1
|
Liu SW, Song WJ, Ma GK, Wang H, Yang L. Pyroptosis and its role in cancer. World J Clin Cases 2023; 11:2386-2395. [PMID: 37123307 PMCID: PMC10130989 DOI: 10.12998/wjcc.v11.i11.2386] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023] Open
Abstract
Programmed cell death (PCD) is mediated by specific genes that encode signals. It can balance cell survival and death. Pyroptosis is a type of inflammatory, caspase-dependent PCD mediated by gasdermin proteins, which function in pore formation, cell expansion, and plasma membrane rupture, followed by the release of intracellular contents. Pyroptosis is mediated by caspase-1/3/4/5/11 and is primarily divided into the classical pathway, which is dependent on caspase-1, and the non-classical pathway, which is dependent on caspase-4/5/11. Inflammasomes play a vital role in these processes. The various components of the pyroptosis pathway are related to the occurrence, invasion, and metastasis of tumors. Research on pyroptosis has revealed new options for tumor treatment. This article summarizes the recent research progress on the molecular mechanism of pyroptosis, the relationship between the various components of the pyroptosis pathway and cancer, and the applications and prospects of pyroptosis in anticancer therapy.
Collapse
Affiliation(s)
- Shi-Wei Liu
- Department of Joint Surgery, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Wen-Jing Song
- Department of Oncology, The First Affiliated Hospital of Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Gui-Kai Ma
- Department of Oncology, The First Affiliated Hospital of Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Hui Wang
- Department of Oncology, The First Affiliated Hospital of Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Liang Yang
- Department of Joint Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| |
Collapse
|
2
|
Wilson BE, Shen Q, Cescon DW, Reedijk M. Exploring immune interactions in triple negative breast cancer: IL-1β inhibition and its therapeutic potential. Front Genet 2023; 14:1086163. [PMID: 37065483 PMCID: PMC10095561 DOI: 10.3389/fgene.2023.1086163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Triple negative breast cancer (TNBC) has poor prognosis when compared to other breast cancer subtypes. Despite pre-clinical data supporting an immune targeted approach for TNBCs, immunotherapy has failed to demonstrate the impressive responses seen in other solid tumor malignancies. Additional strategies to modify the tumor immune microenvironment and potentiate response to immunotherapy are needed. In this review, we summarise phase III data supporting the use of immunotherapy for TNBC. We discuss the role of IL-1β in tumorigenesis and summarize pre-clinical data supporting IL-1β inhibition as a potential therapeutic strategy in TNBC. Finally, we present current trials evaluating IL-1β in breast cancer and other solid tumor malignancies and discuss future studies that may provide a strong scientific rationale for the combination of IL-1β and immunotherapy in the neoadjuvant and metastatic setting for people with TNBC.
Collapse
Affiliation(s)
- Brooke E. Wilson
- Department of Oncology, Queen’s University, Kingston, ON, Canada
- Division of Cancer Care and Epidemiology, Queen’s Cancer Research Institute, Kingston, ON, Canada
| | - Qiang Shen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - David W. Cescon
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, ON, Canada
| | - Michael Reedijk
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, ON, Canada
- Department of Surgical Oncology, University Health Network, Toronto, ON, Canada
- *Correspondence: Michael Reedijk,
| |
Collapse
|
3
|
Chen C, Ye Q, Wang L, Zhou J, Xiang A, Lin X, Guo J, Hu S, Rui T, Liu J. Targeting pyroptosis in breast cancer: biological functions and therapeutic potentials on It. Cell Death Discov 2023; 9:75. [PMID: 36823153 PMCID: PMC9950129 DOI: 10.1038/s41420-023-01370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Pyroptosis is a lytic and inflammatory type of programmed cell death that is mediated by Gasdermin proteins (GSDMs). Attractively, recent evidence indicates that pyroptosis involves in the development of tumors and can serve as a new strategy for cancer treatment. Here, we present a basic knowledge of pyroptosis, and an overview of the expression patterns and roles of GSDMs in breast cancer. In addition, we further summarize the available evidence of pyroptosis in breast cancer progression and give insight into the clinical potential of applying pyroptosis in anticancer strategies for breast cancer. This review will deepen our understanding of the relationship between pyroptosis and breast cancer, and provide a novel potential therapeutic avenue for breast cancer.
Collapse
Affiliation(s)
- Cong Chen
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianwei Ye
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linbo Wang
- grid.13402.340000 0004 1759 700XDepartment of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jichun Zhou
- grid.13402.340000 0004 1759 700XDepartment of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Aizhai Xiang
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Lin
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jufeng Guo
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shufang Hu
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Rui
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Liu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Kazakova A, Sudarskikh T, Kovalev O, Kzhyshkowska J, Larionova I. Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review). Int J Oncol 2023; 62:32. [PMID: 36660926 PMCID: PMC9851132 DOI: 10.3892/ijo.2023.5480] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
Tumor‑associated macrophages (TAMs) are crucial cells of the tumor microenvironment (TME), which belong to the innate immune system and regulate primary tumor growth, immunosuppression, angiogenesis, extracellular matrix remodeling and metastasis. The review discusses current knowledge of essential cell‑cell interactions of TAMs within the TME of solid tumors. It summarizes the mechanisms of stromal cell (including cancer‑associated fibroblasts and endothelial cells)‑mediated monocyte recruitment and regulation of differentiation, as well as pro‑tumor and antitumor polarization of TAMs. Additionally, it focuses on the perivascular TAM subpopulations that regulate angiogenesis and lymphangiogenesis. It describes the possible mechanisms of reciprocal interactions of TAMs with other immune cells responsible for immunosuppression. Finally, it highlights the perspectives for novel therapeutic approaches to use combined cellular targets that include TAMs and other stromal and immune cells in the TME. The collected data demonstrated the importance of understanding cell‑cell interactions in the TME to prevent distant metastasis and reduce the risk of tumor recurrence.
