1
|
Rzepakowska A, Olędzka J, Daniel P, Mękarska M, Żurek M, Kulbaka K, Fus Ł. Immunomodulatory role of tumor microenvironment on oncological outcomes in advanced laryngeal cancer. BMC Cancer 2024; 24:1219. [PMID: 39354397 PMCID: PMC11446085 DOI: 10.1186/s12885-024-12959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND The study evaluated the prognostic impact of the immune microenvironment in LSCC with markers of major immune cells to identify the key determinants of short-term disease-free survival (ST DFS) and reveal factors related to disease progression. METHODS The study cohort included 61 patients who underwent total laryngectomy, 83.6% of whom were male with a mean age of 64.3 years at the time of surgery. Twenty-five patients had long term DFS (over 5 years), 8 - had moderate DFS (between 2 and 5 years), and 28 had short-term DFS (less than 2 years). Immunohistochemical staining and evaluation were performed on samples collected after the laryngectomy. RESULTS The samples' assessment revealed that the mean expression of all analysed markers was the highest both in stroma and the tumor compartment for short term DFS (ST DFS) patients. Analysis confirmed that a high stromal density of CD8 cells (p = 0.038) significantly correlated with DFS, and that the increased presence of CD57 cells (p = 0.021) was significantly associated with ST DFS. Moreover, the high density of CD68 cells in the tumor epithelial compartment had a negative prognostic impact on DFS (p = 0.032). Analysis of overall survival in the studied cohort with Kaplan-Meyer curves revealed that a high stromal density of CD68 cells was a significant negative predictor of OS (p = 0.008). CONCLUSIONS The observed associations of CD68 cells infiltration with progression and prognosis in patients with LSCC provide potential screening and therapeutic opportunities for patients with unfavourable outcomes.
Collapse
Affiliation(s)
- Anna Rzepakowska
- Otorhinolaryngology Department Head and Neck Surgery, Medical University of Warsaw, Banacha Street 1a, Warszawa, 02-097, Poland.
| | - Joanna Olędzka
- Students' Scientific Research Group, Otorhinolaryngology Department Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Daniel
- Students' Scientific Research Group, Otorhinolaryngology Department Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Marta Mękarska
- Students' Scientific Research Group, Otorhinolaryngology Department Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Michał Żurek
- Otorhinolaryngology Department Head and Neck Surgery, Medical University of Warsaw, Banacha Street 1a, Warszawa, 02-097, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Karol Kulbaka
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Fus
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Wu HL, Xia C, Liu FS, Zheng BY, Niu HQ, Zhu GQ, Zou MX, Zheng BW. Lymphocyte Infiltration Score and Spatial Characteristics Refined the Prognosis and Denosumab Treatment Responsiveness Indicators for Giant Cell Tumor of Bone. JCO Precis Oncol 2024; 8:e2400135. [PMID: 39178367 DOI: 10.1200/po.24.00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 08/25/2024] Open
Abstract
PURPOSE The prognostic value of lymphocyte infiltration score (LIS) and its nearest neighbor distance to tumor cells (NNDTC) in giant cell tumor of bone (GCTB) is currently not well established. This study aims to characterize LIS and NNDTC and examine their correlation with denosumab treatment responsiveness, clinicopathologic features, and patient prognosis. METHODS Using multiplexed quantitative immunofluorescence, LIS was evaluated in 253 tumor specimens, whereas NNDTC was computed using HALO software. Subsequently, we analyzed the association of these parameters with patient outcomes (progression-free survival [PFS] and overall survival [OS]), clinicopathologic features, and denosumab treatment responsiveness. RESULTS Low LIS was indicative of both poor PFS and OS (both P < .001). In addition, LIS was significantly associated with sex (P = .046), Enneking staging (P < .001), Ki-67 expression (P = .007), and denosumab treatment responsiveness (P = .005). Lower CD8+ (tumor interior [TI]) NNDTC, and CD3+ (TI) NNDTC were associated with worse PFS (P = .003 and .038, respectively), whereas lower CD8+ (TI) NNDTC was associated with worse OS (P = .001), but CD8+ (tumor infiltrating margin) NNDTC had the opposite effect (P = .002). Moreover, NNDTC showed a correlation with several clinicopathologic features. Importantly, LIS outperformed Enneking and Campanacci staging systems in predicting the clinical outcomes of GCTB. CONCLUSION These findings suggest that LIS is a reliable predictive tool for clinically relevant outcomes and response to denosumab therapy in patients with GCTB. These parameters may prove to be useful in guiding prognostic risk stratification and therapeutic optimization for patients.
Collapse
Affiliation(s)
- Hai-Lin Wu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Xia
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Fu-Sheng Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bo-Yv Zheng
- Department of Orthopedics Surgery, General Hospital of the Central Theater Command, Wuhan, China
| | - Hua-Qing Niu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guo-Qiang Zhu
- Department of Orthopedics Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Xiang Zou
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Bo-Wen Zheng
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Musculoskeletal Tumor Center, Peking University People's Hospital, Peking University, Beijing, China
| |
Collapse
|
3
|
Zhou Y, Zeng Z, Li Z, Ruan L, Xie H, Ye F, Huang L, Liu H, Kang L. The relationship of KRAS expression with KRAS status, prognosis, and tumor-infiltrated T lymphocytes in colorectal cancer. Therap Adv Gastroenterol 2024; 17:17562848241249387. [PMID: 38757097 PMCID: PMC11097731 DOI: 10.1177/17562848241249387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/06/2024] [Indexed: 05/18/2024] Open
Abstract
Background The significance of Kirsten rat sarcoma viral oncogene (KRAS) mutation in colorectal cancer (CRC) is well established; yet, its association with KRAS expression and prognosis warrants further investigation. While high KRAS expression is commonly linked with poorer prognosis in other cancers, its role in CRC remains relatively understudied. Objective To explore the correlation between KRAS expression, KRAS status, prognosis, and tumor-infiltrating T lymphocyte density in CRC. Design Single-center retrospective study. Methods Conducted between 2010 and 2020, this study utilized tumor samples to assess KRAS expression and quantify CD3+/CD8+ T lymphocytes. The Cox proportional hazards model and linear regression analysis were employed to examine the relationship between KRAS expression, prognosis, and tumor-infiltrating T lymphocytes. Results This study included 265 CRC patients who underwent radical surgery. No significant association was observed between KRAS expression and KRAS status (p > 0.05). High KRAS expression was associated with poorer overall survival and disease-free survival (p < 0.05). Subgroup analysis revealed that high KRAS expression remained indicative of a worse prognosis in the group with mismatch repair-deficient (dMMR) and KRAS mutant type (p < 0.05). Multivariate analysis confirmed KRAS expression as an unfavorable prognostic factor (p < 0.05). However, the significance of KRAS expression was lost in the dMMR and KRAS mutant-type group regarding overall survival (p > 0.05). Notably, KRAS expression showed a negative correlation with the density of CD8+ T lymphocytes in tumor tissue (p < 0.05), a finding also observed in the dMMR group (p < 0.05). Conclusion No association was found between KRAS expression and KRAS mutation status in CRC. Higher KRAS expression was indicative of poorer prognosis for CRC patients, except for those with proficient mismatch repair and KRAS wild type. In addition, in patients with dMMR, KRAS expression was associated with a lower density of CD8+ T lymphocytes in tumor tissue.
Collapse
Affiliation(s)
- Yebohao Zhou
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziwei Zeng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ze Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Ruan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao Xie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fujin Ye
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huashan Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Kang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Imen H, Amira H, Fatma K, Raja J, Mariem S, Haithem Z, Ehsene BB, Aschraf C. Prognostic Value of Immunoscore in Colorectal Carcinomas. Int J Surg Pathol 2024; 32:58-65. [PMID: 37097904 DOI: 10.1177/10668969231168357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Aims. Immunoscore, based on the evaluation of CD3+ and CD8+ densities in the center of the tumor and its invasive margin, is currently considered as a potential prognostic factor, particularly in colorectal carcinomas. In the current study, we aimed to assess the prognostic value of immunoscore in colorectal cancer stage I to IV, through a survival study. Methods and Results. It was a descriptive and retrospective study involving 104 cases of colorectal cancer. Data were collected over 3 years (2014-2016). An immunohistochemical study (anti-CD3, anti-CD8) by the tissue microarray technique was carried out in the areas of "hot spot" in the tumor center and invasive margin. A percentage was assigned to each marker and within each region. Then, the density was classified as "low" or "high," according to a cutoff fixed at the median of percentages. immunoscore was calculated by the method described by Galon et al. The prognostic value of the immunoscore was assessed through a survival study. The mean age of patients was 61.6 years. immunoscore was low in 60.6% (n = 63). Our study had shown that low immunoscore significantly deteriorates survival and a high immunoscore enhances survival significantly (P < .001). We found a correlation between immunoscore and T stage (P = .026). A multivariate showed that the predictive factors for survival were immunoscore (P = .001) and age (P = .035). Conclusions. Our study highlights the potential role of immunoscore as a prognostic factor in colorectal cancer. Its reproducibility and reliability allow its introduction into daily practice for better therapeutic management.
Collapse
Affiliation(s)
- Helal Imen
- Department of Pathology, Habib Thameur Hospital, Tunis, Tunisia
| | - Hmidi Amira
- Department of Pathology, Habib Thameur Hospital, Tunis, Tunisia
| | - Khanchel Fatma
- Department of Pathology, Habib Thameur Hospital, Tunis, Tunisia
| | - Jouini Raja
- Department of Pathology, Habib Thameur Hospital, Tunis, Tunisia
| | - Sabbah Mariem
- Department of Gastroenterology, Habib Thameur Hospital, Tunis, Tunisia
| | | | | | | |
Collapse
|
5
|
Gutman MJ, Serra LM, Koshy M, Katipally RR. SBRT for Liver Tumors: What the Interventional Radiologist Needs to Know. Semin Intervent Radiol 2024; 41:1-10. [PMID: 38495259 PMCID: PMC10940045 DOI: 10.1055/s-0043-1778657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
This review summarizes the clinical evidence supporting the utilization of stereotactic body radiotherapy (SBRT) for liver tumors, including hepatocellular carcinoma, liver metastases, and cholangiocarcinoma. Emerging prospective evidence has demonstrated the benefit and low rates of toxicity across a broad range of clinical contexts. We provide an introduction for the interventional radiologist, with a discussion of underlying themes such as tumor dose-response, mitigation of liver toxicity, and the technical considerations relevant to performing liver SBRT. Ultimately, we recommend that SBRT should be routinely included in the armamentarium of locoregional therapies for liver malignancies, alongside those liver-directed therapies offered by interventional radiology.
Collapse
Affiliation(s)
- Michael J. Gutman
- Department of Radiation and Cellular Oncology, The University of Chicago Medicine, Chicago, Illinois
| | - Lucas M. Serra
- Department of Radiation and Cellular Oncology, The University of Chicago Medicine, Chicago, Illinois
| | - Matthew Koshy
- Department of Radiation and Cellular Oncology, The University of Chicago Medicine, Chicago, Illinois
| | - Rohan R. Katipally
- Department of Radiation and Cellular Oncology, The University of Chicago Medicine, Chicago, Illinois
| |
Collapse
|
6
|
Katipally RR, Pitroda SP. Nontumor Cells in Tumor Samples Bias Expression-Based Models-Reply. JAMA Oncol 2024; 10:260-261. [PMID: 38153699 DOI: 10.1001/jamaoncol.2023.6120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Affiliation(s)
- Rohan R Katipally
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, Illinois
| | - Sean P Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, Illinois
| |
Collapse
|
7
|
Yang SJ, Chang ST, Chang KC, Lin BW, Chang KY, Liu YW, Lai MD, Hung LY. Neutralizing IL-16 enhances the efficacy of targeting Aurora-A therapy in colorectal cancer with high lymphocyte infiltration through restoring anti-tumor immunity. Cell Death Dis 2024; 15:103. [PMID: 38291041 PMCID: PMC10828506 DOI: 10.1038/s41419-023-06381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 02/01/2024]
Abstract
Cancer cells can evade immune elimination by activating immunosuppressive signaling pathways in the tumor microenvironment (TME). Targeting immunosuppressive signaling pathways to promote antitumor immunity has become an attractive strategy for cancer therapy. Aurora-A is a well-known oncoprotein that plays a critical role in tumor progression, and its inhibition is considered a promising strategy for treating cancers. However, targeting Aurora-A has not yet got a breakthrough in clinical trials. Recent reports have indicated that inhibition of oncoproteins may reduce antitumor immunity, but the role of tumor-intrinsic Aurora-A in regulating antitumor immunity remains unclear. In this study, we demonstrated that in tumors with high lymphocyte infiltration (hot tumors), higher tumor-intrinsic Aurora-A expression is associated with a better prognosis in CRC patients. Mechanically, tumor-intrinsic Aurora-A promotes the cytotoxic activity of CD8+ T cells in immune hot CRC via negatively regulating interleukin-16 (IL-16), and the upregulation of IL-16 may impair the therapeutic effect of Aurora-A inhibition. Consequently, combination treatment with IL-16 neutralization improves the therapeutic response to Aurora-A inhibitors in immune hot CRC tumors. Our study provides evidence that tumor-intrinsic Aurora-A contributes to anti-tumor immunity depending on the status of lymphocyte infiltration, highlighting the importance of considering this aspect in cancer therapy targeting Aurora-A. Importantly, our results suggest that combining Aurora-A inhibitors with IL-16-neutralizing antibodies may represent a novel and effective approach for cancer therapy, particularly in tumors with high levels of lymphocyte infiltration.
