1
|
Zhang H, Wang Z, Wu J, Zheng YQ, Zhao Q, He S, Jiang H, Jiang C, Wang T, Liu Y, Cui L, Guo H, Yi J, Jin H, Xie C, Li M, Li J, Wang X, Xia L, Zhang XS, Xia X. Endothelial STING-JAK1 interaction promotes tumor vasculature normalization and antitumor immunity. J Clin Invest 2025; 135:e180622. [PMID: 39817453 PMCID: PMC11735096 DOI: 10.1172/jci180622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/11/2024] [Indexed: 01/18/2025] Open
Abstract
Stimulator of interferon genes (STING) agonists have been developed and tested in clinical trials for their antitumor activity. However, the specific cell population(s) responsible for such STING activation-induced antitumor immunity have not been completely understood. In this study, we demonstrated that endothelial STING expression was critical for STING agonist-induced antitumor activity. STING activation in endothelium promoted vessel normalization and CD8+ T cell infiltration - which required type I IFN (IFN-I) signaling- but not IFN-γ or CD4+ T cells. Rather than an upstream adaptor for inducing IFN-I signaling, STING acted downstream of interferon-α/β receptor (IFNAR) in endothelium for the JAK1-STAT signaling activation. Mechanistically, IFN-I stimulation induced JAK1-STING interaction and promoted JAK1 phosphorylation, which involved STING palmitoylation at the Cysteine 91 site but not its C-terminal tail (CTT) domain. Endothelial STING and JAK1 expression was significantly associated with immune cell infiltration in patients with cancer, and STING palmitoylation level correlated positively with CD8+ T cell infiltration around STING-positive blood vessels in tumor tissues from patients with melanoma. In summary, our findings uncover a previously unrecognized function of STING in regulating JAK1/STAT activation downstream of IFN-I stimulation and provide a new insight for future design and clinical application of STING agonists for cancer therapy.
Collapse
Affiliation(s)
- Huanling Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangzhou Institute of Clinical Medicine, Guangzhou First People’s Hospital, Guangzhou, China
| | - Zining Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Qiang Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuai He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hang Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chang Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- VIP region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tiantian Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongxiang Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lei Cui
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiahong Yi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- VIP region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huan Jin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengyun Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liangping Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- VIP region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Shi Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| |
Collapse
|
2
|
Drzyzga A, Czapla J, Matuszczak S, Łasut-Szyszka B, Cichoń T, Pilny E, Jarosz-Biej M, Smolarczyk R. Differential Response to Local Stimulator of Interferon Genes Agonist Administration in Tumors with Various Stimulator of Interferon Genes Statuses. Cancers (Basel) 2025; 17:175. [PMID: 39857957 PMCID: PMC11763682 DOI: 10.3390/cancers17020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The stimulator of interferon genes (STING) is currently accepted as a relevant target for anti-cancer therapies. Besides encouraging results showing STING agonist-induced tumor growth inhibition, in some types of tumors the effect is less prominent. We hypothesized that higher STING levels in cancer cells and the possibility of its activation determine a greater anti-cancer response. As the local administration of STING agonists induces a systemic reaction, we emphasized the importance of host tumor-induced hematological disruption in the efficiency of the therapeutic response. Methods: We investigated the response to STING stimulation in murine cancer cell lines-melanoma (B16-F10) and breast carcinoma (4T1)-and murine normal cell lines: fibroblast cells (NIH/3T3), endothelial cells (H5V), and macrophages (J774A.1). We assessed STING agonist-induced tumor growth inhibition and the therapy's impact on the hematological system parameters and systemic cytokine release. Results: Our results underlined the improved therapeutic effect of STING activation in melanoma (B16-F10) over breast carcinoma (4T1) tumors. The outcomes reflected a high dysregulation of the hematological system in mice with developed 4T1 tumors, which may support persistent inflammation and impede STING-induced therapeutic effects. Moreover, among typical cytokines produced following STING activation, CCL2 fold change was the one that increased the most in the serum of B16-F10-bearing mice and differentiated the observed response to the STING agonist between investigated tumor models. Conclusions: The current study provides new evidence of the different responses to STING activation among two poorly immunogenic tumor models. The high abundance of STING in B16-F10 cells and the possibility of its activation is linked with improved therapeutic response in vivo compared to 4T1. The effect also seems to be connected with a less dysregulated hematological system in mice with B16-F10 tumors over mice with 4T1 tumors. This highlighted the need for general insight into tumor-induced local and systemic responses to the efficiency of the proposed therapy.
Collapse
Affiliation(s)
- Alina Drzyzga
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (J.C.); (S.M.); (B.Ł.-S.); (T.C.); (E.P.); (M.J.-B.)
| | | | | | | | | | | | | | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (J.C.); (S.M.); (B.Ł.-S.); (T.C.); (E.P.); (M.J.-B.)
| |
Collapse
|
3
|
Qu J, Cai Y, Li F, Li X, Liu R. Potential therapeutic strategies for colitis and colon cancer: bidirectional targeting STING pathway. EBioMedicine 2025; 111:105491. [PMID: 39644772 PMCID: PMC11665664 DOI: 10.1016/j.ebiom.2024.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024] Open
Abstract
The cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway has emerged as a promising therapeutic target for colitis and colon cancers. Notably, inhibiting STING may mitigate the progression of colitis, whereas activating STING can enhance anti-tumor immune responses against colon cancer. This duality suggests that the development of STING agonists and inhibitors possesses significant clinical translational potential. In this review, we provide a comprehensive overview of STING inhibitors/agonists that have been systematically evaluated in the contexts of colitis and colon cancer and their specific molecular mechanisms. Other well-characterized STING inhibitors/agonists may also hold considerable promise for the treatment of these conditions, although efficacy validation remain necessary. Additionally, we delve into the latest advances concerning STING oligomerization, degradation and phase separation-dependent self-regulation, proposing potential druggable targets that could inspire the development of novel STING agonists or inhibitors. In Summary, targeting STING appears to be a promising strategy for the treatment of colitis and colon cancer.
Collapse
Affiliation(s)
- Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
4
|
Chen H, Qu H, Pan Y, Cheng W, Xue X. Manganese-coordinated nanoparticle with high drug-loading capacity and synergistic photo-/immuno-therapy for cancer treatments. Biomaterials 2025; 312:122745. [PMID: 39098306 DOI: 10.1016/j.biomaterials.2024.122745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Stimulator of interferon genes (STING) agonists have shown promise in cancer treatment by stimulating the innate immune response, yet their clinical potential has been limited by inefficient cytosolic entry and unsatisfactory pharmacological activities. Moreover, aggressive tumors with "cold" and immunosuppressive microenvironments may not be effectively suppressed solely through innate immunotherapy. Herein, we propose a multifaceted immunostimulating nanoparticle (Mn-MC NP), which integrates manganese II (Mn2+) coordinated photosensitizers (chlorin e6, Ce6) and STING agonists (MSA-2) within a PEGylated nanostructure. In Mn-MC NPs, Ce6 exerts potent phototherapeutic effects, facilitating tumor ablation and inducing immunogenic cell death to elicit robust adaptive antitumor immunity. MSA-2 activates the STING pathway powered by Mn2+, thereby promoting innate antitumor immunity. The Mn-MC NPs feature a high drug-loading capacity (63.42 %) and directly ablate tumor tissue while synergistically boosting both adaptive and innate immune responses. In subsutaneous tumor mouse models, the Mn-MC NPs exhibit remarkable efficacy in not only eradicating primary tumors but also impeding the progression of distal and metastatic tumors through synergistic immunotherapy. Additionally, they contribute to preventing tumor recurrence by fostering long-term immunological memory. Our multifaceted immunostimulating nanoparticle holds significant potential for overcoming limitations associated with insufficient antitumor immunity and ineffective cancer treatment.
Collapse
Affiliation(s)
- Han Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haijing Qu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yuqing Pan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Cheng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangdong Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Gao Y, Xu G, Maimaiti M, Chen S, Zhang X, Hu J, Wang C, Hong Z, Hu H. Transcriptome-based characterization of 3'2'-cGAMP signaling mediated immune responses. Comput Struct Biotechnol J 2024; 23:4131-4142. [PMID: 39634080 PMCID: PMC11615530 DOI: 10.1016/j.csbj.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024] Open
Abstract
Cyclic dinucleotides (CDNs) are critical adjuvants in antiviral vaccines and cancer immunotherapy, primarily through the activation of the cGAS-STING signaling pathway. Evaluating the immune responses triggered by CDNs is essential for the development of effective adjuvants. In this study, we performed a comparative transcriptome analysis to characterize the immune responses elicited by the recently identified nuclease-resistant Drosophila and bacterial CDN, 3'2'-cGAMP, in mammalian immune cells. We detected a robust induction of innate immune gene signature following 3'2'-cGAMP stimulation in digitonin-permeabilized mouse primary macrophages, comparable to the response observed with the canonical mammalian CDN, 2'3'-cGAMP. STING deficiency remarkably reduced 3'2'-cGAMP-induced phosphorylation of TBK1 and IRF3 and the induction of IFN-β, indicating that 3'2'-cGAMP signaling-mediated immune responses were mainly STING dependent. In comparison to 2'3'-cGAMP signaling, 3'2'-cGAMP signaling preferentially elicited many STING-dependent genes involved in transcription and nucleosome positioning and assembly in the nucleus, which are likely associated with several enriched pathways, including cellular senescence, HDACs deacetylate histones, and epigenetic regulation of gene expression. The integrative analysis further revealed that 3'2'-cGAMP signaling preferentially induced genes were associated with autoimmune disease-related processes, suggesting a potential side effect that requires monitoring when used as an adjuvant. In conclusion, this study provides the first transcriptional landscape of 3'2'-cGAMP signaling in mammals and reveals the immune response characteristics and potential side effects mediated by 3'2'-cGAMP signaling. These findings may aid in the development of 3'2'-cGAMP-based adjuvants for antiviral vaccines and cancer immunotherapy.
Collapse
Affiliation(s)
- Yan Gao
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Gucheng Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Munire Maimaiti
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Saihua Chen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiang Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiameng Hu
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ze Hong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haiyang Hu
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, China
| |
Collapse
|
6
|
Mahin J, Xu X, Li L, Zhang C. cGAS/STING in skin melanoma: from molecular mechanisms to therapeutics. Cell Commun Signal 2024; 22:553. [PMID: 39558334 PMCID: PMC11571982 DOI: 10.1186/s12964-024-01860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/29/2024] [Indexed: 11/20/2024] Open
Abstract
Melanoma, recognized as the most aggressive type of skin cancer, has experienced a notable increase in cases, especially within populations with fair skin. This highly aggressive cancer is largely driven by UV radiation exposure, resulting in the uncontrolled growth and malignant transformation of melanocytes. The cGAS-STING pathway, an immune signaling mechanism responsible for detecting double-stranded DNA in the cytoplasm, is essential for mediating the immune response against melanoma. This pathway serves a dual purpose: it enhances antitumor immunity by activating immune cells, but it can also promote tumor growth when chronically activated by creating an immunosuppressive environment. This review comprehensively examines the multifaceted implication of the cGAS-STING pathway in melanoma pathogenesis and treatment. We explore its molecular mechanisms, including epigenetic regulation, interaction with signaling pathways such as AR signaling, and modulation by various cellular effectors like TG2 and activin-A. The therapeutic potential of modulating the cGAS-STING pathway is highlighted, with promising results from STING agonists, combination therapies with immune checkpoint inhibitors, and novel drug delivery systems, including nanoparticles and synthetic drugs. Our findings underscore the importance of the cGAS-STING pathway in melanoma, presenting it as a critical target for enhancing anti-tumor immunity. By leveraging this pathway, future therapeutic strategies can potentially convert 'cold' tumors into 'hot' tumors, making them more susceptible to immune responses.