Collapse
Affiliation(s)
- Anna Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Tatiana Sudarskikh
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Oleg Kovalev
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| |
Collapse
|
5
|
Su Y, Choi HS, Choi JH, Kim HS, Jang YS, Seo JW. 7 S,15 R-Dihydroxy-16 S,17 S-epoxy-docosapentaenoic Acid Overcomes Chemoresistance of 5-Fluorouracil by Suppressing the Infiltration of Tumor-Associated Macrophages and Inhibiting the Activation of Cancer Stem Cells in a Colorectal Cancer Xenograft Model. Mar Drugs 2023; 21:md21020080. [PMID: 36827121 PMCID: PMC9967312 DOI: 10.3390/md21020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Although the tumor bulk is initially reduced by 5-fluorouracil (5-FU), chemoresistance developed due to prolonged chemotherapy in colorectal cancer (CRC). The enrichment of cancer stem cells (CSCs) and the infiltration of tumor-associated macrophages (TAMs) contribute to chemoresistance and poor outcomes. A docosahexaenoic acid derivative developed by our group, 7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA), exerts antitumor effects against TAMs infiltration and CSCs enrichment in our previous study. The current study aimed to investigate whether diHEP-DPA was able to overcome chemoresistance to 5-FU in CRCs, together with the potential synergistic mechanisms in a CT26-BALB/c mouse model. Our results suggested that although 5-FU inhibited tumor growth, 5-FU enriched CSCs via the WNT/β-catenin signaling pathway, resulting in chemoresistance in CRCs. However, we revealed that 5-FU promoted the infiltration of TAMs via the NF-kB signaling pathway and improved epithelial-mesenchymal transition (EMT) via the signal transducer and activator of the transcription 3 (STAT3) signaling pathway; these traits were believed to contribute to CSC activation. Furthermore, supplementation with diHEP-DPA could overcome drug resistance by decreasing the CSCs, suppressing the infiltration of TAMs, and inhibiting EMT progression. Additionally, the combinatorial treatment of diHEP-DPA and 5-FU effectively enhanced phagocytosis by blocking the CD47/signal regulatory protein alpha (SIRPα) axis. These findings present that diHEP-DPA is a potential therapeutic supplement to improve drug outcomes and suppress chemoresistance associated with the current 5-FU-based therapies for colorectal cancer.
Collapse
Affiliation(s)
- Yan Su
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Republic of Korea
- Department of Bioactive Material Sciences, The Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
| | - Hack Sun Choi
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Jong Hyun Choi
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon-si 34141, Republic of Korea
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences, The Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
- Correspondence: (Y.-S.J.); (J.-W.S.); Tel.: +82-63-570-5160 (J.-W.S.)
| | - Jeong-Woo Seo
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Republic of Korea
- Correspondence: (Y.-S.J.); (J.-W.S.); Tel.: +82-63-570-5160 (J.-W.S.)
| |
Collapse
|
6
|
Delprat V, Huart C, Feron O, Soncin F, Michiels C. The impact of macrophages on endothelial cells is potentiated by cycling hypoxia: Enhanced tumor inflammation and metastasis. Front Oncol 2022; 12:961753. [PMID: 36248978 PMCID: PMC9554541 DOI: 10.3389/fonc.2022.961753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Cycling hypoxia (cyH), neo-angiogenesis, and tumor-associated macrophages are key features of the tumor microenvironment. In this study, we demonstrate that cyH potentiates the induction by unpolarized and M1-like macrophages of endothelial inflammatory phenotype and adhesiveness for monocytes and cancer cells. This process triggers a positive feedback loop sustaining tumor inflammation. This work opens the door for innovative therapeutic strategies to treat tumor inflammation and metastasis. In cancers, the interaction between macrophages and endothelial cells (ECs) regulates tumor inflammation and metastasis. These cells are both affected by cycling hypoxia (cyH), also called intermittent hypoxia, a feature of the tumor microenvironment. cyH is also known to favor tumor inflammation and metastasis. Nonetheless, the potential impact of cyH on the dialog between macrophages and ECs is still unknown. In this work, the effects of unpolarized, M1-like, and M2-like macrophages exposed to normoxia, chronic hypoxia (chH), and cyH on endothelial adhesion molecule expression, pro-inflammatory gene expression, and EC adhesiveness for monocytes and cancer cells were investigated. cyH increased the ability of unpolarized and M1-like macrophages to induce EC inflammation and to increase the expression of the EC endothelial adhesion molecule ICAM1, respectively. Unpolarized, M1-like, and M2-like macrophages were all able to promote EC adhesive properties toward cancer cells. Furthermore, the ability of macrophages (mostly M1-like) to shift EC phenotype toward one allowing cancer cell and monocyte adhesion onto ECs was potentiated by cyH. These effects were specific to cyH because they were not observed with chH. Together, these results show that cyH amplifies the effects of macrophages on ECs, which may promote tumor inflammation and metastasis.