Collapse
Affiliation(s)
- Shiang-Jie Yang
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Sheng-Tsung Chang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
- Department of Pathology, Chi-Mei Medical Center, Tainan, 71004, Taiwan, ROC
| | - Kung-Chao Chang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Bo-Wen Lin
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Kwang-Yu Chang
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 70456, Taiwan, ROC
| | - Yao-Wen Liu
- Department of Pathology, Kuo General Hospital, Tainan, 70054, Taiwan, ROC
| | - Ming-Derg Lai
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| | - Liang-Yi Hung
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC.
| |
Collapse
|
8
|
Erdem S, Narayanan JS, Worni M, Bolli M, White RR. Local ablative therapies and the effect on antitumor immune responses in pancreatic cancer - A review. Heliyon 2024; 10:e23551. [PMID: 38187292 PMCID: PMC10767140 DOI: 10.1016/j.heliyon.2023.e23551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease, projected to rank as the second most prevalent cause of cancer-related mortality by 2030. Despite significant progress in advances in surgical techniques and chemotherapy protocols, the overall survival (OS) remains to be less than 10 % for all stages combined. In recent years, local ablative techniques have been introduced and utilized as additional therapeutic approaches for locally advanced pancreatic cancer (LAPC), with promising results with respect to local tumor control and OS. In addition to successful cytoreduction, there is emerging evidence that local ablation induces antitumor immune activity that could prevent or even treat distant metastatic tumors. The enhancement of antitumor immune responses could potentially make ablative therapy a therapeutic option for the treatment of metastatic PDAC. In this review, we summarize current ablative techniques used in the management of LAPC and their impact on systemic immune responses.
Collapse
Affiliation(s)
- Suna Erdem
- Moores Cancer Center, University of California San Diego, CA, USA
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | | | - Mathias Worni
- Department of Surgery, Hirslanden Clinic Beau Site, Bern, Switzerland
- Department of Surgery, Duke University Switzerland
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
- Medical Center, Duke University, Durham, NC, USA
- Swiss Institute for Translational and Entrepreneurial Medicine, Stiftung Lindenhof, Campus SLB, Bern, Switzerland
| | - Martin Bolli
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Rebekah R. White
- Moores Cancer Center, University of California San Diego, CA, USA
| |
Collapse
|
9
|
Xie H, Zeng Z, Hou Y, Ye F, Cai T, Cai Y, Xiong L, Li W, Liu Z, Liang Z, Luo S, Zheng X, Huang L, Liu H, Kang L. Effects of tumour budding on adjuvant chemotherapy in colorectal cancer. BJS Open 2024; 8:zrad115. [PMID: 38190579 PMCID: PMC10773627 DOI: 10.1093/bjsopen/zrad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Accepted: 09/19/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND High tumour budding has been indicated as a risk factor of poor survival in colorectal cancer. This study aimed to investigate the impact of tumour budding grades and the use of adjuvant chemotherapy on prognosis in patients with colorectal cancer. METHODS This study included consecutive colorectal cancer patients who underwent radical surgery for primary colorectal adenocarcinoma at The Sixth Hospital of Sun Yat-sen University between 2009 and 2019. Tumour budding was assessed based on the recommendations of the International Tumor Budding Consensus Conference using haematoxylin and eosin (H&E)-stained slides with tumour samples. The primary outcome of interest was to correlate tumour budding with disease-free survival and overall survival; the secondary outcome was investigation of the impact of adjuvant therapy on different tumour budding grades. In addition, a subgroup analysis was performed for the effects of lymphocytic infiltration on adjuvant chemotherapy in patients with Bd3. RESULTS Of 709 eligible patients, 412 with colorectal cancer were included. According to the International Tumor Budding Consensus Conference, 210 (50.9 per cent), 127 (30.8 per cent) and 75 (18.2 per cent) were classified as low budding (Bd1), intermediate budding (Bd2) and high budding (Bd3) respectively. Patients with Bd1, Bd2 and Bd3 had 5-year disease-free survival rates of 82.9 per cent, 70.1 per cent and 49.3 per cent respectively, and 5-year overall survival rates of 90 per cent, 79.5 per cent and 62.7 per cent respectively (P <0.001). Adjuvant chemotherapy yielded a significant survival benefit in patients with Bd3 (5-year disease-free survival, 65 per cent versus 31.4 per cent, P <0.001; 5-year overall survival, 84.4 per cent versus 63.1 per cent, P <0.001), but not in those with Bd1 or Bd2. In patients with Bd3, the benefit of adjuvant chemotherapy was maintained in those with low, but not high lymphocytic infiltration. CONCLUSION High grade of tumour budding was strongly correlated with poorer survival outcomes in colorectal cancer. Patients with Bd3 benefited from adjuvant chemotherapy, with the exclusion of patients with high lymphocytic infiltration.
Collapse
Affiliation(s)
- Hao Xie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ziwei Zeng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yujie Hou
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fujin Ye
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tanxing Cai
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yonghua Cai
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Xiong
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenxin Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhanzhen Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhenxing Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuangling Luo
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaobin Zheng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huashan Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Liang Kang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Xu JL, Yang MX, Lan HR, Jin KT. Could immunoscore improve the prognostic and therapeutic management in patients with solid tumors? Int Immunopharmacol 2023; 124:110981. [PMID: 37769534 DOI: 10.1016/j.intimp.2023.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
The Immunoscore (ISc) is an emerging immune-based scoring system that has shown potential in improving the prognostic and therapeutic management of patients with solid tumors. The ISc evaluates the immune infiltrate within the tumor microenvironment (TME) and has demonstrated superior predictive ability compared to traditional histopathological parameters. It has been particularly promising in colorectal, lung, breast, and melanoma cancers. This review summarizes the clinical evidence supporting the prognostic value of the ISc and explores its potential in guiding therapeutic decisions, such as the selection of adjuvant therapies and recognizing patients likely to profit from immune checkpoint inhibitors (ICIs). The challenges and future directions of ISc implementation are also discussed, including standardization and integration into routine clinical practice.
Collapse
Affiliation(s)
- Jing-Lun Xu
- Department of Dermatology, Jinhua Fifth Hospital, Jinhua, Zhejiang 321000, China
| | - Meng-Xiang Yang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Huan-Rong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China.
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China.
| |
Collapse
|
11
|
Katipally RR, Martinez CA, Pugh SA, Bridgewater JA, Primrose JN, Domingo E, Maughan TS, Talamonti MS, Posner MC, Weichselbaum RR, Pitroda SP. Integrated Clinical-Molecular Classification of Colorectal Liver Metastases: A Biomarker Analysis of the Phase 3 New EPOC Randomized Clinical Trial. JAMA Oncol 2023; 9:1245-1254. [PMID: 37471075 PMCID: PMC10360005 DOI: 10.1001/jamaoncol.2023.2535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/09/2023] [Indexed: 07/21/2023]
Abstract
Importance Personalized treatment approaches for patients with oligometastatic colorectal liver metastases are critically needed. We previously defined 3 biologically distinct molecular subtypes of colorectal liver metastases: (1) canonical, (2) immune, and (3) stromal. Objective To independently validate these molecular subtypes in the phase 3 New EPOC randomized clinical trial. Design, Setting, and Participants This retrospective secondary analysis of the phase 3 New EPOC randomized clinical trial included a bi-institutional discovery cohort and multi-institutional validation cohort. The discovery cohort comprised patients who underwent hepatic resection for limited colorectal liver metastases (98% received perioperative chemotherapy) from May 31, 1994, to August 14, 2012. The validation cohort comprised patients who underwent hepatic resection for liver metastases with perioperative chemotherapy (fluorouracil, oxaliplatin, and irinotecan based) with or without cetuximab from February 26, 2007, to November 1, 2012. Data were analyzed from January 18 to December 10, 2021. Interventions Resected metastases underwent RNA sequencing and microRNA (miRNA) profiling in the discovery cohort and messenger RNA and miRNA profiling with microarray in the validation cohort. Main Outcomes and Measures A 31-feature (24 messenger RNAs and 7 miRNAs) neural network classifier was trained to predict molecular subtypes in the discovery cohort and applied to the validation cohort. Integrated clinical-molecular risk groups were designated based on molecular subtypes and the clinical risk score. The unique biological phenotype of each molecular subtype was validated using gene set enrichment analyses and immune deconvolution. The primary clinical end points were progression-free survival (PFS) and overall survival (OS). Results A total of 240 patients were included (mean [range] age, 63.0 [56.3-68.0] years; 151 [63%] male), with 93 in the discovery cohort and 147 in the validation cohort. In the validation cohort, 73 (50%), 28 (19%), and 46 (31%) patients were classified as having canonical, immune, and stromal metastases, respectively. The biological phenotype of each subtype was concordant with the discovery cohort. The immune subtype (best prognosis) demonstrated 5-year PFS of 43% (95% CI, 25%-60%; hazard ratio [HR], 0.37; 95% CI, 0.20-0.68) and OS of 63% (95% CI, 40%-79%; HR, 0.38; 95% CI, 0.17-0.86), which was statistically significantly higher than the canonical subtype (worst prognosis) at 14% (95% CI, 7%-23%) and 43% (95% CI, 32%-55%), respectively. Adding molecular subtypes to the clinical risk score improved prediction (the Gönen and Heller K for discrimination) from 0.55 (95% CI, 0.49-0.61) to 0.62 (95% CI, 0.57-0.67) for PFS and 0.59 (95% CI, 0.52-0.66) to 0.63 (95% CI, 0.56-0.70) for OS. The low-risk integrated group demonstrated 5-year PFS of 44% (95% CI, 20%-66%; HR, 0.38; 95% CI, 0.19-0.76) and OS of 78% (95% CI, 44%-93%; HR, 0.26; 95% CI, 0.08-0.84), superior to the high-risk group at 16% (95% CI, 10%-24%) and 43% (95% CI, 32%-52%), respectively. Conclusions and Relevance In this prognostic study, biologically derived colorectal liver metastasis molecular subtypes and integrated clinical-molecular risk groups were highly prognostic. This novel molecular classification warrants further study as a possible predictive biomarker for personalized systemic treatment for colorectal liver metastases. Trial Registration isrctn.org Identifier: ISRCTN22944367.
Collapse
Affiliation(s)
- Rohan R. Katipally
- Department of Radiation and Cellular Oncology, The University of Chicago Medicine, Chicago, Illinois
| | - Carlos A. Martinez
- Department of Radiation and Cellular Oncology, The University of Chicago Medicine, Chicago, Illinois
| | - Siân A. Pugh
- Department of Oncology, Addenbrooke’s Hospital, Cambridge, England, United Kingdom
| | - John A. Bridgewater
- UCL Cancer Institute, University College London, London, England, United Kingdom
| | - John N. Primrose
- Department of Surgery, University of Southampton, Southampton, England, United Kingdom
| | - Enric Domingo
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Timothy S. Maughan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Mark S. Talamonti
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| | - Mitchell C. Posner
- Department of Surgery, The University of Chicago Medicine, Chicago, Illinois
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago Medicine, Chicago, Illinois
| | - Sean P. Pitroda
- Department of Radiation and Cellular Oncology, The University of Chicago Medicine, Chicago, Illinois
| | | |
Collapse
|
12
|
Karjula T, Niskakangas A, Mustonen O, Puro I, Elomaa H, Ahtiainen M, Kuopio T, Mecklin JP, Seppälä TT, Wirta EV, Sihvo E, Yannopoulos F, Helminen O, Väyrynen JP. Tertiary lymphoid structures in pulmonary metastases of microsatellite stable colorectal cancer. Virchows Arch 2023:10.1007/s00428-023-03577-8. [PMID: 37337034 DOI: 10.1007/s00428-023-03577-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphoid aggregates located at sites of chronic inflammation and recognized as prognosticators in several cancers. We aimed to analyse the prognostic effect of TLSs in colorectal cancer (CRC) pulmonary metastases and primary tumours, with a comparison to the CD3+ and CD8+ cell density-based immune cell score (ICS). For TLS density and TLS maximum diameter analysis, 67 pulmonary metastases and 63 primary tumours were stained with haematoxylin and eosin. For ICS scoring and analysis, CD3 and CD8 immunohistochemistry was performed. Excellent interobserver agreement was achieved in all TLS measurements. Of all patients, 36 patients had low TLS density (< 0.222 follicles/mm) and 31 patients had high TLS density (≥ 0.222 follicles/mm) in the first resected pulmonary metastases. TLS density (adjusted HR 0.91, 0.48-1.73) or maximum diameter (adjusted HR 0.78, 0.40-1.51) did not have prognostic value in pulmonary metastases. In primary tumours, higher TLS density (adjusted HR 0.39, 0.18-0.87) and maximum diameter (adjusted HR 0.28, 0.11-0.73) were associated with lower mortality. In the pulmonary metastases, ICS had superior prognostic value to TLSs; however, TLSs and ICS were significantly associated. In conclusion, TLSs in CRC pulmonary metastases had no prognostic value but correlated with the ICS. TLSs in primary tumours associated with favourable prognosis.