Collapse
Affiliation(s)
- Jafaridarabjerdi Mahin
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xuezhu Xu
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Ling Li
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
7
|
Park JY, Kang M, Lim S, Cho H, Yang S, Baek SY, Tan L, Song C, Lee M, Yeom B, Ha JS, Lee S, Kim Y. Assembly of 2′,3′-Cyclic guanosine Monophosphate-Adenosine monophosphate and their spontaneous intracellular disassembly for enhanced antitumor immunity via natural STING pathway activation. CHEMICAL ENGINEERING JOURNAL 2024; 500:157037. [DOI: 10.1016/j.cej.2024.157037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Zhang Y, Gao Y, Wang J, Tan X, Liang Y, Yu W, Deng Z, Zhou J, Ye Z, Luo G. Connexin 43 Deficiency Confers Resistance to Immunotherapy in Lung Cancer via Inhibition of the Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes Pathway. J Cell Mol Med 2024; 28:e70211. [PMID: 39592436 PMCID: PMC11598135 DOI: 10.1111/jcmm.70211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/20/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs), especially PD-1 inhibitors, are among the first-line therapeutic drugs for the treatment of advanced non-small cell lung cancer (NSCLC). However, most patients are not sensitive to PD-1 inhibitors, and prolonged exposure can lead to acquired resistance. Thus, it is urgent to elucidate the mechanism underlying the resistance of NSCLC to ICIs. Connexin 43 (Cx43) is a gap junction (GJ) protein that is important in therapeutic efficacy to ICIs. In this study, we observed that Cx43 in murine Lewis lung carcinoma (LLC) cells mediated cyclic GMP-AMP (cGAMP) transfer to macrophages. Knockdown of Cx43 reduced T-cell activation, leading to decreased sensitivity of LLC cells to anti-PD-1 therapy. The mechanism might be that knockdown of Cx43 in LLC cells promotes macrophages differentiation into pro-tumour M2 type (TAM), thus activating the STING pathway in macrophages. These findings indicate that downregulation of Cx43 in LLC cells leads to immunotherapy resistance by negatively regulating the cGAS-STING pathway in macrophages. Therefore, Cx43/GJ-mediated signal transmission between lung cancer cells and macrophages provides new insights for increasing immunotherapy sensitivity in NSCLC.
Collapse
MESH Headings
- Animals
- Connexin 43/metabolism
- Connexin 43/genetics
- Mice
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/immunology
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/metabolism
- Macrophages/metabolism
- Macrophages/immunology
- Immunotherapy/methods
- Signal Transduction
- Nucleotides, Cyclic/metabolism
- Nucleotidyltransferases/metabolism
- Nucleotidyltransferases/genetics
- Mice, Inbred C57BL
- Drug Resistance, Neoplasm/genetics
- Humans
- Cell Line, Tumor
- Immune Checkpoint Inhibitors/pharmacology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
Collapse
Affiliation(s)
- Yuan Zhang
- Affiliated Qingyuan Hospital, Qingyuan People's HospitalGuangzhou Medical UniversityQingyuanGuangdongChina
| | - Yu Gao
- Affiliated Qingyuan Hospital, Qingyuan People's HospitalGuangzhou Medical UniversityQingyuanGuangdongChina
| | - Jie Wang
- Qingyuan Maternal and Child Healthcare HospitalQingyuanGuangdongChina
| | - Xiaoming Tan
- Qingyuan Maternal and Child Healthcare HospitalQingyuanGuangdongChina
| | - Yusheng Liang
- Affiliated Qingyuan Hospital, Qingyuan People's HospitalGuangzhou Medical UniversityQingyuanGuangdongChina
| | - Weize Yu
- College of PharmacyDali UniversityDaliYunnanChina
| | - Zihua Deng
- Affiliated Qingyuan Hospital, Qingyuan People's HospitalGuangzhou Medical UniversityQingyuanGuangdongChina
| | - Jingjing Zhou
- Affiliated Qingyuan Hospital, Qingyuan People's HospitalGuangzhou Medical UniversityQingyuanGuangdongChina
| | - Zu Ye
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiangChina
| | - Guoqing Luo
- Affiliated Qingyuan Hospital, Qingyuan People's HospitalGuangzhou Medical UniversityQingyuanGuangdongChina
| |
Collapse
|
9
|
Huang C, Tong T, Ren L, Wang H. STING-Activating Small Molecular Therapeutics for Cancer Immunotherapy. Chembiochem 2024; 25:e202400255. [PMID: 38980259 DOI: 10.1002/cbic.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/10/2024]
Abstract
Immuno-oncology has become a revolutionary strategy for cancer treatment. Therapeutic interventions based on adaptive immunity through immune checkpoint therapy or chimeric antigen receptor (CAR) T cells have received clinical approval for monotherapy and combination treatment in various cancers. Although these treatments have achieved clinical successes, only a minority of cancer patients show a response, highlighting the urgent need to discover new therapeutic molecules that could be exploited to improve clinical outcomes and pave the way for the next generation of immunotherapy. Given the critical role of the innate immune system against infection and cancer, substantial efforts have been dedicated to developing novel anticancer therapeutics that target these pathways. Targeting the stimulator of interferon genes (STING) pathway is a powerful strategy to generate a durable antitumor response, and activation of the adaptor protein STING induces the initiation of transcriptional cascades, thereby producing type I interferons, pro-inflammatory cytokines and chemokines. Various STING agonists, including natural or synthetic cyclic dinucleotides (CDNs), have been developed as anticancer therapeutics. However, since most CDNs are confined to intratumoral administration, there has been a great interest in developing non-nucleotide agonists for systemic treatment. Here, we review the current development of STING-activating therapeutics in both preclinical and clinical stages.
Collapse
Affiliation(s)
- Chuhan Huang
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Tianrui Tong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Lulu Ren
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, P. R. China
| | - Hangxiang Wang
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, 250117, P. R. China
| |
Collapse
|
10
|
O’Donoghue JC, Freeman FE. Make it STING: nanotechnological approaches for activating cGAS/STING as an immunomodulatory node in osteosarcoma. Front Immunol 2024; 15:1403538. [PMID: 39403376 PMCID: PMC11471590 DOI: 10.3389/fimmu.2024.1403538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Osteosarcoma is a highly aggressive bone cancer primarily affecting children, adolescents, and young adults. The current gold standard for treatment of osteosarcoma patients consists of two to three rounds of chemotherapy, followed by extensive surgical intervention from total limb reconstruction to amputation, followed by additional rounds of chemotherapy. Although chemotherapy has advanced the treatment of osteosarcoma significantly, the overall 5-year survival rate in resistant forms of osteosarcoma is still below 20%. The interaction between cancer and the immune system has long been recognized as a critical aspect of tumour growth. Tumour cells within the tumour microenvironment (TME) suppress antitumour immunity, and immunosuppressive cells and cytokines provide the extrinsic factors of tumour drug resistance. Emerging research demonstrates an immunostimulatory role for the cGAS/STING pathway in osteosarcoma, typically considered an immune-cold or immunosuppressed cancer type. cGAS/STING signalling appears to drive an innate immune response against tumours and potentiates the efficacy of other common therapies including chemo and radiotherapy. Nanotechnological delivery systems for improved therapy delivery for osteosarcoma have also been under investigation in recent years. This review provides an overview of cGAS/STING signalling, its divergent roles in the context of cancer, and collates current research which activates cGAS/STING as an adjuvant immunomodulatory target for the treatment of osteosarcoma. It will also discuss current nanotechnological delivery approaches that have been developed to stimulate cGAS/STING. Finally, it will highlight the future directions that we believe will be central to the development of this transformative field.
Collapse
Affiliation(s)
- Jordan C. O’Donoghue
- School of Mechanical and Materials Engineering, Engineering and Materials Science Centre, University College Dublin, Dublin, Ireland
- University College Dublin (UCD) Centre for Biomedical Engineering, University College Dublin, Belfield Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Fiona E. Freeman
- School of Mechanical and Materials Engineering, Engineering and Materials Science Centre, University College Dublin, Dublin, Ireland
- University College Dublin (UCD) Centre for Biomedical Engineering, University College Dublin, Belfield Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- I-Form Centre, School of Mechanical and Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
11
|
Roberts M, Finn J, Lass M, Oviedo-Bermudez E, Kurt RA. Efficacy of IFN-γ, sCD40L, and Poly(I:C) Treated Bone Marrow-Derived Macrophages in Murine Mammary Carcinoma. Immunol Invest 2024; 53:857-871. [PMID: 38813886 DOI: 10.1080/08820139.2024.2354264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Here, we explored methods to generate anti-tumor bone marrow-derived macrophages (BMDM) and how delivery of the BMDM at early tumor sites could impact disease progression. METHODS BMDM treated with IFN-γ, sCD40L, poly(I:C), and a combination of the three were assessed. RESULTS Treatment with sCD40L had no significant impact on the BMDM. Treating BMDM with IFN-γ impacted IL-1β, MHC Class II, and CD80 expression. While poly(I:C) treatment had a greater impact on the BMDM than IFN-γ when assessed by the in vitro assays, the BMDM treated with poly (I:C) had mixed results in vivo where they decreased growth of the EMT6 tumor, did not impact growth of the 168 tumor, and enhanced growth of the 4T1 tumor. The combination of poly(I:C), IFN-γ, and sCD40L had the greatest impact on the BMDM in vitro and in vivo. Treatment with all three agonists resulted in increased IL-1β, TNF-α, and IL-12 expression, decreased expression of arginase and mrc, increased phagocytic activity, nitrite production, and MHC Class II and CD80 expression, and significantly impacted growth of the EMT6 and 168 murine mammary carcinoma models. DISCUSSION Collectively, these data show that treating BMDM with poly(I:C), IFN-γ, and sCD40L generates BMDM with more consistent anti-tumor activity than BMDM generated with the individual agonists.
Collapse
Affiliation(s)
- Meghan Roberts
- Department of Biology, Lafayette College, Easton, Pennsylvania, USA
| | - Joshua Finn
- Department of Biology, Lafayette College, Easton, Pennsylvania, USA
| | - Melissa Lass
- Department of Biology, Lafayette College, Easton, Pennsylvania, USA
| | | | - Robert A Kurt
- Department of Biology, Lafayette College, Easton, Pennsylvania, USA
| |
Collapse
|
12
|
Luo S, Li S, Liu C, Yu D, Sun L, Zhang S, Zhao N, Zhang M, Nie J, Zhao Y, Li C, Zhang Y, Zhang Q, Meng H, Li X, Shi J, Zheng T. Stage-specificity of STING activation in intrahepatic cholangiocarcinoma determines the efficacy of its agonism. Cancer Lett 2024; 594:216992. [PMID: 38797231 DOI: 10.1016/j.canlet.2024.216992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is an aggressive cancer with an extremely poor prognosis, and new treatment options are needed. Recently, immunotherapy has emerged as an efficient treatment against malignant tumors, but less effective in iCCA. Activation of stimulator of interferon genes (STING) signaling could reignite immunologically inert tumors, but the expression and role of STING in iCCA remains to be determined. Here, we show STING is expressed in iCCA, and patients with high expression of STING in early-stage iCCA have a longer overall survival than those have low expression. Increased immune cell infiltration in early-stage iCCA corresponds to elevated STING expression. In mice iCCA models, treatment with the STING agonist MSA-2 show stage-specific inhibitory effects on tumors, with beneficial effects in early-stage tumors but not with advanced-stage cancer. This discrepancy was associated with greater programmed cell death ligand 1 (PD-L1) expression in advanced-stage tumors. Combination therapy targeting PD-L1 and MSA-2 strikingly reduced tumor burden in such tumors compared to either monotherapy. Cumulatively, these data demonstrate that STING agonism monotherapy improves the immune landscape of the tumor microenvironment in early-stage iCCA, while combination therapy ameliorates advanced-stage iCCA.
Collapse
Affiliation(s)
- Shengnan Luo
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Shun Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Caiqi Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Dongyu Yu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Linlin Sun
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Shuyuan Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Na Zhao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Meng Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Jianhua Nie
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Ying Zhao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Chunyue Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China
| | - Yan Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Qian Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, PR China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, PR China.
| | - Jiaqi Shi
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China.
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China.
| |
Collapse
|
13
|
Tian X, Ai J, Tian X, Wei X. cGAS-STING pathway agonists are promising vaccine adjuvants. Med Res Rev 2024; 44:1768-1799. [PMID: 38323921 DOI: 10.1002/med.22016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
Adjuvants are of critical value in vaccine development as they act on enhancing immunogenicity of antigen and inducing long-lasting immunity. However, there are only a few adjuvants that have been approved for clinical use, which highlights the need for exploring and developing new adjuvants to meet the growing demand for vaccination. Recently, emerging evidence demonstrates that the cGAS-STING pathway orchestrates innate and adaptive immunity by generating type I interferon responses. Many cGAS-STING pathway agonists have been developed and tested in preclinical research for the treatment of cancer or infectious diseases with promising results. As adjuvants, cGAS-STING agonists have demonstrated their potential to activate robust defense immunity in various diseases, including COVID-19 infection. This review summarized the current developments in the field of cGAS-STING agonists with a special focus on the latest applications of cGAS-STING agonists as adjuvants in vaccination. Potential challenges were also discussed in the hope of sparking future research interests to further the development of cGAS-STING as vaccine adjuvants.
