1
|
Wang C, Zhao Y, Liang W. Biomarkers to predict the benefits of immune‑checkpoint blockade‑based therapy in patients with malignant peritoneal mesothelioma (Review). Oncol Lett 2024; 28:600. [PMID: 39483967 PMCID: PMC11525615 DOI: 10.3892/ol.2024.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/26/2024] [Indexed: 11/03/2024] Open
Abstract
Malignant peritoneal mesothelioma (MPeM) is a type of rare and highly lethal tumor. Immune checkpoint blockade (ICB)-based therapy has shown encouraging clinical activity for MPeM. However, no definitive biomarkers have been identified for predicting which patients with MPeM will benefit from ICB-based therapy. At present, there are several novel potential biomarkers proposed for predicting the response to ICB-based therapy, and biomarkers available in MPeM cells and in the tumor microenvironment have been identified with the potential to predict the efficacy of ICB-based therapy in MPeM. According to the molecular characteristics of MPeM itself, the feasibility of biomarkers in practice, and the body of available evidence, we hypothesize that the following five types of biomarkers can be used to predict the response of ICB-based therapy in patients with MPeM: Tertiary lymphoid structures, immune checkpoints and their ligands, fusion gene neoantigen burden, BRCA1-associated protein-1 haploinsufficiency and transcriptome-based biomarkers. The present review discusses the value and limitations of each type of biomarker, and potential solutions to address the limitations are proposed. The aim of the present review is to provide a background for future studies on ICB-based therapy for MPeM.
Collapse
Affiliation(s)
- Chunhong Wang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yan Zhao
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Wanru Liang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
2
|
Zheng G, Shi J, Li Q, Jin X, Fang Y, Zhang Z, Cao Q, Zhu L, Shen J. BAP1 inactivation promotes lactate production by leveraging the subcellular localization of LDHA in melanoma. Cell Death Discov 2024; 10:483. [PMID: 39587076 PMCID: PMC11589756 DOI: 10.1038/s41420-024-02250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024] Open
Abstract
BRCA1-associated protein 1 (BAP1) acts as a tumor suppressor and can affect the cell cycle, tumor immunity, and cellular metabolism through multiple pathways. In melanoma, BAP1 mutations promote tumor cell glycolysis, leading to increased lactate production. The tumor microenvironment with high lactate levels is often associated with immunosuppression and tumor progression. The inhibitory effect of BAP1 on glycolysis has been found in a variety of tumors, but the specific mechanism by which BAP1 inhibits lactate production still needs to be elucidated. In this study, we show that BAP1 can interact directly with lactate dehydrogenase (LDHA), causing LDHA to accumulate in the nucleus. Conversely, BAP1 deletion leads to the accumulation of LDHA in the cytoplasm, catalyzing the production of lactate from pyruvate that results in increased lactate levels inside and outside the cell. By elucidating the interaction between BAP1 and LDHA and the subsequent effects on lactate production in melanoma cells, this work provides insights into the mechanism of BAP1-mediated metabolic regulation. Furthermore, it may provide novel directions for the clinical treatment of BAP1-mutant melanoma.
Collapse
Affiliation(s)
- Guopei Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiahao Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Qian Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoliang Jin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Yan Fang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Zhu
- Songjiang Research Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Lalonde E, Li D, Ewens K, Shields CL, Ganguly A. Genome-Wide Methylation Patterns in Primary Uveal Melanoma: Development of MethylSig-UM, an Epigenomic Prognostic Signature to Improve Patient Stratification. Cancers (Basel) 2024; 16:2650. [PMID: 39123378 PMCID: PMC11312132 DOI: 10.3390/cancers16152650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Despite studies highlighting the prognostic utility of DNA methylation in primary uveal melanoma (pUM), it has not been translated into a clinically useful tool. We sought to define a methylation signature to identify newly diagnosed individuals at high risk for developing metastasis. Methylation profiling was performed on 41 patients with pUM with stage T2-T4 and at least three years of follow-up using the Illumina Infinium HumanMethylation450K BeadChip (N = 24) and the EPIC BeadChip (N = 17). Findings were validated in the TCGA cohort with known metastatic outcome (N = 69). Differentially methylated probes were identified in patients who developed metastasis. Unsupervised consensus clustering revealed three epigenomic subtypes associated with metastasis. To identify a prognostic signature, recursive feature elimination and random forest models were utilized within repeated cross-validation iterations. The 250 most commonly selected probes comprised the final signature, named MethylSig-UM. MethylSig-UM could distinguish individuals with pUM at diagnosis who develop future metastasis with an area under the curve of ~81% in the independent validation cohort, and remained significant in Cox proportional hazard models when combined with clinical features and established genomic biomarkers. Altered expression of immune-modulating genes were detected in MethylSig-UM positive tumors, providing clues for pUM resistance to immunotherapy. The MethylSig-UM model is available to enable additional validation in larger cohort sizes including T1 tumors.
Collapse
Affiliation(s)
- Emilie Lalonde
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Schulich School Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Dong Li
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn Ewens
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carol L. Shields
- Oncology Services, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Arupa Ganguly
- Department of Pathology and Laboratory Medicine, Schulich School Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
4
|
Kashyap S, Singh MK, Kumar N, Jha J, Lomi N, Meel R, Bakhshi S, Sen S, Singh L. Implications of LAG3 and CTLA4 immune checkpoints beyond PD-1/PD-L1 as a potential target in determining the prognosis of uveal melanoma patients. Br J Ophthalmol 2024; 108:903-912. [PMID: 36918273 DOI: 10.1136/bjo-2022-322913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023]
Abstract
BackgroundResponse rate of PD-1/PD-L1 immunotherapeutic blockade agents in uveal melanoma (UM) is poor. Lymphocyte activation gene 3 (LAG3) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) are the two promising immune checkpoint targets. Therefore, our aim was to explore at how these proteins were expressed in tumour tissue and serum, as well as their prognostic implications in UM. METHODS The expression of LAG3, CTLA-4, CD3, CD4, CD8 and FOXP3 was determined by immunohistochemistry in 54 enucleated UM tissue samples. mRNA expression level of LAG3 and CTLA-4 was determined by quantitative real-time PCR and corroborated by western blotting. Furthermore, soluble form of LAG3, CTLA-4 and CCR8 expression in serum was measured in 40 UM patients using ELISA. RESULT The expression of LAG3, CTLA-4, CD3, CD4, CD8 and FOXP3 was observed in 30%, 33%, 41%, 35%, 50% and 39% of the cases, respectively. Loss of nBAP1 expression was significantly correlated with CD8+expression (p=0.012) but not with tumour infiltrating lymphocytes. LAG3 and CTLA-4 mRNA levels were higher in UM compared with normal uveal tissues. Higher LAG3 expression with CD8+expression was associated with lower metastasis-free survival (MFS) (p=0.049), but not with CTLA-4 in UM patients. MFS rate was reduced in patients having lower levels of CCR8 protein (p=0.050) and increased level of LAG3 protein (p=0.001). CONCLUSION Our findings suggest that higher levels of LAG3 in UM with histopathologically high-risk parameters predict high metastatic potential and that it could be used as a targeted immunotherapy alone or in combination with PD-1/PD-L1 blockade agents.
Collapse
Affiliation(s)
- Seema Kashyap
- Ocular Pathology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | | | - Nikhil Kumar
- Ocular Pathology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Jayanti Jha
- Ocular Pathology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Neiwete Lomi
- Ophthalmology, All India Institute of Medical Sciences, New Delhi, India
| | - Rachna Meel
- Ophthalmology, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Sen
- Ocular Pathology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Lata Singh
- Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Nel AE, Pavlisko EN, Roggli VL. The Interplay Between the Immune System, Tumor Suppressor Genes, and Immune Senescence in Mesothelioma Development and Response to Immunotherapy. J Thorac Oncol 2024; 19:551-564. [PMID: 38000500 DOI: 10.1016/j.jtho.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Despite efforts to ban asbestos mining and manufacturing, mesothelioma deaths in the United States have remained stable at approximately 2500 cases annually. This trend is not unique to the United States but is also a global phenomenon, associated with increased aging of populations worldwide. Although geoeconomic factors such as lack of regulations and continued asbestos manufacturing in resource-poor countries play a role, it is essential to consider biological factors such as immune senescence and increased genetic instability associated with aging. Recognizing that mesothelioma shares genetic instability and immune system effects with other age-related cancers is crucial because the impact of aging on mesothelioma is frequently assessed in the context of disease latency after asbestos exposure. Nevertheless, the long latency period, often cited as a reason for mesothelioma's elderly predominance, should not overshadow the shared mechanisms. This communication focuses on the role of immune surveillance in mesothelioma, particularly exploring the impact of immune escape resulting from altered TSG function during aging, contributing to the phylogenetic development of gene mutations and mesothelioma oncogenesis. The interplay between the immune system, TSGs, and aging not only shapes the immune landscape in mesothelioma but also contributes to the development of heterogeneous tumor microenvironments, significantly influencing responses to immunotherapy approaches and survival rates. By understanding the complex interplay between aging, TSG decline, and immune senescence, health care professionals can pave the way for more effective and personalized immunotherapies, ultimately offering hope for better outcomes in the fight against mesothelioma.
Collapse
Affiliation(s)
- Andre E Nel
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California; Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
| | | | - Victor L Roggli
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
6
|
Barbi M, Carvajal RD, Devoe CE. Updates in the Management of Uveal Melanoma. Cancer J 2024; 30:92-101. [PMID: 38527262 DOI: 10.1097/ppo.0000000000000708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
ABSTRACT Uveal melanoma (UM), arising from intraocular melanocytes, poses a complex clinical challenge with a substantial risk of distant metastasis, often to the liver. Molecular profiling, encompassing genetic, cytogenetic, gene expression, and immunological subsets, plays a pivotal role in determining prognoses. The evolving landscape includes promising systemic treatments, such as tebentafusp, a novel immune-modulating bispecific fusion protein, and targeted therapies. Combined regional and systemic approaches, including immune checkpoint inhibitors and innovative liver-directed therapy, are also under investigation. Although recent progress has improved outcomes, ongoing research aims to address the unique challenges of UM and develop effective therapies, particularly for HLA-A*02:01-negative patients who represent a significant unmet medical need. This review comprehensively discusses the molecular characteristics of UM, risk stratification methods, and the current and future spectrum of regional and systemic therapeutic modalities.
Collapse
Affiliation(s)
| | | | - Craig E Devoe
- From the Northwell Health Cancer Institute, New Hyde Park
| |
Collapse
|
7
|
Gelmi MC, Gezgin G, van der Velden PA, Luyten GPM, Luk SJ, Heemskerk MHM, Jager MJ. PRAME Expression: A Target for Cancer Immunotherapy and a Prognostic Factor in Uveal Melanoma. Invest Ophthalmol Vis Sci 2023; 64:36. [PMID: 38149971 PMCID: PMC10755595 DOI: 10.1167/iovs.64.15.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023] Open
Abstract
Purpose Uveal melanoma (UM) is a rare disease with a high mortality, and new therapeutic options are being investigated. Preferentially Expressed Antigen in Melanoma (PRAME) is a cancer testis antigen, expressed in the testis, but also in cancers, including uveal melanoma. PRAME is considered a target for immune therapy in several cancers, and PRAME-specific T cell clones have been shown to kill UM cells. Methods We studied the literature on PRAME expression in hematological and solid malignancies, including UM, and its role as a target for immunotherapy. The distribution of tumor features was compared between PRAME-high and PRAME-low UM in a 64-patient cohort from the Leiden University Medical Center (LUMC) and in the Cancer Genome Atlas (TCGA) cohort of 80 cases and differential gene expression analysis was performed in the LUMC cohort. Results PRAME is expressed in many malignancies, it is frequently associated with a negative prognosis, and can be the target of T cell receptor (TCR)-transduced T cells, a promising treatment option with high avidity and safety. In UM, PRAME is expressed in 26% to 45% of cases and is correlated with a worse prognosis. In the LUMC and the TCGA cohorts, high PRAME expression was associated with larger diameter, higher Tumor-Node-Metastasis (TNM) stage, more frequent gain of chromosome 8q, and an inflammatory phenotype. Conclusions We confirm that PRAME is associated with poor prognosis in UM and has a strong connection with extra copies of 8q. We show that PRAME-specific immunotherapy in an adjuvant setting is promising in treatment of malignancies, including UM.