Collapse
Affiliation(s)
- Topias Karjula
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Aapistie 5a, 90220, Oulu, Finland.
| | - Anne Niskakangas
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Aapistie 5a, 90220, Oulu, Finland
| | - Olli Mustonen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Aapistie 5a, 90220, Oulu, Finland
| | - Iiris Puro
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Aapistie 5a, 90220, Oulu, Finland
| | - Hanna Elomaa
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
- Department of Education and Research, Central Finland Health Care District, 40620, Jyväskylä, Finland
| | - Maarit Ahtiainen
- Department of Pathology, Central Finland Health Care District, 40620, Jyväskylä, Finland
| | - Teijo Kuopio
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
- Department of Pathology, Central Finland Health Care District, 40620, Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Research, Central Finland Health Care District, 40620, Jyväskylä, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Toni T Seppälä
- Faculty of Medicine and Health Technology, Tampere University and TAYS Cancer Center, Tampere University Hospital, 33520, Tampere, Finland
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, 00290, Helsinki, Finland
- Applied Tumor Genomics, Research Program Unit, University of Helsinki, 00290, Helsinki, Finland
| | - Erkki-Ville Wirta
- Faculty of Medicine and Health Technology, Tampere University and TAYS Cancer Center, Tampere University Hospital, 33520, Tampere, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, 33520, Tampere, Finland
| | - Eero Sihvo
- Central Hospital of Central Finland, 40014, Jyväskylä, Finland
| | - Fredrik Yannopoulos
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Aapistie 5a, 90220, Oulu, Finland
- Department of Cardiothoracic Surgery, Oulu University Hospital, Oulu, Finland
| | - Olli Helminen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Aapistie 5a, 90220, Oulu, Finland
| | - Juha P Väyrynen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Aapistie 5a, 90220, Oulu, Finland
| |
Collapse
|
13
|
Immunoscore Signatures in Surgical Specimens and Tumor-Infiltrating Lymphocytes in Pretreatment Biopsy Predict Treatment Efficacy and Survival in Esophageal Cancer. Ann Surg 2023; 277:e528-e537. [PMID: 34334651 PMCID: PMC10060045 DOI: 10.1097/sla.0000000000005104] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Tumor-infiltrating lymphocytes (TILs) have long been recognized as playing an important role in tumor immune microenvironment. Lately, the Immunoscore (IS) has been proposed as a new method of quantifying the number of TILs in association with patient survival in several cancer types. METHODS In 300 preoperatively untreated esophageal cancer (EC) patients who underwent curative resection at two different institutes, immunohistochemical staining using CD3 and CD8 antibodies was performed to evaluate IS, as objectively scored by auto-counted TILs in the tumor core and invasive margin. In addition, in pre-neoadjuvant chemotherapy (pre-NAC) endoscopic biopsies of a different cohort of 146 EC patients who received NAC, CD3, and CD8 were immunostained to evaluate TIL density. RESULTS In all cases, the IS-high (score 3-4) group tended to have better survival [5-year overall survival (OS) of the IS-high vs low group: 77.6 vs 65.8%, P = 0.0722] than the IS-low (score 1-2) group. This trend was more remarkable in cStage II-IV patients (70.2 vs 54.5%, P = 0.0208) and multivariate analysis of OS further identified IS (hazard ratio 2.07, P = 0.0043) to be an independent prognostic variable. In preNAC biopsies, NAC-responders had higher densities than non-responders of both CD3 + ( P = 0.0106) and CD8 + cells ( P = 0.0729) and, particularly CD3 + cell density was found to be an independent prognostic factor (hazard ratio 1.75, P = 0.0169). CONCLUSIONS The IS signature in surgical specimens and TIL density in preNAC- biopsies could be predictive markers of clinical outcomes in EC patients.
Collapse
|
14
|
Sullivan KM, Jiang X, Guha P, Lausted C, Carter JA, Hsu C, Labadie KP, Kohli K, Kenerson HL, Daniel SK, Yan X, Meng C, Abbasi A, Chan M, Seo YD, Park JO, Crispe IN, Yeung RS, Kim TS, Gujral TS, Tian Q, Katz SC, Pillarisetty VG. Blockade of interleukin 10 potentiates antitumour immune function in human colorectal cancer liver metastases. Gut 2023; 72:325-337. [PMID: 35705369 PMCID: PMC9872249 DOI: 10.1136/gutjnl-2021-325808] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/25/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Programmed cell death protein 1 (PD-1) checkpoint inhibition and adoptive cellular therapy have had limited success in patients with microsatellite stable colorectal cancer liver metastases (CRLM). We sought to evaluate the effect of interleukin 10 (IL-10) blockade on endogenous T cell and chimeric antigen receptor T (CAR-T) cell antitumour function in CRLM slice cultures. DESIGN We created organotypic slice cultures from human CRLM (n=38 patients' tumours) and tested the antitumour effects of a neutralising antibody against IL-10 (αIL-10) both alone as treatment and in combination with exogenously administered carcinoembryonic antigen (CEA)-specific CAR-T cells. We evaluated slice cultures with single and multiplex immunohistochemistry, in situ hybridisation, single-cell RNA sequencing, reverse-phase protein arrays and time-lapse fluorescent microscopy. RESULTS αIL-10 generated a 1.8-fold increase in T cell-mediated carcinoma cell death in human CRLM slice cultures. αIL-10 significantly increased proportions of CD8+ T cells without exhaustion transcription changes, and increased human leukocyte antigen - DR isotype (HLA-DR) expression of macrophages. The antitumour effects of αIL-10 were reversed by major histocompatibility complex class I or II (MHC-I or MHC-II) blockade, confirming the essential role of antigen presenting cells. Interrupting IL-10 signalling also rescued murine CAR-T cell proliferation and cytotoxicity from myeloid cell-mediated immunosuppression. In human CRLM slices, αIL-10 increased CEA-specific CAR-T cell activation and CAR-T cell-mediated cytotoxicity, with nearly 70% carcinoma cell apoptosis across multiple human tumours. Pretreatment with an IL-10 receptor blocking antibody also potentiated CAR-T function. CONCLUSION Neutralising the effects of IL-10 in human CRLM has therapeutic potential as a stand-alone treatment and to augment the function of adoptively transferred CAR-T cells.
Collapse
Affiliation(s)
- Kevin M Sullivan
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Xiuyun Jiang
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Prajna Guha
- Immuno-Oncology Institute and Department of Medicine, Roger Williams Medical Center, Providence, Rhode Island, USA,Department of Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Jason A Carter
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Cynthia Hsu
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Kevin P Labadie
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Karan Kohli
- Department of Surgery, University of Washington, Seattle, Washington, USA,Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Heidi L Kenerson
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Sara K Daniel
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Xiaowei Yan
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - Arezou Abbasi
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Marina Chan
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Y David Seo
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - James O Park
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | | | - Raymond S Yeung
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Teresa S Kim
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Taranjit S Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Qiang Tian
- Institute for Systems Biology, Seattle, Washington, USA .,National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Steven C Katz
- Immuno-Oncology Institute and Department of Medicine, Roger Williams Medical Center, Providence, Rhode Island, USA,Department of Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Venu G Pillarisetty
- Department of Surgery, University of Washington, Seattle, Washington, USA .,Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| |
Collapse
|
15
|
Sun Y, Zhang C. The types of tumor infiltrating lymphocytes are valuable for the diagnosis and prognosis of breast cancer. Front Genet 2022; 13:1019062. [DOI: 10.3389/fgene.2022.1019062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed at constructing a diagnostic immune risk score (dIRS) system and a prognostic immune risk score (pIRS) system for diagnose and prognosis of breast cancer (BC). The gene expression data of BC were downloaded from TCGA dataset (training set), and from GSE65194, GSE29044, GSE42568, and GSE20685 (validation sets). Then, the immune cell type proportions in each dataset were assessed using EPIC tool, and the dIRS system was built based on the SVM-RFE and RF-VIMP algorithms. Subsequently, the pIRS system and the nomogram survival model were established separately using penalized and rms packages. Finally, the differential expressed genes (DEGs) between low and high pIRS groups were screened, and submitted for functional analysis. The dIRS system consisted of B cells, CD8 + T cells, endothelial cells, NK cells, and other cells had high accuracy in distinguishing BC patients from the healthy controls (AUROC >0.7). Subsequently, the pIRS system with the five prognosis-associated immune-infiltrating cell was constructed, and Kaplan-Meier analysis demonstrated that the survival rate of low pIRS group was significantly higher than that of high pIRS group (p < 0.05). Based on age, pathologic stage and the pIRS values, the nomogram survival model was built. The AUROC value, Specificity value, Sensitivity value and C-index of the nomogram survival model were higher than 0.7000, and had a good predictive ability for BC. Finally, a total of 539 DEGs were identified, and significantly enriched in six pathways. The dIRS system and the pIRS system composed of immune cells might be critical for the diagnosis and prognosis of BC patients.
Collapse
|
16
|
Lin L, Zeng X, Liang S, Wang Y, Dai X, Sun Y, Wu Z. Construction of a co-expression network and prediction of metastasis markers in colorectal cancer patients with liver metastasis. J Gastrointest Oncol 2022; 13:2426-2438. [PMID: 36388701 PMCID: PMC9660078 DOI: 10.21037/jgo-22-965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common global malignancy associated with high invasiveness, high metastasis, and poor prognosis. CRC commonly metastasizes to the liver, where the treatment of metastasis is both difficult and an important topic in current CRC management. METHODS Microarrays data of human CRC with liver metastasis (CRCLM) were downloaded from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database to identify potential key genes. Differentially expressed (DE) genes (DEGs) and DEmiRNAs of primary CRC tumor tissues and metastatic liver tissues were identified. Microenvironment Cell Populations (MCP)-counter was used to estimate the abundance of immune cells in the tumor micro-environment (TME), and weighted gene correlation network analysis (WGCNA) was used to construct the co-expression network analysis. Gene Ontology and Kyoto Encyclopaedia of Gene and Genome (KEGG) pathway enrichment analyses were conducted, and the protein-protein interaction (PPI) network for the DEGs were constructed and gene modules were screened. RESULTS Thirty-five pairs of matched colorectal primary cancer and liver metastatic gene expression profiles were screened, and 610 DEGs (265 up-regulated and 345 down-regulated) and 284 DEmiRNAs were identified. The DEGs were mainly enriched in the complement and coagulation cascade pathways and renin secretion. Immune infiltrating cells including neutrophils, monocytic lineage, and cancer-associated fibroblasts (CAFs) differed significantly between primary tumor tissues and metastatic liver tissues. WGCN analysis obtained 12 modules and identified 62 genes with significant interactions which were mainly related to complement and coagulation cascade and the focal adhesion pathway. The best subset regression analysis and backward stepwise regression analysis were performed, and eight genes were determined, including F10, FGG, KNG1, MBL2, PROC, SERPINA1, CAV1, and SPP1. Further analysis showed four genes, including FGG, KNG1, CAV1, and SPP1 were significantly associated with CRCLM. CONCLUSIONS Our study implies complement and coagulation cascade and the focal adhesion pathway play a significant role in the development and progression of CRCLM, and FGG, KNG1, CAV1, and SPP1 may be metastatic markers for its early diagnosis.
Collapse
Affiliation(s)
- Lihong Lin
- Department of Anorectal Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xiuxiu Zeng
- Department of Anorectal Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Shanyan Liang
- Department of Anorectal Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Yunzhi Wang
- School of Health Sciences, University of Sydney, Lidcombe, NSW, Australia
| | - Xiaoyu Dai
- Department of Anorectal Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Yuechao Sun
- Department of Anorectal Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China;,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Zhou Wu
- Department of Anorectal Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
17
|
Wei Z, Zeng X, Lei Y, He H, Jamal M, Zhang C, Tan H, Xie S, Zhang Q. TTYH3, a potential prognosis biomarker associated with immune infiltration and immunotherapy response in lung cancer. Int Immunopharmacol 2022; 110:108999. [PMID: 35858518 DOI: 10.1016/j.intimp.2022.108999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE The recognition of new diagnostic and prognostic biological markers for lung cancer is an essential and eager study. It's shown that ion channels play important roles in regulating various cellular processes and have been suggested to be associated with patient survival. However, tweety family member 3 (TTYH3), as a maxi-Cl- channel, its role in lung cancer remains elusive. METHODS The expression, diagnostic and prognostic efficacy of TTYH3 were analyzed by public databases and clinical samples. Cell functional experiments were used to explore the effects of TTYH3 on cell viability. GO and KEGG enrichment analysis revealed underlying pathways that TTYH3 and its co-expressed genes were enriched in. TIMER, TIDE and R language analyses were used to detect the correlation between TTYH3 and immune infiltration cell and immunotherapy response. RESULTS TTYH3 was up-regulated in lung cancer tissues compared to normal tissues and possessed a prominent diagnostic and prognostic value. TTYH3 knockdown significantly inhibited the proliferation of lung cancer cells. Enrichment analyses showed that TTYH3 and its co-expressed genes were mainly involved in immune related signaling pathways. Further investigation clarified that TTYH3 had a positive correlation with the infiltration of TAMs, Treg infiltration as well as T cell exhaustion and high TTYH3 expression indicated worse immunotherapy response and shorter survival after immune checkpoint blockade treatment. CONCLUSION This study not only revealed the diagnostic and prognostic value of TTYH3 but also provided TTYH3-based estimation of immunotherapy response for lung cancer patients, which might provide new strategies like anti-TTYH3 combined with immune therapy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Zimeng Wei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xingruo Zeng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yufei Lei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hengjing He
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chengjie Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Haiyan Tan
- Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China.
| |
Collapse
|
18
|
Zhao Y, Tang Y, Qin H, Feng K, Hu C. The efficient circulating immunoscore predicts prognosis of patients with advanced gastrointestinal cancer. World J Surg Oncol 2022; 20:233. [PMID: 35820903 PMCID: PMC9277963 DOI: 10.1186/s12957-022-02693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022] Open
Abstract
Background Immunoscore from tumor tissues was initially established to evaluate the prognosis of solid tumor patients. However, the feasibility of circulating immune score (cIS) for the prognosis of advanced gastrointestinal cancers (AGC) has not been reported. Material and methods Peripheral venous blood was collected from 64 untreated AGC patients. We utilized flow cytometry to determine several immune cell subpopulations, including CD8+ and CD4+ T cells, NK cells, and CD4 + CD25 + CD127low Tregs. The circulating immune score 1 (cIS1) was assessed according to the proportions of CD4+, CD8+ T cells, and NK cell, whereas circulating immune score 2 (cIS2) was derived from the proportions of CD4+, CD8+ T cell, and CD4 + CD25 + CD127low Tregs. The prognostic role of cIS for progression-free survival (PFS) and overall survival (OS) was analyzed using Kaplan–Meier curves and Cox multivariate models. Receiver operating characteristic (ROC) curves were depicted to compare the prognostic values of cIS1 and cIS2. Results AGC patients with high cIS1(≥ 2) and cIS2(≥ 2) had significantly longer PFS (cIS1: median PFS, 11 vs. 6.7 months, P = 0.001; cIS2: 12 vs. 5.8 months, P < 0.0001) and OS (cIS1: median OS, 12 vs. 7.9 months, P = 0.0004; cIS2: 12.8 vs. 7.4 months, P < 0.0001) than those with low cIS1 and low cIS2. The areas under ROC curves (AUROCs) of cIS1 and cIS2 for OS were 0.526 (95% confidence interval; 95% CI 0.326–0.726) and 0.603 (95% CI 0.427–0.779, P = 0.332), whereas AUROC of cIS2 for PFS was larger than that of cIS1 0.735 (95% CI 0.609–0.837) vs 0.625 (95% CI 0.495–0.743) (P = 0.04)). Conclusion The cIS can be applied to predict the prognosis of untreated AGC patients. Compared with cIS1, cIS2 displayed superior prognostic value for PFS prediction.