Collapse
Affiliation(s)
- Xinyu Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jiayuan Ai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
14
|
Najem H, Lea ST, Tripathi S, Hurley L, Chen CH, William I, Sooreshjani M, Bowie M, Hartley G, Dussold C, Pacheco S, Dmello C, Lee-Chang C, McCortney K, Steffens A, Walshon J, Ott M, Wei J, Marisetty A, Balyasnikova I, Stupp R, Lukas RV, Hu J, James CD, Horbinski CM, Lesniak MS, Ashley DM, Priebe W, Platanias LC, Curran MA, Heimberger AB. STING agonist 8803 reprograms the immune microenvironment and increases survival in preclinical models of glioblastoma. J Clin Invest 2024; 134:e175033. [PMID: 38941297 PMCID: PMC11178548 DOI: 10.1172/jci175033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/01/2024] [Indexed: 06/30/2024] Open
Abstract
STING agonists can reprogram the tumor microenvironment to induce immunological clearance within the central nervous system. Using multiplexed sequential immunofluorescence (SeqIF) and the Ivy Glioblastoma Atlas, STING expression was found in myeloid populations and in the perivascular space. The STING agonist 8803 increased median survival in multiple preclinical models of glioblastoma, including QPP8, an immune checkpoint blockade-resistant model, where 100% of mice were cured. Ex vivo flow cytometry profiling during the therapeutic window demonstrated increases in myeloid tumor trafficking and activation, alongside enhancement of CD8+ T cell and NK effector responses. Treatment with 8803 reprogrammed microglia to express costimulatory CD80/CD86 and iNOS, while decreasing immunosuppressive CD206 and arginase. In humanized mice, where tumor cell STING is epigenetically silenced, 8803 therapeutic activity was maintained, further attesting to myeloid dependency and reprogramming. Although the combination with a STAT3 inhibitor did not further enhance STING agonist activity, the addition of anti-PD-1 antibodies to 8803 treatment enhanced survival in an immune checkpoint blockade-responsive glioma model. In summary, 8803 as a monotherapy demonstrates marked in vivo therapeutic activity, meriting consideration for clinical translation.
Collapse
Affiliation(s)
- Hinda Najem
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Spencer T. Lea
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shashwat Tripathi
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lisa Hurley
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Chao-Hsien Chen
- Department of Neurology, Houston Methodist Neurological Institute, Houston, Texas, USA
| | - Ivana William
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Moloud Sooreshjani
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michelle Bowie
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Genevieve Hartley
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Corey Dussold
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sebastian Pacheco
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Crismita Dmello
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kathleen McCortney
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alicia Steffens
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jordain Walshon
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Jun Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Irina Balyasnikova
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Roger Stupp
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rimas V. Lukas
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jian Hu
- Department of Cancer Biology and
| | - Charles David James
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Craig M. Horbinski
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - David M. Ashley
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Waldemar Priebe
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Moleculin, Houston, Texas, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael A. Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
15
|
Wang MM, Choi MR, Battistella C, Gattis B, Qiao B, Evangelopoulos M, Mirkin CA, Olvera de la Cruz M, Zhang B, Gianneschi NC. Proteomimetic Polymers Trigger Potent Antigen-Specific T Cell Responses to Limit Tumor Growth. J Am Chem Soc 2024; 146:14959-14971. [PMID: 38781575 DOI: 10.1021/jacs.3c05340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Elicitation of effective antitumor immunity following cancer vaccination requires the selective activation of distinct effector cell populations and pathways. Here we report a therapeutic approach for generating potent T cell responses using a modular vaccination platform technology capable of inducing directed immune activation, termed the Protein-like Polymer (PLP). PLPs demonstrate increased proteolytic resistance, high uptake by antigen-presenting cells (APCs), and enhanced payload-specific T cell responses. Key design parameters, namely payload linkage chemistry, degree of polymerization, and side chain composition, were varied to optimize vaccine formulations. Linking antigens to the polymer backbone using an intracellularly cleaved disulfide bond copolymerized with a diluent amount of oligo(ethylene glycol) (OEG) resulted in the highest payload-specific potentiation of antigen immunogenicity, enhancing dendritic cell (DC) activation and antigen-specific T cell responses. Vaccination with PLPs carrying either gp100, E7, or adpgk peptides significantly increased the survival of mice inoculated with B16F10, TC-1, or MC38 tumors, respectively, without the need for adjuvants. B16F10-bearing mice immunized with gp100-carrying PLPs showed increased antitumor CD8+ T cell immunity, suppressed tumor growth, and treatment synergy when paired with two distinct stimulator of interferon gene (STING) agonists. In a human papillomavirus-associated TC-1 model, combination therapy with PLP and 2'3'-cGAMP resulted in 40% of mice completely eliminating implanted tumors while also displaying curative protection from rechallenge, consistent with conferment of lasting immunological memory. Finally, PLPs can be stored long-term in a lyophilized state and are highly tunable, underscoring the unique properties of the platform for use as generalizable cancer vaccines.
Collapse
Affiliation(s)
- Max M Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Mi-Ran Choi
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Claudia Battistella
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Brayley Gattis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Baofu Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Natural Sciences, Baruch College, City University of New York, New York, New York 10010, United States
| | - Michael Evangelopoulos
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60208, United States
| |
Collapse
|
16
|
Yu J, Yu X, Sun X, Wang Q, Long S, Ren R, Guan Z, Yang Z. Bis-2'-F-cG SA SMP isomers encapsulated in cytidinyl/cationic lipids act as potent in situ autologous tumor vaccines. Mol Ther 2024; 32:1917-1933. [PMID: 38637990 PMCID: PMC11184333 DOI: 10.1016/j.ymthe.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/23/2023] [Accepted: 04/12/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer immunotherapy has greatly improved the prognosis of tumor-bearing patients. Nevertheless, cancer patients exhibit low response rates to current immunotherapy drugs, such as PD1 and PDL1 antibodies. Cyclic dinucleotide analogs are a promising class of immunotherapeutic agents. In this study, in situ autologous tumor vaccines, composed of bis-2'-F-cGSASMP phosphonothioate isomers (FGA-di-pS-2 or FGA-di-pS-4) and cytidinyl/cationic lipids (Mix), were constructed. Intravenous and intratumoral injection of FGA-di-pS-2/Mix or FGA-di-pS-4/Mix enhanced the immunogenic cell death of tumor cells in vivo, leading to the exposure and presentation of whole tumor antigens, inhibiting tumor growth in both LLC and EO771 tumor in situ murine models and increasing their survival rates to 50% and 23%, respectively. Furthermore, the tumor-bearing mice after treatment showed potent immune memory efficacy and exhibited 100% protection against tumor rechallenge. Intravenous administration of FGA-di-pS-2/Mix potently promoted DC maturation, M1 macrophage polarization and CD8+ T cell activation and decreased the proportion of Treg cells in the tumor microenvironment. Notably, two doses of ICD-debris (generated by FGA-di-pS-2 or 4/Mix-treated LLC cells) protected 100% of mice from tumor growth. These tumor vaccines showed promising results and may serve as personalized cancer vaccinations in the future.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Natural & Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiaotong Yu
- State Key Laboratory of Natural & Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing 100191, China
| | - Xudong Sun
- State Key Laboratory of Natural & Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Quanxin Wang
- State Key Laboratory of Natural & Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Sijie Long
- State Key Laboratory of Natural & Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Runan Ren
- State Key Laboratory of Natural & Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhu Guan
- State Key Laboratory of Natural & Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhenjun Yang
- State Key Laboratory of Natural & Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
17
|
Shi G, Liu X, Du Y, Tian J. RGD targeted magnetic ferrite nanoparticles enhance antitumor immunotherapeutic efficacy by activating STING signaling pathway. iScience 2024; 27:109062. [PMID: 38660408 PMCID: PMC11039334 DOI: 10.1016/j.isci.2024.109062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/06/2023] [Accepted: 01/25/2024] [Indexed: 04/26/2024] Open
Abstract
Manganese has been used in tumor imaging for their ability to provide T1-weighted MRI signal. Recent research find Mn2+ can induce activation of the stimulator of interferon gene (STING) pathway to create an active and favorable tumor immune microenvironment. However, the direct injection of Mn2+ often results in toxicity. In this study, we developed an RGD targeted magnetic ferrite nanoparticle (RGD-MnFe2O4) to facilitate tumor targeted imaging and improve tumor immunotherapy. Magnetic resonance imaging and fluorescence molecular imaging were performed to monitor its in vivo biodistribution. We found that RGD-MnFe2O4 showed active tumor targeting and longer accumulation at tumor sites. Moreover, RGD-MnFe2O4 can activate STING pathway with low toxicity to enhance the PD-L1 expression. Furthermore, combining RGD-MnFe2O4 and anti-PD-L1 antibody (aPD-L1) can treat several types of immunogenic tumors through promoting the accumulation of tumor-infiltrating cytotoxic T cells. In general, our study provides a promising new strategy for the targeted and multifunctional theranostic nanoparticle for the improvement of tumor immunotherapy.
Collapse
Affiliation(s)
- Guangyuan Shi
- University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoli Liu
- Northwest University, Xi’an 710127, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100080, China
| | - Jie Tian
- Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
18
|
Mantooth SM, Abdou Y, Saez-Ibañez AR, Upadhaya S, Zaharoff DA. Intratumoral delivery of immunotherapy to treat breast cancer: current development in clinical and preclinical studies. Front Immunol 2024; 15:1385484. [PMID: 38803496 PMCID: PMC11128577 DOI: 10.3389/fimmu.2024.1385484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Breast cancer poses one of the largest threats to women's health. Treatment continues to improve for all the subtypes of breast cancer, but some subtypes, such as triple negative breast cancer, still present a significant treatment challenge. Additionally, metastasis and local recurrence are two prevalent problems in breast cancer treatment. A newer type of therapy, immunotherapy, may offer alternatives to traditional treatments for difficult-to-treat subtypes. Immunotherapy engages the host's immune system to eradicate disease, with the potential to induce long-lasting, durable responses. However, systemic immunotherapy is only approved in a limited number of indications, and it benefits only a minority of patients. Furthermore, immune related toxicities following systemic administration of potent immunomodulators limit dosing and, consequently, efficacy. To address these safety considerations and improve treatment efficacy, interest in local delivery at the site of the tumor has increased. Numerous intratumorally delivered immunotherapeutics have been and are being explored clinically and preclinically, including monoclonal antibodies, cellular therapies, viruses, nucleic acids, cytokines, innate immune agonists, and bacteria. This review summarizes the current and past intratumoral immunotherapy clinical landscape in breast cancer as well as current progress that has been made in preclinical studies, with a focus on delivery parameters and considerations.