Collapse
Affiliation(s)
- Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gulçin Gezgin
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Sietse J. Luk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Lamas NJ, Lassalle S, Martel A, Nahon-Estève S, Macocco A, Zahaf K, Lalvee S, Fayada J, Lespinet-Fabre V, Bordone O, Pedeutour F, Baillif S, Hofman P. Characterisation of the protein expression of the emerging immunotherapy targets VISTA, LAG-3 and PRAME in primary uveal melanoma: insights from a southern French patient cohort. Pathology 2023; 55:929-944. [PMID: 37863710 DOI: 10.1016/j.pathol.2023.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/02/2023] [Accepted: 08/04/2023] [Indexed: 10/22/2023]
Abstract
Uveal melanoma (UM) is the most common intraocular tumour in adults, with dismal prognosis once metastases develop, since therapeutic options for the metastatic disease are ineffective. Over the past decade, novel cancer therapies based on immunotherapy have changed the landscape of treatment of different forms of cancer leading to many hopes of improvement in patient overall survival (OS). VISTA, LAG-3 and PRAME are novel promising targets of immunotherapy that have recently gained attention in different solid tumours, but whose relevance in UM remained to be comprehensively evaluated until now. Here, we studied the protein expression of VISTA, LAG-3 and PRAME using immunohistochemistry in representative whole tissue sections from primary UM cases in a cohort of 30 patients from a single centre (Nice University Hospital, Nice, France). The expression of each of these markers was correlated with different clinical and pathological parameters, including onset of metastases and OS. We demonstrated the protein expression of VISTA and LAG-3 in small lymphocytes infiltrating the tumour, while no expression of the proteins was detected in UM cells. For PRAME, nuclear expression was observed in UM cells, but no expression in tumour infiltrating immune cells was identified. Increased levels of VISTA expression in tumour infiltrating lymphocytes (TILs) were associated with nuclear BAP1 expression and better prognosis. Higher levels of LAG-3 in TILs were associated with higher levels of CD8-positive TILs. PRAME nuclear positivity in melanoma cells was associated with epithelioid cell dominant (>90%) UM histological subtype, higher mitotic numbers and a higher percentage of chromosome 8q gain. This study proposes VISTA as a novel relevant immune checkpoint molecule in primary UM and contributes to confirm LAG-3 and PRAME as potentially important immunotherapy targets in the treatment of UM patients, helping to expand the number of immunotherapy candidate molecules that are relevant to modulate in this aggressive cancer.
Collapse
Affiliation(s)
- Nuno Jorge Lamas
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France; Anatomic Pathology Service, Pathology Department, Centro Hospitalar Universitário de Santo António (CHUdSA), Porto, Largo Professor Abel Salazar, Porto, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Sandra Lassalle
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France; IRCAN Team 4, Inserm U1081/CNRS 7284, Centre de Lutte contre le Cancer Antoine Lacassagne, Nice, France; FHU OncoAge, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Arnaud Martel
- Université Côte d'Azur, Department of Ophthalmology, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Sacha Nahon-Estève
- Université Côte d'Azur, Department of Ophthalmology, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Adam Macocco
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Katia Zahaf
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Salome Lalvee
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Julien Fayada
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Virginie Lespinet-Fabre
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France; IRCAN Team 4, Inserm U1081/CNRS 7284, Centre de Lutte contre le Cancer Antoine Lacassagne, Nice, France; FHU OncoAge, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Olivier Bordone
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France; IRCAN Team 4, Inserm U1081/CNRS 7284, Centre de Lutte contre le Cancer Antoine Lacassagne, Nice, France; FHU OncoAge, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Florence Pedeutour
- Laboratory of Solid Tumour Genetics, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - Stéphanie Baillif
- Université Côte d'Azur, Department of Ophthalmology, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Paul Hofman
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France; IRCAN Team 4, Inserm U1081/CNRS 7284, Centre de Lutte contre le Cancer Antoine Lacassagne, Nice, France; FHU OncoAge, Centre Hospitalier Universitaire de Nice, Nice, France.
| |
Collapse
|
9
|
Yan W, Hou N, Zheng J, Zhai W. Predictive genomic biomarkers of therapeutic effects in renal cell carcinoma. Cell Oncol (Dordr) 2023; 46:1559-1575. [PMID: 37223875 DOI: 10.1007/s13402-023-00827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND In recent years, there have been great improvements in the therapy of renal cell carcinoma. Nevertheless, the therapeutic effect varies significantly from person to person. To discern the effective treatment for different populations, predictive molecular biomarkers in response to target, immunological, and combined therapies are widely studied. CONCLUSION This review summarized those studies from three perspectives (SNPs, mutation, and expression level) and listed the relationship between biomarkers and therapeutic effect, highlighting the great potential of predictive molecular biomarkers in metastatic RCC therapy. However, due to a series of reasons, most of these findings require further validation.
Collapse
Affiliation(s)
- Weijie Yan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Naiqiao Hou
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junhua Zheng
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Han Y, Rovella V, Smirnov A, Buonomo OC, Mauriello A, Perretta T, Shi Y, Woodmsith J, Bischof J, Melino G, Candi E, Bernassola F. A BRCA2 germline mutation and high expression of immune checkpoints in a TNBC patient. Cell Death Discov 2023; 9:370. [PMID: 37813891 PMCID: PMC10562433 DOI: 10.1038/s41420-023-01651-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of mammary carcinoma. Here, we describe a case of an 81-year-old female diagnosed with ductal triple negative breast cancer with a germline pathogenic variant in BReast CAncer gene2 (BRCA2). Genetic testing also revealed the presence of four somatic mutations in the ephrin type-A receptor 3 (EphA3), TP53, BRCA1-associated protein (BAP1), and MYB genes. The BRCA2, TP53, and BAP1 gene mutations are highly predictive of a defective homologous recombination repair system and subsequent chromosomal instability in this patient. Coherently, the patient displayed a strong homologous recombination deficiency signature and high tumor mutational burden status, which are generally associated with increased probability of immune neoantigens formation and presentation, and with tumor immunogenicity. Analysis of immune checkpoint revealed high expression of programmed cell death ligand 1 (PD-L1), programmed cell death ligand 2 (PD-L2), programmed death 1 (PD1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA 4), suggesting that the patient might likely benefit from immunotherapies. Altogether, these findings support an unveiled link between BRCA2 inactivation, HR deficiency and increased expression of immune checkpoints in TNBC. This clinical case highlights the importance of screening TNBC patients for genetic mutations and TMB biomarkers in order to predict the potential efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yuyi Han
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- Department of Ophthalmology, The Affiliated Hospital of Jiangnan University, 214000, Wuxi, China
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy
| | - Oreste Claudio Buonomo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Tommaso Perretta
- Department of Diagnostic Imaging and Interventional Radiology, Policlinico Tor Vergata University, Rome, 00133, Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | | | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
11
|
Liau S, Wang JZ, Zagarella E, Paulus P, Dang NHQH, Rawling T, Murray M, Zhou F. An update on inflammation in uveal melanoma. Biochimie 2023; 212:114-122. [PMID: 37105300 DOI: 10.1016/j.biochi.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Uveal melanoma (UM) is the primary ocular cancer with upto 50% of patients dying from metastasis. Although rare, it is deadly as patients with metastatic UM seldom survive beyond 18 months after diagnosis. Chemotherapeutics have no proven efficacy, including immunotherapies that have been tried as current treatment options but produce marginal improvement in overall survival for UM patients. While therapeutics are low in efficacy, there is an urgent need to explore novel targets in the treatment of UM. This review provides an update on the contribution of inflammation to UM with a focus on exploring potential therapeutic targets related to the inflammatory tumour microenvironment. As a tumour promoting event, inflammation is one of the hallmarks of cancers. The presence of the inflammatory phenotype characterised by the abundance of immune mediators and proinflammatory cytokines surrounding UM tumours, is a potential area to explore novel therapeutic targets. Despite decades of investigation regarding the role UM tumour microenvironment has played, that of inflammation in UM progression remains poorly understood. With advancement of technologies, an understanding of the prognosis of UM has been accelerated. Excitingly, novel therapeutic targets related to the inflammatory tumour microenvironment have been identified and relevant studies are underway in their preliminary phases, illustrating optimistic results.
Collapse
Affiliation(s)
- Sebastian Liau
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Janney Z Wang
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ethan Zagarella
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Paus Paulus
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nguyen Huong Que Hiep Dang
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Michael Murray
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Mariani P, Torossian N, van Laere S, Vermeulen P, de Koning L, Roman-Roman S, Lantz O, Rodrigues M, Stern MH, Gardrat S, Lesage L, Champenois G, Nicolas A, Matet A, Cassoux N, Servois V, Romano E, Piperno-Neumann S, Lugassy C, Barnhill R. Immunohistochemical characterisation of the immune landscape in primary uveal melanoma and liver metastases. Br J Cancer 2023; 129:772-781. [PMID: 37443346 PMCID: PMC10449826 DOI: 10.1038/s41416-023-02331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/16/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND The immune landscape of uveal melanoma liver metastases (UMLM) has not been sufficiently studied. METHODS Immune cell infiltrates (ICIs), PD-1 and PD-L1 were characterised in 62 UMLM and 28 primary uveal melanomas (PUM). ICI, PD-1 and PD-L1 were scored as: (1) % tumoral area occupied by tumour-infiltrating lymphocytes or macrophages (TILs, TIMs) and (2) % perTumoral (perT) area. ICIs and other variables including histopathologic growth patterns (HGPs), replacement and desmoplastic, of UMLM were analysed for their prognostic value. RESULTS ICIs recognised by haematoxylin-eosin-saffron (HES) and IHC (e.g., T cells (CD3), B cells (CD20). Macrophages (CD68), (CD163), were primarily localised to the perT region in PUM and UMLM and were more conspicuous in UMLM. HES, CD3, CD4, FoxP3, CD8, CD20, PD-1 TILs were scant (<5%). TIMs were more frequent, particularly in UMLM than in PUM. Both CD68+ TIMs and HGPs remained significant on multivariate analysis, influencing overall (OS) and metastasis-specific overall survival (MSOS). CD68 + , CD163+ and CD20+ perT infiltrates in UMLM predicted increased OS and MSOS on univariate analysis. CONCLUSIONS TILs and PD-L1 have no predictive value in PUM or UMLM. CD68+ and CD163+TIMs, CD20+ perT lymphocytes, and HGPs are important prognostic factors in UMLMs.
Collapse
Affiliation(s)
| | | | - Steven van Laere
- Faculty of Medicine and Health Sciences, University of Antwerp-MIPRO Center for Oncological Research (CORE) - TCRU, GZA Sint-Augustinus, Antwerp, Belgium
| | - Peter Vermeulen
- Faculty of Medicine and Health Sciences, University of Antwerp-MIPRO Center for Oncological Research (CORE) - TCRU, GZA Sint-Augustinus, Antwerp, Belgium
| | - Leanne de Koning
- Department of Translational Research, Institut Curie, Paris, France
| | | | - Olivier Lantz
- Laboratoire d'immunologie clinique, Institut Curie, Paris, France
- Centre d'investigation Clinique en Biothérapie, Institut Curie (CIC-BT1428), Paris, France
- INSERM U932, PSL University, Institut Curie, Paris, France
| | - Manuel Rodrigues
- Department of Medical Oncology, Institut Curie, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée Par la Ligue Nationale Contre le Cancer, Institut Curie, Paris, France
| | - Marc-Henri Stern
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée Par la Ligue Nationale Contre le Cancer, Institut Curie, Paris, France
| | | | | | | | - André Nicolas
- Department of Pathology, Institut Curie, Paris, France
| | - Alexandre Matet
- Department of Ophthalmology, Institut Curie, Paris, France
- Université de Paris Cité UFR de Médecine, Paris, France
| | - Nathalie Cassoux
- Department of Ophthalmology, Institut Curie, Paris, France
- Université de Paris Cité UFR de Médecine, Paris, France
| | | | - Emanuela Romano
- Department of Medical Oncology, Institut Curie, Paris, France
| | | | - Claire Lugassy
- Department of Translational Research, Institut Curie, Paris, France
| | - Raymond Barnhill
- Department of Translational Research, Institut Curie, Paris, France.
- Université de Paris Cité UFR de Médecine, Paris, France.
| |
Collapse
|
13
|
Luo S, Gong J, Zhao S, Li M, Li R. Deubiquitinase BAP1 regulates stability of BRCA1 protein and inactivates the NF-κB signaling to protect mice from sepsis-induced acute kidney injury. Chem Biol Interact 2023; 382:110621. [PMID: 37414201 DOI: 10.1016/j.cbi.2023.110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Sepsis and its associated organ dysfunction syndrome is a leading cause of death in critically ill patients. Breast cancer susceptibility protein 1 (BRCA1)-associated protein 1 (BAP1) is a potential regulator in immune regulation and inflammatory responses. This study aims to investigate the function of BAP1 in sepsis-induced acute kidney injury (AKI). A mouse model with sepsis-induced AKI was induced by cecal ligation and puncture, and renal tubular epithelial cells (RTECs) were treated with lipopolysaccharide (LPS) to mimic an AKI condition in vitro. BAP1 was significantly poorly expressed in the kidney tissues of model mice and the LPS-treated RTECs. Artificial upregulation of BAP1 ameliorated the pathological changes, tissue injury and inflammatory responses in kidney tissues of the mice, and it reduced the LPS-induced injury and apoptosis of the RTECs. BAP1 was found to interact with BRCA1 and enhance stability of BRCA1 protein through deubiquitination modification. Further downregulation of BRCA1 activated the nuclear factor-kappa B (NF-κB) signaling pathway and blocked the protective roles of BAP1 in sepsis-induced AKI. In conclusion, this study demonstrates that BAP1 protects mice from sepsis-induced AKI through enhancing stability of BRCA1 protein and inactivating the NF-κB signaling.