Collapse
Affiliation(s)
- Yamei Zhao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People's Republic of China.
| | - Yan Tang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People's Republic of China
| | - Hanlin Qin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People's Republic of China
| | - Kehai Feng
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People's Republic of China
| | - Changlu Hu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People's Republic of China
| |
Collapse
|
19
|
Hubbard JM, Tőke ER, Moretto R, Graham RP, Youssoufian H, Lőrincz O, Molnár L, Csiszovszki Z, Mitchell JL, Wessling J, Tóth J, Cremolini C. Safety and Activity of PolyPEPI1018 Combined with Maintenance Therapy in Metastatic Colorectal Cancer: an Open-Label, Multicenter, Phase Ib Study. Clin Cancer Res 2022; 28:2818-2829. [PMID: 35472243 PMCID: PMC9365360 DOI: 10.1158/1078-0432.ccr-22-0112] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/11/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Although chemotherapy is standard of care for metastatic colorectal cancer (mCRC), immunotherapy has no role in microsatellite stable (MSS) mCRC, a "cold" tumor. PolyPEPI1018 is an off-the-shelf, multi-peptide vaccine derived from 7 tumor-associated antigens (TAA) frequently expressed in mCRC. This study assessed PolyPEPI1018 combined with first-line maintenance therapy in patients with MSS mCRC. PATIENTS AND METHODS Eleven patients with MSS mCRC received PolyPEPI1018 and Montanide ISA51VG adjuvant subcutaneously, combined with fluoropyrimidine/biologic following first-line induction with chemotherapy and a biologic (NCT03391232). In Part A of the study, 5 patients received a single dose; in Part B, 6 patients received up to three doses of PolyPEPI1018 every 12 weeks. The primary objective was safety; secondary objectives were preliminary efficacy, immunogenicity at peripheral and tumor level, and immune correlates. RESULTS PolyPEPI1018 vaccination was safe and well tolerated. No vaccine-related serious adverse event occurred. Eighty percent of patients had CD8+ T-cell responses against ≥3 TAAs. Increased density of tumor-infiltrating lymphocytes were detected post-treatment for 3 of 4 patients' liver biopsies, combined with increased expression of immune-related gene signatures. Three patients had objective response according to RECISTv1.1, and 2 patients qualified for curative surgery. Longer median progression-free survival for patients receiving multiple doses compared with a single dose (12.5 vs. 4.6 months; P = 0.017) suggested a dose-efficacy correlation. The host HLA genotype predicted multi-antigen-specific T-cell responses (P = 0.01) indicative of clinical outcome. CONCLUSIONS PolyPEPI1018 added to maintenance chemotherapy for patients with unresectable, MSS mCRC was safe and associated with specific immune responses and antitumor activity warranting further confirmation in a randomized, controlled setting.
Collapse
Affiliation(s)
| | - Enikő R Tőke
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | - Roberto Moretto
- Department of Translational Research and New Technologies in Medicine and Surgery, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | | | | | - Orsolya Lőrincz
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | - Levente Molnár
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | - Zsolt Csiszovszki
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | | | | | - József Tóth
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| |
Collapse
|
20
|
A Fraction of CD8+ T Cells from Colorectal Liver Metastases Preferentially Repopulate Autologous Patient-Derived Xenograft Tumors as Tissue-Resident Memory T Cells. Cancers (Basel) 2022; 14:cancers14122882. [PMID: 35740548 PMCID: PMC9221137 DOI: 10.3390/cancers14122882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
The diversity of T cells in the human liver may reflect the composition of TILs in CRLM. Our ex vivo characterization of CRLM vs. adjacent liver tissue detected CD103+CD39+CD8+ TRM cells predominantly in CRLM, which prompted further assessments. These TRM cells responded to cognate antigens in vitro. As functional activities of autologous TILs are central to the implementation of personalized cancer treatments, we applied a patient-derived xenograft (PDX) model to monitor TILs' capacity to control CRLM-derived tumors in vivo. We established PDX mice with CRLMs from two patients, and in vitro expansion of their respective TILs resulted in opposing CD4+ vs. CD8+ TIL ratios. These CRLMs also displayed mutated KRAS, which enabled trametinib-mediated inhibition of MEK. Regardless of the TIL subset ratio, persistent or transient control of CRLM-derived tumors of limited size by the transferred TILs was observed only after trametinib treatment. Of note, a portion of transferred TILs was observed as CD103+CD8+ TRM cells that strictly accumulated within the autologous CRLM-derived tumor rather than in the spleen or blood. Thus, the predominance of CD103+CD39+CD8+ TRM cells in CRLM relative to the adjacent liver and the propensity of CD103+CD8+ TRM cells to repopulate the autologous tumor may identify these TILs as strategic targets for therapies against advanced CRC.
Collapse
|
21
|
Ye Z, Zeng D, Zhou R, Shi M, Liao W. Tumor Microenvironment Evaluation for Gastrointestinal Cancer in the Era of Immunotherapy and Machine Learning. Front Immunol 2022; 13:819807. [PMID: 35603201 PMCID: PMC9114506 DOI: 10.3389/fimmu.2022.819807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
A dynamic and mutualistic interplay between tumor cells and the surrounding tumor microenvironment (TME) triggered the initiation, progression, metastasis, and therapy response of solid tumors. Recent clinical breakthroughs in immunotherapy for gastrointestinal cancer conferred considerable attention to the estimation of TME, and the maturity of next-generation sequencing (NGS)-based technology contributed to the availability of increasing datasets and computational toolbox for deciphering TME compartments. In the current review, we demonstrated the components of TME, multiple methodologies involved in TME detection, and prognostic and predictive TME signatures derived from corresponding methods for gastrointestinal cancer. The TME evaluation comprises traditional, radiomics, and NGS-based high-throughput methodologies, and the computational algorithms are comprehensively discussed. Moreover, we systemically elucidated the existing TME-relevant signatures in the prognostic, chemotherapeutic, and immunotherapeutic settings. Collectively, we highlighted the clinical and technological advances in TME estimation for clinical translation and anticipated that TME-associated biomarkers may be promising in optimizing the future precision treatment for gastrointestinal cancer.
Collapse
Affiliation(s)
| | | | | | | | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Aasebø K, Bruun J, Bergsland CH, Nunes L, Eide GE, Pfeiffer P, Dahl O, Glimelius B, Lothe RA, Sorbye H. Prognostic role of tumour-infiltrating lymphocytes and macrophages in relation to MSI, CDX2 and BRAF status: a population-based study of metastatic colorectal cancer patients. Br J Cancer 2022; 126:48-56. [PMID: 34671130 PMCID: PMC8727629 DOI: 10.1038/s41416-021-01586-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Tumour-infiltrating CD3, CD8 lymphocytes and CD68 macrophages are associated with favourable prognosis in localised colorectal cancer, but the effect in metastatic colorectal cancer (mCRC) is not established. METHODS A Scandinavian population-based cohort of non-resectable mCRC patients was studied. Tissue microarrays (n = 460) were stained with CD3, CD8 and CD68 using fluorescence-based multiplex immunohistochemistry. Associations with clinicopathological variables, overall survival (OS) and progression-free survival were estimated. RESULTS Two-thirds of microsatellite instable (MSI) and one-fourth of microsatellite stable (MSS) tumours displayed the highest quartile density of CD8. For CD3 high vs low cases, median OS was 20 vs 16 months (HR: 0.76, 95% CI: 0.59, 0.76, p = 0.025) with 3-year OS of 27 vs 13%. For CD68 high vs low cases, median OS was 23 vs 15 months (HR: 0.69, 95% CI: 0.54, 0.88, p = 0.003) with 3-year OS of 28 vs 12%. MSI, BRAF mutation and CDX2 loss were negative prognostic markers independent of tumour immune infiltration. CONCLUSIONS In mCRC, high lymphocyte infiltration was found in proportions of MSI and MSS tumours-potential subgroups of immunotherapy response. Tumour-infiltrating CD3 lymphocytes and CD68 macrophages were associated with median and long-term survival. MSI was a significant negative prognostic marker despite high immunogenicity.
Collapse
Affiliation(s)
- Kristine Aasebø
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Jarle Bruun
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Christian H Bergsland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Luís Nunes
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Geir Egil Eide
- Department of Global Public Health and Primary Care, Lifestyle Epidemiology Group, University of Bergen, Bergen, Norway
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway
| | - Per Pfeiffer
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Olav Dahl
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Halfdan Sorbye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
23
|
Jary M, Liu W, Yan D, Bai I, Muranyi A, Colle E, Brocheriou I, Turpin A, Radosevic‐Robin N, Bourgoin P, Penault‐Llorca F, Cohen R, Vernerey D, André T, Borg C, Shanmugam K, Svrcek M. The immune microenvironment in patients with mismatch‐repair‐proficient oligometastatic colorectal cancer exposed to chemotherapy: the randomized MIROX GERCOR cohort study. Mol Oncol 2021; 16:2260-2273. [PMID: 34954864 PMCID: PMC9168761 DOI: 10.1002/1878-0261.13173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/26/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
In the era of immune checkpoint inhibitors, understanding the metastatic microenvironment of proficient mismatch repair/microsatellite stable (pMMR/MSS) colorectal cancer (CRC) is of paramount importance to both prognostication and the development of more effective novel therapies. In this study, primary and paired metastasis tissue samples were collected from patients with resectable metastatic CRC treated with adjuvant FOLFOX or peri‐operative chemotherapy in the MIROX phase III prospective study. In total, 74 cancer tissues were stained for CD3, CD8, Forkhead box protein 3 (FOXP3), programmed cell death protein‐1 (PD‐1, invasive front, stromal, intra‐epithelial compartments), and programmed death‐ligand 1 (PD‐L1, tumor, immune cells). The immune profiling of primary CRC had a limited value to predict the immune context of paired metastases for all markers but CD3+. The expression of CD8 and PD‐L1 was higher in metastases after neoadjuvant FOLFOX. In metastases, both CD3 T cells at the invasive front and PD‐L1 expressions on immune cells were predictive of better disease‐free survival. These results show that the effect of FOLFOX on modifying the immune microenvironment in resected CRC metastases and measurement of PD‐L1 expression and tumor‐infiltrating CD8 T cells in pMMR/MSS metastatic tissue samples could improve treatment strategies of metastatic CRC patients.
Collapse
Affiliation(s)
- Marine Jary
- Multidisciplinary Group in Oncology (GERCOR) Paris France
- Department of Surgical and Medical Oncology University Hospital of Clermont‐Ferrand Clermont‐Ferrand France
| | - Wen‐Wei Liu
- Ventana Medical Systems Inc Tucson Arizona USA
| | - Dongyao Yan
- Ventana Medical Systems Inc Tucson Arizona USA
| | - Isaac Bai
- Ventana Medical Systems Inc Tucson Arizona USA
| | | | - Elise Colle
- Department of Medical Oncology University Hospital of Beaujon Clichy France
| | - Isabelle Brocheriou
- Sorbonne University Department of Pathology Assistance Publique‐Hôpitaux de Paris Pitié‐Salpêtrière Hospital Paris France
| | - Anthony Turpin
- Multidisciplinary Group in Oncology (GERCOR) Paris France
- Department of Medical Oncology University Hospital of Lille Lille France
| | | | - Pierre Bourgoin
- Sorbonne University Department of Pathology Assistance Publique‐Hôpitaux de Paris Saint‐Antoine Hospital Paris France
| | | | - Romain Cohen
- Multidisciplinary Group in Oncology (GERCOR) Paris France
- Sorbonne University Department of Medical Oncology Saint‐Antoine Hospital Assistance Publique‐Hôpitaux de Paris Paris France
| | - Dewi Vernerey
- Multidisciplinary Group in Oncology (GERCOR) Paris France
- Methodology and Quality of Life in Oncology Unit Besançon University Hospital Besançon France
- INSERM EFS BFC UMR1098, RIGHT University of Bourgogne Franche‐Comté Interactions hôte‐greffon‐tumeur/Ingénierie Cellulaire et Génique Besançon France
| | - Thierry André
- Multidisciplinary Group in Oncology (GERCOR) Paris France
- Sorbonne University Department of Medical Oncology Saint‐Antoine Hospital Assistance Publique‐Hôpitaux de Paris Paris France
| | - Christophe Borg
- Multidisciplinary Group in Oncology (GERCOR) Paris France
- INSERM EFS BFC UMR1098, RIGHT University of Bourgogne Franche‐Comté Interactions hôte‐greffon‐tumeur/Ingénierie Cellulaire et Génique Besançon France
- Department of Medical Oncology University Hospital of Besançon Besançon France
| | | | - Magali Svrcek
- Multidisciplinary Group in Oncology (GERCOR) Paris France
- Sorbonne University Department of Pathology Assistance Publique‐Hôpitaux de Paris Saint‐Antoine Hospital Paris France
| |
Collapse
|
24
|
Cao Y, Ke S, Deng S, Yan L, Gu J, Mao F, Xue Y, Zheng C, Cai W, Liu H, Li H, Shang F, Sun Z, Wu K, Zhao N, Cai K. Development and Validation of a Predictive Scoring System for Colorectal Cancer Patients With Liver Metastasis: A Population-Based Study. Front Oncol 2021; 11:719638. [PMID: 34926243 PMCID: PMC8671306 DOI: 10.3389/fonc.2021.719638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
Liver metastasis in colorectal cancer (CRC) is common and has an unfavorable prognosis. This study aimed to establish a functional nomogram model to predict overall survival (OS) and cancer-specific survival (CSS) in patients with colorectal cancer liver metastasis (CRCLM). A total of 9,736 patients with CRCLM from 2010 to 2016 were randomly assigned to training, internal validation, and external validation cohorts. Univariate and multivariate Cox analyses were performed to identify independent clinicopathologic predictive factors, and a nomogram was constructed to predict CSS and OS. Multivariate analysis demonstrated age, tumor location, differentiation, gender, TNM stage, chemotherapy, number of sampled lymph nodes, number of positive lymph nodes, tumor size, and metastatic surgery as independent predictors for CRCLM. A nomogram incorporating the 10 predictors was constructed. The nomogram showed favorable sensitivity at predicting 1-, 3-, and 5-year OS, with area under the receiver operating characteristic curve (AUROC) values of 0.816, 0.782, and 0.787 in the training cohort; 0.827, 0.769, and 0.774 in the internal validation cohort; and 0.819, 0.745, and 0.767 in the external validation cohort, respectively. For CSS, the values were 0.825, 0.771, and 0.772 in the training cohort; 0.828, 0.753, and 0.758 in the internal validation cohort; and 0.828, 0.737, and 0.772 in the external validation cohort, respectively. Calibration curves and ROC curves revealed that using our models to predict the OS and CSS would add more benefit than other single methods. In summary, the novel nomogram based on significant clinicopathological characteristics can be conveniently used to facilitate the postoperative individualized prediction of OS and CSS in CRCLM patients.