Collapse
Affiliation(s)
- Victor Delprat
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Camille Huart
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH 5349), Institut de recherche expérimentale et clinique, UCLouvain, Brussels, Belgium
| | - Fabrice Soncin
- Laboratory for Integrated Micro Mechatronics Systems/Centre National de la Recherche scientifique- International Collaborative Research Center (LIMMS/CNRS-IIS) (Unité Mixte Internationale (UMI) 2820), Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Centre National de la Recherche Scientifique/International Collaborative Research Center (CNRS/IIS/COL) Lille University Seeding Microsystems in Medecine in Lille (SMMiL) – European-Japanese Technologies against Cancer-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, Cedex, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Université de Lille, CNRS, Lille, France
| | - Carine Michiels
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
- *Correspondence: Carine Michiels,
| |
Collapse
|
7
|
Li Y, Ganesan K, Chen J. Role of Biological Mediators of Tumor-Associated Macrophages in Breast Cancer Progression. Curr Med Chem 2022; 29:5420-5440. [PMID: 35619312 DOI: 10.2174/0929867329666220520121711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/06/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer (BRCA) has become the most common cancer worldwide. The tumor microenvironment (TME) in the breast exerts a crucial role in promoting BRCA initiation, progression, and metastasis. Tumor-associated macrophages (TAMs) are the primary component of tumor-infiltrating immune cells through biological mediators which convert TME into malignant tumors. Combinations of these biological mediators can promote tumor growth, metastasis, angiogenesis, immune suppression, and limit the anti-tumor activity of conventional chemotherapy and radiotherapy. OBJECTIVES The present study aimed to highlight the functions of several biological mediators in the breast which generate TME into malignant tumors. Furthermore, this review offers a rationale for TAM-targeted therapy as a novel treatment strategy for BRCA Results: this review emphasizes TAM-associated biological mediators of TME viz., cancer-associated fibroblasts, endothelial cells, adipocytes, tumor-derived exosomes, extracellular matrix, and other immune cells, which facilitates TME into malignant tumors. Evidence suggests that the increased infiltration of TAMs and elevated expression of TAM-related genes are associated with a poor prognosis of BRCA. Based on these findings, TAM-targeted therapeutic strategies, including inhibitors of CSF-1/CSF-1R, CCL2/CCR2, CCL5-CCR5, bisphosphonate, nanoparticle, and exosomal-targeted delivery have been developed, and are currently being employed in intervention trials. CONCLUSION This review concludes the roles of biological mediators of TME interact with TAMs in BRCA that provide a rationale for TAM-targeted therapy as a novel treatment approach for BRCA.
Collapse
Affiliation(s)
- Yan Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Blaye C, Boyer T, Peyraud F, Domblides C, Larmonier N. Beyond Immunosuppression: The Multifaceted Functions of Tumor-Promoting Myeloid Cells in Breast Cancers. Front Immunol 2022; 13:838040. [PMID: 35309358 PMCID: PMC8927658 DOI: 10.3389/fimmu.2022.838040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/02/2022] [Indexed: 11/20/2022] Open
Abstract
Breast cancers are commonly associated with an immunosuppressive microenvironment responsible for tumor escape from anti-cancer immunity. Cells of the myeloid lineage account for a major part of this tumor-promoting landscape. These myeloid cells are composed of heterogeneous subsets at different stages of differentiation and have traditionally been described by their cardinal ability to suppress innate and adaptive anticancer immunity. However, evidence has accumulated that, beyond their immunosuppressive properties, breast cancer-induced myeloid cells are also equipped with a broad array of “non-immunological” tumor-promoting functions. They therefore represent major impediments for anticancer therapies, particularly for immune-based interventions. We herein analyze and discuss current literature related to the versatile properties of the different myeloid cell subsets engaged in breast cancer development. We critically assess persisting difficulties and challenges in unequivocally discriminate dedicated subsets, which has so far prevented both the selective targeting of these immunosuppressive cells and their use as potential biomarkers. In this context, we propose the concept of IMCGL, “pro-tumoral immunosuppressive myeloid cells of the granulocytic lineage”, to more accurately reflect the contentious nature and origin of granulocytic cells in the breast tumor microenvironment. Future research prospects related to the role of this myeloid landscape in breast cancer are further considered.