Collapse
Affiliation(s)
- Shu Luo
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, PR China.
| | - Junzuo Gong
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, PR China
| | - Shiqiao Zhao
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, PR China
| | - Menqin Li
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, PR China
| | - Ruixiu Li
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, PR China
| |
Collapse
|
14
|
Issam Salah NEI, Marnissi F, Lakhdar A, Karkouri M, ElBelhadji M, Badou A. The immune checkpoint VISTA is associated with prognosis in patients with malignant uveal melanoma. Front Immunol 2023; 14:1225140. [PMID: 37662962 PMCID: PMC10471992 DOI: 10.3389/fimmu.2023.1225140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Uveal melanoma (UM) is a rare yet deadly tumor. It is known for its high metastatic potential, which makes it one of the most aggressive and lethal cancers. Recently, immune checkpoints such as Programmed cell Death protein-1 (PD1) and Cytotoxic T-Lymphocyte-Associated significantly increasing patient survival in multiple human cancers, especially cutaneous melanoma. However, patients with UMs were excluded from these studies because of their molecular characteristics, which tend to be widely different from those of cutaneous melanoma. This study aimed to analyze the expression of V domain Ig Suppressor T-cell Activation (VISTA), a novel immune checkpoint, to evaluate its prognosis significance and its correlation with PD1 and CTLA-4. Methods Evaluation of VISTA, CTLA-4, and PD1 expression was performed through TCGA database analysis and immunohistochemistry using two independent cohorts with primary malignant UM. Results and discussion Our results showed that VISTA expression was associated with tumor aggressiveness, T cell exhaustion, and the shortest median overall survival among patients. Surprisingly, PD1 protein expression was negative in all patients, whereas CTLA-4 expression was high in patients with advanced stages. Our findings suggest that VISTA may be a prognostic marker and an attractive treatment strategy for immunotherapy in patients with UM. Exploring its expression profile may predict response to immunotherapy and may lead to the improvement of precision therapy in malignant uveal melanoma patients.
Collapse
Affiliation(s)
- Nour el Imane Issam Salah
- Laboratory of Research on Neurologic, Neurosensorial Diseases and Handicap, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Farida Marnissi
- Department of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd and Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Abdelhakim Lakhdar
- Laboratory of Research on Neurologic, Neurosensorial Diseases and Handicap, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mehdi Karkouri
- Department of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd and Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Mohamed ElBelhadji
- Department of Adults Ophthalmology, 20 August Hospital 1953, CHU Ibn Rochd, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco, Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
15
|
Nel A. Carbon nanotube pathogenicity conforms to a unified theory for mesothelioma causation by elongate materials and fibers. ENVIRONMENTAL RESEARCH 2023; 230:114580. [PMID: 36965801 DOI: 10.1016/j.envres.2022.114580] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 05/30/2023]
Abstract
The purpose of this review is to elucidate how dimensional and durability characteristics of high aspect ratio nanomaterials (HARN), including carbon nanotubes (CNT) and metal nanowires (MeNW), contribute to understanding the fiber pathogenicity paradigm (FPP), including by explaining the structure-activity relationships (SAR) of a diverse range of natural and synthetic elongate materials that may or may not contribute to mesothelioma development in the lung. While the FPP was originally developed to explain the critical importance of asbestos and synthetic vitreous fiber length, width, aspect ratio and biopersistence in mesothelioma development, there are a vast number of additional inhalable materials that need to be considered in terms of pathogenic features that may contribute to mesothelioma or lack thereof. Not only does the ability to exert more exact control over the length and biopersistence of HARNs confirm the tenets of the FPP, but could be studied by implementating more appropriate toxicological tools for SAR analysis. This includes experimentation with carefully assembled libraries of CNTs and MeNWs, helping to establish more precise dimensional features for interfering in lymphatic drainage from the parietal pleura, triggering of lysosomal damage, frustrated phagocytosis and generation of chronic inflammation. The evidence includes data that long and rigid, but not short and flexible multi-wall CNTs are capable of generating mesotheliomas in rodents based on an adverse outcome pathway requiring access to pleural cavity, obstruction of pleural stomata, chronic inflammation and transformation of mesothelial cells. In addition to durability and dimensional characteristics, bending stiffness of CNTs is a critical factor in determining the shape and rigidity of pathogenic MWCNTs. While no evidence has been obtained in humans that CNT exposure leads to a mesothelioma outcome, it is important to monitor exposure levels and health effect impacts in workers to prevent adverse health outcomes in humans.
Collapse
Affiliation(s)
- André Nel
- Distinguished Professor of Medicine and Research Director of the California Nano Systems Institute at UCLA, USA; Division of NanoMedicine, And Department of Medicine, David Geffen School of Medicine at UCLA, 52-175 Center for the Health Sciences, 10833 LeConte Ave, Los Angeles, CA, 90095, USA; California Nano Systems Institute at UCLA, 570 Westwood Plaza, Building 114, Los Angeles, CA, 90095, USA.
| |
Collapse
|
16
|
Demirci H, Tang L, Demirci FY, Ozgonul C, Weber S, Sundstrom J. Investigating Vitreous Cytokines in Choroidal Melanoma. Cancers (Basel) 2023; 15:3701. [PMID: 37509362 PMCID: PMC10378009 DOI: 10.3390/cancers15143701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Due to the close relationship between the vitreous and posterior eye layers, the microenvironment of these layers can affect the composition of the vitreous. Molecular analysis of the vitreous may therefore provide important insights into the pathogenesis of chorioretinal diseases. In this study, vitreous cytokines (n = 41) were evaluated to gain further insights into the tumor microenvironment in uveal melanoma (UM) arising from the choroid (CM). Cytokine levels were measured using a bead-based multiplex immunoassay panel in vitreous samples obtained from 32 eyes, including 18 with CM and 14 controls. Median fluorescence intensity values were extracted and used as relative quantification of the cytokine abundance. Vitreous cytokine levels were compared between the CM and non-CM groups and between different prognostic categories within the CM group (classified as having low or high metastatic risk using tumor biopsy-based gene expression profiling). Correlations between vitreous cytokine levels and tumor dimensions were also evaluated. Our analysis revealed twenty-six vitreous cytokines significantly upregulated in CM-affected eyes compared to the control eyes. Within the CM group, six vitreous cytokines showed altered levels (five upregulated and one downregulated) in eyes with high- vs. low-risk tumors. Levels of these six plus several other cytokines showed correlations with the tumor dimensions. In conclusion, our study has uncovered several UM-relevant vitreous cytokines, worthy of follow-up in larger studies as potential candidates for liquid biopsy-based biomarker development and/or new therapeutic targeting.
Collapse
Affiliation(s)
- Hakan Demirci
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Lu Tang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - F. Yesim Demirci
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cem Ozgonul
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Sarah Weber
- Department of Ophthalmology and Visual Sciences, Penn State University, Hershey, PA 17033, USA
| | - Jeffrey Sundstrom
- Department of Ophthalmology and Visual Sciences, Penn State University, Hershey, PA 17033, USA
| |
Collapse
|
17
|
Gelmi MC, Verdijk RM, Houtzagers LE, van der Velden PA, Kroes WGM, Luyten GPM, Vu THK, Jager MJ. Microphthalmia-Associated Transcription Factor: A Differentiation Marker in Uveal Melanoma. Int J Mol Sci 2023; 24:ijms24108861. [PMID: 37240204 DOI: 10.3390/ijms24108861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is an important regulator of melanogenesis and melanocyte development. In cutaneous melanoma, MITF loss has been linked to an increased expression of stem cell markers, a shift in epithelial-to-mesenchymal transition (EMT)-related factors, and increased inflammation. We explored the role of MITF in Uveal Melanoma (UM) using a cohort of 64 patients enucleated at the Leiden University Medical Center. We analysed the relation between MITF expression and clinical, histopathological and genetic features of UM, as well as survival. We performed differential gene expression and gene set enrichment analysis using mRNA microarray data, comparing MITF-low with MITF-high UM. MITF expression was lower in heavily pigmented UM than in lightly pigmented UM (p = 0.003), which we confirmed by immunohistochemistry. Furthermore, MITF was significantly lower in UM with monosomy 3/BAP1 loss than in those with disomy 3/no BAP1 loss (p < 0.001) and with 8q gain/amplification 8q (p = 0.02). Spearman correlation analysis showed that a low MITF expression was associated with an increase in inflammatory markers, hallmark pathways involved in inflammation, and epithelial-mesenchymal transition. Similar to the situation in cutaneous melanoma, we propose that MITF loss in UM is related to de-differentiation to a less favourable EMT profile and inflammation.
Collapse
Affiliation(s)
- Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Laurien E Houtzagers
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Pieter A van der Velden
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Wilma G M Kroes
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - T H Khanh Vu
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
18
|
Walton J, Lawson K, Prinos P, Finelli A, Arrowsmith C, Ailles L. PBRM1, SETD2 and BAP1 - the trinity of 3p in clear cell renal cell carcinoma. Nat Rev Urol 2023; 20:96-115. [PMID: 36253570 DOI: 10.1038/s41585-022-00659-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
Biallelic inactivation of the tumour suppressor gene Von Hippel-Lindau (VHL) occurs in the vast majority of clear cell renal cell carcinoma (ccRCC) instances, disrupting cellular oxygen-sensing mechanisms to yield a state of persistent pseudo-hypoxia, defined as a continued hypoxic response despite the presence of adequate oxygen levels. However, loss of VHL alone is often insufficient to drive oncogenesis. Results from genomic studies have shown that co-deletions of VHL with one (or more) of three genes encoding proteins involved in chromatin modification and remodelling, polybromo-1 gene (PBRM1), BRCA1-associated protein 1 (BAP1) and SET domain-containing 2 (SETD2), are common and important co-drivers of tumorigenesis. These genes are all located near VHL on chromosome 3p and are often altered following cytogenetic rearrangements that lead to 3p loss and precede the establishment of ccRCC. These three proteins have multiple roles in the regulation of crucial cancer-related pathways, including protection of genomic stability, antagonism of polycomb group (PcG) complexes to maintain a permissive transcriptional landscape in physiological conditions, and regulation of genes that mediate responses to immune checkpoint inhibitor therapy. An improved understanding of these mechanisms will bring new insights regarding cellular drivers of ccRCC growth and therapy response and, ultimately, will support the development of novel translational therapeutics.
Collapse
Affiliation(s)
- Joseph Walton
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Keith Lawson
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Antonio Finelli
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Cheryl Arrowsmith
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laurie Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Carvajal RD, Sacco JJ, Jager MJ, Eschelman DJ, Olofsson Bagge R, Harbour JW, Chieng ND, Patel SP, Joshua AM, Piperno-Neumann S. Advances in the clinical management of uveal melanoma. Nat Rev Clin Oncol 2023; 20:99-115. [PMID: 36600005 DOI: 10.1038/s41571-022-00714-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Melanomas arising in the uveal tract of the eye are a rare form of the disease with a biology and clinical phenotype distinct from their more common cutaneous counterparts. Treatment of primary uveal melanoma with radiotherapy, enucleation or other modalities achieves local control in more than 90% of patients, although 40% or more ultimately develop distant metastases, most commonly in the liver. Until January 2022, no systemic therapy had received regulatory approval for patients with metastatic uveal melanoma, and these patients have historically had a dismal prognosis owing to the limited efficacy of the available treatments. A series of seminal studies over the past two decades have identified highly prevalent early, tumour-initiating oncogenic genomic aberrations, later recurring prognostic alterations and immunological features that characterize uveal melanoma. These advances have driven the development of a number of novel emerging treatments, including tebentafusp, the first systemic therapy to achieve regulatory approval for this disease. In this Review, our multidisciplinary and international group of authors summarize the biology of uveal melanoma, management of primary disease and surveillance strategies to detect recurrent disease, and then focus on the current standard and emerging regional and systemic treatment approaches for metastatic uveal melanoma.
Collapse
Affiliation(s)
- Richard D Carvajal
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Joseph J Sacco
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - David J Eschelman
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - J William Harbour
- Department of Ophthalmology and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nicholas D Chieng
- Medical Imaging Services, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Sapna P Patel
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Anthony M Joshua
- Department of Medical Oncology, Kinghorn Cancer Centre, St Vincent's Hospital Sydney and Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW, Sydney, New South Wales, Australia
| | | |
Collapse
|
20
|
Digital Quantification of Intratumoral CD8+ T-Cells Predicts Relapse and Unfavorable Outcome in Uveal Melanoma. Cancers (Basel) 2022; 14:cancers14235959. [PMID: 36497441 PMCID: PMC9740732 DOI: 10.3390/cancers14235959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Although it is a disease that occurs mainly in the Caucasian population, uveal melanoma (UM) is the most common primary intraocular tumor in adults. Here, we used digital pathology and image analysis for the diagnosis of UM and the prediction of the prognosis. Our retrospective study included a total of 404 histopathological slides from 101 patients. A digital image acquisition and quantitative analysis of tissue immune biomarkers (CD4, CD8, CD68, CD163) were performed. A negative impact of the intratumoral CD8 positive cell density higher than 13.3 cells/mm2 was detected for both RFS (HR 2.08, 95% Cl 1.09 to 3.99, p = 0.027) and OS (HR 3.30, 95% CI 1.58 to 6.88, p = 0.001). Moreover, we confirmed that older age and stage III were independent negative prognostic factors for both RFS and OS. Our results suggest that a specific distribution profile of CD8 in UM might predict the risk of relapse and death, with potential implications for determining which subgroups of UMs are amenable to specific pharmacological treatment regimens.