Collapse
Affiliation(s)
- Yinghao Cao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Shenghe Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lizhao Yan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junnan Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuwei Mao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Xue
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changmin Zheng
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Wentai Cai
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Li
- Rizhao City Hospital of Traditional Chinese Medicine (TCM), Rizhao City, China
| | - Fumei Shang
- Department of Medical Oncology, Nanyang Central Hospital, Nanyang, China
| | - Zhuolun Sun
- Department of Urology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ke Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zhao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Zhou D, Jiang K, Hong R, Lu Q, Xia W, Li M, Zheng C, Zheng Q, Xu F, Wang S. Distribution Characteristics and Prognostic Value of Immune Infiltration in Oligometastatic Breast Cancer. Front Oncol 2021; 11:747012. [PMID: 34858823 PMCID: PMC8632540 DOI: 10.3389/fonc.2021.747012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/26/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND To assess the distribution characteristics and the prognostic value of immune infiltration in female oligometastatic breast cancer patients. METHODS We retrospectively analyzed the clinicopathological data of oligometastatic breast cancer (OMBC) patients diagnosed between June 2000 and January 2020. Immune markers were quantified by immunohistochemistry on FFPE tissues in paired normal breast tissues, primary breast cancers and oligometastatic lesions. Survival analyses were performed using the Kaplan-Meier curves and Cox-proportional hazards model. RESULTS A total of 95 female OMBC patients visited Sun Yat-sen University Cancer Center between June 2000 and January 2020, and 33 of them had matched normal breast tissues, primary cancers and oligometastatic lesions and were reviewed in immune infiltration analysis. CD8 of primary tumors had a higher expression than that in matched normal tissues. The expressions of CD8 and FOXP3 were higher in the primary sites than that in the oligometastatic lesions. CD3, CD4 and CD8 were significantly lower in the intratumoral regions than that in the peritumoral regions both in primary and oligometastatic lesions. Notably, the high percentage of CD3 in the intratumoral oligometastatic lesions predicted the longer PFS and OS, and higher CD4 in the same lesions also predicted a better OS. There was obviously positive correlation between CD4/CD3 and Ki-67 in primary cancers and negative correlation between CD4/CD3 and ER in oligometastatic sites. CONCLUSION We explored immune distribution and evolution in time and space in OMBC to provide new understandings for biological behaviors of this disease and further divided patients in different prognosis.
Collapse
Affiliation(s)
- Danyang Zhou
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Kuikui Jiang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruoxi Hong
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qianyi Lu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wen Xia
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mei Li
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chengyou Zheng
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qiufan Zheng
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fei Xu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shusen Wang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
26
|
Roles of the Immune/Methylation/Autophagy Landscape on Single-Cell Genotypes and Stroke Risk in Breast Cancer Microenvironment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5633514. [PMID: 34457116 PMCID: PMC8397558 DOI: 10.1155/2021/5633514] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
This study sought to perform integrative analysis of the immune/methylation/autophagy landscape on breast cancer prognosis and single-cell genotypes. Breast Cancer Recurrence Risk Score (BCRRS) and Breast Cancer Prognostic Risk Score (BCPRS) were determined based on 6 prognostic IMAAGs obtained from the TCGA-BRCA cohort. BCRRS and BCPRS, respectively, were used to construct a risk prediction model of overall survival and progression-free survival. Predictive capacity of the model was evaluated using clinical data. Analysis showed that BCRRS is associated with a high risk of stroke. In addition, PPI and drug-ceRNA networks based on differences in BCPRS were constructed. Single cells were genotyped through integrated scRNA-seq of the TNBC samples based on clustering results of BCPRS-related genes. The findings of this study show the potential regulatory effects of IMAAGs on breast cancer tumor microenvironment. High AUCs of 0.856 and 0.842 were obtained for the OS and PFS prognostic models, respectively. scRNA-seq analysis showed high expression levels of adipocytes and adipose tissue macrophages (ATMs) in high BCPRS clusters. Moreover, analysis of ligand-receptor interactions and potential regulatory mechanisms were performed. The LINC00276&MALAT1/miR-206/FZD4-Wnt7b pathway was also identified which may be useful in future research on targets against breast cancer metastasis and recurrence. Neural network-based deep learning models using BCPRS-related genes showed that these genes can be used to map the tumor microenvironment. In summary, analysis of IMAAGs, BCPRS, and BCRRS provides information on the breast cancer microenvironment at both the macro- and microlevels and provides a basis for development of personalized treatment therapy.
Collapse
|
27
|
A Prehepatectomy Circulating Exosomal microRNA Signature Predicts the Prognosis and Adjuvant Chemotherapeutic Benefits in Colorectal Liver Metastasis. Cancers (Basel) 2021; 13:cancers13174258. [PMID: 34503068 PMCID: PMC8428239 DOI: 10.3390/cancers13174258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Exosomal miRNAs are associated with colorectal cancer liver metastasis (CRLM)-related biological behavior and prognosis. However, an exosomal miRNA signature predicting postoperative survival and the value of adjuvant chemotherapy for CRLM remains elusive. Using miRNA sequencing and the LASSO model, we constructed an miRNA signature comprising four exosomes. The signature showed a good predictive performance for patient outcome and the advantage of adjuvant chemotherapy after hepatectomy in two institutions’ training and validation cohorts. In addition, we found that the four miRNAs could target signaling molecules playing crucial roles in colorectal cancer metastasis, vesicle-related processing, and T cell activation. Furthermore, the exosomal miRNA score also increased with the decreasing Immunoscore. We believe that our signature can predict the prognosis and guide adjuvant chemotherapy decisions after liver metastasectomy in CRLM patients, further improving the predictive performance of the current CRLM predictive model system. Abstract Background: The clinical risk score (CRS) for prediction and treatment decision in colorectal liver metastasis (CRLM) is important, but imprecise. Exosomal miRNAs play critical roles in CRLM-related biological behavior. However, an exosomal miRNA score system for predicting posthepatectomy survival and the adjuvant chemotherapy benefit of CRLM remains elusive. Methods: miRNA sequencing was used to identify differentially expressed miRNAs, and the LASSO model was used to select miRNAs to construct the intent model. The predictive performance of the model was evaluated by the area under the ROC curve (AUC) in the training, internal validation, and external validation cohorts. Results: Sixteen differentially expressed exosomal miRNAs were identified, and four miRNAs were selected for model construction. Our model performed well in predicting prognosis with five-year AUCs of 0.70 (95% CI: 0.59–0.81), 0.70 (0.61–0.81), and 0.72 (057–0.86) in the training, internal, and external validation cohorts, respectively. miRNA classifier high-risk patients had better survival benefit from adjuvant chemotherapy regardless of CRS. All four miRNAs target signaling molecules play crucial roles in colorectal cancer metastasis, vesicle-related processing, and T cell activation. It also negatively correlated with the liver metastasis Immunoscore. Conclusion: We developed a circulating exosomal miRNA signature that can predict the prognosis and guide adjuvant chemotherapy decisions after hepatectomy in CRLM.
Collapse
|
28
|
Chen X, Du Z, Huang M, Wang D, Fong WP, Liang J, Fan L, Wang Y, Yang H, Chen Z, Hu M, Xu R, Li Y. Circulating PD-L1 is associated with T cell infiltration and predicts prognosis in patients with CRLM following hepatic resection. Cancer Immunol Immunother 2021; 71:661-674. [PMID: 34322779 DOI: 10.1007/s00262-021-03021-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Exosomal PD-L1 (exoPD-L1) could induce immunosuppression functionally, thus impairing patients' survival in melanoma, NSCLC, and gastric cancer. However, no evidence demonstrates the feasibility of circulating exoPD-L1 and soluble PD-L1 (sPD-L1) as biomarkers for prognosis and early recurrence in colorectal liver metastasis (CRLM) patients following hepatectomy or their association with T cell infiltration at liver metastases. METHODS In cohort 1, exoPD-L1 and sPD-L1 were preoperatively tested using ELISA. CD3, CD8, granzyme B (GB) and PD1 expressed at liver metastases were evaluated using immunohistochemistry. In cohort 2, exoPD-L1 and sPD-L1 were detected at baseline, before hepatectomy, after hepatectomy, and after disease progression. RESULTS In cohort 1, higher preoperative exoPD-L1 or sPD-L1 significantly impaired RFS (exoPD-L1, P = 0.0043; sPD-L1, P = 0.0041) and OS (exoPD-L1, P = 0.0034; sPD-L1, P = 0.0061). Furthermore, preoperative exoPD-L1 was negatively correlated with CD3 + T-lymphocytes infiltrated at tumor center (CT), and GB and PD1 were expressed at tumor invasive margin (IM). Preoperative sPD-L1 was negatively correlated with CD3 + and CD8 + T-lymphocytes' infiltration at IM and CT, GB and PD1 expression at IM. In cohort 2, exoPD-L1 and sPD-L1 levels decreased following hepatectomy but increased when tumor progressed. Moreover, higher postoperative exoPD-L1 and sPD-L1 or a small reduction in exoPD-L1 and sPD-L1 levels after hepatectomy suggested higher early recurrence rate. CONCLUSIONS Both preoperative exoPD-L1 and sPD-L1 had promising prognostic values and were associated with T cell infiltration at liver metastases in CRLM patients following hepatectomy. Dynamically tracking exoPD-L1 and sPD-L1 levels could monitor disease status and detect early recurrence.
Collapse
Affiliation(s)
- Xiuxing Chen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Oncology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ziming Du
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China.,Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Mayan Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Deshen Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - William Pat Fong
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jieying Liang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Lei Fan
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, People's Republic of China
| | - Yun Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Hui Yang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Zhigang Chen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Mingtao Hu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ruihua Xu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China. .,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.
| | - Yuhong Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China. .,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.
| |
Collapse
|
29
|
Characterization of a Tumor-Microenvironment-Relevant Gene Set Based on Tumor Severity in Colon Cancer and Evaluation of Its Potential for Dihydroartemisinin Targeting. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4812068. [PMID: 34239578 PMCID: PMC8233087 DOI: 10.1155/2021/4812068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/09/2021] [Indexed: 01/12/2023]
Abstract
Colon cancer (COAD) is a leading cause of cancer mortality in the world. Most patients with COAD die as a result of cancer cell metastasis. However, the mechanisms underlying the metastatic phenotype of COAD remain unclear. Instead, particular features of the tumor microenvironment (TME) could predict adverse outcomes including metastasis in patients with COAD, and the role of TME in governing COAD progression is undeniable. Therefore, exploring the role of TME in COAD may help us better understand the molecular mechanisms behind COAD progression which may improve clinical outcomes and quality of patients. Here, we identified a Specific TME Regulatory Network including AEBP1, BGN, POST, and FAP (STMERN) that is highly involved in clinical outcomes of patients with COAD. Comprehensive in silico analysis of our study revealed that the STMERN is highly correlated with the severity of COAD. Meanwhile, our results reveal that the STMERN might be associated with immune infiltration in COAD. Importantly, we show that dihydroartemisinin (DHA) potentially interacts with the STMERN. We suggest that DHA might contribute to immune infiltration through regulating the STMERN in COAD. Taken together, our data provide a set of biomarkers of progression and poor prognosis in COAD. These findings could have potential prognostic and therapeutic implications in the progression of COAD.
Collapse
|
30
|
Fang T, Xiao J, Zhang Y, Hu H, Zhu Y, Cheng Y. Combined with interventional therapy, immunotherapy can create a new outlook for tumor treatment. Quant Imaging Med Surg 2021; 11:2837-2860. [PMID: 34079746 PMCID: PMC8107298 DOI: 10.21037/qims-20-173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Recent progress in immunotherapy provides hope of a complete cure to cancer patients. However, recent studies have reported that only a limited number of cancer patients with a specific immune status, known as "cold tumor", can benefit from a single immune agent. Although the combination of immune agents with different mechanisms can partially increase the low response rate and improve efficacy, it can also result in more side effects. Therefore, discovering therapies that can improve tumors' response rate to immunotherapy without increasing toxicity for patients is urgently needed. Tumor interventional therapy is promising. It mainly includes transcatheter arterial chemoembolization, ablation, radioactive particle internal irradiation, and photodynamic interventional therapy based on a luminal stent. Interventional therapy can directly kill tumor cells by targeted drug delivery in situ, thus reducing drug dosage and systemic toxicity like cytokine release syndrome. More importantly, interventional therapy can regulate the immune system through numerous mechanisms, making it a suitable choice for immunotherapy to combine with. In this review, we provide a brief description of immunotherapies (and their side effects) on tumors of different immune types and preliminarily elaborate on interventional therapy mechanisms to improve immune efficacy. We also discuss the progress and challenges of the combination of interventional therapy and immunotherapy.