Collapse
Affiliation(s)
- Siena M. Mantooth
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, United States
| | - Yara Abdou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | | - David A. Zaharoff
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
19
|
Ma XY, Chen MM, Meng LH. Second messenger 2'3'-cyclic GMP-AMP (2'3'-cGAMP): the cell autonomous and non-autonomous roles in cancer progression. Acta Pharmacol Sin 2024; 45:890-899. [PMID: 38177693 PMCID: PMC11053103 DOI: 10.1038/s41401-023-01210-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Cytosolic double-stranded DNA (dsDNA) is frequently accumulated in cancer cells due to chromosomal instability or exogenous stimulation. Cyclic GMP-AMP synthase (cGAS) acts as a cytosolic DNA sensor, which is activated upon binding to dsDNA to synthesize the crucial second messenger 2'3'-cyclic GMP-AMP (2'3'-cGAMP) that in turn triggers stimulator of interferon genes (STING) signaling. The canonical role of cGAS-cGAMP-STING pathway is essential for innate immunity and viral defense. Recent emerging evidence indicates that 2'3'-cGAMP plays an important role in cancer progression via cell autonomous and non-autonomous mechanisms. Beyond its role as an intracellular messenger to activate STING signaling in tumor cells, 2'3'-cGAMP also serves as an immunotransmitter produced by cancer cells to modulate the functions of non-tumor cells especially immune cells in the tumor microenvironment by activating STING signaling. In this review, we summarize the synthesis, transmission, and degradation of 2'3'-cGAMP as well as the dual functions of 2'3'-cGAMP in a STING-dependent manner. Additionally, we discuss the potential therapeutic strategies that harness the cGAMP-mediated antitumor response for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Yu Ma
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Man-Man Chen
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling-Hua Meng
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Qin Y, Rouatbi N, Wang JTW, Baker R, Spicer J, Walters AA, Al-Jamal KT. Plasmid DNA ionisable lipid nanoparticles as non-inert carriers and potent immune activators for cancer immunotherapy. J Control Release 2024; 369:251-265. [PMID: 38493950 PMCID: PMC11464404 DOI: 10.1016/j.jconrel.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Immunotherapy is currently a standard of care in the treatment of many malignancies. However, predictable side effects caused by systemic administration of highly immunostimulatory molecules have been a serious concern within this field. Intratumoural expression or silencing of immunogenic and immunoinhibitory molecules using nucleic acid-based approaches such as plasmid DNA (pDNA) and small interfering RNA (siRNA), respectively, could represent a next generation of cancer immunotherapy. Here, we employed lipid nanoparticles (LNPs) to deliver either non-specific pDNA and siRNA, or constructs targeting two prominent immunotherapeutic targets OX40L and indoleamine 2,3-dioxygenase-1 (IDO), to tumours in vivo. In the B16F10 mouse model, intratumoural delivery of LNP-formulated non-specific pDNA and siRNA led to strong local immune activation and tumour growth inhibition even at low doses due to the pDNA immunogenic nature. Replacement of these non-specific constructs by pOX40L and siIDO resulted in more prominent immune activation as evidenced by increased immune cell infiltration in tumours and tumour-draining lymph nodes. Consistently, pOX40L alone or in combination with siIDO could prolong overall survival, resulting in complete tumour regression and the formation of immunological memory in tumour rechallenge models. Our results suggest that intratumoural administration of LNP-formulated pDNA and siRNA offers a promising approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Yue Qin
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Nadia Rouatbi
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Rafal Baker
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - James Spicer
- Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust (GSTT), London SE1 9RT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
| | - Adam A Walters
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
21
|
Dong MP, Dharmaraj N, Kaminagakura E, Xue J, Leach DG, Hartgerink JD, Zhang M, Hanks HJ, Ye Y, Aouizerat BE, Vining K, Thomas CM, Dovat S, Young S, Viet CT. Stimulator of Interferon Genes Pathway Activation through the Controlled Release of STINGel Mediates Analgesia and Anti-Cancer Effects in Oral Squamous Cell Carcinoma. Biomedicines 2024; 12:920. [PMID: 38672274 PMCID: PMC11047833 DOI: 10.3390/biomedicines12040920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) presents significant treatment challenges due to its poor survival and intense pain at the primary cancer site. Cancer pain is debilitating, contributes to diminished quality of life, and causes opioid tolerance. The stimulator of interferon genes (STING) agonism has been investigated as an anti-cancer strategy. We have developed STINGel, an extended-release formulation that prolongs the availability of STING agonists, which has demonstrated an enhanced anti-tumor effect in OSCC compared to STING agonist injection. This study investigates the impact of intra-tumoral STINGel on OSCC-induced pain using two separate OSCC models and nociceptive behavioral assays. Intra-tumoral STINGel significantly reduced mechanical allodynia in the orofacial cancer model and alleviated thermal and mechanical hyperalgesia in the hind paw model. To determine the cellular signaling cascade contributing to the antinociceptive effect, we performed an in-depth analysis of immune cell populations via single-cell RNA-seq. We demonstrated an increase in M1-like macrophages and N1-like neutrophils after STINGel treatment. The identified regulatory pathways controlled immune response activation, myeloid cell differentiation, and cytoplasmic translation. Functional pathway analysis demonstrated the suppression of translation at neuron synapses and the negative regulation of neuron projection development in M2-like macrophages after STINGel treatment. Importantly, STINGel treatment upregulated TGF-β pathway signaling between various cell populations and peripheral nervous system (PNS) macrophages and enhanced TGF-β signaling within the PNS itself. Overall, this study sheds light on the mechanisms underlying STINGel-mediated antinociception and anti-tumorigenic impact.
Collapse
Affiliation(s)
- Minh Phuong Dong
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA; (M.P.D.); (M.Z.); (H.-J.H.)
| | - Neeraja Dharmaraj
- Katz Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.D.); (J.X.); (S.Y.)
| | - Estela Kaminagakura
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São Paulo 12245-00, Brazil;
| | - Jianfei Xue
- Katz Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.D.); (J.X.); (S.Y.)
| | - David G. Leach
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (D.G.L.); (J.D.H.)
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Jeffrey D. Hartgerink
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (D.G.L.); (J.D.H.)
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Michael Zhang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA; (M.P.D.); (M.Z.); (H.-J.H.)
| | - Hana-Joy Hanks
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA; (M.P.D.); (M.Z.); (H.-J.H.)
| | - Yi Ye
- Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010, USA;
- NYU Pain Research Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Bradley E. Aouizerat
- NYU Pain Research Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Kyle Vining
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Materials Science and Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carissa M. Thomas
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Simon Young
- Katz Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.D.); (J.X.); (S.Y.)
| | - Chi T. Viet
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA; (M.P.D.); (M.Z.); (H.-J.H.)
| |
Collapse
|
22
|
Ma J, Xin Y, Wang Q, Ding L. Roles of cGAS-STING Pathway in Radiotherapy Combined with Immunotherapy for Hepatocellular Carcinoma. Mol Cancer Ther 2024; 23:447-453. [PMID: 38049087 DOI: 10.1158/1535-7163.mct-23-0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/14/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Although great strides have been made in the management and treatment of hepatocellular carcinoma (HCC), its prognosis is still poor yielding a high mortality. Immunotherapy is recommended for treating advanced HCC, but its efficiency is hampered because of hepatic immunosuppression. Stimulator of interferon genes (STING) pathway, serving as a critical cytoplasmic DNA-sensing process, is reported to initiate the antitumor immune response, and link the innate immunity to the adaptive immune system. Radiotherapy has been well acknowledged to induce destruction and release of tumor-derived DNA into the cytoplasm, which then activates the cGAS-STING pathway. On this basis, radiotherapy can be used as a sensitizer for immunotherapy, and its combination with immunotherapy may bring in changes to the suboptimal efficacy of immune checkpoint inhibitor monotherapy. In this review, we summarized the roles of cGAS-STING pathway in regulation of radiotherapy combined with immunotherapy for treating HCC.
Collapse
Affiliation(s)
- Jianing Ma
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yuning Xin
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| | - Qiang Wang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| | - Lijuan Ding
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
23
|
Chen JY, Lin PY, Hong WZ, Yang PC, Chiang SF, Chang HY, Ke TW, Liang JA, Chen WTL, Chao KSC, Huang KCY. Activation of STING by the novel liposomal TLC388 enhances the therapeutic response to anti-PD-1 antibodies in combination with radiotherapy. Cancer Immunol Immunother 2024; 73:92. [PMID: 38564022 PMCID: PMC10987363 DOI: 10.1007/s00262-024-03692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Current immune checkpoint inhibiters (ICIs) have contrasting clinical results in poorly immunogenic cancers such as microsatellite-stable colorectal cancer (MSS-CRC). Therefore, understanding and developing the combinational therapeutics for ICI-unresponsive cancers is critical. Here, we demonstrated that the novel topoisomerase I inhibitor TLC388 can reshape the tumor immune landscape, corroborating their antitumor effects combined with radiotherapy as well as immunotherapy. We found that TLC388 significantly triggered cytosolic single-stranded DNA (ssDNA) accumulation for STING activation, leading to type I interferons (IFN-Is) production for increased cancer immunogenicity to enhance antitumor immunity. TLC388-treated tumors were infiltrated by a vast number of dendritic cells, immune cells, and costimulatory molecules, contributing to the favorable antitumor immune response within the tumor microenvironment. The infiltration of cytotoxic T and NK cells were more profoundly existed within tumors in combination with radiotherapy and ICIs, leading to superior therapeutic efficacy in poorly immunogenic MSS-CRC. Taken together, these results showed that the novel topoisomerase I inhibitor TLC388 increased cancer immunogenicity by ssDNA/STING-mediated IFN-I production, enhancing antitumor immunity for better therapeutic efficacy in combination with radiotherapy and ICIs for poorly immunogenic cancer.
Collapse
Affiliation(s)
- Jhen-Yu Chen
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Po-Yu Lin
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan R.O.C
| | - Wei-Ze Hong
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan R.O.C
| | - Pei-Chen Yang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan R.O.C
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055, Taiwan
| | - Hsin-Yu Chang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan R.O.C
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Radiation Oncology, School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, 302, Taiwan
- School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - K S Clifford Chao
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan R.O.C..
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Radiation Oncology, School of Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan.
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
24
|
Li Q, Wu P, Du Q, Hanif U, Hu H, Li K. cGAS-STING, an important signaling pathway in diseases and their therapy. MedComm (Beijing) 2024; 5:e511. [PMID: 38525112 PMCID: PMC10960729 DOI: 10.1002/mco2.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Since cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway was discovered in 2013, great progress has been made to elucidate the origin, function, and regulating mechanism of cGAS-STING signaling pathway in the past decade. Meanwhile, the triggering and transduction mechanisms have been continuously illuminated. cGAS-STING plays a key role in human diseases, particularly DNA-triggered inflammatory diseases, making it a potentially effective therapeutic target for inflammation-related diseases. Here, we aim to summarize the ancient origin of the cGAS-STING defense mechanism, as well as the triggers, transduction, and regulating mechanisms of the cGAS-STING. We will also focus on the important roles of cGAS-STING signal under pathological conditions, such as infections, cancers, autoimmune diseases, neurological diseases, and visceral inflammations, and review the progress in drug development targeting cGAS-STING signaling pathway. The main directions and potential obstacles in the regulating mechanism research and therapeutic drug development of the cGAS-STING signaling pathway for inflammatory diseases and cancers will be discussed. These research advancements expand our understanding of cGAS-STING, provide a theoretical basis for further exploration of the roles of cGAS-STING in diseases, and open up new strategies for targeting cGAS-STING as a promising therapeutic intervention in multiple diseases.
Collapse
Affiliation(s)
- Qijie Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ping Wu
- Department of Occupational DiseasesThe Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital)ChengduSichuanChina
| | - Qiujing Du
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ullah Hanif
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Center for Immunology and HematologyState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ka Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| |
Collapse
|
25
|
Nguyen DC, Song K, Jokonya S, Yazdani O, Sellers DL, Wang Y, Zakaria ABM, Pun SH, Stayton PS. Mannosylated STING Agonist Drugamers for Dendritic Cell-Mediated Cancer Immunotherapy. ACS CENTRAL SCIENCE 2024; 10:666-675. [PMID: 38559305 PMCID: PMC10979423 DOI: 10.1021/acscentsci.3c01310] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 04/04/2024]
Abstract
The Stimulator of Interferon Genes (STING) pathway is a promising target for cancer immunotherapy. Despite recent advances, therapies targeting the STING pathway are often limited by routes of administration, suboptimal STING activation, or off-target toxicity. Here, we report a dendritic cell (DC)-targeted polymeric prodrug platform (polySTING) that is designed to optimize intracellular delivery of a diamidobenzimidazole (diABZI) small-molecule STING agonist while minimizing off-target toxicity after parenteral administration. PolySTING incorporates mannose targeting ligands as a comonomer, which facilitates its uptake in CD206+/mannose receptor+ professional antigen-presenting cells (APCs) in the tumor microenvironment (TME). The STING agonist is conjugated through a cathepsin B-cleavable valine-alanine (VA) linker for selective intracellular drug release after receptor-mediated endocytosis. When administered intravenously in tumor-bearing mice, polySTING selectively targeted CD206+/mannose receptor+ APCs in the TME, resulting in increased cross-presenting CD8+ DCs, infiltrating CD8+ T cells in the TME as well as maturation across multiple DC subtypes in the tumor-draining lymph node (TDLN). Systemic administration of polySTING slowed tumor growth in a B16-F10 murine melanoma model as well as a 4T1 murine breast cancer model with an acceptable safety profile. Thus, we demonstrate that polySTING delivers STING agonists to professional APCs after systemic administration, generating efficacious DC-driven antitumor immunity with minimal side effects. This new polymeric prodrug platform may offer new opportunities for combining efficient targeted STING agonist delivery with other selective tumor therapeutic strategies.
Collapse
Affiliation(s)
- Dinh Chuong Nguyen
- Molecular
Engineering & Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
| | - Kefan Song
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Simbarashe Jokonya
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Omeed Yazdani
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Drew L. Sellers
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Yonghui Wang
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - ABM Zakaria
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H. Pun
- Molecular
Engineering & Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Patrick S. Stayton
- Molecular
Engineering & Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
26
|
Liu L, Manley JL. Non-canonical isoforms of the mRNA polyadenylation factor WDR33 regulate STING-mediated immune responses. Cell Rep 2024; 43:113886. [PMID: 38430516 PMCID: PMC11019558 DOI: 10.1016/j.celrep.2024.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 03/04/2024] Open
Abstract
The human WDR33 gene encodes three major isoforms. The canonical isoform WDR33v1 (V1) is a well-characterized nuclear mRNA polyadenylation factor, while the other two, WDR33v2 (V2) and WDR33v3 (V3), have not been studied. Here, we report that V2 and V3 are generated by alternative polyadenylation, and neither protein contains all seven WD (tryptophan-aspartic acid) repeats that characterize V1. Surprisingly, V2 and V3 are not polyadenylation factors but localize to the endoplasmic reticulum and interact with stimulator of interferon genes (STING), the immune factor that induces the cellular response to cytosolic double-stranded DNA. V2 suppresses interferon-β induction by preventing STING disulfide oligomerization but promotes autophagy, likely by recruiting WIPI2 isoforms. V3, on the other hand, functions to increase STING protein levels. Our study has not only provided mechanistic insights into STING regulation but also revealed that protein isoforms can be functionally completely unrelated, indicating that alternative mRNA processing is a more powerful mechanism than previously appreciated.