Collapse
Affiliation(s)
- Céline Blaye
- Centre National de la Recherche Scientific (CNRS) Unité Mixte de Recherche (UMR) 5164, ImmunoConcEpT, Bordeaux, France.,Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | - Thomas Boyer
- Centre National de la Recherche Scientific (CNRS) Unité Mixte de Recherche (UMR) 5164, ImmunoConcEpT, Bordeaux, France
| | - Florent Peyraud
- Centre National de la Recherche Scientific (CNRS) Unité Mixte de Recherche (UMR) 5164, ImmunoConcEpT, Bordeaux, France
| | - Charlotte Domblides
- Centre National de la Recherche Scientific (CNRS) Unité Mixte de Recherche (UMR) 5164, ImmunoConcEpT, Bordeaux, France.,Service d'Oncologie Médicale, Centre Hospitalo-Universitaire (CHU) Bordeaux, Bordeaux, France
| | - Nicolas Larmonier
- Centre National de la Recherche Scientific (CNRS) Unité Mixte de Recherche (UMR) 5164, ImmunoConcEpT, Bordeaux, France.,Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France
| |
Collapse
|
9
|
Yang X, Weng X, Yang Y, Jiang Z. Pyroptosis-Related lncRNAs Predict the Prognosis and Immune Response in Patients With Breast Cancer. Front Genet 2022; 12:792106. [PMID: 35360412 PMCID: PMC8963933 DOI: 10.3389/fgene.2021.792106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Breast cancer (BC) is the most common malignant tumor and the leading cause of cancer-related death in women worldwide. Pyroptosis and long noncoding RNAs (lncRNAs) have been demonstrated to play vital roles in the tumorigenesis and development of BC. However, the clinical significance of pyroptosis-related lncRNAs in BC remains unclear. Methods: Using the mRNA and lncRNA profiles of BC obtained from TCGA dataset, a risk model based on the pyroptosis-related lncRNAs for prognosis was constructed using univariate and multivariate Cox regression model, and least absolute shrinkage and selection operator. Patients were divided into high- and low-risk groups based on the risk model, and the prognosis value and immune response in different risk groups were analyzed. Furthermore, functional enrichment annotation, therapeutic signature, and tumor mutation burden were performed to evaluate the risk model we established. Moreover, the expression level and clinical significance of the selected pyroptosis-related lncRNAs were further validated in BC samples. Results: 3,364 pyroptosis-related lncRNAs were identified using Pearson’s correlation analysis. The risk model we constructed comprised 10 pyroptosis-related lncRNAs, which was identified as an independent predictor of overall survival (OS) in BC. The nomogram we constructed based on the clinicopathologic features and risk model yielded favorable performance for prognosis prediction in BC. In terms of immune response and mutation status, patients in the low-risk group had a higher expression of immune checkpoint markers and exhibited higher fractions of activated immune cells, while the high-risk group had a highly percentage of TMB. Further analyses in our cohort BC samples found that RP11-459E5.1 was significantly upregulated, while RP11-1070N10.3 and RP11-817J15.3 were downregulated and significantly associated with worse OS. Conclusion: The risk model based on the pyroptosis-related lncRNAs we established may be a promising tool for predicting the prognosis and personalized therapeutic response in BC patients.
Collapse
Affiliation(s)
- Xia Yang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Weng
- Department of Pathology, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yajie Yang
- Department of Pathology, Shenzhen Second People’s Hospital, Shenzhen, China
| | - ZhiNong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: ZhiNong Jiang,
| |
Collapse
|
10
|
Menendez M, Drozd A, Borawska K, Chmielewska JJ, Wu ML, Griffin CT. IL-1β Impacts Vascular Integrity and Lymphatic Function in the Embryonic Omentum. Circ Res 2022; 130:366-383. [PMID: 34986653 PMCID: PMC8813910 DOI: 10.1161/circresaha.121.319032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The chromatin-remodeling enzyme BRG1 (brahma-related gene 1) regulates gene expression in a variety of rapidly differentiating cells during embryonic development. However, the critical genes that BRG1 regulates during lymphatic vascular development are unknown. METHODS We used genetic and imaging techniques to define the role of BRG1 in murine embryonic lymphatic development, although this approach inadvertently expanded our study to multiple interacting cell types. RESULTS We found that omental macrophages fine-tune an unexpected developmental process by which erythrocytes escaping from naturally discontinuous omental blood vessels are collected by nearby lymphatic vessels. Our data indicate that circulating fibrin(ogen) leaking from gaps in omental blood vessels can trigger inflammasome-mediated IL-1β (interleukin-1β) production and secretion from nearby macrophages. IL-1β destabilizes adherens junctions in omental blood and lymphatic vessels, contributing to both extravasation of erythrocytes and their uptake by lymphatics. BRG1 regulates IL-1β production in omental macrophages by transcriptionally suppressing the inflammasome trigger RIPK3 (receptor interacting protein kinase 3). CONCLUSIONS Genetic deletion of Brg1 in embryonic macrophages leads to excessive IL-1β production, erythrocyte leakage from blood vessels, and blood-filled lymphatics in the developing omentum. Altogether, these results highlight a novel context for epigenetically regulated crosstalk between macrophages, blood vessels, and lymphatics.