Collapse
|
21
|
Liang X, Yin Y, Li N. GOLM1 is related to the inflammatory/immune nature of uveal melanoma and acts as a promising indicator for prognosis and immunotherapy response. Front Genet 2022; 13:1051168. [DOI: 10.3389/fgene.2022.1051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose: Inflammatory/immune-related features are associated with the immunotherapy and prognosis of uveal melanoma (UVM). In this study, we systematically analyzed the correlation between GOLM1 and the inflammatory/immune nature of UVM and explored its potential value in predicting prognosis and guiding immunotherapy for UVM patients.Methods: A total of 143 UVM patients were enrolled in the current study. The differentially expressed genes between the GOLM1-low expression (LEXP) and GOLM1-high expression (HEXP) subgroups were calculated by the “limma” package and further annotated to reveal the key pathways by the “ClusterProfiler” package. Immunocyte infiltration was evaluated by single-sample gene set enrichment analysis, while the potential response to immunotherapy was realized by subclass mapping analysis. Moreover, tumor tissue sections from 23 UVM patients were collected and stained for GOLM1 (1:300; cat# DF8100, Affinity Biosciences), PD-L1 (1:250; cat# ab213524, Abcam), PD-1 (1:100; cat# ab52587, Abcam), CTLA-4 (1:300; cat# DF6793, Affinity Biosciences), and IFN-γ (1:300; cat# DF6045, Affinity Biosciences).Results: We found that higher expression of GOLM1 correlated with an unfavorable prognosis in UVM patients. Multivariate Cox regression analysis suggested that GOLM1 served as a prognostic factor independent of clinicopathological parameters. Notably, we found that the expression of PD-1, PD-L1, IFN-γ, and CTLA4 was higher in the GOLM1-high subgroup than in the GOLM1-low expression subgroup at the mRNA level and was subsequently validated at the protein level by immunohistochemistry. Gene pattern and SubMap analyses confirmed the indicator role of GOLM1 in predicting immunotherapy response in UVM.Conclusion: Taken together, GOLM1 is a novel prognostic marker, and it can be employed to predict the overall survival outcomes and treatment responses of anti-PD-1/PD-L1 and anti-CTLA4 therapies for UVM patients.
Collapse
|
22
|
Langbein LE, El Hajjar R, Kim WY, Yang H. The convergence of tumor suppressors on the type I interferon pathway in clear cell renal cell carcinoma and its therapeutic implications. Am J Physiol Cell Physiol 2022; 323:C1417-C1429. [PMID: 36154696 PMCID: PMC9662805 DOI: 10.1152/ajpcell.00255.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Accepted: 09/17/2022] [Indexed: 01/31/2023]
Abstract
In clear cell renal cell carcinoma (ccRCC), the von Hippel-Lindau tumor suppressor gene/hypoxia inducible factor (VHL/HIF) axis lays the groundwork for tumorigenesis and is the target of many therapeutic agents. HIF activation alone, however, is largely insufficient for kidney tumor development, and secondary mutations in PBRM1, BAP1, SETD2, KDM5C, or other tumor suppressor genes are strong enablers of tumorigenesis. Interestingly, it has been discovered that VHL loss and subsequent HIF activation results in upregulation of a negative feedback loop mediated by ISGF3, a transcription factor activated by type I interferon (IFN). Secondary mutations in the aforementioned tumor suppressor genes all partially disable this negative feedback loop to facilitate tumor growth. The convergence of several cancer genes on this pathway suggests that it plays an important role in ccRCC development and maintenance. Tumors with secondary mutations that dampen the negative feedback loop may be exquisitely sensitive to its reactivation, and pharmacological activation of ISGF3 either alone or in combination with other therapies could be an effective method to treat patients with ccRCC. In this review, we examine the relevance of the type I IFN pathway to ccRCC, synthesize our current knowledge of the ccRCC tumor suppressors in its regulation, and explore how this may impact the future treatment of patients with ccRCC.
Collapse
Affiliation(s)
- Lauren E Langbein
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Rayan El Hajjar
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - William Y Kim
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Haifeng Yang
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
23
|
Langbein LE, El Hajjar R, He S, Sementino E, Zhong Z, Jiang W, Leiby BE, Li L, Uzzo RG, Testa JR, Yang H. BAP1 maintains HIF-dependent interferon beta induction to suppress tumor growth in clear cell renal cell carcinoma. Cancer Lett 2022; 547:215885. [PMID: 35995140 PMCID: PMC9553033 DOI: 10.1016/j.canlet.2022.215885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022]
Abstract
BRCA1-associated protein 1 (BAP1) is a deubiquitinase that is mutated in 10-15% of clear cell renal cell carcinomas (ccRCC). Despite the association between BAP1 loss and poor clinical outcome, the critical tumor suppressor function(s) of BAP1 in ccRCC remains unclear. Previously, we found that hypoxia-inducible factor 2α (HIF2α) and BAP1 activate interferon-stimulated gene factor 3 (ISGF3), a transcription factor activated by type I interferons and a tumor suppressor in ccRCC xenograft models. Here, we aimed to determine the mechanism(s) through which HIF and BAP1 regulate ISGF3. We found that in ccRCC cells, loss of the von Hippel-Lindau tumor suppressor (VHL) activated interferon beta (IFN-β) expression in a HIF2α-dependent manner. IFN-β was required for ISGF3 activation and suppressed the growth of Ren-02 tumors in xenografts. BAP1 enhanced the expression of IFN-β and stimulator of interferon genes (STING), both of which activate ISGF3. Both ISGF3 overexpression and STING agonist treatment increased ISGF3 activity and suppressed BAP1-deficient tumor growth in Ren-02 xenografts. Our results indicate that BAP1 loss reduces type I interferon signaling, and reactivating this pathway may be a novel therapeutic strategy for treating ccRCC.
Collapse
Affiliation(s)
- Lauren E Langbein
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rayan El Hajjar
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Shen He
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Eleonora Sementino
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Zhijiu Zhong
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Wei Jiang
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Benjamin E Leiby
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Li Li
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Robert G Uzzo
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Joseph R Testa
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Haifeng Yang
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
24
|
Wang W, Wang S. The prognostic value of immune-related genes AZGP1, SLCO5A1, and CTF1 in Uveal melanoma. Front Oncol 2022; 12:918230. [PMID: 36052234 PMCID: PMC9425775 DOI: 10.3389/fonc.2022.918230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Uveal melanoma (UM) is an aggressive malignancy with a poor prognosis and no available effective treatment. Therefore, exploring a potential prognostic marker for UM could provide new possibilities for early detection, recurrence, and treatment. Methods In this study, we used “ConsensusClusterPlus” to classify patients with UM into subgroups, screened for significant differences in immune prognostic factors between subgroups, selected three genes using LASSO (Least absolute shrinkage and selection operator) regression to construct a risk model, and performed tumor immune cell infiltration analysis on the risk model. infiltration analysis, and then verified the heterogeneous role of the 3 core genes in other cancers by pan-cancer analysis and validate its expression by RT-qPCR in normal and tumor cells. Results We consistently categorized 80 UM patients into two subgroups after the immunogenetic set, where the UM1 subgroup had a better prognosis than the UM2 subgroup, and used 3 immune-related genes AZGP1, SLCO5A1, and CTF1 to derive risk scores as independent prognostic markers and predictors of UM clinicopathological features. We found significant differences in overall survival (OS) between low- and high-risk groups, and prognostic models were negatively correlated with B cell and myeloid dendritic cell and positively correlated with CD8+ T cell AZGP1 and CTF1 were significantly upregulated in UM cells compared with normal UM cells. Conclusion Immunogens are significantly associated with the prognosis of UM, and further classification based on genetic characteristics may help to develop immunotherapeutic strategies and provide new approaches to develop customized treatment strategies for patients.
Collapse
Affiliation(s)
- Wanpeng Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Sha Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- *Correspondence: Sha Wang,
| |
Collapse
|
25
|
Kaler CJ, Dollar JJ, Cruz AM, Kuznetsoff JN, Sanchez MI, Decatur CL, Licht JD, Smalley KSM, Correa ZM, Kurtenbach S, Harbour JW. BAP1 Loss Promotes Suppressive Tumor Immune Microenvironment via Upregulation of PROS1 in Class 2 Uveal Melanomas. Cancers (Basel) 2022; 14:3678. [PMID: 35954340 PMCID: PMC9367253 DOI: 10.3390/cancers14153678] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Uveal melanoma (UM) is the most common primary cancer of the eye and is associated with a high rate of metastatic death. UM can be stratified into two main classes based on metastatic risk, with class 1 UM having a low metastatic risk and class 2 UM having a high metastatic risk. Class 2 UM have a distinctive genomic, transcriptomic, histopathologic, and clinical phenotype characterized by biallelic inactivation of the BAP1 tumor-suppressor gene, an immune-suppressive microenvironment enriched for M2-polarized macrophages, and poor response to checkpoint-inhibitor immunotherapy. To identify potential mechanistic links between BAP1 loss and immune suppression in class 2 UM, we performed an integrated analysis of UM samples, as well as genetically engineered UM cell lines and uveal melanocytes (UMC). Using RNA sequencing (RNA-seq), we found that the most highly upregulated gene associated with BAP1 loss across these datasets was PROS1, which encodes a ligand that triggers phosphorylation and activation of the immunosuppressive macrophage receptor MERTK. The inverse association between BAP1 and PROS1 in class 2 UM was confirmed by single-cell RNA-seq, which also revealed that MERTK was upregulated in CD163+ macrophages in class 2 UM. Using ChIP-seq, BAP1 knockdown in UM cells resulted in an accumulation of H3K27ac at the PROS1 locus, suggesting epigenetic regulation of PROS1 by BAP1. Phosphorylation of MERTK in RAW 264.7 monocyte-macrophage cells was increased upon coculture with BAP1-/- UMCs, and this phosphorylation was blocked by depletion of PROS1 in the UMCs. These findings were corroborated by multicolor immunohistochemistry, where class 2/BAP1-mutant UMs demonstrated increased PROS1 expression in tumor cells and increased MERTK phosphorylation in CD163+ macrophages compared with class 1/BAP1-wildtype UMs. Taken together, these findings provide a mechanistic link between BAP1 loss and the suppression of the tumor immune microenvironment in class 2 UMs, and they implicate the PROS1-MERTK pathway as a potential target for immunotherapy in UM.
Collapse
Affiliation(s)
- Christopher J. Kaler
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.K.); (J.J.D.); (A.M.C.); (J.N.K.); (M.I.S.); (C.L.D.); (Z.M.C.); (S.K.)
| | - James J. Dollar
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.K.); (J.J.D.); (A.M.C.); (J.N.K.); (M.I.S.); (C.L.D.); (Z.M.C.); (S.K.)
| | - Anthony M. Cruz
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.K.); (J.J.D.); (A.M.C.); (J.N.K.); (M.I.S.); (C.L.D.); (Z.M.C.); (S.K.)
| | - Jeffim N. Kuznetsoff
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.K.); (J.J.D.); (A.M.C.); (J.N.K.); (M.I.S.); (C.L.D.); (Z.M.C.); (S.K.)
| | - Margaret I. Sanchez
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.K.); (J.J.D.); (A.M.C.); (J.N.K.); (M.I.S.); (C.L.D.); (Z.M.C.); (S.K.)
| | - Christina L. Decatur
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.K.); (J.J.D.); (A.M.C.); (J.N.K.); (M.I.S.); (C.L.D.); (Z.M.C.); (S.K.)
| | - Jonathan D. Licht
- University of Florida Health Cancer Center, University of Florida Cancer and Genetics Research Complex, Gainesville, FL 32610, USA;
| | - Keiran S. M. Smalley
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Zelia M. Correa
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.K.); (J.J.D.); (A.M.C.); (J.N.K.); (M.I.S.); (C.L.D.); (Z.M.C.); (S.K.)
| | - Stefan Kurtenbach
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.K.); (J.J.D.); (A.M.C.); (J.N.K.); (M.I.S.); (C.L.D.); (Z.M.C.); (S.K.)
| | - J. William Harbour
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.K.); (J.J.D.); (A.M.C.); (J.N.K.); (M.I.S.); (C.L.D.); (Z.M.C.); (S.K.)