Collapse
Affiliation(s)
- Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
27
|
Tankov S, Petrovic M, Lecoultre M, Espinoza F, El-Harane N, Bes V, Chliate S, Bedoya DM, Jordan O, Borchard G, Migliorini D, Dutoit V, Walker PR. Hypoxic glioblastoma-cell-derived extracellular vesicles impair cGAS-STING activity in macrophages. Cell Commun Signal 2024; 22:144. [PMID: 38389103 PMCID: PMC10882937 DOI: 10.1186/s12964-024-01523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Solid tumors such as glioblastoma (GBM) exhibit hypoxic zones that are associated with poor prognosis and immunosuppression through multiple cell intrinsic mechanisms. However, release of extracellular vesicles (EVs) has the potential to transmit molecular cargos between cells. If hypoxic cancer cells use EVs to suppress functions of macrophages under adequate oxygenation, this could be an important underlying mechanism contributing to the immunosuppressive and immunologically cold tumor microenvironment of tumors such as GBM. METHODS EVs were isolated by differential ultracentrifugation from GBM cell culture supernatant. EVs were thoroughly characterized by transmission and cryo-electron microscopy, nanoparticle tracking analysis (NTA), and EV marker expression by Western blot and fluorescent NTA. EV uptake by macrophage cells was observed using confocal microscopy. The transfer of miR-25/93 as an EV cargo to macrophages was confirmed by miRNA real-time qPCR. The impact of miR-25/93 on the polarization of recipient macrophages was shown by transcriptional analysis, cytokine secretion and functional assays using co-cultured T cells. RESULTS We show that indirect effects of hypoxia can have immunosuppressive consequences through an EV and microRNA dependent mechanism active in both murine and human tumor and immune cells. Hypoxia enhanced EV release from GBM cells and upregulated expression of miR-25/93 both in cells and in EV cargos. Hypoxic GBM-derived EVs were taken up by macrophages and the miR-25/93 cargo was transferred, leading to impaired cGAS-STING pathway activation revealed by reduced type I IFN expression and secretion by macrophages. The EV-treated macrophages downregulated expression of M1 polarization-associated genes Cxcl9, Cxcl10 and Il12b, and had reduced capacity to attract activated T cells and to reactivate them to release IFN-γ, key components of an efficacious anti-tumor immune response. CONCLUSIONS Our findings suggest a mechanism by which immunosuppressive consequences of hypoxia mediated via miRNA-25/93 can be exported from hypoxic GBM cells to normoxic macrophages via EVs, thereby contributing to more widespread T-cell mediated immunosuppression in the tumor microenvironment.
Collapse
Affiliation(s)
- Stoyan Tankov
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Marija Petrovic
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Marc Lecoultre
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Felipe Espinoza
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Nadia El-Harane
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Viviane Bes
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Sylvie Chliate
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Darel Martinez Bedoya
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Denis Migliorini
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Valérie Dutoit
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Paul R Walker
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland.
| |
Collapse
|
28
|
Alnukhali M, Altabbakh O, Farooqi AA, Pollack A, Daunert S, Deo S, Tao W. Activation of Stimulator of Interferon Genes (STING): Promising Strategy to Overcome Immune Resistance in Prostate Cancer. Curr Med Chem 2024; 31:6556-6571. [PMID: 38347787 PMCID: PMC11497144 DOI: 10.2174/0109298673273303231208071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 10/19/2024]
Abstract
Prostate cancer (PCa) is the most frequent and second-lethal cancer among men. Despite considerable efforts to explore treatments like autologous cellular immunotherapy and immune checkpoint inhibitors, their success remains limited. The intricate tumor microenvironment (TME) and its interaction with the immune system pose significant challenges in PCa treatment. Consequently, researchers have directed their focus on augmenting the immune system's anti-tumor response by targeting the STimulator of the Interferon Genes (STING) pathway. The STING pathway is activated when foreign DNA is detected in the cytoplasm of innate immune cells, resulting in the activation of endoplasmic reticulum (ER) STING. This, in turn, triggers an augmentation of signaling, leading to the production of type I interferon (IFN) and other pro-inflammatory cytokines. Numerous studies have demonstrated that activation of the STING pathway induces immune system rejection and targeted elimination of PCa cells. Researchers have been exploring various methods to activate the STING pathway, including the use of bacterial vectors to deliver STING agonists and the combination of radiation therapy with STING agonists. Achieving effective radiation therapy with minimal side effects and optimal anti-tumor immune responses necessitates precise adjustments to radiation dosing and fractionation schedules. This comprehensive review discusses promising findings from studies focusing on activating the STING pathway to combat PCa. The STING pathway exhibits the potential to serve as an effective treatment modality for PCa, offering new hope for improving the lives of those affected by this devastating disease.
Collapse
Affiliation(s)
- Mohammed Alnukhali
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Omar Altabbakh
- College of Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL 33759, USA
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), National Institute for Genomics and Advanced Biotechnology, Islamabad 44000, Pakistan
| | - Alan Pollack
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Leonard M. Miller School of Medicine, Clinical and Translational Science Institute, University of Miami, Miami, FL 33136, USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Wensi Tao
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
29
|
Um PK, Praharaj M, Lombardo KA, Yoshida T, Matoso A, Baras AS, Zhao L, Srikrishna G, Huang J, Prasad P, Kates M, McConkey D, Pardoll DM, Bishai WR, Bivalacqua TJ. Improved bladder cancer antitumor efficacy with a recombinant BCG that releases a STING agonist. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571740. [PMID: 38168333 PMCID: PMC10760079 DOI: 10.1101/2023.12.15.571740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Despite the introduction of several new agents for the treatment of bladder cancer (BC), intravesical BCG remains a first line agent for the management of non-muscle invasive bladder cancer. In this study we evaluated the antitumor efficacy in animal models of BC of a recombinant BCG known as BCG-disA-OE that releases the small molecule STING agonist c-di-AMP. We found that compared to wild-type BCG (BCG-WT), in both the orthotopic, carcinogen-induced rat MNU model and the heterotopic syngeneic mouse MB-49 model BCG-disA-OE afforded improved antitumor efficacy. A mouse safety evaluation further revealed that BCG-disA-OE proliferated to lesser degree than BCG-WT in BALB/c mice and displayed reduced lethality in SCID mice. To probe the mechanisms that may underlie these effects, we found that BCG-disA-OE was more potent than BCG-WT in eliciting IFN-β release by exposed macrophages, in reprogramming myeloid cell subsets towards an M1-like proinflammatory phenotypes, inducing epigenetic activation marks in proinflammatory cytokine promoters, and in shifting monocyte metabolomic profiles towards glycolysis. Many of the parameters elevated in cells exposed to BCG-disA-OE are associated with BCG-mediated trained innate immunity suggesting that STING agonist overexpression may enhance trained immunity. These results indicate that modifying BCG to release high levels of proinflammatory PAMP molecules such as the STING agonist c-di-AMP can enhance antitumor efficacy in bladder cancer.
Collapse
Affiliation(s)
- Peter K. Um
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, USA
| | - Monali Praharaj
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, USA
| | - Kara A. Lombardo
- Johns Hopkins University, School of Medicine, Department of Urology, Baltimore, USA
| | - Takahiro Yoshida
- Department of Urology, Hyogo Prefectural Nishinomiya Hospital, Japan, 6620918
| | - Andres Matoso
- Department of Pathology, The Johns Hopkins University, Baltimore, USA
| | - Alex S. Baras
- Department of Pathology, The Johns Hopkins University, Baltimore, USA
| | - Liang Zhao
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, USA
| | - Geetha Srikrishna
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, USA
| | - Joy Huang
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, USA
| | - Pankaj Prasad
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, USA
| | - Max Kates
- Johns Hopkins University, School of Medicine, Department of Urology, Baltimore, USA
| | - David McConkey
- Johns Hopkins University, School of Medicine, Department of Urology, Baltimore, USA
| | - Drew M. Pardoll
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, USA
| | - William R. Bishai
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, USA
| | - Trinity J. Bivalacqua
- School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
30
|
Xiong D, Zhang L, Sun ZJ. Targeting the epigenome to reinvigorate T cells for cancer immunotherapy. Mil Med Res 2023; 10:59. [PMID: 38044445 PMCID: PMC10694991 DOI: 10.1186/s40779-023-00496-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer immunotherapy using immune-checkpoint inhibitors (ICIs) has revolutionized the field of cancer treatment; however, ICI efficacy is constrained by progressive dysfunction of CD8+ tumor-infiltrating lymphocytes (TILs), which is termed T cell exhaustion. This process is driven by diverse extrinsic factors across heterogeneous tumor immune microenvironment (TIME). Simultaneously, tumorigenesis entails robust reshaping of the epigenetic landscape, potentially instigating T cell exhaustion. In this review, we summarize the epigenetic mechanisms governing tumor microenvironmental cues leading to T cell exhaustion, and discuss therapeutic potential of targeting epigenetic regulators for immunotherapies. Finally, we outline conceptual and technical advances in developing potential treatment paradigms involving immunostimulatory agents and epigenetic therapies.
Collapse
Affiliation(s)
- Dian Xiong
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China
| | - Lu Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
31
|
Korneenko TV, Pestov NB, Nevzorov IA, Daks AA, Trachuk KN, Solopova ON, Barlev NA. At the Crossroads of the cGAS-cGAMP-STING Pathway and the DNA Damage Response: Implications for Cancer Progression and Treatment. Pharmaceuticals (Basel) 2023; 16:1675. [PMID: 38139802 PMCID: PMC10747911 DOI: 10.3390/ph16121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
The evolutionary conserved DNA-sensing cGAS-STING innate immunity pathway represents one of the most important cytosolic DNA-sensing systems that is activated in response to viral invasion and/or damage to the integrity of the nuclear envelope. The key outcome of this pathway is the production of interferon, which subsequently stimulates the transcription of hundreds of genes. In oncology, the situation is complex because this pathway may serve either anti- or pro-oncogenic roles, depending on context. The prevailing understanding is that when the innate immune response is activated by sensing cytosolic DNA, such as DNA released from ruptured micronuclei, it results in the production of interferon, which attracts cytotoxic cells to destroy tumors. However, in tumor cells that have adjusted to significant chromosomal instability, particularly in relapsed, treatment-resistant cancers, the cGAS-STING pathway often supports cancer progression, fostering the epithelial-to-mesenchymal transition (EMT). Here, we review this intricate pathway in terms of its association with cancer progression, giving special attention to pancreatic ductal adenocarcinoma and gliomas. As the development of new cGAS-STING-modulating small molecules and immunotherapies such as oncolytic viruses involves serious challenges, we highlight several recent fundamental discoveries, such as the proton-channeling function of STING. These discoveries may serve as guiding lights for potential pharmacological advancements.
Collapse
Affiliation(s)
- Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikolay B. Pestov
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Ivan A. Nevzorov
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Alexandra A. Daks
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Kirill N. Trachuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Olga N. Solopova
- Research Institute of Experimental Diagnostics and Tumor Therapy, Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
32
|
Froechlich G, Finizio A, Napolano A, Amiranda S, De Chiara A, Pagano P, Mallardo M, Leoni G, Zambrano N, Sasso E. The common H232 STING allele shows impaired activities in DNA sensing, susceptibility to viral infection, and in monocyte cell function, while the HAQ variant possesses wild-type properties. Sci Rep 2023; 13:19541. [PMID: 37945588 PMCID: PMC10636114 DOI: 10.1038/s41598-023-46830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
Different innate immune pathways converge to Stimulator of interferon genes (STING) and trigger type I interferon responses after recognition of abnormal nucleic acids in the cells. This non-redundant function renders STING a major player in immunosurveillance, and an emerging target for cancer and infectious diseases therapeutics. Beyond somatic mutations that often occur in cancer, the human gene encoding STING protein, TMEM173 (STING1), holds great genetic heterogeneity; R232, HAQ (R71H-G230A-R293Q) and H232 are the most common alleles. Although some of these alleles are likely to be hypomorphic, their function is still debated, due to the available functional assessments, which have been performed in biased biological systems. Here, by using genetic background-matched models, we report on the functional evaluation of R232, HAQ and H232 variants on STING function, and on how these genotypes affect the susceptibility to clinically relevant viruses, thus supporting a potential contributing cause to differences in inter-individual responses to infections. Our findings also demonstrate a novel toll-like receptor-independent role of STING in modulating monocytic cell function and differentiation into macrophages. We further supported the interplay of STING1 variants and human biology by demonstrating how monocytes bearing the H232 allele were impaired in M1/M2 differentiation, interferon response and antigen presentation. Finally, we assessed the response to PD-1 inhibitor in a small cohort of melanoma patients stratified according to STING genotype. Given the contribution of the STING protein in sensing DNA viruses, bacterial pathogens and misplaced cancer DNA, these data may support the development of novel therapeutic options for infectious diseases and cancer.