Collapse
Affiliation(s)
- Matthew Menendez
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Anna Drozd
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA,Present address: Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N., Denmark
| | - Katarzyna Borawska
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Joanna J. Chmielewska
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA,Present address: Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Meng-Ling Wu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Courtney T. Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
11
|
Huang QF, Fang DL, Nong BB, Zeng J. Focal pyroptosis-related genes AIM2 and ZBP1 are prognostic markers for triple-negative breast cancer with brain metastases. Transl Cancer Res 2021; 10:4845-4858. [PMID: 35116337 PMCID: PMC8797367 DOI: 10.21037/tcr-21-2182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/29/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Extensive research has shown the role of pyroptosis in the occurrence, progression, and prognosis of breast cancer. The study sought to screen important pyroptosis-related genes and their role in the prognosis of triple-negative breast cancer (TNBC) patients with brain metastasis (BM). METHODS The Gene Expression Omnibus database was used to obtain transcriptome data from primary TNBC and from TNBC BM patients. Differentially expressed genes (DEGs) between the primary tumors and BMs were analyzed, and the expression, prognostic significance, immune infiltration, function, and drug sensitivity of the pyroptosis genes in the DEGs were analyzed. RESULTS In both data sets, 456 genes differed between primary TNBC and TNBC BM. Absent in melanoma 2 (AIM2) and Z-deoxyribonucleic acid-binding protein 1 (ZBP1) were found to be important pyroptosis genes in DEGs, and significant differences in their expression in primary lesions and BMs were observed. Patients with a high expression of AIM2 had a worse prognosis than low expression, while patients with a high expression of ZBP1 had a better prognosis than low expression. AIM2 and ZBP1 were positively correlated with the infiltration of most immune cells; however, AIM2 was negatively correlated with the infiltration of neural cell adhesion molecule 1 (CD56) bright natural killer cells and central memory cluster of differentiation 8 (CD8) T cells. Increased expression of ZBP1 is negatively correlated with high infiltration levels of central memory CD8 T cells and memory B cells. CONCLUSIONS Our findings suggest that AIM2 and ZBP1 increase immune cell infiltration and may be potential targets for predicting and treating TNBC BM.
Collapse
Affiliation(s)
- Qian Fang Huang
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Da Lang Fang
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Bin Bin Nong
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jian Zeng
- Department of Gastrointestinal Glandular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Key Factor Regulating Inflammatory Microenvironment, Metastasis, and Resistance in Breast Cancer: Interleukin-1 Signaling. Mediators Inflamm 2021; 2021:7785890. [PMID: 34602858 PMCID: PMC8486558 DOI: 10.1155/2021/7785890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is one of the top-ranked cancers for incidence and mortality worldwide. The biggest challenges in breast cancer treatment are metastasis and drug resistance, for which work on molecular evaluation, mechanism studies, and screening of therapeutic targets is ongoing. Factors that lead to inflammatory infiltration and immune system suppression in the tumor microenvironment are potential therapeutic targets. Interleukin-1 is known as a proinflammatory and immunostimulatory cytokine, which plays important roles in inflammatory diseases. Recent studies have shown that interleukin-1 cytokines drive the formation and maintenance of an inflammatory/immunosuppressive microenvironment through complex intercellular signal crosstalk and tight intracellular signal transduction, which were found to be potentially involved in the mechanism of metastasis and drug resistance of breast cancer. Some preclinical and clinical treatments or interventions to block the interleukin-1/interleukin-1 receptor system and its up- and downstream signaling cascades have also been proven effective. This study provides an overview of IL-1-mediated signal communication in breast cancer and discusses the potential of IL-1 as a therapeutic target especially for metastatic breast cancer and combination therapy and current problems, aiming at enlightening new ideas in the study of inflammatory cytokines and immune networks in the tumor microenvironment.
Collapse
|
13
|
Paranjapye A, NandyMazumdar M, Browne JA, Leir SH, Harris A. Krüppel-like factor 5 regulates wound repair and the innate immune response in human airway epithelial cells. J Biol Chem 2021; 297:100932. [PMID: 34217701 PMCID: PMC8353497 DOI: 10.1016/j.jbc.2021.100932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022] Open
Abstract
A complex network of transcription factors regulates genes involved in establishing and maintaining key biological properties of the human airway epithelium. However, detailed knowledge of the contributing factors is incomplete. Here we characterize the role of Krüppel-like factor 5 (KLF5), in controlling essential pathways of epithelial cell identity and function in the human lung. RNA-seq following siRNA-mediated depletion of KLF5 in the Calu-3 lung epithelial cell line identified significant enrichment of genes encoding chemokines and cytokines involved in the proinflammatory response and also components of the junctional complexes mediating cell adhesion. To determine direct gene targets of KLF5, we defined the cistrome of KLF5 using ChIP-seq in both Calu-3 and 16HBE14o- lung epithelial cell lines. Occupancy site concordance analysis revealed that KLF5 colocalized with the active histone modification H3K27ac and also with binding sites for the transcription factor CCAAT enhancer-binding protein beta (C/EBPβ). Depletion of KLF5 increased both the expression and secretion of cytokines including IL-1β, a response that was enhanced following exposure to Pseudomonas aeruginosa lipopolysaccharide. Calu-3 cells exhibited faster rates of repair after KLF5 depletion compared with negative controls in wound scratch assays. Similarly, CRISPR-mediated KLF5-null 16HBE14o- cells also showed enhanced wound closure. These data reveal a pivotal role for KLF5 in coordinating epithelial functions relevant to human lung disease.
