGF-β, IL-6, and IL-10 were immunohistochemically quantified. The number of tumour-infiltrating lymphocytes (TILs) was also assessed for each case. Multinominal regression models were undertaken to assess the significance of each protein in predicting the histopathological grade of oral epithelial disorders, and three diagnostic models were assessed. Significant positive associations were found between the immunoreactive score of each protein and the histopathological grade, p<0.05 suggesting that the PD-1/PD-L1 pathway, Treg-related proteins, and TILs are associated with the development of OSCC. Diagnostic models using the investigated proteins and TILs predicted the grade of oral epithelial disorder, p<0.05. The associated accuracy of this approach was 84.92%. Our findings support the notion that immunomodulation events may play a role in evading the immune system and contributing to potential malignant transformation of oral epithelial disorders. Our data also provide supporting evidence for the potential application of immune checkpoint inhibitors in the chemoprevention of OSCC. Further longitudinal studies to assess individual T-cell populations within the immune microenvironment of various oral potentially malignant disorders are warranted.
Collapse
Affiliation(s)
- Omar Kujan
- UWA Dental School, The University of Western Australia, Nedlands, WA, Australia.
| | - Muhamed Agag
- UWA Dental School, The University of Western Australia, Nedlands, WA, Australia
| | - Monika Smaga
- UWA Dental School, The University of Western Australia, Nedlands, WA, Australia
| | - Yash Vaishnaw
- UWA Dental School, The University of Western Australia, Nedlands, WA, Australia
| | - Majdy Idrees
- UWA Dental School, The University of Western Australia, Nedlands, WA, Australia
| | - Kate Shearston
- UWA Dental School, The University of Western Australia, Nedlands, WA, Australia
| | - Camile S Farah
- Australian Centre for Oral Oncology Research and Education, Nedlands, WA, Australia; Oral, Maxillofacial and Dental Surgery, Fiona Stanley Hospital, Murdoch, WA, Australia; Anatomical Pathology, Australian Clinical Labs, Subiaco, WA, Australia
| |
Collapse
|
5
|
Yamaguchi H, Hiroi M, Mori K, Ushio R, Matsumoto A, Yamamoto N, Shimada J, Ohmori Y. Simultaneous Expression of Th1- and Treg-Associated Chemokine Genes and CD4 +, CD8 +, and Foxp3 + Cells in the Premalignant Lesions of 4NQO-Induced Mouse Tongue Tumorigenesis. Cancers (Basel) 2021; 13:1835. [PMID: 33921389 PMCID: PMC8069711 DOI: 10.3390/cancers13081835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023] Open
Abstract
Chemokines and cytokines in the tumor microenvironment influence immune cell infiltration and activation. To elucidate their role in immune cell recruitment during oral cancer development, we generated a mouse tongue cancer model using the carcinogen 4-nitroquinoline 1-oxide (4NQO) and investigated the carcinogenetic process and chemokine/cytokine gene expression kinetics in the mouse tongue. C57/BL6 mice were administered 4NQO in drinking water, after which tongues were dissected at 16 and 28 weeks and subjected to analysis using the RT2 Profiler PCR Array, qRT-PCR, and pathologic and immunohistochemical analyses. We found that Th1-associated chemokine/cytokine (Cxcl9, Cxcl10, Ccl5, and Ifng) and Treg-associated chemokine/cytokine (Ccl17, Ccl22, and Il10) mRNA levels were simultaneously increased in premalignant lesions of 4NQO-treated mice at 16 weeks. Additionally, although levels of Gata3, a Th2 marker, were not upregulated, those of Cxcr3, Ccr4, and Foxp3 were upregulated in the tongue tissue. Furthermore, immunohistochemical analysis confirmed the infiltration of CD4+, CD8+, and Foxp3+ cells in the tongue tissue of 4NQO-treated mice, as well as significant correlations between Th1- or Treg-associated chemokine/cytokine mRNA expression and T cell infiltration. These results indicate that CD4+, CD8+, and Foxp3+ cells were simultaneously recruited through the expression of Th1- and Treg-associated chemokines in premalignant lesions of 4NQO-induced mouse tongue tissue.