Collapse
Affiliation(s)
- Guendalina Froechlich
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Arianna Finizio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Alessandra Napolano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Sara Amiranda
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Arianna De Chiara
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Pasqualina Pagano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Massimo Mallardo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
| | | | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy.
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy.
| | - Emanuele Sasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy.
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy.
- ImGen-T Srl, Viale del Parco Carelli, Napoli, NA, Italy.
| |
Collapse
|
33
|
Zhao K, Huang J, Zhao Y, Wang S, Xu J, Yin K. Targeting STING in cancer: Challenges and emerging opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:188983. [PMID: 37717857 DOI: 10.1016/j.bbcan.2023.188983] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway is a key pathway through which the host regulates immune responses by recognizing cytoplasmic double-stranded DNA of abnormal origin, and it plays an important role in tumor growth as well as metastasis, with relevant molecular details constantly being explored and updated. The significant immunomodulatory effects make STING an attractive target for cancer immunotherapy, and STING agonists have been receiving great attention for their development and clinical translation. Despite exciting results in preclinical work, the application of STING agonists to cancer therapy remains challenging due to their poor pharmacokinetic and physicochemical properties, as well as toxic side effects they produce. Here, we summarize the dichotomous role of cGAS-STING in cancer and discuss the limitations of cancer immunotherapy based on STING activation as well as feasible strategies to overcome them to achieve tumor regression.
Collapse
Affiliation(s)
- Kexin Zhao
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaojiao Huang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Zhao
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Juan Xu
- Department of Laboratory Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
34
|
Richter F, Paget C, Apetoh L. STING-driven activation of T cells: relevance for the adoptive cell therapy of cancer. Cell Stress 2023; 7:95-104. [PMID: 37970489 PMCID: PMC10642958 DOI: 10.15698/cst2023.11.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023] Open
Abstract
Adoptive cell therapy (ACT) can successfully treat hematopoietic cancers but lacks efficacy against solid tumors. This is due to insufficient T cell infiltration, high tumor heterogeneity, frequent antigen loss with subsequent tumor escape, and the immunosuppressive tumor microenvironment (TME). Alternative methods to boost the anticancer efficacy of adoptively transferred cells are actively pursued. Among adjuvants that are utilized to stimulate anticancer immune responses, ligands of the stimulator of interferon genes (STING) pathway have received increasing attention. STING activation can trigger dendritic cell (DC) activation and endogenous immune responses, thereby preventing tumor escape. Activation of the STING pathway in the context of ACT was accordingly associated with improved T cell trafficking and persistence in the TME combined with the reduced presence of immunosuppressive cells. Recent findings also suggest cell-intrinsic effects of STING ligands on T cells. Activation of the STING signaling pathway was in this regard shown to enhance effector functions of CD4+ and CD8+ T cells, suggesting that the STING signaling could be exploited to harness T cell anticancer functions. In this review, we will discuss how the STING signaling can be used to enhance the anticancer efficacy of ACT.
Collapse
Affiliation(s)
- Fabian Richter
- Centre d'Étude des Pathologies Respiratoires, U1100, INSERM, Tours, France
- Faculté de Médecine, Université de Tours, Tours, France
| | - Christophe Paget
- Centre d'Étude des Pathologies Respiratoires, U1100, INSERM, Tours, France
- Faculté de Médecine, Université de Tours, Tours, France
| | - Lionel Apetoh
- Brown Center for Immunotherapy, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
35
|
Hajiabadi S, Alidadi S, Montakhab Farahi Z, Ghahramani Seno MM, Farzin H, Haghparast A. Immunotherapy with STING and TLR9 agonists promotes synergistic therapeutic efficacy with suppressed cancer-associated fibroblasts in colon carcinoma. Front Immunol 2023; 14:1258691. [PMID: 37901237 PMCID: PMC10611477 DOI: 10.3389/fimmu.2023.1258691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/06/2023] [Indexed: 10/31/2023] Open
Abstract
The innate immune sensing of nucleic acids using effective immunoadjuvants is critical for increasing protective immune responses against cancer. Stimulators of interferon genes (STING) and toll-like receptor 9 (TLR9) agonists are considered promising candidates in several preclinical tumor models with the potential to be used in clinical settings. However, the effects of such treatment on tumor stroma are currently unknown. In this study, we investigated the immunotherapeutic effects of ADU-S100 as a STING agonist and CpG ODN1826 as a TLR9 agonist in a preclinical model of colon carcinoma. Tumor-bearing mice were treated intratumorally on days 10 and 16 post-tumor inoculation with ADU-S100 and CpG ODN1826. Cytokine profiles in the tumor and spleen, tumor cell apoptosis, the infiltration of immune cells, and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) were evaluated to identify the immunological mechanisms after treatment. The powerful antitumor activity of single and combination treatments, the upregulation of the expression of pro-inflammatory cytokines in the tumor and spleen, and the recruitment and infiltration of the TME by immune cells revealed the synergism of immunoadjuvants in the eradication of the colon carcinoma model. Remarkably, the significant downregulation of CAFs in the TME indicated that suppression of tumorigenesis occurred after immunoadjuvant therapy. The results illustrate the potential of targeting the STING and TLR9 pathways as powerful immunoadjuvants in the treatment of preclinical colon carcinoma and the possibility of harnessing these pathways in future therapeutic approaches.
Collapse
Affiliation(s)
- Sare Hajiabadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Soodeh Alidadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zohreh Montakhab Farahi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Hamidreza Farzin
- Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization (AREEO), Mashhad, Iran
| | - Alireza Haghparast
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
36
|
Lu X, Cheng H, Xu Q, Tan X. Encapsulation of STING Agonist cGAMP with Folic Acid-Conjugated Liposomes Significantly Enhances Antitumor Pharmacodynamic Effect. Cancer Biother Radiopharm 2023; 38:543-557. [PMID: 33719535 DOI: 10.1089/cbr.2020.4085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: 2',3'-cGAMP (2',3'-cyclic AMP-GMP) has been reported as an agonist of the STING (stimulator of interferon genes) signaling pathway. However, cGAMP has poor membrane permeability and can be hydrolyzed by ectonucleotide pyrophosphatase/phosphodiesterase (ENPP1), limiting its ability to activate the STING-IRF3 pathway. This study aimed to investigate that the folate-targeted liposomal cGAMP could overcome the defects of free cGAMP to enhance the antitumor effect. Materials and Methods: cGAMP was encapsulated in PEGylated folic acid-targeted liposomes to construct a carrier-delivered formulation. The particle size and morphology were detected by dynamic light scattering and transmission electron microscopy. The sustained-release ability was measured by drug release and pharmacokinetics. Animal models were applied to evaluate the tumor inhibition efficiency in vivo. Flow cytometry, enzyme-linked immunosorbent assay, and real-time polymerase chain reaction were used to detect the expression of immune cells, secreted cytokines, and target genes. The activation of the STING-IRF3 pathway was evaluated by immunofluorescence. Results: Physical characters of liposomes revealed that the prepared liposomes were stable in neutral humoral environments and released more internal drugs in acidic tumor tissues. Systemic therapy with liposomes on Colorectal 26 tumor-bearing mice in vivo effectively inhibited tumor growth via stimulating the expression of CD8+ T cells and reversed the immunosuppressed tumor microenvironment (TME). Conclusions: The study suggests that the folic acid-targeted cGAMP-loaded liposomes deliver drugs to the TME to enhance the STING agonist activity, improving the efficiency of tumor therapy via the cGAMP-STING-IRF3 pathway.
Collapse
Affiliation(s)
- Xing Lu
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Cheng
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qiming Xu
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiangshi Tan
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Yang Y, Wang L, Peugnet-González I, Parada-Venegas D, Dijkstra G, Faber KN. cGAS-STING signaling pathway in intestinal homeostasis and diseases. Front Immunol 2023; 14:1239142. [PMID: 37781354 PMCID: PMC10538549 DOI: 10.3389/fimmu.2023.1239142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
The intestinal mucosa is constantly exposed to commensal microbes, opportunistic pathogens, toxins, luminal components and other environmental stimuli. The intestinal mucosa consists of multiple differentiated cellular and extracellular components that form a critical barrier, but is also equipped for efficient absorption of nutrients. Combination of genetic susceptibility and environmental factors are known as critical components involved in the pathogenesis of intestinal diseases. The innate immune system plays a critical role in the recognition and elimination of potential threats by detecting pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). This host defense is facilitated by pattern recognition receptors (PRRs), in which the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has gained attention due to its role in sensing host and foreign double-stranded DNA (dsDNA) as well as cyclic dinucleotides (CDNs) produced by bacteria. Upon binding with dsDNA, cGAS converts ATP and GTP to cyclic GMP-AMP (cGAMP), which binds to STING and activates TANK binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3), inducing type I interferon (IFN) and nuclear factor kappa B (NF-κB)-mediated pro-inflammatory cytokines, which have diverse effects on innate and adaptive immune cells and intestinal epithelial cells (IECs). However, opposite perspectives exist regarding the role of the cGAS-STING pathway in different intestinal diseases. Activation of cGAS-STING signaling is associated with worse clinical outcomes in inflammation-associated diseases, while it also plays a critical role in protection against tumorigenesis and certain infections. Therefore, understanding the context-dependent mechanisms of the cGAS-STING pathway in the physiopathology of the intestinal mucosa is crucial for developing therapeutic strategies targeting the cGAS-STING pathway. This review aims to provide insight into recent findings of the protective and detrimental roles of the cGAS-STING pathway in intestinal diseases.
Collapse
Affiliation(s)
- Yuchen Yang
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Li Wang
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ivonne Peugnet-González
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Daniela Parada-Venegas
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
38
|
Zhou J, Zhuang Z, Li J, Feng Z. Significance of the cGAS-STING Pathway in Health and Disease. Int J Mol Sci 2023; 24:13316. [PMID: 37686127 PMCID: PMC10487967 DOI: 10.3390/ijms241713316] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a significant role in health and disease. In this pathway, cGAS, one of the major cytosolic DNA sensors in mammalian cells, regulates innate immunity and the STING-dependent production of pro-inflammatory cytokines, including type-I interferon. Moreover, the cGAS-STING pathway is integral to other cellular processes, such as cell death, cell senescence, and autophagy. Activation of the cGAS-STING pathway by "self" DNA is also attributed to various infectious diseases and autoimmune or inflammatory conditions. In addition, the cGAS-STING pathway activation functions as a link between innate and adaptive immunity, leading to the inhibition or facilitation of tumorigenesis; therefore, research targeting this pathway can provide novel clues for clinical applications to treat infectious, inflammatory, and autoimmune diseases and even cancer. In this review, we focus on the cGAS-STING pathway and its corresponding cellular and molecular mechanisms in health and disease.
Collapse
Affiliation(s)
- Jinglin Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhan Zhuang
- Key Laboratory of College of First Clinical Medicine, College of First Clinical Medicine, Fujian Medical University, Taijiang Campus, Fuzhou 350001, China
| | - Jiamian Li
- Key Laboratory of College of First Clinical Medicine, College of First Clinical Medicine, Fujian Medical University, Taijiang Campus, Fuzhou 350001, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
39
|
Wang SL, Wu Y, Konaté M, Lu J, Mallick D, Antony S, Meitzler JL, Jiang G, Dahan I, Juhasz A, Diebold B, Roy K, Doroshow JH. Exogenous DNA enhances DUOX2 expression and function in human pancreatic cancer cells by activating the cGAS-STING signaling pathway. Free Radic Biol Med 2023; 205:262-274. [PMID: 37330147 PMCID: PMC10527782 DOI: 10.1016/j.freeradbiomed.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/27/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Pro-inflammatory cytokines upregulate the expression of the H2O2-producing NADPH oxidase dual oxidase 2 (DUOX2)2 which, when elevated, adversely affects survival from pancreatic ductal adenocarcinoma (PDAC). Because the cGAS-STING pathway is known to initiate pro-inflammatory cytokine expression following uptake of exogenous DNA, we examined whether activation of cGAS-STING could play a role in the generation of reactive oxygen species by PDAC cells. Here, we found that a variety of exogenous DNA species markedly increased the production of cGAMP, the phosphorylation of TBK1 and IRF3, and the translocation of phosphorylated IRF3 into the nucleus, leading to a significant, IRF3-dependent enhancement of DUOX2 expression, and a significant flux of H2O2 in PDAC cells. However, unlike the canonical cGAS-STING pathway, DNA-related DUOX2 upregulation was not mediated by NF-κB. Although exogenous IFN-β significantly increased Stat1/2-associated DUOX2 expression, intracellular IFN-β signaling that followed cGAMP or DNA exposure did not itself increase DUOX2 levels. Finally, DUOX2 upregulation subsequent to cGAS-STING activation was accompanied by the enhanced, normoxic expression of HIF-1α and VEGF-A as well as DNA double strand cleavage, suggesting that cGAS-STING signaling may support the development of an oxidative, pro-angiogenic microenvironment that could contribute to the inflammation-related genetic instability of pancreatic cancer.