Collapse
Affiliation(s)
- Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Monali NandyMazumdar
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - James A Browne
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
14
|
Delprat V, Michiels C. A bi-directional dialog between vascular cells and monocytes/macrophages regulates tumor progression. Cancer Metastasis Rev 2021; 40:477-500. [PMID: 33783686 PMCID: PMC8213675 DOI: 10.1007/s10555-021-09958-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Cancer progression largely depends on tumor blood vessels as well on immune cell infiltration. In various tumors, vascular cells, namely endothelial cells (ECs) and pericytes, strongly regulate leukocyte infiltration into tumors and immune cell activation, hence the immune response to cancers. Recently, a lot of compelling studies unraveled the molecular mechanisms by which tumor vascular cells regulate monocyte and tumor-associated macrophage (TAM) recruitment and phenotype, and consequently tumor progression. Reciprocally, TAMs and monocytes strongly modulate tumor blood vessel and tumor lymphatic vessel formation by exerting pro-angiogenic and lymphangiogenic effects, respectively. Finally, the interaction between monocytes/TAMs and vascular cells is also impacting several steps of the spread of cancer cells throughout the body, a process called metastasis. In this review, the impact of the bi-directional dialog between blood vascular cells and monocytes/TAMs in the regulation of tumor progression is discussed. All together, these data led to the design of combinations of anti-angiogenic and immunotherapy targeting TAMs/monocyte whose effects are briefly discussed in the last part of this review.
Collapse
Affiliation(s)
- Victor Delprat
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Carine Michiels
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium.
| |
Collapse
|
15
|
Haider MT, Ridlmaier N, Smit DJ, Taipaleenmäki H. Interleukins as Mediators of the Tumor Cell-Bone Cell Crosstalk during the Initiation of Breast Cancer Bone Metastasis. Int J Mol Sci 2021; 22:2898. [PMID: 33809315 PMCID: PMC7999500 DOI: 10.3390/ijms22062898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with advanced breast cancer are at high risk of developing bone metastasis. Despite treatment advances for primary breast cancer, metastatic bone disease remains incurable with a low relative survival. Hence, new therapeutic approaches are required to improve survival and treatment outcome for these patients. Bone is among the most frequent sites of metastasis in breast cancer. Once in the bone, disseminated tumor cells can acquire a dormant state and remain quiescent until they resume growth, resulting in overt metastasis. At this stage the disease is characterized by excessive, osteoclast-mediated osteolysis. Cells of the bone microenvironment including osteoclasts, osteoblasts and endothelial cells contribute to the initiation and progression of breast cancer bone metastasis. Direct cell-to-cell contact as well as soluble factors regulate the crosstalk between disseminated breast cancer cells and bone cells. In this complex signaling network interleukins (ILs) have been identified as key regulators since both, cancer cells and bone cells secrete ILs and express corresponding receptors. ILs regulate differentiation and function of bone cells, with several ILs being reported to act pro-osteoclastogenic. Consistently, the expression level of ILs (e.g., in serum) has been associated with poor prognosis in breast cancer. In this review we discuss the role of the most extensively investigated ILs during the establishment of breast cancer bone metastasis and highlight their potential as therapeutic targets in preventing metastatic outgrowth in bone.
Collapse
Affiliation(s)
- Marie-Therese Haider
- Molecular Skeletal Biology Laboratory, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.-T.H.); (N.R.)
| | - Nicole Ridlmaier
- Molecular Skeletal Biology Laboratory, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.-T.H.); (N.R.)
- Department of Life Sciences, IMC FH Krems University of Applied Sciences, 3500 Krems, Austria
| | - Daniel J. Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.-T.H.); (N.R.)
| |
Collapse
|
16
|
Jang JH, Kim DH, Surh YJ. Dynamic roles of inflammasomes in inflammatory tumor microenvironment. NPJ Precis Oncol 2021; 5:18. [PMID: 33686176 PMCID: PMC7940484 DOI: 10.1038/s41698-021-00154-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
The inflammatory tumor microenvironment has been known to be closely connected to all stages of cancer development, including initiation, promotion, and progression. Systemic inflammation in the tumor microenvironment is increasingly being recognized as an important prognostic marker in cancer patients. Inflammasomes are master regulators in the first line of host defense for the initiation of innate immune responses. Inflammasomes sense pathogen-associated molecular patterns and damage-associated molecular patterns, following recruitment of immune cells into infection sites. Therefore, dysregulated expression/activation of inflammasomes is implicated in pathogenesis of diverse inflammatory disorders. Recent studies have demonstrated that inflammasomes play a vital role in regulating the development and progression of cancer. This review focuses on fate-determining roles of the inflammasomes and the principal downstream effector cytokine, IL-1β, in the tumor microenvironment.