Collapse
Affiliation(s)
- Hana Yamaguchi
- Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan; (H.Y.); (M.H.); (R.U.); (A.M.)
| | - Miki Hiroi
- Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan; (H.Y.); (M.H.); (R.U.); (A.M.)
| | - Kazumasa Mori
- First Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan; (K.M.); (N.Y.); (J.S.)
| | - Ryosuke Ushio
- Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan; (H.Y.); (M.H.); (R.U.); (A.M.)
- First Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan; (K.M.); (N.Y.); (J.S.)
| | - Ari Matsumoto
- Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan; (H.Y.); (M.H.); (R.U.); (A.M.)
- First Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan; (K.M.); (N.Y.); (J.S.)
| | - Nobuharu Yamamoto
- First Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan; (K.M.); (N.Y.); (J.S.)
| | - Jun Shimada
- First Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan; (K.M.); (N.Y.); (J.S.)
| | - Yoshihiro Ohmori
- Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan; (H.Y.); (M.H.); (R.U.); (A.M.)
| |
Collapse
|
6
|
The 4-NQO mouse model: An update on a well-established in vivo model of oral carcinogenesis. Methods Cell Biol 2020; 163:197-229. [PMID: 33785166 DOI: 10.1016/bs.mcb.2020.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The early detection and management of oral premalignant lesions (OPMDs) improve their outcomes. Animal models that mimic histological and biological processes of human oral carcinogenesis may help to improve the identification of OPMD at-risk of progression into oral squamous cell carcinoma and to develop preventive strategies for the entire field of cancerization. No animal model is perfectly applicable for investigating human oral carcinogenesis. However, the 4-nitroquinoline 1-oxide (4-NQO) mouse model is well established and mimics several morphological, histological, genomic and molecular features of human oral carcinogenesis. Some of the reasons for the success of this model include its reproducible experimental conditions with limited variation, the possibility of realizing longitudinal studies with invasive intervention or gene manipulation, and sample availability for all stages of oral carcinogenesis, especially premalignant lesions. Moreover, the role of histological and molecular alterations in the field of cancerization (i.e., macroscopically healthy mucosa exposed to a carcinogen) during oral carcinogenesis can be easily explored using this model. In this review, we discuss the advantages and drawbacks of this model for studying human oral carcinogenesis. In summary, the 4-NQO-induced murine oral cancer model is relevant for investigating human oral carcinogenesis, including the immune microenvironment, and for evaluating therapeutic and chemoprevention agents.
Collapse
|
7
|
Fu Y, Tian G, Li J, Zhang Z, Xu K. An HNSCC syngeneic mouse model for tumor immunology research and preclinical evaluation. Int J Mol Med 2020; 46:1501-1513. [PMID: 32700748 PMCID: PMC7447356 DOI: 10.3892/ijmm.2020.4680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/27/2020] [Indexed: 12/30/2022] Open
Abstract
The lack of reliable animal models to assess the safety and efficacy of drugs and to explore the underlying molecular mechanisms is one of the most severe impediments in head and neck squamous cell carcinoma (HNSCC) tumor immunology research. The majority of xenograft tumor models established using immunodeficient mice neglect the effects of T cells. To date, to the best of our knowledge, there is no syngeneic tumor model available that reflects the immune microenvironmental features of HNSCC tumors. To solve this issue, the present study used 4‑nitroquinoline‑1‑oxide (4‑NQO) to induce squamous cell carcinoma in C57BL/6 mice. Three HNSCC cell lines were then established, and one of these, termed JC1, was selected for further analysis due to its enhanced proliferative ability and tumorigenicity in immunodeficient nude mice. However, none of the 3 cell lines could form tumors in immunocompetent mice. Due to the different tumorigenicities in nude and C57BL/6 mice, the immune system may play an important role in inoculated JC1 tumor progression. Chemical induction was used to establish the tumorigenicity‑enhanced cell line, JC1‑2, which can form syngeneic tumors in immunocompetent C57BL/6 mice. Next‑generation sequencing (NGS) was used to perform the immunogenomic and transcriptomic characterization of the JC1‑2 cells. Splenocytes were isolated from C57BL/6 mice and co‑cultured with JC1‑2 cells to verify the responsiveness of the interferon (IFN)‑γ pathway in the JC1‑2 cell line. Unlike the majority of syngeneic mouse tumors, the JC1‑2‑formed tumors resembled 'inflamed tumors' due to the abundancy of immune cells in the tumor microenvironment. Moreover, more intense immune responses were observed in the orthotopic mouse model than in the heterotopic model. Thus, this model could be used to delineate the interactions between HNSCC and lymphocytes, and to validate novel immunotherapy targets.