- Department of Ophthalmology and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
26
|
Meijer N, de Bruyn DP, de Klein A, Paridaens D, Verdijk RM, Berendschot TTM, Brosens E, Jager MJ, Kiliç E. High C-Reactive Protein Levels Are Related to Better Survival in Patients with Uveal Melanoma. OPHTHALMOLOGY SCIENCE 2022; 2:100117. [PMID: 36249686 PMCID: PMC9560527 DOI: 10.1016/j.xops.2022.100117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 01/04/2023]
Abstract
Purpose To determine whether peripheral blood leukocyte numbers and serum markers of inflammation can be used to predict which patients with primary uveal melanoma will develop metastasis. Design Retrospective study. Participants Medical records of patients with uveal melanoma (UM) who received treatment for primary UM between February 1992 and December 2020 at the Erasmus University Medical Center (Rotterdam, The Netherlands) and the Rotterdam Eye Hospital (Rotterdam, The Netherlands) were reviewed. Methods Inclusion criteria were the presence of a melanoma of the choroid or ciliary body and the availability of data from peripheral blood samples taken before treatment of the melanoma. Data including patient demographics, C-reactive protein (CRP) levels; erythrocyte sedimentation rate (ESR); number of leukocytes, neutrophils, monocytes, and lymphocytes; and histopathologic findings were obtained from medical records. Neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR) were calculated. Main Outcome Measures Metastasis-free survival. Results Of the 807 patients with UM, serum and leukocyte data were available for 183 of them at the time of primary tumor treatment. In the total group, no correlation was found between ESR before treatment; the number of leukocytes; percentages of neutrophils, monocytes, and lymphocytes; or NLR or LMR values and any of the clinical characteristics or metastasis-free survival. Among patients who underwent enucleation, those with negative BAP1 findings showed significantly lower numbers of leukocytes (P < 0.05). In the entire cohort, a significant association was found between high CRP levels and longer metastasis-free survival (MFS; P = 0.049). Conclusions The total blood leukocyte number was related to loss of BAP1 staining in patients who underwent enucleation, with lower leukocyte counts correlating with absent BAP1 staining. Higher CRP levels were associated with a longer MFS in the entire cohort. Neither the NLR nor the LMR is a good predictor for metastasis developing in patients with UM.
Collapse
Affiliation(s)
- Nikki Meijer
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daniël P. de Bruyn
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dion Paridaens
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ocular Oncology, Rotterdam Eye Hospital, Rotterdam, The Netherlands
| | - Robert M. Verdijk
- Department of Ocular Oncology, Rotterdam Eye Hospital, Rotterdam, The Netherlands
- Department of Pathology, Erasmus Medical Center, Rotterdam, and Leiden University Medical Center, Leiden, The Netherlands
| | - Tos T.J. M. Berendschot
- Department of Ophthalmology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Correspondence: Martine J. Jager, MD, PhD, Department of Ophthalmology, Leiden University Medical Center, P. O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
27
|
Gezgin G, Visser M, Ruano D, Santegoets SJ, de Miranda NF, van der Velden PA, Luyten GP, van der Burg SH, Verdegaal EM, Jager MJ. Tumor-Infiltrating T Cells Can Be Expanded Successfully from Primary Uveal Melanoma after Separation from Their Tumor Environment. OPHTHALMOLOGY SCIENCE 2022; 2:100132. [PMID: 36249685 PMCID: PMC9560540 DOI: 10.1016/j.xops.2022.100132] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/03/2022]
Abstract
Purpose To evaluate whether expanded tumor-infiltrating lymphocytes (TILs) can be obtained from primary uveal melanoma (UM) for potential use as adjuvant treatment in patients at risk of developing metastatic disease. Design Experimental research study. Participants Freshly obtained primary UM from 30 patients. Methods Three different methods were used to expand TILs: (1) direct culture from small fragments of fresh tumor tissue, (2) single-cell tissue preparation by enzymatic digestion and subsequent enrichment of mononuclear cells, and (3) selection of CD3+ T cells using magnetic beads. Surface expression of costimulatory and inhibitory T-cell markers and T-cell reactivity against autologous tumor cells was assessed. Clinical, histopathologic, genetic, and immunologic characteristics of the tumors were compared with the capacity to expand TILs and with their reactivity against autologous tumor cells. Main Outcome Measures The feasibility of expanding TILs from primary UM, testing their reactivity to autologous UM cells, and evaluating the impact of an immunomodulatory environment. Results Direct culture of tumor parts led to successful TIL culture in 4 of 22 tumors (18%), enrichment of mononuclear cells gave rise to TILs in 5 of 12 tumors (42%), while preselection of CD3+ T cells with magnetic beads resulted in TIL expansion in 17 of 25 tumors (68%). In 8 of 17 tumors (47%), the TIL cultures comprised UM-reactive T cells. The presence of UM-reactive T cells among TILs was not related to clinical, histologic, genetic, or immunological tumor characteristics. Interestingly, RNA-Seq analysis showed that approximately half of the UM tumors displayed an increased expression of immunomodulatory molecules related to T-cell suppression, such as galectin 3, programmed death-ligand 1, cytotoxic T-lymphocyte-associated protein 4, indoleamine 2,3-dioxygenase 1, and lymphocyte activating 3, potentially explaining why T cells require optimal removal of tumor components for expansion. Conclusions The need to separate TILs from their tumor microenvironment for their successful expansion and the presence of UM-reactive T cells among TILs suggests that these UM-reactive T cells are strongly suppressed in vivo and that UM is immunogenic. These findings indicate that adoptive TIL therapy could be an option as an adjuvant treatment in primary UM patients at high risk of developing metastatic disease.
Collapse
|
28
|
Lv X, Ding M, Liu Y. Landscape of Infiltrated Immune Cell Characterization in Uveal Melanoma to Improve Immune Checkpoint Blockade Therapy. Front Immunol 2022; 13:848455. [PMID: 35309331 PMCID: PMC8924368 DOI: 10.3389/fimmu.2022.848455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background Numerous studies indicated that tumor-infiltrated immune cells (TIC) in the microenvironment are substantially linked to immunotherapy response and cancer prognosis. However, systematic studies of infiltrated immune cell characterization in uveal melanoma (UM) for prognosis and immune checkpoint blockade therapy are lacking. Methods UM datasets were extracted from open access resources (TCGA and GEO databases). The tumor-infiltrated immune cells in the microenvironment were decoded by using the CIBERSORT algorithm, which was further applied to classify UM patients into subgroups using an unsupervised clustering method. The Boruta algorithm and principal component analysis were used to calculate the TIC scores for UM patients. Kaplan–Meier curves were plotted to prove the prognostic value of TIC scores. Besides, the correlations of the TIC score with clinical features, mutated characteristics, and the immune therapeutic response were subsequently investigated. Results As a result, we defined three subtypes among 171 UM patients according to the TIC profiles and then calculated the TIC score to characterize the immune patterns for all patients. We discovered that high-TIC score patients with low BAP1 and high EIF1AX mutations have a better prognosis than low-TIC score patients. Activation of immune inflammatory response and increase in immune checkpoint-related genes in high-TIC score patients may account for good prognosis and immunotherapy response. Three melanoma cohorts received immunotherapy, proving that high-TIC score patients have substantial clinical and immune therapeutic improvements. Besides, several potential therapeutic agents were identified in the low-TIC score group. Conclusion Our study afforded a comprehensive view of infiltrated immune cell characterization to elucidate different immune patterns of UM. We also established a robust TIC-score signature, which may work as a prognostic biomarker and immune therapeutic predictor.
Collapse
Affiliation(s)
- Xiaohui Lv
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Min Ding
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yan Liu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
29
|
Amalinei C, Grigoraș A, Lozneanu L, Căruntu ID, Giușcă SE, Balan RA. The Interplay between Tumour Microenvironment Components in Malignant Melanoma. Medicina (B Aires) 2022; 58:medicina58030365. [PMID: 35334544 PMCID: PMC8953474 DOI: 10.3390/medicina58030365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma has shown an increasing incidence during the last two decades, exhibiting a large spectrum of locations and clinicopathological characteristics. Although current histopathological, biochemical, immunohistochemical, and molecular methods provide a deep insight into its biological behaviour and outcome, melanoma is still an unpredictable disease, with poor outcome. This review of the literature is aimed at updating the knowledge regarding melanoma’s clinicopathological and molecular hallmarks, including its heterogeneity and plasticity, involving cancer stem cells population. A special focus is given on the interplay between different cellular components and their secretion products in melanoma, considering its contribution to tumour progression, invasion, metastasis, recurrences, and resistance to classical therapy. Furthermore, the influences of the specific tumour microenvironment or “inflammasome”, its association with adipose tissue products, including the release of “extracellular vesicles”, and distinct microbiota are currently studied, considering their influences on diagnosis and prognosis. An insight into melanoma’s particular features may reveal new molecular pathways which may be exploited in order to develop innovative therapeutic approaches or tailored therapy.
Collapse
|
30
|
Meng Z, Chen Y, Wu W, Yan B, Zhang L, Chen H, Meng Y, Liang Y, Yao X, Luo J. PRRX1 Is a Novel Prognostic Biomarker and Facilitates Tumor Progression Through Epithelial–Mesenchymal Transition in Uveal Melanoma. Front Immunol 2022; 13:754645. [PMID: 35281030 PMCID: PMC8914230 DOI: 10.3389/fimmu.2022.754645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. UM develops and is sustained by inflammation and immunosuppression from the tumor microenvironment (TME). This study sought to identify a reliable TME-related biomarker that could provide survival prediction and new insight into therapy for UM patients. Based on clinical characteristics and the RNA-seq transcriptome data of 80 samples from The Cancer Genome Atlas (TCGA) database, PRRX1 as a TME- and prognosis-related gene was identified using the ESTIMATE algorithm and the LASSO–Cox regression model. A prognostic model based on PRRX1 was constructed and validated with a Gene Expression Omnibus (GEO) dataset of 63 samples. High PRRX1 expression was associated with poorer overall survival (OS) and metastasis-free survival (MFS) in UM patients. Comprehensive results of the prognostic analysis showed that PRRX1 was an independent and reliable predictor of UM. Then the results of immunological characteristics demonstrated that higher expression of PRRX1 was accompanied by higher expression of immune checkpoint genes, lower tumor mutation burden (TMB), and greater tumor cell infiltration into the TME. Gene set enrichment analysis (GSEA) showed that high PRRX1 expression correlated with angiogenesis, epithelial–mesenchymal transition (EMT), and inflammation. Furthermore, downregulation of PRRX1 weakened the process of EMT, reduced cell invasion and migration of human UM cell line MuM-2B in vitro. Taken together, these findings indicated that increased PRRX1 expression is independently a prognostic factor of poorer OS and MFS in patients with UM, and that PRRX1 promotes malignant progression of UM by facilitating EMT, suggesting that PRRX1 may be a potential target for UM therapy.
Collapse
Affiliation(s)
- Zhishang Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanzhu Chen
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenyi Wu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lusi Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huihui Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongan Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Youling Liang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxi Yao
- Shenzhen College of International Education, Shenzhen, China
| | - Jing Luo
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jing Luo,
| |
Collapse
|
31
|
Shen L, Wu Y, Qi H, Jiang Y, Jin J, Cao F, Chen S, Yang Y, Huang T, Song Z, Chen Q, Zhang Y, Mo J, Li D, Zhang X, Fan W. Inducible Regulatory T Cell Predicts Efficacy of PD‐1 Blockade Therapy in Melanoma. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lujun Shen
- Department of Minimally Invasive Interventional Therapy Sun Yat‐sen University Cancer Center Guangzhou 510060 P. R. China
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Guangzhou 510060 P. R. China
| | - Ying Wu
- Department of Minimally Invasive Interventional Therapy Sun Yat‐sen University Cancer Center Guangzhou 510060 P. R. China
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Guangzhou 510060 P. R. China
| | - Han Qi
- Department of Minimally Invasive Interventional Therapy Sun Yat‐sen University Cancer Center Guangzhou 510060 P. R. China
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Guangzhou 510060 P. R. China
| | - Yiquan Jiang
- Department of Minimally Invasive Interventional Therapy Sun Yat‐sen University Cancer Center Guangzhou 510060 P. R. China
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Guangzhou 510060 P. R. China
| | - Jietian Jin
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Guangzhou 510060 P. R. China
- Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou 510060 P. R. China
| | - Fei Cao
- Department of Minimally Invasive Interventional Therapy Sun Yat‐sen University Cancer Center Guangzhou 510060 P. R. China
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Guangzhou 510060 P. R. China
| | - Shuanggang Chen
- Department of Minimally Invasive Interventional Therapy Sun Yat‐sen University Cancer Center Guangzhou 510060 P. R. China
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Guangzhou 510060 P. R. China
| | - Yuanzhong Yang
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Guangzhou 510060 P. R. China
- Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou 510060 P. R. China
| | - Tao Huang
- Department of Minimally Invasive Interventional Therapy Sun Yat‐sen University Cancer Center Guangzhou 510060 P. R. China
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Guangzhou 510060 P. R. China
| | - Ze Song
- Department of Medical Oncology Seventh Affiliated Hospital of Sun Yat‐sen University Shenzhen 518107 P. R. China
| | - Qifeng Chen
- Department of Minimally Invasive Interventional Therapy Sun Yat‐sen University Cancer Center Guangzhou 510060 P. R. China
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Guangzhou 510060 P. R. China
| | - Yinqi Zhang
- Zhong Shan School of Medicine Sun Yat‐sen University Guangzhou 510080 P. R. China
| | - Jinqing Mo
- Zhong Shan School of Medicine Sun Yat‐sen University Guangzhou 510080 P. R. China
| | - Dandan Li
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Guangzhou 510060 P. R. China
- Department of Biological Therapy Center Sun Yat‐sen University Cancer Center Guangzhou 510060 P. R. China
| | - Xiaoshi Zhang
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Guangzhou 510060 P. R. China
- Department of Biological Therapy Center Sun Yat‐sen University Cancer Center Guangzhou 510060 P. R. China
| | - Weijun Fan
- Department of Minimally Invasive Interventional Therapy Sun Yat‐sen University Cancer Center Guangzhou 510060 P. R. China
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Guangzhou 510060 P. R. China
| |
Collapse
|
32
|
Wierenga APA, Brouwer NJ, Gelmi MC, Verdijk RM, Stern MH, Bas Z, Malkani K, van Duinen SG, Ganguly A, Kroes WGM, Marinkovic M, Luyten GPM, Shields CL, Jager MJ. Chromosome 3 and 8q aberrations in Uveal Melanoma show greater impact on survival in patients with light iris versus dark iris color. Ophthalmology 2021; 129:421-430. [PMID: 34780841 DOI: 10.1016/j.ophtha.2021.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Individuals with gray, blue, or green iris have a higher chance of developing uveal melanoma (UM) than those with brown eyes. We wondered whether iris pigmentation might not only be related to predisposition to UM, but also to its behavior and therefore compared clinical, histopathologic, and genetic characteristics of UM between eyes with different iris colors. DESIGN We determined iris color in a large cohort of patients who had undergone an enucleation for UM. Clinical and histopathological tumor characteristics, chromosome status, and survival were compared between three groups, based on iris color. PARTICIPANTS 412 patients with choroidal/ciliary body UM, who had undergone primary enucleation at the Leiden University Medical Center (LUMC), Leiden, The Netherlands, between 1993 and 2019, divided into three groups, based on iris color (gray/blue, green/hazel, and brown). Validation cohort: 934 choroidal/ciliary body UM patients treated at Wills Eye Hospital (WEH), Philadelphia, United States. METHODS Comparison of clinical, histopathologic, and genetic characteristics of UM in patients with different iris colors. MAIN OUTCOME MEASURES Melanoma-related survival in UM patients, divided over three iris color groups, in relation to the tumor's chromosome 3 and 8q status. RESULTS Moderate and heavy tumor pigmentation was especially seen in eyes with brown iris (p < 0.001). Survival did not differ between patients with different iris colors (p = 0.28). However, in patients with a light iris, copy number changes in chromosome 3 and 8q had a greater influence on survival than in patients with a dark iris. Similarly, chromosome 3 and chromosome 8q status affected survival more among patients with lightly-pigmented tumors than in patients with heavily-pigmented tumors. The WEH cohort similarly showed a greater influence of chromosome aberrations in light-eyed individuals. CONCLUSIONS While iris color by itself did not relate to survival of UM patients, chromosome 3 and 8q aberrations had a much larger influence on survival in patients with light iris compared to those with brown iris. This suggests a synergistic effect of iris pigmentation and chromosome status in the regulation of oncogenic behavior of UM. Iris color should be taken into consideration when calculating the risk for developing metastases.