Collapse
Affiliation(s)
- Jeong-Hoon Jang
- grid.31501.360000 0004 0470 5905Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Do-Hee Kim
- grid.411203.50000 0001 0691 2332Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Gyeonggi-do South Korea
| | - Young-Joon Surh
- grid.31501.360000 0004 0470 5905Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
17
|
Pu R, Pu M, Huang H, Cui Y. MicroRNA 144 inhibits cell migration and invasion and regulates inflammatory cytokine secretion through targeting toll like receptor 2 in non-small cell lung cancer. Arch Med Sci 2021; 17:1028-1037. [PMID: 34336030 PMCID: PMC8314413 DOI: 10.5114/aoms.2020.93084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are endogenous small noncoding RNA molecules involved in modulation of cancer progression. Here, we investigated the possible role of miR-144 in non-small cell lung cancer (NSCLC) development. MATERIAL AND METHODS The expression of miR-144 and TLR2 in NSCLC tissue and cell lines was determined by quantitative real-time PCR (qPCR). The TargetScan database was used to predict potential target genes of miR-144. Luciferase assay was used to verify the interaction between TLR2 and miR-144. TLR2 protein expression was measured by western blot. The secretion of interleukin (IL)-1β, IL-6 and IL-8 in A549 cells was detected by an ELISA kit. Cell migration and invasion were evaluated by wound healing assay and transwell assay, respectively. RESULTS Our results showed that miR-144 was downregulated in NSCLC tissue and cell lines when compared with the normal tissues and cell line (p < 0.05). The protein level of TLR2 in NSCLC tissue and cell lines was significantly higher than that in normal lung tissues. Dual luciferase reporter gene assay showed that miR-144 could bind to the 3'UTR of TLR2 specifically. Up-regulation of miR-144 significantly decreased the expression of TLR2. Up-regulation of miR-144 or down-regulation of TLR2 could decrease cell migration, invasion and secretion of IL-1β, IL-6 and IL-8 in A549 cells. Moreover, overexpression of TLR2 rescued the inhibitory effects of miR-144 on migration, invasion and inflammatory factor secretion of A549 cells. CONCLUSIONS miR-144 could inhibit the migration, invasion and secretion of IL-1β, IL-6 and IL-8 through downregulation of TLR2 expression in A549 cells.
Collapse
Affiliation(s)
- Rong Pu
- Department of Laboratory, The Third People’s Hospital of Dongguan, Dongguan, Guangdong, China
| | - Meicen Pu
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Haohai Huang
- Department of Education and Science, The Third People’s Hospital of Dongguan, Dongguan, Guangdong, China
| | - Yejia Cui
- Department of Laboratory, The Third People’s Hospital of Dongguan, Dongguan, Guangdong, China
| |
Collapse
|
18
|
Abstract
Gastric cancer (GC) is a common malignancy and is the third leading cause of cancer-related death. At present, there is no simple and effective screening method for early-stage GC, and the treatment results and prognosis are poor. With the continuous improvement of molecular biology techniques, research on circular RNA (circRNA) has gradually expanded over time. Much data supports the role of circRNA in tumorigenesis. Moreover, due to its structural specificity and biological stability, circRNA is anticipated to be a potential biomarker for tumor diagnosis. Studies have confirmed that circRNA can participate in the proliferation, invasion, metastasis, and apoptosis of GC. These findings will lead to novel directions for the diagnosis and treatment of GC. This article reviews the structure and function of circRNA, summarizes the current studies on circRNA, and discusses the potential diagnostic value of circRNA in GC.
Collapse
|
19
|
Rébé C, Ghiringhelli F. Interleukin-1β and Cancer. Cancers (Basel) 2020; 12:E1791. [PMID: 32635472 PMCID: PMC7408158 DOI: 10.3390/cancers12071791] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Within a tumor, IL-1β is produced and secreted by various cell types, such as immune cells, fibroblasts, or cancer cells. The IL1B gene is induced after "priming" of the cells and a second signal is required to allow IL-1β maturation by inflammasome-activated caspase-1. IL-1β is then released and leads to transcription of target genes through its ligation with IL-1R1 on target cells. IL-1β expression and maturation are guided by gene polymorphisms and by the cellular context. In cancer, IL-1β has pleiotropic effects on immune cells, angiogenesis, cancer cell proliferation, migration, and metastasis. Moreover, anti-cancer treatments are able to promote IL-1β production by cancer or immune cells, with opposite effects on cancer progression. This raises the question of whether or not to use IL-1β inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Cédric Rébé
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
20
|
The Multifaceted Roles of Pyroptotic Cell Death Pathways in Cancer. Cancers (Basel) 2019; 11:cancers11091313. [PMID: 31492049 PMCID: PMC6770479 DOI: 10.3390/cancers11091313] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer is a category of diseases involving abnormal cell growth with the potential to invade other parts of the body. Chemotherapy is the most widely used first-line treatment for multiple forms of cancer. Chemotherapeutic agents act via targeting the cellular apoptotic pathway. However, cancer cells usually acquire chemoresistance, leading to poor outcomes in cancer patients. For that reason, it is imperative to discover other cell death pathways for improved cancer intervention. Pyroptosis is a new form of programmed cell death that commonly occurs upon pathogen invasion. Pyroptosis is marked by cell swelling and plasma membrane rupture, which results in the release of cytosolic contents into the extracellular space. Currently, pyroptosis is proposed to be an alternative mode of cell death in cancer treatment. Accumulating evidence shows that the key components of pyroptotic cell death pathways, including inflammasomes, gasdermins and pro-inflammatory cytokines, are involved in the initiation and progression of cancer. Interfering with pyroptotic cell death pathways may represent a promising therapeutic option for cancer management. In this review, we describe the current knowledge regarding the biological significance of pyroptotic cell death pathways in cancer pathogenesis and also discuss their potential therapeutic utility.