Collapse
Affiliation(s)
- You Fu
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine
- Department of Oral and Maxillofacial-Head Neck Oncology
| | - Guocai Tian
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine
- Department of Oral and Maxillofacial-Head Neck Oncology
| | - Jiang Li
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhiyuan Zhang
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine
- Department of Oral and Maxillofacial-Head Neck Oncology
| | - Ke Xu
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine
- Department of Oral and Maxillofacial-Head Neck Oncology
| |
Collapse
|
8
|
O'Higgins C, Ward FJ, Abu Eid R. Deciphering the Role of Regulatory CD4 T Cells in Oral and Oropharyngeal Cancer: A Systematic Review. Front Oncol 2018; 8:442. [PMID: 30460193 PMCID: PMC6232931 DOI: 10.3389/fonc.2018.00442] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/21/2018] [Indexed: 01/03/2023] Open
Abstract
Background: Recruiting regulatory CD4 T cells (Tregs) into the tumor microenvironment is an important tumor escape mechanism. Diminishing these suppressive cells is therefore one of the targets of cancer immunotherapy. Selective depletion of Tregs has proven successful in enhancing anti-tumor immunity and therapeutic efficacy in multiple tumor types. However, the role of Tregs in oral/oropharyngeal cancers is unclear with conflicting evidence regarding the effect of these suppressive cells on tumor prognosis. In this study, we sought to review the role of Tregs in oral/oropharyngeal cancer with the aim of deciphering the controversy regarding their effect on tumor progression and prognosis. Methods: A systematic review of the literature pertaining to the role of Tregs in oral/oropharyngeal cancer was performed using Scopus, Embase, and PubMed. Forty-five records were deemed eligible and data describing methodology of Treg detection, tumor type, and association with prognosis were extracted. Results: Of the 45 eligible manuscripts accepted for this systematic review, thirty-nine studies reported data from human subjects while the remaining studies focused on animal models. Sixteen studies were carried out using peripheral blood samples, while samples from the tumor site were analyzed in 18 studies and 11 studies assessed both blood and tumor samples. The transcriptional factor, Foxp3, was the most commonly used marker for Treg identification (38/45). The findings of 25 studies suggested that an increase in Tregs in the tumor microenvironment and/or peripheral blood was associated with poorer prognosis. These conclusions were attributed to the suppression of immune responses and the consequent tumor progression. Conversely, nine studies showed an increase in Tregs in peripheral blood and/or tumor microenvironment was related to a favorable prognosis, particularly in the presence of human papilloma virus (HPV), the status of which was only assessed in 11 studies. Conclusions: This review underlines the importance of host immunity in the behavior of oral/oropharyngeal cancer. Furthermore, we report an apparent lack of clarity regarding the true role Tregs play in oral/oropharyngeal cancer progression which could be attributed to inconsistent detection techniques of Tregs. Our results therefore highlight the need for clearer methodologies and more robust phenotyping when defining Tregs.