Collapse
Affiliation(s)
- Stephen L Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yongzhong Wu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Mariam Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jiamo Lu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - David Mallick
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jennifer L Meitzler
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Guojian Jiang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Iris Dahan
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Agnes Juhasz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Becky Diebold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - James H Doroshow
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
40
|
Czapla J, Drzyzga A, Matuszczak S, Cichoń T, Rusin M, Jarosz-Biej M, Pilny E, Smolarczyk R. Antitumor effect of anti-vascular therapy with STING agonist depends on the tumor microenvironment context. Front Oncol 2023; 13:1249524. [PMID: 37655095 PMCID: PMC10465696 DOI: 10.3389/fonc.2023.1249524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
Introduction Targeting tumor vasculature is an efficient weapon to fight against cancer; however, activation of alternative pathways to rebuild the disrupted vasculature leads to rapid tumor regrowth. Immunotherapy that exploits host immune cells to elicit and sustain potent antitumor response has emerged as one of the most promising tools for cancer treatment, yet many treatments fail due to developed resistance mechanisms. Therefore, our aim was to examine whether combination of immunotherapy and anti-vascular treatment will succeed in poorly immunogenic, difficult-to-treat melanoma and triple-negative breast tumor models. Methods Our study was performed on B16-F10 melanoma and 4T1 breast tumor murine models. Mice were treated with the stimulator of interferon genes (STING) pathway agonist (cGAMP) and vascular disrupting agent combretastatin A4 phosphate (CA4P). Tumor growth was monitored. The tumor microenvironment (TME) was comprehensively investigated using multiplex immunofluorescence and flow cytometry. We also examined if such designed therapy sensitizes investigated tumor models to an immune checkpoint inhibitor (anti-PD-1). Results The use of STING agonist cGAMP as monotherapy was insufficient to effectively inhibit tumor growth due to low levels of STING protein in 4T1 tumors. However, when additionally combined with an anti-vascular agent, a significant therapeutic effect was obtained. In this model, the obtained effect was related to the TME polarization and the stimulation of the innate immune response, especially activation of NK cells. Combination therapy was unable to activate CD8+ T cells. Due to the lack of PD-1 upregulation, no improved therapeutic effect was observed when additionally combined with the anti-PD-1 inhibitor. In B16-F10 tumors, highly abundant in STING protein, cGAMP as monotherapy was sufficient to induce potent antitumor response. In this model, the therapeutic effect was due to the infiltration of the TME with activated NK cells. cGAMP also caused the infiltration of CD8+PD-1+ T cells into the TME; hence, additional benefits of using the PD-1 inhibitor were observed. Conclusion The study provides preclinical evidence for a great influence of the TME on the outcome of applied therapy, including immune cell contribution and ICI responsiveness. We pointed the need of careful TME screening prior to antitumor treatments to achieve satisfactory results.
Collapse
Affiliation(s)
- Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | | | | | | | | | | | | | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| |
Collapse
|
41
|
Hao Y, Ji Z, Zhou H, Wu D, Gu Z, Wang D, ten Dijke P. Lipid-based nanoparticles as drug delivery systems for cancer immunotherapy. MedComm (Beijing) 2023; 4:e339. [PMID: 37560754 PMCID: PMC10407046 DOI: 10.1002/mco2.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown remarkable success in cancer treatment. However, in cancer patients without sufficient antitumor immunity, numerous data indicate that blocking the negative signals elicited by immune checkpoints is ineffective. Drugs that stimulate immune activation-related pathways are emerging as another route for improving immunotherapy. In addition, the development of nanotechnology presents a promising platform for tissue and cell type-specific delivery and improved uptake of immunomodulatory agents, ultimately leading to enhanced cancer immunotherapy and reduced side effects. In this review, we summarize and discuss the latest developments in nanoparticles (NPs) for cancer immuno-oncology therapy with a focus on lipid-based NPs (lipid-NPs), including the characteristics and advantages of various types. Using the agonists targeting stimulation of the interferon genes (STING) transmembrane protein as an exemplar, we review the potential of various lipid-NPs to augment STING agonist therapy. Furthermore, we present recent findings and underlying mechanisms on how STING pathway activation fosters antitumor immunity and regulates the tumor microenvironment and provide a summary of the distinct STING agonists in preclinical studies and clinical trials. Ultimately, we conduct a critical assessment of the obstacles and future directions in the utilization of lipid-NPs to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Hao
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Zhonghao Ji
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
| | - Hengzong Zhou
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Dongrun Wu
- Departure of Philosophy, Faculty of HumanitiesLeiden UniversityLeidenThe Netherlands
| | - Zili Gu
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dongxu Wang
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
42
|
Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev 2023; 52:5172-5254. [PMID: 37462107 DOI: 10.1039/d2cs00848c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vaccines comprising innovative adjuvants are rapidly reaching advanced translational stages, such as the authorized nanotechnology adjuvants in mRNA vaccines against COVID-19 worldwide, offering new strategies to effectively combat diseases threatening human health. Adjuvants are vital ingredients in vaccines, which can augment the degree, extensiveness, and longevity of antigen specific immune response. The advances in the modulation of physicochemical properties of nanoplatforms elevate the capability of adjuvants in initiating the innate immune system and adaptive immunity, offering immense potential for developing vaccines against hard-to-target infectious diseases and cancer. In this review, we provide an essential introduction of the basic principles of prophylactic and therapeutic vaccination, key roles of adjuvants in augmenting and shaping immunity to achieve desired outcomes and effectiveness, and the physiochemical properties and action mechanisms of clinically approved adjuvants for humans. We particularly focus on the preclinical and clinical progress of highly immunogenic emerging nanotechnology adjuvants formulated in vaccines for cancer treatment or infectious disease prevention. We deliberate on how the immune system can sense and respond to the physicochemical cues (e.g., chirality, deformability, solubility, topology, and chemical structures) of nanotechnology adjuvants incorporated in the vaccines. Finally, we propose possible strategies to accelerate the clinical implementation of nanotechnology adjuvanted vaccines, such as in-depth elucidation of nano-immuno interactions, antigen identification and optimization by the deployment of high-dimensional multiomics analysis approaches, encouraging close collaborations among scientists from different scientific disciplines and aggressive exploration of novel nanotechnologies.
Collapse
Affiliation(s)
- Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
43
|
Pan X, Zhang W, Guo H, Wang L, Wu H, Ding L, Yang B. Strategies involving STING pathway activation for cancer immunotherapy: Mechanism and agonists. Biochem Pharmacol 2023; 213:115596. [PMID: 37201875 DOI: 10.1016/j.bcp.2023.115596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Recent studies have expanded the known functions of cGAS-STING in inflammation to a role in cancer due to its participation in activating immune surveillance. In cancer cells, the cGAS-STING pathway can be activated by cytosolic dsDNA derived from genomic, mitochondrial and exogenous origins. The resulting immune-stimulatory factors from this cascade can either attenuate tumor growth or recruit immune cells for tumor clearance. Furthermore, STING-IRF3-induced type I interferon signaling can enforce tumor antigen presentation on dendritic cells and macrophages and thus cross-prime CD8+ T cells for antitumor immunity. Given the functions of the STING pathway in antitumor immunity, multiple strategies are being developed and tested with the rationale of activating STING in tumor cells or tumor-infiltrating immune cells to elicit immunostimulatory effects, either alone or in combination with a range of established chemotherapeutic and immunotherapeutic regimens. Based on the canonical molecular mechanism of STING activation, numerous strategies for inducing mitochondrial and nuclear dsDNA release have been used to activate the cGAS-STING signaling pathway. Other noncanonical strategies that activate cGAS-STING signaling, including the use of direct STING agonists and STING trafficking facilitation, also show promise in type I interferon release and antitumor immunity priming. Here, we review the key roles of the STING pathway in different steps of the cancer-immunity cycle and characterize the canonical and noncanonical mechanisms of cGAS-STING pathway activation to understand the potential of cGAS-STING agonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China.
| |
Collapse
|
44
|
Kumar V, Bauer C, Stewart JH. Targeting cGAS/STING signaling-mediated myeloid immune cell dysfunction in TIME. J Biomed Sci 2023; 30:48. [PMID: 37380989 PMCID: PMC10304357 DOI: 10.1186/s12929-023-00942-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Myeloid immune cells (MICs) are potent innate immune cells serving as first responders to invading pathogens and internal changes to cellular homeostasis. Cancer is a stage of altered cellular homeostasis that can originate in response to different pathogens, chemical carcinogens, and internal genetic/epigenetic changes. MICs express several pattern recognition receptors (PRRs) on their membranes, cytosol, and organelles, recognizing systemic, tissue, and organ-specific altered homeostasis. cGAS/STING signaling is a cytosolic PRR system for identifying cytosolic double-stranded DNA (dsDNA) in a sequence-independent but size-dependent manner. The longer the cytosolic dsDNA size, the stronger the cGAS/STING signaling activation with increased type 1 interferon (IFN) and NF-κB-dependent cytokines and chemokines' generation. The present article discusses tumor-supportive changes occurring in the tumor microenvironment (TME) or tumor immune microenvironment (TIME) MICs, specifically emphasizing cGAS/STING signaling-dependent alteration. The article further discusses utilizing MIC-specific cGAS/STING signaling modulation as critical tumor immunotherapy to alter TIME.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
| | - Caitlin Bauer
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA
| | - John H Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
- Louisiana Children's Medical Center Cancer Center, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
- Surgery, Section of Surgical Oncology, Louisiana State University New Orleans-Louisiana Children's Medical Center Cancer Center, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
| |
Collapse
|
45
|
Oh G, Wang A, Wang L, Li J, Werba G, Weissinger D, Zhao E, Dhara S, Hernandez RE, Ackermann A, Porcella S, Kalfakakou D, Dolgalev I, Kawaler E, Golan T, Welling TH, Sfeir A, Simeone DM. POLQ inhibition elicits an immune response in homologous recombination-deficient pancreatic adenocarcinoma via cGAS/STING signaling. J Clin Invest 2023; 133:e165934. [PMID: 36976649 PMCID: PMC10232002 DOI: 10.1172/jci165934] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that harbors mutations in homologous recombination-repair (HR-repair) proteins in 20%-25% of cases. Defects in HR impart a specific vulnerability to poly ADP ribose polymerase inhibitors and platinum-containing chemotherapy in tumor cells. However, not all patients who receive these therapies respond, and many who initially respond ultimately develop resistance. Inactivation of the HR pathway is associated with the overexpression of polymerase theta (Polθ, or POLQ). This key enzyme regulates the microhomology-mediated end-joining (MMEJ) pathway of double-strand break (DSB) repair. Using human and murine HR-deficient PDAC models, we found that POLQ knockdown is synthetically lethal in combination with mutations in HR genes such as BRCA1 and BRCA2 and the DNA damage repair gene ATM. Further, POLQ knockdown enhances cytosolic micronuclei formation and activates signaling of cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING), leading to enhanced infiltration of activated CD8+ T cells in BRCA2-deficient PDAC tumors in vivo. Overall, POLQ, a key mediator in the MMEJ pathway, is critical for DSB repair in BRCA2-deficient PDAC. Its inhibition represents a synthetic lethal approach to blocking tumor growth while concurrently activating the cGAS-STING signaling pathway to enhance tumor immune infiltration, highlighting what we believe to be a new role for POLQ in the tumor immune environment.