Collapse
|
21
|
Abstract
Research over the last decades has provided strong evidence for the pivotal role of the tumor-associated blood and lymphatic vasculature in supporting immunoevasion and in subverting T cell-mediated immunosurveillance. Conversely, tumor blood and lymphatic vessel growth is in part regulated by the immune system, with infiltrating innate as well as adaptive immune cells providing both immunosuppressive and various angiogenic signals. Thus, tumor angiogenesis and escape of immunosurveillance are two cancer hallmarks that are tightly linked and interregulated by cell constituents from compartments secreting both chemokines and cytokines. In this review, we discuss the implication and regulation of innate and adaptive immune cells in regulating blood and lymphatic angiogenesis in tumor progression and metastases. Moreover, we also highlight novel therapeutic approaches that target the tumor vasculature as well as the immune compartment to sustain and improve therapeutic efficacy in cancer.
Collapse
Affiliation(s)
- Massimiliano Mazzone
- VIB-Center for Cancer Biology and Department of Oncology, KU Leuven, Leuven B-3000 Belgium;
| | - Gabriele Bergers
- VIB-Center for Cancer Biology and Department of Oncology, KU Leuven, Leuven B-3000 Belgium;
- Department of Neurological Surgery, UCSF Comprehensive Cancer Center, San Francisco, California 94158, USA;
| |
Collapse
|
22
|
Zhang C, Zhang M, Song S. Cathepsin D enhances breast cancer invasion and metastasis through promoting hepsin ubiquitin-proteasome degradation. Cancer Lett 2018; 438:105-115. [PMID: 30227221 DOI: 10.1016/j.canlet.2018.09.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 11/16/2022]
Abstract
Hepsin is required for the growth and maintenance of normal morphology, as well as for cell motility and development, initiation of blood coagulation and pro-inflammatory immune response. Here we showed that Cathepsin D (CtsD) as a novel protein is involved in the regulation of hepsin. CtsD destabilizes hepsin by promoting its ubiquitylation and subsequent proteasomal degradation in breast cancer cells. Breast cancer tissue microarray also indicated that hepsin expression was negatively correlated with CtsD by immunohistochemistry. Overexpression of CtsD promoted breast cancer cell migration, invasion and metastasis by enhancing the expression of intercellular cell adhesion molecule-1 (ICAM-1) in vitro and in vivo. These effects were inhibited by ectopic hepsin expression. Taken together, our data reveal a critical CtsD-hepsin signaling axis in migration and metastasis, which may contribute to a better understanding of the function and molecular mechanism in breast cancer progression.
Collapse
Affiliation(s)
- Chunyi Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Mingming Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shushu Song
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
23
|
Chen Y, Tan W, Wang C. Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial-mesenchymal transition. Onco Targets Ther 2018; 11:3817-3826. [PMID: 30013362 PMCID: PMC6038883 DOI: 10.2147/ott.s168317] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer stem cells are a small population of cells with the potential for self-renewal and multi-directional differentiation and are an important source of cancer initiation, treatment resistance, and recurrence. Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells lose their epithelial phenotype and convert to mesenchymal cells. Recent studies have shown that cancer cells undergoing EMT can become stem-like cells. Many kinds of tumors are associated with chronic inflammation, which plays a role in tumor progression. Among the various immune cells mediating chronic inflammation, macrophages account for ~30%-50% of the tumor mass. Macrophages are highly infiltrative in the tumor microenvironment and secrete a series of inflammatory factors and cytokines, such as transforming growth factor (TGF)-β, IL-6, IL-10, and tumor necrosis factor (TNF)-α, which promote EMT and enhance the stemness of cancer cells. This review summarizes and discusses recent research findings on some specific mechanisms of tumor-associated macrophage-derived cytokines in EMT and cancer stemness transition, which are emerging targets of cancer treatment.
Collapse
Affiliation(s)
- Yongxu Chen
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, Guangdong Province, People's Republic of China, .,School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, People's Republic of China,
| | - Wei Tan
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, Guangdong Province, People's Republic of China,
| | - Changjun Wang
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, Guangdong Province, People's Republic of China, .,School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, People's Republic of China,
| |
Collapse
|
24
|
Khazim K, Azulay EE, Kristal B, Cohen I. Interleukin 1 gene polymorphism and susceptibility to disease. Immunol Rev 2017; 281:40-56. [DOI: 10.1111/imr.12620] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Khaled Khazim
- Faculty of Medicine in the Galilee; Bar Ilan University; Safed Israel
- Department of Nephrology and Hypertension; Galilee Medical Center; Nahariya Israel
| | - Etti Ester Azulay
- Faculty of Medicine in the Galilee; Bar Ilan University; Safed Israel
- Research Institute; Galilee Medical Center; Nahariya Israel
| | - Batya Kristal
- Faculty of Medicine in the Galilee; Bar Ilan University; Safed Israel
- Department of Nephrology and Hypertension; Galilee Medical Center; Nahariya Israel
| | - Idan Cohen
- Faculty of Medicine in the Galilee; Bar Ilan University; Safed Israel
- Research Institute; Galilee Medical Center; Nahariya Israel
| |
Collapse
|