Collapse
Affiliation(s)
- Caoimhín O'Higgins
- Institute of Dentistry, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland
| | - Frank J Ward
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland
| | - Rasha Abu Eid
- Institute of Dentistry, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland.,Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland
| |
Collapse
|
9
|
Bisetto S, Whitaker-Menezes D, Wilski NA, Tuluc M, Curry J, Zhan T, Snyder CM, Martinez-Outschoorn UE, Philp NJ. Monocarboxylate Transporter 4 (MCT4) Knockout Mice Have Attenuated 4NQO Induced Carcinogenesis; A Role for MCT4 in Driving Oral Squamous Cell Cancer. Front Oncol 2018; 8:324. [PMID: 30211114 PMCID: PMC6120975 DOI: 10.3389/fonc.2018.00324] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/30/2018] [Indexed: 12/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the 6th most common human cancer and affects approximately 50,000 new patients every year in the US. The major risk factors for HNSCC are tobacco and alcohol consumption as well as oncogenic HPV infections. Despite advances in therapy, the overall survival rate for all-comers is only 50%. Understanding the biology of HNSCC is crucial to identifying new biomarkers, implementing early diagnostic approaches and developing novel therapies. As in several other cancers, HNSCC expresses elevated levels of MCT4, a member of the SLC16 family of monocarboxylate transporters. MCT4 is a H+-linked lactate transporter which functions to facilitate lactate efflux from highly glycolytic cells. High MCT4 levels in HNSCC have been associated with poor prognosis, but the role of MCT4 in the development and progression of this cancer is still poorly understood. In this study, we used 4-nitroquinoline-1-oxide (4NQO) to induce oral cancer in MCT4-/- and wild type littermates, recapitulating the disease progression in humans. Histological analysis of mouse tongues after 23 weeks of 4NQO treatment showed that MCT4-/- mice developed significantly fewer and less extended invasive lesions than wild type. In mice, as in human samples, MCT4 was not expressed in normal oral mucosa but was detected in the transformed epithelium. In the 4NQO treated mice we detected MCT4 in foci of the basal layer undergoing transformation, and progressively in areas of carcinoma in situ and invasive carcinomas. Moreover, we found MCT4 positive macrophages within the tumor and in the stroma surrounding the lesions in both human samples of HNSCC and in the 4NQO treated animals. The results of our studies showed that MCT4 could be used as an early diagnostic biomarker of HNSCC. Our finding with the MCT4-/- mice suggest MCT4 is a driver of progression to oral squamous cell cancer and MCT4 inhibitors could have clinical benefits for preventing invasive HNSCC.
Collapse
Affiliation(s)
- Sara Bisetto
- Department of Pathology, Anatomy and Cell Biology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Diana Whitaker-Menezes
- Department of Medical Oncology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nicole A. Wilski
- Department of Microbiology and Immunology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Madalina Tuluc
- Department of Pathology, Anatomy and Cell Biology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Joseph Curry
- Department of Otolaryngology–Head and Neck Surgery, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tingting Zhan
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Christopher M. Snyder
- Department of Microbiology and Immunology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ubaldo E. Martinez-Outschoorn
- Department of Medical Oncology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy J. Philp
- Department of Pathology, Anatomy and Cell Biology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
10
|
Sequeira I, Neves JF, Carrero D, Peng Q, Palasz N, Liakath-Ali K, Lord GM, Morgan PR, Lombardi G, Watt FM. Immunomodulatory role of Keratin 76 in oral and gastric cancer. Nat Commun 2018; 9:3437. [PMID: 30143634 PMCID: PMC6109110 DOI: 10.1038/s41467-018-05872-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/26/2018] [Indexed: 11/09/2022] Open
Abstract
Keratin 76 (Krt76) is expressed in the differentiated epithelial layers of skin, oral cavity and squamous stomach. Krt76 downregulation in human oral squamous cell carcinomas (OSCC) correlates with poor prognosis. We show that genetic ablation of Krt76 in mice leads to spleen and lymph node enlargement, an increase in regulatory T cells (Tregs) and high levels of pro-inflammatory cytokines. Krt76-/- Tregs have increased suppressive ability correlated with increased CD39 and CD73 expression, while their effector T cells are less proliferative than controls. Loss of Krt76 increases carcinogen-induced tumours in tongue and squamous stomach. Carcinogenesis is further increased when Treg levels are elevated experimentally. The carcinogenesis response includes upregulation of pro-inflammatory cytokines and enhanced accumulation of Tregs in the tumour microenvironment. Tregs also accumulate in human OSCC exhibiting Krt76 loss. Our study highlights the role of epithelial cells in modulating carcinogenesis via communication with cells of the immune system.
Collapse
Affiliation(s)
- Inês Sequeira
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Joana F Neves
- Department of Experimental Immunobiology, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Dido Carrero
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Qi Peng
- Immunoregulation Laboratory, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Natalia Palasz
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Kifayathullah Liakath-Ali
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.,Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, 265 Campus Drive, CA, 94305-5453, USA
| | - Graham M Lord
- Department of Experimental Immunobiology, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Peter R Morgan
- Department of Mucosal and Salivary Biology, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Giovanna Lombardi
- Immunoregulation Laboratory, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Fiona M Watt
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|