Collapse
Affiliation(s)
- Tonglei Fang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Junyuan Xiao
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yiran Zhang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Haiyan Hu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yueqi Zhu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
31
|
Kang X, Chen Y, Yi B, Yan X, Jiang C, Chen B, Lu L, Sun Y, Shi R. An integrative microenvironment approach for laryngeal carcinoma: the role of immune/methylation/autophagy signatures on disease clinical prognosis and single-cell genotypes. J Cancer 2021; 12:4148-4171. [PMID: 34093817 PMCID: PMC8176413 DOI: 10.7150/jca.58076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
The effects of methylation/autophagy-related genes (MARGs) and immune infiltration in the tumor microenvironment on the prognosis of laryngeal cancer were comprehensively explored in this study. Survival analysis screened out 126 MARGs and 10 immune cells potentially associated with the prognosis of laryngeal carcinoma. Cox and lasso regression analyses were then used to select 8 MARGs (CAPN10, DAPK2, MBTPS2, ST13, CFLAR, FADD, PEX14 and TSC2) and 2 immune cells (Eosinophil and Mast cell) to obtain the prognostic risk scoring system (pRS). The pRS was used to establish a risk prediction model for the prognosis of laryngeal cancer. The predictive ability of the prediction model was evaluated by GEO datasets and our clinical samples. Further analysis revealed that pRS is highly associated with single nucleotide polymorphism (SNP), copy number variation (CNV), immune checkpoint blockade (ICB) therapy and tumor microenvironment. Moreover, the screened pRS-related ceRNA network and circ_0002951/miR-548k/HAS2 pathway provide potential therapeutic targets and biomarkers of laryngocarcinoma. Based on the clustering results of pRS-related genes, single cells were then genotyped and revealed by integrated scRNA-seq in laryngeal cancer samples. Fibroblasts were found enriched in high risk cell clusters at the scRNA-seq level. Fibroblast-related ligand-receptor interactions were then exposed and a neural network-based deep learning model based on these pRS-related hub gene signatures was also established with a high accuracy in cell type prediction. In conclusion, the combination of single-cell and transcriptome laryngeal carcinoma landscape analyses can investigate the link between the tumor microenvironmental and prognostic characteristics.
Collapse
Affiliation(s)
- Xueran Kang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Yisheng Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Yi
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Xiaojun Yan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Chenyan Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Bin Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Lixing Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Yuxing Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Runjie Shi
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| |
Collapse
|
32
|
Zhao Y, Chen C, Xu X, Ge X, Ding K, Zheng S, Wang J, Sun L. An Efficient Prognostic Immune Scoring System For Colorectal Cancer Patients With Peritoneal Metastasis. Oncoimmunology 2021; 10:1901464. [PMID: 33796414 PMCID: PMC7993154 DOI: 10.1080/2162402x.2021.1901464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immunoscore can accurately predict the prognosis of patients with stage I–III colorectal cancer. However, whether it can be used to predict the prognosis of colorectal cancer peritoneal metastases (CRCPM) remains to be validated. We analyzed peritoneal and ovarian metastases in 68 patients with CRCPM. The immunoscore (IS) was based on the infiltration level of CD3+ and CD8+ T cells, whereas the TBM score was derived from the infiltration level of CD3+, CD8+, CD20+ and CD163+ cells to tumor microenvironment (TME). The predictive value of IS and TBM scores for relapse-free survival (RFS) and overall survival (OS) of patients with CRCPM was analyzed using Kaplan Meier curve and Cox multivariate models. Significant difference in the infiltration levels of different immune cell subtypes in primary lesions, peritoneal metastasis and ovarian metastasis were compared using t-test.CRCPM patients with high IS (>1), high TBM1 score (≥2) or high TBM2 score (≥2) had a significantly longer OS (IS: median OS, not reached vs 23 months, p = .0078; TBM1: not reached vs 21.5 months, p = .013; TBM2: 39.3 months vs 15.2 months, p = .001). On the other hand, patients with high IS had a trend of improved RFS (13.4 months vs 11.0 months, p = .067). However, TBM1 and TBM2 score has no predictive utility for RFS. Multivariate analysis revealed that IS, TBM1 and TBM2 can accurately predict OS, but not RFS. Finally, the infiltration level of CD3+ T cells, CD8+ T cells, CD20+ B cells, and CD68+ macrophage was significantly higher in peritoneal metastatic tissue and ovarian metastatic tissue, relative to primary tumor tissues.The IS and TBM score of peritoneal metastases could effectively predict OS of patients with CRCPM. Peritoneal metastasis of colorectal cancer decreased the infiltration level of T and B cells.
Collapse
Affiliation(s)
- Yamei Zhao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Medical Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, People's Republic of China
| | - Chao Chen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xiaoming Xu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xiaoxu Ge
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Shu Zheng
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jian Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lifeng Sun
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
33
|
Zhou SN, Pan WT, Pan MX, Luo QY, Zhang L, Lin JZ, Zhao YJ, Yan XL, Yuan LP, Zhang YX, Yang DJ, Qiu MZ. Comparison of Immune Microenvironment Between Colon and Liver Metastatic Tissue in Colon Cancer Patients with Liver Metastasis. Dig Dis Sci 2021; 66:474-482. [PMID: 32193860 DOI: 10.1007/s10620-020-06203-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/10/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Liver metastasis is an indicator of unfavorable responses to immunotherapy in colorectal cancer patients. However, the difference of immune microenvironment between primary tumors and liver metastases has not been well understood. PATIENTS AND METHODS Fifty-four colon cancer with liver metastasis patients who received resection of both primary and metastasis lesions have been analyzed. The immune score is based on the density of infiltrating immune cells (CD3+ cell, CD8+ cell, CD11b+ cell, CD11c+ cell, and CD33+ cell) in the center and margin of the tumor. The expression of immune markers between the primary tumor and hepatic metastases was analyzed using Wilcoxon's signed rank test. RESULTS All the five markers had higher expression in tumor margins than center tumor in both primary tumor and hepatic metastases lesions. The expression of CD11c and CD11b had no difference between metastatic lesions and primary tumor. In tumor margins, except CD11b, all the other 4 markers expressed significantly higher in hepatic metastases than in primary tumor. Intra-tumor, CD3 had higher expression in primary tumor than in hepatic metastases, while CD33 had higher expression in hepatic metastases than in primary tumor. CD8+ CD3+ cells of the total CD8+ cell population in primary tumor was significantly higher than in hepatic metastases (36.42% vs. 24.88%, p = 0.0069). CONCLUSIONS The immune microenvironment between primary tumor and hepatic metastasis is different. More immunosuppressing cells in liver may partially explain why immunotherapy in colon cancer is less effective with liver metastatic disease.
Collapse
Affiliation(s)
- Su-Na Zhou
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Wen-Tao Pan
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Meng-Xian Pan
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Qiu-Yun Luo
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Lin Zhang
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
- Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Jun-Zhong Lin
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Yu-Jie Zhao
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Xiang-Lei Yan
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Lu-Ping Yuan
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Yu-Xin Zhang
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Da-Jun Yang
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Miao-Zhen Qiu
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China.
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China.
| |
Collapse
|
34
|
Lin HC, Shao Q, Liang JY, Wang Y, Zhang HZ, Yuan YF, Li BK, Wu XJ, Chen G, Ding PR, Lu ZH, Pan ZZ, Wang DS, Qiu MZ, Wang ZQ, Wang FH, Xu RH, Li YH. Primary tumor immune score fails to predict the prognosis of colorectal cancer liver metastases after hepatectomy in Chinese populations. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:310. [PMID: 33708937 PMCID: PMC7944305 DOI: 10.21037/atm-20-4932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Increasing evidence suggests that the immune score is significantly associated with cancer prognosis. However, the prognostic role of primary tumor immune score in colorectal cancer liver metastases (CRLM) after hepatectomy in Chinese patients has not been reported. The present study is designed to investigate whether the immune score of primary tumor can predict the postoperative survival of liver metastases in Chinese patients. Methods A total of 131 patients diagnosed with CRLM were included, and the corresponding primary tumor and liver metastasis specimens were acquired. An immune score ranging from 0 to 4 was established based on the counts and densities of CD3+ and CD8+ T cells in the core tumor (CT) and the invasive margin (IM). Relapse-free survival (RFS) and overall survival (OS) were analyzed by Kaplan-Meier curves to assess the prognostic role of primary tumor immune score. Furthermore, we conducted a comprehensive search of the Gene Expression Omnibus (GEO) and selected stage IV colorectal cancer (CRC) patients with liver metastasis to compare the tumor-infiltrating T cell profiles of the primary tumor and liver metastases by CIBERSORT. Results Patients with high immune scores in the primary tumor has no significantly better RFS and OS after hepatectomy than those with low immune scores [median RFS (95% CI): 19.13 (10.07–28.20) vs. 27.13 (15.97–38.29) months, P=0.604; median OS (95% CI): 64.37 (35.96–92.78) vs. 40.07 (32.54–47.59) months, P=0.652]. Data collected from the GEO indicates that the proportion of CD8+ T cells and total T cells in the primary tumor and liver metastatic lesion are also not significantly correlated (CD8+ T cells: r2 =0.030, P=0.468; total T cells: r2 =0.165, P=0.076). Conclusions The immune score of the primary tumor fails to predict the prognosis of CRLM after hepatectomy in Chinese patients.
Collapse
Affiliation(s)
- Hao-Cheng Lin
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiong Shao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jie-Ying Liang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui-Zhong Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun-Fei Yuan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bin-Kui Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Jun Wu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gong Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pei-Rong Ding
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhen-Hai Lu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Zhong Pan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - De-Shen Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Miao-Zhen Qiu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Qiang Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feng-Hua Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Hong Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
35
|
Kurebayashi Y, Kubota N, Sakamoto M. Immune microenvironment of hepatocellular carcinoma, intrahepatic cholangiocarcinoma and liver metastasis of colorectal adenocarcinoma: Relationship with histopathological and molecular classifications. Hepatol Res 2021; 51:5-18. [PMID: 32573056 DOI: 10.1111/hepr.13539] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 01/24/2023]
Abstract
Tumor tissue is composed of tumor cells and tumor stroma. Tumor stroma contains various immune cells and non-immune stromal cells, forming a complex tumor microenvironment which plays pivotal roles in regulating tumor growth. Recent successes in immunotherapies against tumors, including immune checkpoint inhibitors, have further raised interests in the immune microenvironment of liver carcinoma. The immune microenvironment of tumors is formed because of interactions among tumor cells, immune cells and non-immune stromal cells, including fibroblasts and endothelial cells. Different patterns of immune microenvironment are observed among different tumor subtypes, and their clinicopathological significance and intertumor/intratumor heterogeneity are being intensively studied. Here, we review the immune microenvironment of hepatocellular carcinoma, intrahepatic cholangiocarcinoma and liver metastasis of colorectal adenocarcinoma, focusing on its histopathological appearance, clinicopathological significance, and relationship with histological and molecular classifications. Understanding the comprehensive histopathological picture of a tumor immune microenvironment, in addition to molecular and genetic approaches, will further potentiate the effort for precision medicine in the era of tumor-targeting immunotherapy.
Collapse
Affiliation(s)
- Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine.,Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Naoto Kubota
- Department of Pathology, Keio University School of Medicine
| | | |
Collapse
|
36
|
Zhang R, Li T, Wang W, Gan W, Lv S, Zeng Z, Hou Y, Yan Z, Yang M. Indoleamine 2, 3-Dioxygenase 1 and CD8 Expression Profiling Revealed an Immunological Subtype of Colon Cancer With a Poor Prognosis. Front Oncol 2020; 10:594098. [PMID: 33425745 PMCID: PMC7793995 DOI: 10.3389/fonc.2020.594098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The Immunoscore method, based on the distribution of the quantification of cytotoxic and memory T cells, provides an indicator of tumor recurrence for colon cancer. However, recent evidence has suggested that immune checkpoint expression represents a surrogate measure of tumor-infiltrating T cell exhaustion, and therefore may serve as a more accurate prognostic biomarker for colon cancer. Indoleamine 2, 3-dioxygenase 1 (IDO1), a potent immunosuppressive molecule, has been strongly associated with T-cell infiltration, but it lacks universal prognostic significance among all of the cancer subtypes. Our aim was to elucidate the prognostic significance of the combination of IDO1 and CD8A expression in colon cancer. METHODS Gene expression and clinical survival data were analyzed using The Cancer Genome Atlas (TCGA) data set and validated using NCBI Gene Expression Omnibus (NCBI-GEO) cohort. Hierarchical clustering, functional enrichment analyses, and immune infiltration analysis were applied to evaluate the distinctive immune statuses in colon cancer risk subgroups stratified by IDO1 and CD8A expression. Moreover, Multivariate Cox regression analysis and Receiver Operating Characteristic (ROC) analyses were conducted to determine the prognostic value of IDO1/CD8A stratification. The IDO1/CD8A classifier may be suitable for use in the prediction of cancer development. It was validated via an in vivo murine model. RESULTS The stratification analysis demonstrated that the colon cancer subtype with the CD8AhighIDO1high* tumor resulted in the worst survival despite high levels of CD8 infiltrates. Its poor prognosis was associated with high levels of immune response, checkpoint genes, and Th1/IFN-γ gene signatures, regardless of CMS classification. Moreover, the IDO1/CD8A stratification was identified as an independent prognostic factor of overall survival (OS) and a useful predictive biomarker in colon cancer. In vivo data revealed the CD8AhighIDO1high group showed strong correlations with late-stage metastasis of colon carcinoma cells and upregulation of immune checkpoints. CONCLUSIONS The findings indicate that the proposed IDO1/CD8A stratification has exact and independent prognostic implications beyond CD8 T cell alone and CMS classification. As a result, it may represent a promising tool for risk stratification in colon cancer and improve the development of immunotherapies for patients with colon cancer in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Min Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
Immune scores in colorectal cancer: Where are we? Eur J Cancer 2020; 140:105-118. [PMID: 33075623 DOI: 10.1016/j.ejca.2020.08.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022]
Abstract
There is growing evidence that the immune system may prevent the occurrence, growth and metastatic diffusion of colorectal cancer (CRC). The role played by the adaptive immune response at the tumour site is critical in the balance between tumour invasion and defence against cancer. Recent data have shown that the evaluation of this immune response may help to define the prognosis and possibly the treatment of localised CRC as well as metastatic CRC. Tumour infiltrates with T cells (CD3+), cytotoxic T cells (CD8+) and memory T cells (CD45RO+) are the immune parameters most consistently and strongly associated with good clinical outcome in CRC. Several scoring systems have been developed, including the Immunoscore®, based on the immunohistochemical determination with a digital image analysis system of the density of CD3+ and CD8+ lymphocytes in the centre and the invasive margin of the tumour. This review will focus on the different immunoscoring systems developed in CRC, their performance, their limitations and their potential for improving patients' care in the future.