Collapse
Affiliation(s)
| | | | - Lidong Wang
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Jiufeng Li
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Gregor Werba
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Daniel Weissinger
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Ende Zhao
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Surajit Dhara
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | | | - Amanda Ackermann
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Sarina Porcella
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Igor Dolgalev
- Department of Pathology, NYU Langone Health, New York, New York, USA
| | - Emily Kawaler
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | | | | | - Agnel Sfeir
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Diane M. Simeone
- Department of Surgery and
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
- Department of Pathology, NYU Langone Health, New York, New York, USA
| |
Collapse
|
46
|
Blest HTW, Chauveau L. cGAMP the travelling messenger. Front Immunol 2023; 14:1150705. [PMID: 37287967 PMCID: PMC10242147 DOI: 10.3389/fimmu.2023.1150705] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/17/2023] [Indexed: 06/09/2023] Open
Abstract
2'3'-cGAMP is a key molecule in the cGAS-STING pathway. This cyclic dinucleotide is produced by the cytosolic DNA sensor cGAS in response to the presence of aberrant dsDNA in the cytoplasm which is associated with microbial invasion or cellular damage. 2'3'-cGAMP acts as a second messenger and activates STING, the central hub of DNA sensing, to induce type-I interferons and pro-inflammatory cytokines necessary for responses against infection, cancer or cellular stress. Classically, detection of pathogens or danger by pattern recognition receptors (PRR) was thought to signal and induce the production of interferon and pro-inflammatory cytokines in the cell where sensing occurred. These interferon and cytokines then signal in both an autocrine and paracrine manner to induce responses in neighboring cells. Deviating from this dogma, recent studies have identified multiple mechanisms by which 2'3'-cGAMP can travel to neighboring cells where it activates STING independent of DNA sensing by cGAS. This observation is of great importance, as the cGAS-STING pathway is involved in immune responses against microbial invaders and cancer while its dysregulation drives the pathology of a wide range of inflammatory diseases to which antagonists have been elusive. In this review, we describe the fast-paced discoveries of the mechanisms by which 2'3'-cGAMP can be transported. We further highlight the diseases where they are important and detail how this change in perspective can be applied to vaccine design, cancer immunotherapies and treatment of cGAS-STING associated disease.
Collapse
Affiliation(s)
- Henry T. W. Blest
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lise Chauveau
- Institut de Recherche en Infectiologie de Montpellier (IRIM) - CNRS UMR 9004, Université de Montpellier, Montpellier, France
| |
Collapse
|
47
|
Shi X, Shu L, Wang M, Yao J, Yao Q, Bian S, Chen X, Wan J, Zhang F, Zheng S, Wang H. Triple-Combination Immunogenic Nanovesicles Reshape the Tumor Microenvironment to Potentiate Chemo-Immunotherapy in Preclinical Cancer Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204890. [PMID: 37017572 PMCID: PMC10214259 DOI: 10.1002/advs.202204890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/22/2023] [Indexed: 05/27/2023]
Abstract
Immune checkpoint blockade (ICB) therapies have had a tremendous impact on cancer therapy. However, most patients harbor a poorly immunogenic tumor microenvironment (TME), presenting overwhelming de novo refractoriness to ICB inhibitors. To address these challenges, combinatorial regimens that employ chemotherapies and immunostimulatory agents are urgently needed. Here, a combination chemoimmunotherapeutic nanosystem consisting of a polymeric monoconjugated gemcitabine (GEM) prodrug nanoparticle decorated with an anti-programmed cell death-ligand 1 (PD-L1) antibody (αPD-L1) on the surface and a stimulator of interferon genes (STING) agonist encapsulated inside is developed. Treatment with GEM nanoparticles upregulates PD-L1 expression in ICB-refractory tumors, resulting in augmented intratumor drug delivery in vivo and synergistic antitumor efficacy via activation of intratumor CD8+ T cell responses. Integration of a STING agonist into the αPD-L1-decorated GEM nanoparticles further improves response rates by transforming low-immunogenic tumors into inflamed tumors. Systemically administered triple-combination nanovesicles induce robust antitumor immunity, resulting in durable regression of established large tumors and a reduction in the metastatic burden, coincident with immunological memory against tumor rechallenge in multiple murine tumor models. These findings provide a design rationale for synchronizing STING agonists, PD-L1 antibodies, and chemotherapeutic prodrugs to generate a chemoimmunotherapeutic effect in treating ICB-nonresponsive tumors.
Collapse
Affiliation(s)
- Xiaowei Shi
- The First Affiliated HospitalNational Health Commission (NHC) Key Laboratory of Combined Multi‐Organ TransplantationZhejiang University School of MedicineHangzhouZhejiang Province310003P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandong Province250117P. R. China
| | - Liwei Shu
- Department of Medical OncologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang Province310016P. R. China
| | - Minwen Wang
- Department of Medical OncologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang Province310016P. R. China
| | - Jie Yao
- The First Affiliated HospitalNational Health Commission (NHC) Key Laboratory of Combined Multi‐Organ TransplantationZhejiang University School of MedicineHangzhouZhejiang Province310003P. R. China
- Department of Chemical EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- National Clinical Research Center for Infectious DiseasesHangzhou310003P. R. China
| | - Suchen Bian
- The First Affiliated HospitalNational Health Commission (NHC) Key Laboratory of Combined Multi‐Organ TransplantationZhejiang University School of MedicineHangzhouZhejiang Province310003P. R. China
| | - Xiaona Chen
- The First Affiliated HospitalNational Health Commission (NHC) Key Laboratory of Combined Multi‐Organ TransplantationZhejiang University School of MedicineHangzhouZhejiang Province310003P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandong Province250117P. R. China
| | - Jianqin Wan
- The First Affiliated HospitalNational Health Commission (NHC) Key Laboratory of Combined Multi‐Organ TransplantationZhejiang University School of MedicineHangzhouZhejiang Province310003P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandong Province250117P. R. China
| | - Fu Zhang
- The First Affiliated HospitalNational Health Commission (NHC) Key Laboratory of Combined Multi‐Organ TransplantationZhejiang University School of MedicineHangzhouZhejiang Province310003P. R. China
| | - Shusen Zheng
- The First Affiliated HospitalNational Health Commission (NHC) Key Laboratory of Combined Multi‐Organ TransplantationZhejiang University School of MedicineHangzhouZhejiang Province310003P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandong Province250117P. R. China
| | - Hangxiang Wang
- The First Affiliated HospitalNational Health Commission (NHC) Key Laboratory of Combined Multi‐Organ TransplantationZhejiang University School of MedicineHangzhouZhejiang Province310003P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandong Province250117P. R. China
| |
Collapse
|
48
|
Chen C, Hu M, Cao Y, Zhu B, Chen J, Li Y, Shao J, Zhou S, Shan P, Zheng C, Li Z, Li Z. Combination of a STING Agonist and Photothermal Therapy Using Chitosan Hydrogels for Cancer Immunotherapy. Biomacromolecules 2023. [PMID: 37125731 DOI: 10.1021/acs.biomac.3c00196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cyclic dinucleotides (CDNs) are a promising class of immune agonists that trigger the stimulator of interferon genes (STING) to activate both innate and acquired immunity. However, the efficacy of CDNs is limited by drug delivery barriers. Therefore, we developed a combined immunotherapy strategy based on injectable reactive oxygen species (ROS)-responsive hydrogels, which sustainably release 5,6-dimethylxanthenone-4-acetic acid (DMXAA) as known as a STING agonist and indocyanine green (ICG) by utilizing a high level of ROS in the tumor microenvironment (TME). The STING agonist combined with photothermal therapy (PTT) can improve the biological efficacy of DMXAA, transform the immunosuppressive TME into an immunogenic and tumoricidal microenvironment, and completely kill tumor cells. In addition, this bioreactive gel can effectively leverage local ROS to facilitate the release of immunotherapy drugs, thereby enhancing the efficacy of combination therapy, improving the TME, inhibiting tumor growth, inducing memory immunity, and protecting against tumor rechallenge.
Collapse
Affiliation(s)
- Cunguo Chen
- Department of Dermatology and Venereology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang 325200, P. R. China
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Murong Hu
- Department of Dermatology and Venereology, Hangzhou Third Hospital, Hangzhou, Zhejiang 321000, P. R. China
| | - Yunyun Cao
- Nursing Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Binbin Zhu
- Nursing Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Jiashe Chen
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Yashi Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Junyi Shao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Sen Zhou
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Pengfei Shan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Chen Zheng
- Department of Breast Cancer Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Zhongyu Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Zhiming Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| |
Collapse
|
49
|
Popescu RG, Marinescu GC, Rădulescu AL, Marin DE, Țăranu I, Dinischiotu A. Natural Antioxidant By-Product Mixture Counteracts the Effects of Aflatoxin B1 and Ochratoxin A Exposure of Piglets after Weaning: A Proteomic Survey on Liver Microsomal Fraction. Toxins (Basel) 2023; 15:toxins15040299. [PMID: 37104237 PMCID: PMC10143337 DOI: 10.3390/toxins15040299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
Mycotoxins are toxic compounds produced by certain strains of fungi that can contaminate raw feed materials. Once ingested, even in small doses, they cause multiple health issues for animals and, downstream, for people consuming meat. It was proposed that inclusion of antioxidant-rich plant-derived feed might diminish the harmful effects of mycotoxins, maintaining the farm animals' health and meat quality for human consumption. This work investigates the large scale proteomic effects on piglets' liver of aflatoxin B1 and ochratoxin A mycotoxins and the potential compensatory effects of grapeseed and sea buckthorn meal administration as dietary byproduct antioxidants against mycotoxins' damage. Forty cross-bred TOPIGS-40 hybrid piglets after weaning were assigned to three (n = 10) experimental groups (A, M, AM) and one control group (C) and fed with experimental diets for 30 days. After 4 weeks, liver samples were collected, and the microsomal fraction was isolated. Unbiased label-free, library-free, data-independent acquisition (DIA) mass spectrometry SWATH methods were able to relatively quantify 1878 proteins from piglets' liver microsomes, confirming previously reported effects on metabolism of xenobiotics by cytochrome P450, TCA cycle, glutathione synthesis and use, and oxidative phosphorylation. Pathways enrichment revealed that fatty acid metabolism, steroid biosynthesis, regulation of actin cytoskeleton, regulation of gene expression by spliceosomes, membrane trafficking, peroxisome, thermogenesis, retinol, pyruvate, and amino acids metabolism pathways are also affected by the mycotoxins. Antioxidants restored expression level of proteins PRDX3, AGL, PYGL, fatty acids biosynthesis, endoplasmic reticulum, peroxisome, amino acid synthesis pathways, and, partially, OXPHOS mitochondrial subunits. However, excess of antioxidants might cause significant changes in CYP2C301, PPP4R4, COL18A1, UBASH3A, and other proteins expression levels. Future analysis of proteomics data corelated to animals growing performance and meat quality studies are necessary.
Collapse
Affiliation(s)
- Roua Gabriela Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania
- Independent Research Association, Timisului No. 58, 012416 Bucharest, Romania
| | - George Cătălin Marinescu
- Independent Research Association, Timisului No. 58, 012416 Bucharest, Romania
- Blue Screen SRL, Timisului No. 58, 012416 Bucharest, Romania
| | - Andreea Luminița Rădulescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania
| | - Daniela Eliza Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015 Balotesti, Romania
| | - Ionelia Țăranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015 Balotesti, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania
| |
Collapse
|
50
|
Kosaka A, Yajima Y, Yasuda S, Komatsuda H, Nagato T, Oikawa K, Kobayashi H, Ohkuri T. Celecoxib promotes the efficacy of STING-targeted therapy by increasing antitumor CD8 + T-cell functions via modulating glucose metabolism of CD11b + Ly6G + cells. Int J Cancer 2023; 152:1685-1697. [PMID: 36495276 DOI: 10.1002/ijc.34394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Recent studies have shown that activation of the cGAS-STING pathway is a key process in antitumor immune responses and various kinds of STING agonists have been developed for cancer immunotherapy. Despite promising preclinical studies, preliminary clinical results have shown only a modest effect of STING agonists. There is therefore a need to develop more effective treatment strategies. Based on previous observations that COX-2 is frequently overexpressed not only in a variety of cancers but also in tumor myeloid cells and that it suppresses antitumor immunity and promotes tumor survival by producing PGE2, we investigated the antitumor effects of combination therapy with a STING agonist cGAMP and the selective COX-2 inhibitor celecoxib in mouse models. Combination treatment with cGAMP and celecoxib inhibited tumor growth compared with either monotherapy, and the combination therapy induced both local and systemic antitumor immunity. cGAMP treatment decreased PD-1 expression on tumor-infiltrating T-cells and enhanced T-cell activation in tumor-draining lymph nodes regardless of the presence of celecoxib. Meanwhile, although celecoxib treatment did not alter the frequency of CD4+ CD25+ Foxp3+ regulatory T-cells, it enhanced the expression of costimulatory molecules and glycolysis-associated genes in tumor-infiltrating CD11b+ Ly6G+ cells. Moreover, we also found that celecoxib decreased lactate efflux and increased the frequency of IFN-γ- and TNF-α-producing CD8+ T-cells in the tumor microenvironment. Taken together, our findings suggest that combined treatment with celecoxib may be an effective strategy to improve the antitumor efficacy of STING agonists.
Collapse
Affiliation(s)
- Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yuki Yajima
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Shunsuke Yasuda
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, Japan
| | - Hiroki Komatsuda
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|