Collapse
Affiliation(s)
- Annemijn P A Wierenga
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Niels J Brouwer
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands; Department of Pathology, Section Ophthalmic Pathology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marc-Henri Stern
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue, Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris, France
| | - Zeynep Bas
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kabir Malkani
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sjoerd G van Duinen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arupa Ganguly
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. USA
| | - Wilma G M Kroes
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marina Marinkovic
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carol L Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
33
|
Gao Z, Chen J, Tao Y, Wang Q, Peng S, Yu S, Zeng J, Li K, Xie Z, Huang H. Immune Signatures Combined With BRCA1-Associated Protein 1 Mutations Predict Prognosis and Immunotherapy Efficacy in Clear Cell Renal Cell Carcinoma. Front Cell Dev Biol 2021; 9:747985. [PMID: 34733850 PMCID: PMC8558467 DOI: 10.3389/fcell.2021.747985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy is gradually emerging in the field of tumor treatment. However, because of the complexity of the tumor microenvironment (TME), some patients cannot benefit from immunotherapy. Therefore, we comprehensively analyzed the TME and gene mutations of ccRCC to identify a comprehensive index that could more accurately guide the immunotherapy of patients with ccRCC. We divided ccRCC patients into two groups based on immune infiltration activity. Next, we investigated the differentially expressed genes (DEGs) and constructed a prognostic immune score using univariate Cox regression analysis, unsupervised cluster analysis, and principal component analysis (PCA) and validated its predictive power in both internal and total sets. Subsequently, the gene mutations in the groups were investigated, and patients suitable for immunotherapy were selected in combination with the immune score. The prognosis of the immune score-low group was significantly worse than that of the immune score-high group. The patients with BRCA1-associated protein 1 (BAP1) mutation had a poor prognosis. Thus, this study indicated that establishing an immune score model combined with BAP1 mutation can better predict the prognosis of patients, screen suitable ccRCC patients for immunotherapy, and select more appropriate drug combinations.
Collapse
Affiliation(s)
- Ze Gao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junxiu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiran Tao
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiong Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Shirong Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shunli Yu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianwen Zeng
- Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhongqiu Xie
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
34
|
Li L, Ji Y, Zhang L, Cai H, Ji Z, Gu L, Yang S. Wogonin inhibits the growth of HT144 melanoma via regulating hedgehog signaling-mediated inflammation and glycolysis. Int Immunopharmacol 2021; 101:108222. [PMID: 34688155 DOI: 10.1016/j.intimp.2021.108222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022]
Abstract
Hedgehog (Hh) signaling has been proved to be closely associated with the occurrence of melanoma. Wogonin is one of the active components of flavonoids that extracts from Scutellariae radix. Previous studies showed that wogonin could inhibit the invasion and migration of B16F10 cells, and suppress the synthesis of melanin in A375 melanoma cells. However, the regulatory effects of Hh signaling in wogonin against melanoma and its potential mechanisms remain largely unknown. The present study aimed to investigate the effect of wogonin on the growth of HT144 melanoma, and to elucidate the role of Hh signaling in wogonin-induced antitumor effects by focusing on inflammation and glycolysis regulation. Wogonin inhibited the proliferation, colony formation and tumor growth of HT144 melanoma cells. Wogonin showed strong anti-inflammatory effect in HT144 melanoma, as shown by the decreased levels of pro-inflammatory factors, the increased level of anti-inflammatory factor and the decreased expression of inflammatory cytokines. Wogonin decreased the glucose consumption and the production of lactic acid and ATP, and decreased the activities of hexokinase (HK), phosphofructokinase(PFK) and pyruvate kinase (PK), and further inhibited the expression of monocarboxylate transporter 1 (MCT-1), MCT-4 and glucosecotransporter-1 (GLUT1), showing potent anti-glycolysis effect against HT144 melanoma. Wogonin inhibited the patched and Smo expression while increased Hhip expression in HT144 cells, suggesting that wogonin blocked the Hh signaling in HT144 cells. The Hh signaling inhibitor cyclopamine, like wogonin, inhibited the colony formation of HT144 cells, however, the inhibitory effect of wogonin on colony formation of HT144 cells was abrogated by the Hh signaling agonist SAG. In addition, SAG abrogated the inhibitory effect of wogonin on the secretion of inflammatory factors and the expression of inflammatory cytokines. Furthermore, SAG abrogated the inhibitory effect of wogonin on several key molecules controlling glycolysis. Overall, these findings suggested that the anti-tumor effect of wogonin can be attributed to the inhibition of Hh signaling-mediated regulation of inflammation and glycolysis in HT144 melanoma.
Collapse
Affiliation(s)
- Ling Li
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China; Yancheng No.1 People's Hospital, Yancheng 224001, China
| | - Yanting Ji
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Lili Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Hengji Cai
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhoujing Ji
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Lixiong Gu
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
35
|
Gu C, Gu X, Wang Y, Yao Z, Zhou C. Construction and Validation of a Novel Immunosignature for Overall Survival in Uveal Melanoma. Front Cell Dev Biol 2021; 9:710558. [PMID: 34552928 PMCID: PMC8450517 DOI: 10.3389/fcell.2021.710558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives Uveal melanoma (UM) is the most common primary intraocular malignancy in adults, and immune infiltration plays a crucial role in the prognosis of UM. This study aimed to generate an immunological marker-based predictive signature for the overall survival (OS) of UM patients. Methods Single-sample gene-set enrichment analysis (ssGSEA) was used to profile immune cell infiltration in 79 patients with UM from The Cancer Genome Atlas (TCGA) database. Univariate and multivariate least absolute shrinkage and selection operator (LASSO) Cox regressions were used to determine the prognostic factors for UM and construct the predictive immunosignature. Receiver operating characteristic (ROC) curves, decision curve analysis (DCA), and calibration curves were performed to evaluate the clinical ability and accuracy of the model. In addition, the predictive accuracy was compared between the immunosignature and the Tumor, Node, Metastasis (TNM) staging system of American Joint Committee on Cancer (AJCC). We further analyzed the differences in clinical characteristics, immune infiltrates, immune checkpoints, and therapy sensitivity between high- and low-risk groups characterized by the prognostic model. Results Higher levels of immune cell infiltration in UM were related to a lower survival rate. Matrix metallopeptidase 12 (MMP12), TCDD inducible poly (ADP-ribose) polymerase (TIPARP), and leucine rich repeat neuronal 3 (LRRN3) were identified as prognostic signatures, and an immunological marker-based prognostic signature was constructed with good clinical ability and accuracy. The immunosignature was developed with a concordance index (C-index) of 0.881, which is significantly better than that of the TNM staging system (p < 0.001). We further identified 1,762 genes with upregulated expression and 798 genes with downregulated expression in the high-risk group, and the differences between the high- and low-risk groups were mainly in immune-related processes. In addition, the expression of most of the immune checkpoint-relevant and immune activity-relevant genes was significantly higher in the high-risk group, which was more sensitive to therapy. Conclusion We developed a novel immunosignature constructed by MMP12, TIPARP, and LRRN3 that could effectively predict the OS of UM.
Collapse
Affiliation(s)
- Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xin Gu
- Department of Ophthalmology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yujie Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Zhixian Yao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuandi Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
36
|
Souri Z, Wierenga APA, Kroes WGM, van der Velden PA, Verdijk RM, Eikmans M, Luyten GPM, Jager MJ. LAG3 and Its Ligands Show Increased Expression in High-Risk Uveal Melanoma. Cancers (Basel) 2021; 13:cancers13174445. [PMID: 34503258 PMCID: PMC8430821 DOI: 10.3390/cancers13174445] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Uveal melanoma (UM) is a rare ocular malignancy which originates in the uveal tract, and often gives rise to metastases. Potential targets for immune checkpoint inhibition are lymphocyte-activation gene 3 (LAG3) and its ligands. We set out to analyse the distribution of these molecules in UM. The expression of mRNA was determined using an Illumina array in 64 primary UM from Leiden. The T lymphocyte fraction was determined by digital droplet PCR. In a second cohort of 15 cases from Leiden, mRNA expression was studied by Fluidigm qPCR, while a third cohort consisted of 80 UM from TCGA. In the first Leiden cohort, LAG3 expression was associated with the presence of epithelioid cells (p = 0.002), monosomy of chromosome 3 (p = 0.004), and loss of BAP1 staining (p = 0.001). In this Leiden cohort as well as in the TCGA cohort, LAG3 expression correlated positively with the expression of its ligands: LSECtin, Galectin-3, and the HLA class II molecules HLA-DR, HLA-DQ, and HLA-DP (all p < 0.001). Furthermore, ligands Galectin-3 and HLA class II were increased in monosomy 3 tumours and the expression of LAG3 correlated with the presence of an inflammatory phenotype (T cell fraction, macrophages, HLA-A and HLA-B expression: all p < 0.001). High expression levels of LAG3 (p = 0.01), Galectin-3 (p = 0.001), HLA-DRA1 (p = 0.002), HLA-DQA1 (p = 0.04), HLA-DQB2 (p = 0.03), and HLA-DPA1 (p = 0.007) were associated with bad survival. We conclude that expression of the LAG ligands Galectin-3 and HLA class II strongly correlates with LAG3 expression and all are increased in UM with Monosomy 3/BAP1 loss. The distribution suggests a potential benefit of monoclonal antibodies against LAG3 or Galectin-3 as adjuvant treatment in patients with high-risk UM.
Collapse
Affiliation(s)
- Zahra Souri
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (Z.S.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
| | - Annemijn P. A. Wierenga
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (Z.S.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
| | - Wilma G. M. Kroes
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Pieter A. van der Velden
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (Z.S.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
| | - Robert M. Verdijk
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Department of Pathology, Section Ophthalmic Pathology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Michael Eikmans
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Gregorius P. M. Luyten
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (Z.S.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (Z.S.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
- Correspondence:
| |
Collapse
|
37
|
de Lange MJ, Nell RJ, van der Velden PA. Scientific and clinical implications of genetic and cellular heterogeneity in uveal melanoma. MOLECULAR BIOMEDICINE 2021; 2:25. [PMID: 35006486 PMCID: PMC8607395 DOI: 10.1186/s43556-021-00048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 07/16/2021] [Indexed: 10/27/2022] Open
Abstract
Here, we discuss the presence and roles of heterogeneity in the development of uveal melanoma. Both genetic and cellular heterogeneity are considered, as their presence became undeniable due to single cell approaches that have recently been used in uveal melanoma analysis. However, the presence of precursor clones and immune infiltrate in uveal melanoma have been described as being part of the tumour already decades ago. Since uveal melanoma grow in the corpus vitreous, they present a unique tumour model because every cell present in the tumour tissue is actually part of the tumour and possibly plays a role. For an effective treatment of uveal melanoma metastasis, it should be clear whether precursor clones and normal cells play an active role in progression and metastasis. We propagate analysis of bulk tissue that allows analysis of tumour heterogeneity in a clinical setting.