Collapse
|
38
|
Prognostic value of immunological profile based on CD8+ and FoxP3+ T lymphocytes in the peritumoral and intratumoral subsites for renal cell carcinoma. Int Urol Nephrol 2020; 52:2289-2299. [PMID: 32761342 DOI: 10.1007/s11255-020-02592-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE We aimed to assess an "Immunological Profile (IP)" including CD8+ and FoxP3+ T lymphocytes for renal cell carcinoma (RCC) to evaluate its effects on tumor pathological characteristics, disease progression, and survival. METHODS Adjacent normal and intratumoral specimens from 42 patients who had undergone radical nephrectomy for RCC were analyzed for counts of CD8+ and FoxP3+ T lymphocytes by immunohistochemistry. Tissue from both sites were evaluated and scored separately according to low (0) or high (1) expression of CD8 and FoxP3. A total score (min: 0, max: 4) was assigned to each patient. Thereafter, patients were divided into two groups for clinicopathologic and survival stratification based on score (IPWeak 0-2; and IPStrong 3-4). Survival curves were constructed using the Kaplan-Meier method, and a multivariable Cox regression model was used for overall survival (OS) and progression-free survival (PFS). RESULTS The mean follow-up was 54.73 ± 21.34 months. Poor RCC characteristics including pT3-T4, tumor necrosis, lymphovascular invasion, lymph node involvement, and larger tumor size were significantly more common in the IPWeak patients compared to IPStrong (p < 0.05). Kaplan-Meier analysis showed that IPWeak patients had worse OS (62.5 vs. 100%; p = 0.006) and PFS (50 vs. 94.4%; p = 0.002) compared to IPStrong patients. In multivariable analysis, IPWeak (HR 8.64; 95% CI 1.09-68.05, p = 0.042) and high tumor node metastasis stage (HR 45.33; 95% CI 4.69-437.68, p < 0.001) were significant independent predictors of poor PFS. CONCLUSION Assessment of IP including CD8+ and FoxP3+ T lymphocytes in adjacent normal and intratumoral sites in RCC may serve as a good predictive marker for PFS.
Collapse
|
39
|
Histopathological growth patterns correlate with the immunoscore in colorectal cancer liver metastasis patients after hepatectomy. Cancer Immunol Immunother 2020; 69:2623-2634. [PMID: 32601799 DOI: 10.1007/s00262-020-02632-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Various scoring systems have been proposed to predict the postoperative prognosis of colorectal liver metastasis (CRLM), including the clinical risk score (CRS), the immunoscore and so on. Recently, histopathological growth patterns (HGPs) have been recognized. However, the correlation between HGPs and the immunoscore, and their prognostic values in patients with CRLM after liver resection remain undetermined. In this study, HGPs were retrospectively evaluated in H&E-stained slides from 166 CRLM patients. The immunoscore was calculated according to the densities of immunostained CD3 + and CD8 + cells. A risk score combining HGPs, the immunoscore and the CRS was defined and divided patients into the low-, medium- and high-risk group. Our results showed that the densities of CD3 + and CD8 + cells were higher in the desmoplastic HGP (dHGP) group than in the non-dHGP group, and the proportion of high immunoscores was also higher in the dHGP group (51.9% vs. 33.0%, respectively, P = 0.020). Patients with the dHGP had significantly longer relapse-free survival (RFS) and overall survival (OS) than those with the non-HGP. The low-risk group showed significantly higher 2-year RFS and 5-year OS rates than the other two groups (RFS: 76.2%, 43.7% and 33.1%, respectively; P < 0.001; OS: 89.7%, 54.4% and 33.3%, respectively; P < 0.001). In conclusion, the dHGP correlates with relatively high immunoscores, predicting a favorable prognosis independent of the immunoscore and CRS. A novel risk score combining HGPs, the immunoscore and the CRS may be used for the stratification of CRLM patients' survival.
Collapse
|
40
|
Zhang X, Yang J, Du L, Zhou Y, Li K. The prognostic value of Immunoscore in patients with cancer: A pooled analysis of 10,328 patients. Int J Biol Markers 2020; 35:3-13. [PMID: 32538254 DOI: 10.1177/1724600820927409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Over the past decade, some publications have reported that Immunoscore was associated with the prognosis of several cancers. To better understand this issue, we conducted this pooled analysis. METHODS We systematically searched PubMed, Embase, Web of Science, and the Cochrane Library from their inceptions to 15 May 2019 to identify relevant articles. The pooled hazard ratio (HR) and 95% confidence interval (CI) was estimated for overall survival, disease-free survival, and disease-specific survival. RESULTS A total of 26 cohort studies with 10,328 patients involving eight cancer specialties were evaluated mainly by the consensus Immunoscore. The pooled analysis indicated that a lower Immunoscore was associated with a poor overall survival (HR 2.23, 95% CI 1.58, 2.70), disease-free survival (HR 2.40, 95% CI 1.96, 2.49), and disease-specific survival (HR 2.81, 95% CI 2.10, 3.77) for all cancers. The same convincing results were found in colorectal cancer, gastric cancer, and non-small cell lung cancer (especially the consensus Immunoscore for colon cancer). In five other types of cancer the results were similar, but the sample sizes were limited. CONCLUSIONS These findings support that Immunoscore is significantly associated with the prognosis of patients with cancer. It provides a reliable estimate of the risk of recurrence in patients with colon cancer. However, more high-quality studies are necessary to assess the prognostic value of Immunoscore in non-colon cancers.
Collapse
Affiliation(s)
- Xingxia Zhang
- West China School of Nursing / West China Hospital Gastrointestinal Surgery Department, Sichuan University
| | - Jie Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Liang Du
- Chinese Evidence-based Medicine/Cochrane Center, Chengdu, China
| | - Yong Zhou
- West China School of Nursing / West China Hospital Gastrointestinal Surgery Department, Sichuan University
| | - Ka Li
- West China School of Nursing / West China Hospital Gastrointestinal Surgery Department, Sichuan University
| |
Collapse
|
41
|
Guo L, Wang C, Qiu X, Pu X, Chang P. Colorectal Cancer Immune Infiltrates: Significance in Patient Prognosis and Immunotherapeutic Efficacy. Front Immunol 2020; 11:1052. [PMID: 32547556 PMCID: PMC7270196 DOI: 10.3389/fimmu.2020.01052] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer occurrence and progression involve multiple aspects of host immune deficiencies. In these events, immune cells vary their phenotypes and functions over time, thus enabling the immune microenvironment to be “tumor-inhibiting” as well as “tumor-promoting” as a whole. Because of the association of tumoricidal T cell infiltration with favorable survival in cancer patients, the Immunoscore system was established. Critically, the tumoral Immunoscore serves as an indicator of CRC patient prognosis independent of patient TNM stage and suggests that patients with high Immunoscores in their tumors have prolonged survival in general. Accordingly, stratifications according to tumoral Immunoscores provide new insights into CRC in terms of comparing disease severity, forecasting disease progression, and making treatment decisions. An important application of this system will be to shed light on candidate selection in immunotherapy for CRC, because the T cells responsible for determining the Immunoscore serve as responders to immune checkpoint inhibitors. However, the Immunoscore system merely provides a standard procedure for identifying the tumoral infiltration of cytotoxic and memory T cells, while information concerning the survival and function of these cells is still absent. Moreover, other infiltrates, such as dendritic cells, macrophages, and B cells, can still influence CRC prognosis, implying that those might also influence the therapeutic efficacy of immune checkpoint inhibitors. On these bases, this review is designed to introduce the Immunoscore system by presenting its clinical significance and application in CRC.
Collapse
Affiliation(s)
- Liang Guo
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Chuanlei Wang
- Department of Hepatobiliary Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xiang Qiu
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyu Pu
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - Pengyu Chang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
42
|
Zou MX, Zheng BW, Liu FS, Wang XB, Hu JR, Huang W, Dai ZH, Zhang QS, Liu FB, Zhong H, Jiang Y, She XL, Li XB, Lv GH, Li J. The Relationship Between Tumor-Stroma Ratio, the Immune Microenvironment, and Survival in Patients With Spinal Chordoma. Neurosurgery 2020; 85:E1095-E1110. [PMID: 31501892 DOI: 10.1093/neuros/nyz333] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Currently, little is known about the clinical relevance of tumor-stroma ratio (TSR) in chordoma and data discussing the relationship between TSR and immune status of chordoma are lacking. OBJECTIVE To characterize TSR distribution in spinal chordoma, and investigated its correlation with clinicopathologic or immunological features of patients and outcome. METHODS TSR was assessed visually on hematoxylin and eosin-stained sections from 54 tumor specimens by 2 independent pathologists. Multiplex immunofluorescence was used to quantify the expression levels of microvessel density, Ki-67, Brachyury, and tumor as well as stromal PD-L1. Tumor immunity status including the Immunoscore and densities of tumor-infiltrating lymphocytes (TILs) subtypes were obtained from our published data and reanalyzed. RESULTS Bland-Altman plot showed no difference between mean TSR derived from the two observers. TSR was positively associated with stromal PD-L1 expression, the Immunoscore and CD3+ as well as CD4+ TILs density, but negatively correlated with tumor microvessel density, Ki-67 index, surrounding muscle invasion by tumor and number of Foxp3+ and PD-1+ TILs. Low TSR independently predicted poor local recurrence-free survival and overall survival. Moreover, patients with low TSR and low Immunoscore chordoma phenotype were associated with the worst survival. More importantly, combined TSR and Immunoscore accurately reflected prognosis and enhanced the ability of TSR or Immunoscore alone for outcome prediction. CONCLUSION These data reveal the significant impact of TSR on tumor progression and immunological response of patients. Subsequent use of agents targeting the stroma compartment may be an effective strategy to treat chordoma especially in combination with immune-based drugs.
Collapse
Affiliation(s)
- Ming-Xiang Zou
- Department of Spine Surgery, The Second Xiangya Hospital, Central South, University, Changsha, China
| | - Bo-Wen Zheng
- Department of Spine Surgery, The Second Xiangya Hospital, Central South, University, Changsha, China
| | - Fu-Sheng Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South, University, Changsha, China
| | - Xiao-Bin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South, University, Changsha, China
| | - Jia-Rui Hu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South, University, Changsha, China
| | - Wei Huang
- Institute of Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhe-Hao Dai
- Department of Spine Surgery, The Second Xiangya Hospital, Central South, University, Changsha, China
| | - Qian-Shi Zhang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South, University, Changsha, China
| | - Fu-Bing Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South, University, Changsha, China
| | - Hua Zhong
- Department of Orthopedics Surgery, Central Hospital of Yi Yang, Yiyang, China
| | - Yi Jiang
- Department of Pathology, The Second Xiangya Hospital, Central South, University, Changsha, China
| | - Xiao-Ling She
- Department of Pathology, The Second Xiangya Hospital, Central South, University, Changsha, China
| | - Xiao-Bing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South, University, Changsha, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South, University, Changsha, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South, University, Changsha, China
| |
Collapse
|
43
|
Zou MX, Lv GH, Wang XB, Huang W, Li J, Jiang Y, She XL. Clinical Impact of the Immune Microenvironment in Spinal Chordoma: Immunoscore as an Independent Favorable Prognostic Factor. Neurosurgery 2020; 84:E318-E333. [PMID: 30032257 DOI: 10.1093/neuros/nyy274] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/27/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Currently, clinical implications of immune system cells in chordoma remain to be elucidated. OBJECTIVE To characterize in situ immune cell infiltrates, the Immunoscore, and investigate their correlation with clinicopathologic data of spinal chordoma patients and outcome. METHODS Tumor-infiltrating lymphocytes (TILs) subtypes were assessed in 54 tumor specimens using immunohistochemistry for CD3, CD4, CD8, CD20, Foxp3, PD-1, and PD-L1. RESULTS Overall, immune cell infiltrates were present in all samples and there was low or moderate correlation among several TILs subsets. PD-1+ TILs density, CD3+, and CD8+ TILs densities in the tumor interior (TI) subarea were associated with surrounding muscle invasion by tumor, whereas PD-L1+ TILs showed inverse association with tumor pathological grade and stage. The density of PD-1+ TILs, PD-L1+ TILs, CD4+ TILs, and CD3+ TILs both in the TI and combined tumor regions (TI and invasion margin) were significantly associated with local recurrence-free survival and overall survival (OS). However, Foxp3+ TILs (P = .024) and CD8+ TILs evaluated in the TI (P < .001) only correlated with OS. The Immunoscore predicted less aggressive clinical features and favorable outcomes. Patients with an Immunoscore of 4 had a median OS of 128 mo, while I0 (Immunoscore of 0) patients survived only 27 mo. Multivariate analysis demonstrated that the Immunoscore was an independent favorable prognostic factor of both local recurrence-free survival (P = .026) and OS (P = .046). CONCLUSION Our data suggest a clinically relevant role of the immune microenvironment in spinal chordoma and identify the Immunoscore as promising prognostic marker.