Collapse
Affiliation(s)
- Mark J de Lange
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Rogier J Nell
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Pieter A van der Velden
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
38
|
Expression of HDACs 1, 3 and 8 Is Upregulated in the Presence of Infiltrating Lymphocytes in Uveal Melanoma. Cancers (Basel) 2021; 13:cancers13164146. [PMID: 34439300 PMCID: PMC8393956 DOI: 10.3390/cancers13164146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Uveal melanoma (UM) is an ocular malignancy which is derived from melanocytes in the uveal tract. Epigenetic regulators such as Histone Deacetylase (HDACs) inhibitors are being tested as treatment of UM metastases. Expression of different HDACs is variable, and some are increased in high-risk tumors with loss of one chromosome 3. As this genetic abnormality is also associated with an inflammatory phenotype, we analyzed whether HDAC expression was influenced by inflammation. In two cohorts of UM cases, expression of several HDACs showed a positive correlation with tumor-infiltrating T cells, while HDACs 2 and 11 showed a negative association with macrophages. Interferon-γ stimulated expression of some HDACs on UM cell lines. These data suggest that cytokines produced by T cells may be responsible for the increased expression of some HDACs in UM with monosomy 3. Abstract In Uveal Melanoma (UM), an inflammatory phenotype is strongly associated with the development of metastases and with chromosome 3/BAP1 expression loss. As an increased expression of several Histone Deacetylases (HDACs) was associated with loss of chromosome 3, this suggested that HDAC expression might also be related to inflammation. We analyzed HDAC expression and the presence of leukocytes by mRNA expression in two sets of UM (Leiden and TCGA) and determined the T lymphocyte fraction through ddPCR. Four UM cell lines were treated with IFNγ (50IU, 200IU). Quantitative PCR (qPCR) was used for mRNA measurement of HDACs in cultured cells. In both cohorts (Leiden and TCGA), a positive correlation occurred between expression of HDACs 1, 3 and 8 and the presence of a T-cell infiltrate, while expression of HDACs 2 and 11 was negatively correlated with the presence of tumor-infiltrating macrophages. Stimulation of UM cell lines with IFNγ induced an increase in HDACs 1, 4, 5, 7 and 8 in two out of four UM cell lines. We conclude that the observed positive correlations between HDAC expression and chromosome 3/BAP1 loss may be related to the presence of infiltrating T cells.
Collapse
|
39
|
Souri Z, Wierenga APA, Kiliç E, Brosens E, Böhringer S, Kroes WGM, Verdijk RM, van der Velden PA, Luyten GPM, Jager MJ. MiRNAs Correlate with HLA Expression in Uveal Melanoma: Both Up- and Downregulation Are Related to Monosomy 3. Cancers (Basel) 2021; 13:cancers13164020. [PMID: 34439175 PMCID: PMC8393554 DOI: 10.3390/cancers13164020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Uveal melanoma (UM) is a rare ocular malignancy that often gives rise to metastases. Tumours with an inflammatory phenotype have an especially bad prognosis. As an increased HLA expression and the presence of tumour-infiltrating lymphocytes and macrophages may be regulated by miRNAs, we set out to investigate whether any miRNAs are associated with inflammatory parameters in this malignancy. Some miRNAs were increased in UM with a high HLA expression and high T cell numbers, while others were decreased, showing two opposing patterns; however, both patterns were related to the tumour’s chromosome 3/BAP1 status. We conclude that specific miRNAs are related to the inflammatory phenotype and that these are differentially expressed between disomy 3/BAP1-positive versus monosomy 3/BAP1-negative UM. Abstract MicroRNAs are known to play a role in the regulation of inflammation. As a high HLA Class I expression is associated with a bad prognosis in UM, we set out to determine whether any miRNAs were related to a high HLA Class I expression and inflammation. We also determined whether such miRNAs were related to the UM’s genetic status. The expression of 125 miRNAs was determined in 64 primary UM from Leiden. Similarly, the mRNA expression of HLA-A, HLA-B, TAP1, BAP1, and immune cell markers was obtained. Expression levels of 24 of the 125 miRNAs correlated with expression of at least three out of four HLA Class I probes. Four miRNAs showed a positive correlation with HLA expression and infiltration with leukocytes, 20 a negative pattern. In the first group, high miRNA levels correlated with chromosome 3 loss/reduced BAP1 mRNA expression, in the second group low miRNA levels. The positive associations between miRNA-22 and miRNA-155 with HLA Class I were confirmed in the TCGA study and Rotterdam cohort, and with TAP1 in the Rotterdam data set; the negative associations between miRNA-125b2 and miRNA-211 and HLA-A, TAP1, and CD4 were confirmed in the Rotterdam set. We demonstrate two patterns: miRNAs can either be related to a high or a low HLA Class I/TAP1 expression and the presence of infiltrating lymphocytes and macrophages. However, both patterns were associated with chromosome 3/BAP1 status, which suggests a role for BAP1 loss in the regulation of HLA expression and inflammation in UM through miRNAs.
Collapse
Affiliation(s)
- Zahra Souri
- Department of Ophthalmology, LUMC, 2333ZA Leiden, The Netherlands; (Z.S.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
| | - Annemijn P. A. Wierenga
- Department of Ophthalmology, LUMC, 2333ZA Leiden, The Netherlands; (Z.S.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC, 3015 GD Rotterdam, The Netherlands;
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC, 3000 CA Rotterdam, The Netherlands;
| | - Stefan Böhringer
- Department of Medical Statistics, LUMC, 2300 RC Leiden, The Netherlands;
| | - Wilma G. M. Kroes
- Department of Clinical Genetics, LUMC, 2300 RC Leiden, The Netherlands;
| | - Robert M. Verdijk
- Department of Pathology, LUMC, 2333ZA Leiden, The Netherlands;
- Department of Pathology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Pieter A. van der Velden
- Department of Ophthalmology, LUMC, 2333ZA Leiden, The Netherlands; (Z.S.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
| | - Gregorius P. M. Luyten
- Department of Ophthalmology, LUMC, 2333ZA Leiden, The Netherlands; (Z.S.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
| | - Martine J. Jager
- Department of Ophthalmology, LUMC, 2333ZA Leiden, The Netherlands; (Z.S.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
- Correspondence:
| |
Collapse
|
40
|
In Uveal Melanoma, Angiopoietin-2 but Not Angiopoietin-1 Is Increased in High-Risk Tumors, Providing a Potential Druggable Target. Cancers (Basel) 2021; 13:cancers13163986. [PMID: 34439141 PMCID: PMC8391938 DOI: 10.3390/cancers13163986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Uveal melanoma (UM) metastasize haematogeneously, and tumor blood vessel density is an important prognostic factor. We hypothesized that proangiogenic factors such as angiopoietin-1 (ANG-1) and angiopoietin-2 (ANG-2), two targetable cytokines, might play a role in tumor development and metastatic behavior. mRNA levels of ANG-1 and ANG-2 were determined in 64 tumors using an Illumina HT-12 v4 mRNA chip and compared to clinical, pathologic, and genetic tumor parameters. Tissue expression was also determined by immunohistochemistry (IHC). Samples of aqueous humor were collected from 83 UM-containing enucleated eyes and protein levels that were determined in a multiplex proximity extension assay. High tissue gene expression of ANG-2, but not of ANG-1, was associated with high tumor thickness, high largest basal diameter, involvement of the ciliary body, and with UM-related death (ANG-2 mRNA p < 0.001; ANG-2 aqueous protein p < 0.001). The presence of the ANG-2 protein in aqueous humor correlated with its mRNA expression in the tumor (r = 0.309, p = 0.03). IHC showed that ANG-2 was expressed in macrophages as well as tumor cells. The presence of ANG-2 in the tumor and in aqueous humor, especially in high-risk tumors, make ANG-2 a potential targetable cytokine in uveal melanoma.
Collapse
|
41
|
Bioinformatic Analysis Reveals Central Role for Tumor-Infiltrating Immune Cells in Uveal Melanoma Progression. J Immunol Res 2021; 2021:9920234. [PMID: 34195299 PMCID: PMC8214507 DOI: 10.1155/2021/9920234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor-infiltrating immune cells are capable of effective cancer surveillance, and their abundance is linked to better prognosis in numerous tumor types. However, in uveal melanoma (UM), extensive immune infiltrate is associated with poor survival. This study aims to decipher the role of different tumor-infiltrating cell subsets in UM in order to identify potential targets for future immunotherapeutic treatment. We have chosen the TCGA-UVM cohort as a training dataset and GSE22138 as a testing dataset by mining publicly available databases. The abundance of 22 immune cell types was estimated using CIBERSORTx. Then, to determine the significance of tumor-infiltrating cell subsets in UM, we built a multicell type prognostic signature, which was validated in the testing cohort. The created signature was built upon the negative prognostic role of CD8+ T cells and M0 macrophages and the positive role of neutrophils. Based on the created signature score, we divided the patients into low- and high-risk groups. Kaplan-Meier, Cox, and ROC analyses demonstrated superior performance of our risk score compared to either clinical or pathologic characteristics of both cohorts. Further, we found the molecular pathways associated with cancer immunoevasion and metastasis to be enriched in the high-risk group, explaining both the lack of adequate immune surveillance despite increased infiltration of CD8+ T cells as well as the higher metastatic potential. Genes associated with tryptophan metabolism (IDO1 and KYNU) and metalloproteinases were among the most differentially expressed between the high- and low-risk groups. Our correlation analyses interpreted in context of published in vitro data strongly suggest the central role of CD8+ T cells in shifting the UM tumor microenvironment towards suppressive and metastasis-promoting. Therefore, we propose further investigations of IDO1 and metalloproteinases as novel targets for immunotherapy in lymphocyte-rich metastatic UM patients.
Collapse
|
42
|
Jazebi N, Dargah-Zada N, Alter K, Shah R, Warga CL, Bond CD, Schrump DS, Lehky T. Post-thoracotomy neuralgic amyotrophy in a patient with BAP1 tumor predisposition syndrome: Multimodality longitudinal follow-up. Muscle Nerve 2021; 64:E7-E9. [PMID: 34050543 DOI: 10.1002/mus.27333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Noushin Jazebi
- EMG Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Nigar Dargah-Zada
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Katharine Alter
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Ritu Shah
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Cheryl L Warga
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Colleen D Bond
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David S Schrump
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tanya Lehky
- EMG Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
43
|
Identification of survival-related genes and a novel gene-based prognostic signature involving the tumor microenvironment of uveal melanoma. Int Immunopharmacol 2021; 96:107816. [PMID: 34162166 DOI: 10.1016/j.intimp.2021.107816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022]
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults and almost fifty percent of patients subsequently develop systemic metastases usually involving the liver. The tumor microenvironment (TME) is crucial to the initiation and progression of tumors. In the present study, we comprehensively evaluated the TME of primary UM samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database by using several bioinformatic algorithms. The prognostic value of immune score and infiltrating immune cells in the TME were evaluated. Differentially expressed genes between the low- and high-immune score groups were also identified. The majority of tumor-infiltrating lymphocytes in UM have been determined to be activated CD8 + T cells. Therefore, weighted gene co-expression network analysis (WGCNA) was performed to identify the co-expression modules and genes significantly associated with the level of infiltrating CD8 + T cells in UM. Survival-related genes involved in the TME were identified by univariate Cox regression analysis. Furthermore, an eight-gene-based prognostic signature was established in the training dataset TCGA-UM via Lasso-penalized and multivariate Cox regression analyses. The predictive value of this signature was validated in two testing datasets. Besides, a nomogram was established to serve clinical practice. Moreover, hub genes involved in the infiltrating CD8 + T cells were identified and a potential targeted therapy for preventing metastasis of UM was proposed based on the results. In summary, our results provided a robust gene-based prognostic signature for predicting prognosis of UM patients and proposed a potential targeted therapy for preventing UM metastasis.
Collapse
|
44
|
Brouwer NJ, Verdijk RM, Heegaard S, Marinkovic M, Esmaeli B, Jager MJ. Conjunctival melanoma: New insights in tumour genetics and immunology, leading to new therapeutic options. Prog Retin Eye Res 2021; 86:100971. [PMID: 34015548 DOI: 10.1016/j.preteyeres.2021.100971] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Recent developments in oncology have led to a better molecular and cellular understanding of cancer, and the introduction of novel therapies. Conjunctival melanoma (CoM) is a rare but potentially devastating disease. A better understanding of CoM, leading to the development of novel therapies, is urgently needed. CoM is characterized by mutations that have also been identified in cutaneous melanoma, e.g. in BRAF, NRAS and TERT. These mutations are distinct from the mutations found in uveal melanoma (UM), affecting genes such as GNAQ, GNA11, and BAP1. Targeted therapies that are successful in cutaneous melanoma may therefore be useful in CoM. A recent breakthrough in the treatment of patients with metastatic cutaneous melanoma was the development of immunotherapy. While immunotherapy is currently sparsely effective in intraocular tumours such as UM, the similarities between CoM and cutaneous melanoma (including in their immunological tumour micro environment) provide hope for the application of immunotherapy in CoM, and preliminary clinical data are indeed emerging to support this use. This review aims to provide a comprehensive overview of the current knowledge regarding CoM, with a focus on the genetic and immunologic understanding. We elaborate on the distinct position of CoM in contrast to other types of melanoma, and explain how new insights in the pathophysiology of this disease guide the development of new, personalized, treatments.
Collapse
Affiliation(s)
- Niels J Brouwer
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Robert M Verdijk
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pathology, Leiden University Medica Center, Leiden, the Netherlands; Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Pathology, Eye Pathology Section, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Marina Marinkovic
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Bita Esmaeli
- Department of Plastic Surgery, Orbital Oncology and Ophthalmic Plastic Surgery, M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
45
|
How to Make Immunotherapy an Effective Therapeutic Choice for Uveal Melanoma. Cancers (Basel) 2021; 13:cancers13092043. [PMID: 33922591 PMCID: PMC8122936 DOI: 10.3390/cancers13092043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Despite improvements in the early identification and successful control of primary uveal melanoma, 50% of patients will develop metastatic disease with only marginal improvements in survival. This review focuses on the tumor microenvironment and the cross-talk between tumor and immune cells in a tumor characterized by low mutational load, the induction of immune-suppressive cells, and the expression of alternative immune checkpoint molecules. The choice of combining different strategies of immunotherapy remains a feasible and promising option on selected patients. Abstract Uveal melanoma (UM), though a rare form of melanoma, is the most common intraocular tumor in adults. Conventional therapies of primary tumors lead to an excellent local control, but 50% of patients develop metastases, in most cases with lethal outcome. Somatic driver mutations that act on the MAP-kinase pathway have been identified, yet targeted therapies show little efficacy in the clinics. No drugs are currently available for the G protein alpha subunitsGNAQ and GNA11, which are the most frequent driver mutations in UM. Drugs targeting the YAP–TAZ pathway that is also activated in UM, the tumor-suppressor gene BRCA1 Associated Protein 1 (BAP1) and the Splicing Factor 3b Subunit 1 gene (SF3B1) whose mutations are associated with metastatic risk, have not been developed yet. Immunotherapy is highly effective in cutaneous melanoma but yields only poor results in the treatment of UM: anti-PD-1 and anti-CTLA-4 blocking antibodies did not meet the expectations except for isolated cases. Here, we discuss how the improved knowledge of the tumor microenvironment and of the cross-talk between tumor and immune cells could help to reshape anti-tumor immune responses to overcome the intrinsic resistance to immune checkpoint blockers of UM. We critically review the dogma of low mutational load, the induction of immune-suppressive cells, and the expression of alternative immune checkpoint molecules. We argue that immunotherapy might still be an option for the treatment of UM.
Collapse
|
46
|
Strub T, Martel A, Nahon-Esteve S, Baillif S, Ballotti R, Bertolotto C. Translation of single-cell transcriptomic analysis of uveal melanomas to clinical oncology. Prog Retin Eye Res 2021; 85:100968. [PMID: 33852963 DOI: 10.1016/j.preteyeres.2021.100968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
Uveal melanoma (UM) is an aggressive and deadly neoplasm. In recent decades, great efforts have been made to obtain a more comprehensive understanding of genetics, genomics and molecular changes in UM, enabling the identification of key cellular processes and signalling pathways. Still, there is no effective treatment for the metastatic disease. Intratumoural heterogeneity (ITH) is thought to be one of the leading determinants of metastasis, therapeutic resistance and recurrence. Crucially, tumours are complex ecosystems, where cancer cells, and diverse cell types from their microenvironment engage in dynamic spatiotemporal crosstalk that allows cancer progression, adaptation and evolution. This highlights the urgent need to gain insight into ITH in UM and its intersection with the microenvironment to overcome treatment failure. Here we provide an overview of the studies and technologies to study ITH in human UMs and tumour micro-environmental composition. We discuss how to incorporate ITH into clinical consideration for the purpose of advocating for new clinical management. We focus on the application of single-cell transcriptomic analysis and propose that understanding the driving forces and functional consequences of the observed tumour heterogeneity holds promise for changing the treatment paradigm of metastatic UMs, surmounting resistance and improving patient prognosis.
Collapse
Affiliation(s)
- Thomas Strub
- University Côte d'Azur, France; Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020 and Equipe Labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Arnaud Martel
- University Côte d'Azur, France; Centre Hospitalier Universitaire de Nice, Department of Ophthalmology, Nice, France
| | - Sacha Nahon-Esteve
- University Côte d'Azur, France; Centre Hospitalier Universitaire de Nice, Department of Ophthalmology, Nice, France
| | - Stéphanie Baillif
- University Côte d'Azur, France; Centre Hospitalier Universitaire de Nice, Department of Ophthalmology, Nice, France
| | - Robert Ballotti
- University Côte d'Azur, France; Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020 and Equipe Labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Corine Bertolotto
- University Côte d'Azur, France; Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020 and Equipe Labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France.
| |
Collapse
|
47
|
Brouwer NJ, Konstantinou EK, Gragoudas ES, Marinkovic M, Luyten GPM, Kim IK, Jager MJ, Vavvas DG. Targeting the YAP/TAZ Pathway in Uveal and Conjunctival Melanoma With Verteporfin. Invest Ophthalmol Vis Sci 2021; 62:3. [PMID: 33798262 PMCID: PMC8024781 DOI: 10.1167/iovs.62.4.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose The purpose of this study was to determine whether YAP/TAZ activation in uveal melanoma (UM) and the susceptibility of melanoma cell lines to YAP/TAZ inhibition by verteporfin (VP) is related to the tumor's genetic background. Methods Characteristics of 144 patients with enucleated UM were analyzed together with mRNA expression levels of YAP/TAZ-related genes (80 patients from the The Cancer Genome Atlas [TCGA] project and 64 patients from Leiden, The Netherlands). VP was administered to cell lines 92.1, OMM1, Mel270, XMP46, and MM28 (UM), CRMM1 and CRMM2 (conjunctival melanoma), and OCM3 (cutaneous melanoma). Viability, growth speed, and expression of YAP1-related proteins were assessed. Results In TCGA data, high expression of YAP1 and WWTR1 correlated with the presence of monosomy 3 (P = 0.009 and P < 0.001, respectively) and BAP1-loss (P = 0.003 and P = 0.001, respectively) in the primary UM; metastasis development correlated with higher expression of YAP1 (P = 0.05) and WWTR1 (P = 0.003). In Leiden data, downstream transcription factor TEAD4 was increased in cases with M3/BAP1-loss (P = 0.002 and P = 0.006) and related to metastasis (P = 0.004). UM cell lines 92.1, OMM1, and Mel270 (GNAQ/11-mutation, BAP1-positive) and the fast-growing cell line OCM3 (BRAF-mutation) showed decreased proliferation after exposure to VP. Two slow-growing UM cell lines XMP46 and MM28 (GNAQ/11-mutation, BAP1-negative) were not sensitive to VP, and neither were the two conjunctival melanoma cell lines (BRAF/NRAS-mutation). Conclusions High risk UM showed an increased expression of YAP/TAZ-related genes. Although most UM cell lines responded in vitro to VP, BAP1-negative and conjunctival melanoma cell lines did not. Not only the mutational background, but also cell growth rate is an important predictor of response to YAP/TAZ inhibition by VP.
Collapse
Affiliation(s)
- Niels J Brouwer
- Department of Ophthalmology, Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States.,Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eleni K Konstantinou
- Department of Ophthalmology, Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Evangelos S Gragoudas
- Department of Ophthalmology, Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Marina Marinkovic
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ivana K Kim
- Department of Ophthalmology, Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Demetrios G Vavvas
- Department of Ophthalmology, Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
48
|
Masaoutis C, Kokkali S, Theocharis S. Immunotherapy in uveal melanoma: novel strategies and opportunities for personalized treatment. Expert Opin Investig Drugs 2021; 30:555-569. [PMID: 33650931 DOI: 10.1080/13543784.2021.1898587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Uveal melanoma (UM) is the most common intraocular cancer and represents a discrete subtype of melanoma. Metastatic disease, which occurs in half of patients, has a dismal prognosis. Immunotherapy with immune checkpoint inhibitors has produced promising results in cutaneous melanoma but has failed to show analogous efficacy in metastatic UM. This is attributable to UM's distinct genetics and its complex interaction with the immune system. Hence, more efficacious immunotherapeutic approaches are under investigation. AREAS COVERED We discuss those novel immunotherapeutic strategies in clinical and preclinical studies for advanced disease and which are thought to overcome the hurdles set by UM in terms of immune recognition. We also highlight the need to determine predictive markers in relation to these strategies to improve clinical outcomes. We used a simple narrative analysis to summarize the data. The search methodology is located in the Introduction. EXPERT OPINION Novel immunotherapeutic strategies focus on transforming immune excluded tumor microenvironment in metastatic UM to T cell inflamed. Preliminary results of approaches such as vaccines, adoptive cell transfer and other novel molecules are encouraging. Factors such as HLA compatibility and expression level of targeted antigens should be considered to optimize personalized management.
Collapse
Affiliation(s)
- Christos Masaoutis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stefania Kokkali
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,First Medical Oncology Clinic, Saint-Savvas Anticancer Hospital, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
49
|
Roelofsen CDM, Wierenga APA, van Duinen S, Verdijk RM, Bleeker J, Marinkovic M, Luyten GPM, Jager MJ. Five Decades of Enucleations for Uveal Melanoma in One Center: More Tumors with High Risk Factors, No Improvement in Survival over Time. Ocul Oncol Pathol 2020; 7:133-141. [PMID: 33981696 DOI: 10.1159/000509918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Background In order to improve medical care for uveal melanoma (UM) patients, we need to monitor disease and survival to guide our research efforts. We analyzed the data of UM patients who underwent an enucleation at the Leiden University Medical Center over the last five decades and investigated trends in patient and tumor characteristics and survival. Methods Data were collected from charts and pathology reports from all patients who underwent an enucleation for UM between 1973 and 2019 (n = 1,212), of which 1,066 were primary enucleations; data were analyzed according to five time periods: 1973-1979 (n = 209), 1980-1989 (n = 148), 1990-1999 (n = 174), 2000-2009 (n = 280), and 2010-2019 (n = 401). Results Over time, mean patient age at the time of enucleation for UM increased from 54.9 to 64.7 years (p < 0.001), more tumors showed histopathological involvement of the ciliary body (p < 0.001), and were classified in a high TNM/AJCC class (p < 0.001). Overall, the 5- and 10-year UM-related survival rates were 0.68 and 0.59, respectively. Over time, survival showed no change in patients with tumors in AJCC stages I or III, with recently a slightly worse survival in stage II UM (p = 0.02). Conclusion Between 1973 and 2019, we found similar rates of UM-related survival following enucleation, although we noticed a strong increase in more unfavorable patient and tumor characteristics over time, such as an older age and larger tumor size. The lack of improvement indicates that more research should take place to develop adjuvant treatments to prevent metastases and efficient treatments once metastases develop.
Collapse
Affiliation(s)
- Christine D M Roelofsen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Emergency Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemijn P A Wierenga
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd van Duinen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Pathology, Section Ophthalmic Pathology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jaco Bleeker
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marina Marinkovic
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
50
|
Role of Natural Killer Cells in Uveal Melanoma. Cancers (Basel) 2020; 12:cancers12123694. [PMID: 33317028 PMCID: PMC7764114 DOI: 10.3390/cancers12123694] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Metastatic Uveal Melanoma (MUM) is a lethal malignancy with no durable treatment available to date. A vast majority of patients with MUM present with liver metastasis. The liver harbors metastatic disease with an apparent lack of a cytotoxic T cell response. It is becoming evident that MUM is not an immunologically silent malignancy and the investigation of non-T cell anti-tumor immunity is warranted. In this review, we highlight the relevance of Natural Killer (NK) cells in the biology and treatment of MUM. Potent anti-NK cell immunosuppression employed by uveal melanoma alludes to its vulnerability to NK cell cytotoxicity. On the contrary, micro-metastasis in the liver survive for several years within close vicinity of a plethora of circulating and liver-resident NK cells. This review provides unique perspectives into the potential role of NK cells in control or progression of uveal melanoma. Abstract Uveal melanoma has a high mortality rate following metastasis to the liver. Despite advances in systemic immune therapy, treatment of metastatic uveal melanoma (MUM) has failed to achieve long term durable responses. Barriers to success with immune therapy include the immune regulatory nature of uveal melanoma as well as the immune tolerant environment of the liver. To adequately harness the anti-tumor potential of the immune system, non-T cell-based approaches need to be explored. Natural Killer (NK) cells possess potent ability to target tumor cells via innate and adaptive responses. In this review, we discuss evidence that highlights the role of NK cell surveillance and targeting of uveal melanoma. We also discuss the repertoire of intra-hepatic NK cells. The human liver has a vast and diverse lymphoid population and NK cells comprise 50% of the hepatic lymphocytes. Hepatic NK cells share a common niche with uveal melanoma micro-metastasis within the liver sinusoids. It is, therefore, crucial to understand and investigate the role of intra-hepatic NK cells in the control or progression of MUM.
Collapse
|