Collapse
Affiliation(s)
- Ming-Xiang Zou
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Bin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Huang
- Institute of Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Jiang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Ling She
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
44
|
Gao J, Ren Y, Guo H, Mao R, Xie H, Su H, She Y, Deng J, Yang M, Han B, Zhang Y, Li J, Xie D, Chen C. A new method for predicting survival in stage I non-small cell lung cancer patients: nomogram based on macrophage immunoscore, TNM stage and lymphocyte-to-monocyte ratio. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:470. [PMID: 32395514 PMCID: PMC7210133 DOI: 10.21037/atm.2020.03.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background The prognosis of patients with stage I non-small cell lung cancer (NSCLC) is often uncertain. This study aims to investigate a new prognostic tool to classify stage I NSCLC patients more accurately. Methods CD68 and CD163 macrophages were quantified by immunohistochemical analyses of the center of the tumor and the invasive margin of the 339 tumors, which were used to construct the macrophage immunoscore (MI). Cox proportional hazards models determined the effects of multiple factors on disease-free survival (DFS) and overall survival (OS). One nomogram was developed to predict DFS and OS of stage I patients. Results The multivariate Cox analysis identified MI (P<0.001), lymphocyte-to-monocyte ratio (LMR, P=0.006), and TNM stage (P=0.046) as independent prognostic factors for DFS. Compared with MI, TNM stage, and LMR alone, the nomogram improved the prediction accuracy of both DFS and OS in terms of the Harrell concordance index in the training cohort (0.812, P<0.001 for DFS; 0.810, P<0.001 for OS) and the external validation cohort (0.796, P<0.001 for DFS; 0.791, P<0.001 for OS). In addition, net reclassification (Nomogram vs. TNM-stage, P<0.001 for DFS and OS) and the integrated discrimination (Nomogram vs. TNM stage, P<0.001 for DFS and OS) also validated this improvement. Conclusions The immunoscore-based prognostic nomogram could effectively predict DFS and OS of stage I NSCLC patients and enhance the predictive value of the TNM stage system.
Collapse
Affiliation(s)
- Jiani Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Haoyue Guo
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Rui Mao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Huikang Xie
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Hang Su
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Jiajun Deng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Minglei Yang
- Department of Thoracic Surgery, Hwa Mei Hospital, The University of Chinese Academy of Sciences, Ningbo 315010, China
| | - Biao Han
- Department of Thoracic Surgery, First Hospital of Lanzhou University, Lanzhou 730050, China
| | - Yu Zhang
- Department of Thoracic Surgery, First Hospital of Lanzhou University, Lanzhou 730050, China
| | - Jian Li
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi 510530, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
45
|
Ros-Martínez S, Navas-Carrillo D, Alonso-Romero JL, Orenes-Piñero E. Immunoscore: a novel prognostic tool. Association with clinical outcome, response to treatment and survival in several malignancies. Crit Rev Clin Lab Sci 2020; 57:432-443. [PMID: 32175789 DOI: 10.1080/10408363.2020.1729692] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The predictive accuracy of the traditional staging system for cancer, the American Joint Committee on Cancer/Union Internationale Centre le Cancer (AJCC/UICC) classification of malignant tumors, is based on disease progression as a tumor cell-autonomous process, regardless the effects of the host immune response. The natural history of a tumor includes different phases of growth, migration and invasion. During these phases, tumor cells interact with their microenvironment and are influenced by signals from stromal, endothelial, inflammatory and immune cells. Indeed, tumors are often infiltrated by defensive cells such as lymphocytes, macrophages or mast cells and it has been shown extensively that lymphocytes may control cancer outcome, as evidenced in several human malignancies. Increasing evidence suggests that cancer progression is strongly influenced by host immune response, which is represented by immune cell infiltrates. The T-lymphocyte-based immunoscore (IS) has proved to be a prognostic factor in human malignancies such as colon, pancreas and lung cancer, hepatocellular carcinoma, melanoma and even brain metastases. Although the IS was initially established to evaluate the prognosis of stage I/II/III colon cancer patients, its association with clinical outcomes and survival has been shown in other malignancies. The aim of this review is to analyze the association of IS with prognosis, survival and response to therapy in different tumor types.
Collapse
Affiliation(s)
- Silverio Ros-Martínez
- Department of Oncology, Hospital Clínico Universitario Virgen de la Arrixaca, (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| | | | - José Luis Alonso-Romero
- Department of Oncology, Hospital Clínico Universitario Virgen de la Arrixaca, (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
| |
Collapse
|
46
|
Sui Q, Zheng J, Liu D, Peng J, Ou Q, Tang J, Li Y, Kong L, Jiang W, Xiao B, Chao X, Pan Z, Zhang H, Ding PR. Dickkopf-related protein 1, a new biomarker for local immune status and poor prognosis among patients with colorectal liver Oligometastases: a retrospective study. BMC Cancer 2019; 19:1210. [PMID: 31830954 PMCID: PMC6909492 DOI: 10.1186/s12885-019-6399-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
Background It was reported that tumor-expressed dickkopf-related (DKK) proteins affect micro-environment. However, the influence of DKK1 on colorectal cancer (CRC) liver oligometastases (CRCLOM) remains unclear. Methods CRC cases after resection of liver oligometastases were enrolled in Sun Yat-Sen University Cancer Center with intact clinical data. Serum DKK1 was detected by ELISA assay. Immunofluorescent staining examination for CD3 and CD8 in slices were also conducted. Results Among 65 patients included, the recurrence-free survival (RFS) and overall survival (OS) were significantly better in the low serum DKK1 group (RFS: P = 0.021; OS: P = 0.043). DKK1 was overexpressed in stage IV CRC patients in TCGA data. The number of CD8+ tumor-infiltrating lymphocytes (TILs) in invasive margin of CRC liver oligometastases was significantly higher in low serum DKK1 group (P = 0.042). Conclusion Elevated serum DKK1 level was associated with poorer RFS and OS, and less CD8+ TILs in invasive margin in CRC liver oligometastases. DKK1 might serve as a supplementalprognostic factor for clinical risk score and a potential target for immunotherapy.
Collapse
Affiliation(s)
- Qiaoqi Sui
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Jian Zheng
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dingxin Liu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Jianhong Peng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Qingjian Ou
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jinghua Tang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yuan Li
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Lingheng Kong
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Wu Jiang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Binyi Xiao
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xue Chao
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhizhong Pan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China. .,State Key Laboratory of Oncology in South China, Guangzhou, 510060, China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Huizhong Zhang
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China. .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Pei-Rong Ding
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China. .,State Key Laboratory of Oncology in South China, Guangzhou, 510060, China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
47
|
Alexander PG, McMillan DC, Park JH. The local inflammatory response in colorectal cancer - Type, location or density? A systematic review and meta-analysis. Cancer Treat Rev 2019; 83:101949. [PMID: 31869737 DOI: 10.1016/j.ctrv.2019.101949] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The host anti-tumour inflammatory response is a strong prognostic indicator, and tumour infiltrating lymphocytes (TILs) are believed to have a complimentary role alongside TNM assessment in dictating future management. However, there is wide disagreement regarding the most efficacious and cost-effective method of assessment. METHODS A comprehensive literature search was performed of EMBASE, MedLine and PubMed as well as an assessment of references to identify all relevant studies relating to the assessment of the peri-tumoural inflammatory response or TILs and prognosis in colorectal cancer (CRC). A meta-analysis was performed of 67 studies meeting the REMARK criteria using RevMan software. RESULTS Intratumoural assessment of both CD3 and CD8 in CRC were significant for disease-free survival (DFS) (combined HRs 0.46; 95%CI: 0.39-0.54 and 0.54; 95%CI: 0.45-0.65), as well as overall survival (OS) and disease-specific survival (DSS). The same was true for assessment of CD3 and CD8 at the invasive margin (DFS: combined HRs 0.45; 95%CI: 0.33-0.61 and 0.51; 95%CI: 0.41-0.62). However, similar fixed effects summaries were also observed for H&E-based methods, like Klintrup-Makinen grade (DFS: HR 0.62; 95%CI: 0.43-0.88). Furthermore, inflammatory assessments were independent of MSI status. CONCLUSION The evidence suggests that it is the density of a co-ordinated local inflammatory infiltrate that confers survival benefit, rather than any individual immune cell subtype. Furthermore, the location of individual cells within the tumour microenvironment does not appear to influence survival. The authors advocate a standardised assessment of the local inflammatory response, but caution against emphasizing the importance of any individual immune cell subtype.
Collapse
Affiliation(s)
| | | | - James H Park
- School of Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
48
|
Immune Cell Infiltration in the Microenvironment of Liver Oligometastasis from Colorectal Cancer: Intratumoural CD8/CD3 Ratio Is a Valuable Prognostic Index for Patients Undergoing Liver Metastasectomy. Cancers (Basel) 2019; 11:cancers11121922. [PMID: 31810350 PMCID: PMC6966431 DOI: 10.3390/cancers11121922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Background: A comprehensive investigation into immune cell infiltration provides more accurate and reliable prognostic information for patients with colorectal liver oligometastases (CLO) after liver metastasectomy. Methods: Simultaneous detection of the immune constituents CD3+, CD8+, Foxp3+ T, and α-SMA+ cells in the liver oligometastasis of 133 patients was conducted using a four-colour immunohistochemical multiplex technique. Immune cells were quantified, and tumour-infiltrating lymphocyte (TIL) ratios were subsequently calculated. Correlation analysis was performed using Pearson’s correlation. Recurrence-free survival (RFS) and overall survival (OS) for TIL ratios were analysed using the Kaplan–Meier method and Cox regression models. Results: Significantly fewer CD3+, CD8+, and Foxp3+ T cells were observed in the intratumoural region than in the peritumoural region of liver metastases. CD3+, CD8+, Foxp3+ T, and α-SMA+ cells showed significantly positive correlations with each other both in the intratumoural and peritumoural regions of liver metastases. Only the CD8/CD3 TIL ratio demonstrated a positive correlation between intratumoural and peritumoural regions of liver metastases (r = 0.541, p < 0.001). Patients with high intratumoural CD8/CD3 ratios had significantly longer 3-year RFS (59.0% vs. 47.4%, p = 0.035) and 3-year OS rates (83.3% vs. 65.8%, p = 0.007) than those with low intratumoural CD8/CD3 ratios. Multivariate analyses revealed that the intratumoural CD8/CD3 ratio was independently associated with RFS (HR = 0.593; 95% CI = 0.357–0.985; p = 0.043) and OS (HR = 0.391; 95% CI = 0.193–0.794; p = 0.009). Conclusion: These findings offer a better understanding of the prognostic value of immune cell infiltration on liver oligometastasis from colorectal cancer.
Collapse
|
49
|
Yang S, Liu T, Cheng Y, Bai Y, Liang G. Immune cell infiltration as a biomarker for the diagnosis and prognosis of digestive system cancer. Cancer Sci 2019; 110:3639-3649. [PMID: 31605436 PMCID: PMC6890448 DOI: 10.1111/cas.14216] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/14/2019] [Accepted: 09/19/2019] [Indexed: 12/24/2022] Open
Abstract
The digestive system cancers are aggressive cancers with the highest mortality worldwide. In this study, we undertook a systematic investigation of the tumor immune microenvironment to identify diagnostic and prognostic biomarkers. The fraction of 22 immune cell types of patients were estimated using CIBERSORT. The least absolute shrinkage and selection operator (LASSO) analysis was carried out to identify important immune predictors. By comparing immune cell compositions in 801 tumor samples and 46 normal samples, we constructed the diagnostic immune score (DIS), showing high specificity and sensitivity in the training (area under the receiver operating characteristic curve [AUC] = 0.929), validation (AUC = 0.935), and different cancer type cohorts (AUC > 0.70 for all). We also established the prognostic immune score (PIS), which was an effective prognostic factor for relapse‐free survival in training, validation, and entire cohorts (P < .05). In addition, PIS provided a higher net benefit than TNM stage. A composite nomogram was built based on PIS and patients' clinical information with well‐fitted calibration curves (c‐index = 0.84). We further used other cohorts from Gene Expression Omnibus databases and obtained similar results, confirming the reliability and validity of the DIS and PIS. In addition, the unsupervised clustering analysis using immune cell proportions revealed 6 immune subtypes, suggesting that the immune types defined as having relatively high levels of M0 or/and M1 macrophages were the high‐risk subtypes of relapse. In conclusion, this study comprehensively analyzed the tumor immune microenvironment and identified DIS and PIS for digestive system cancers.
Collapse
Affiliation(s)
- Sheng Yang
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, China
| | - Tong Liu
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, China
| | - Yanping Cheng
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, China
| | - Yunfei Bai
- School of Biological Sciences and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Geyu Liang
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, China
| |
Collapse
|
50
|
Zhao Y, Ge X, He J, Cheng Y, Wang Z, Wang J, Sun L. The prognostic value of tumor-infiltrating lymphocytes in colorectal cancer differs by anatomical subsite: a systematic review and meta-analysis. World J Surg Oncol 2019; 17:85. [PMID: 31118034 PMCID: PMC6532263 DOI: 10.1186/s12957-019-1621-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/23/2019] [Indexed: 01/15/2023] Open
Abstract
PURPOSE In colorectal cancer (CRC), whether the immune score can be used to predict the clinical prognosis of the patient has not been completely established. Besides, the prognostic values of tumor-infiltrating lymphocytes (TILs) in different anatomical locations, counting sites, and subtypes have been controversial. The purpose of this meta-analysis is to analyze and determine the prognostic value of TILs indices including TIL subsets, infiltrating sites, and anatomical sites. METHODS Relevant literature was obtained by searching PubMed and Google Scholar. The pooled hazard ratio (HR) of the overall survival (OS), disease-free survival (DFS), and cancer-specific survival (CSS) was computed to investigate the prognostic significance of CD3+, CD8+, CD45RO+, and FOXP3+ T cells. RESULTS A total of 22 studies involving 5108 patients were included in the meta-analysis. In CC, based on T cell subtypes analysis, the final results indicated that CD8+ and FOXP3+ infiltrating cells, but not CD3+ T cells were prognostic markers for DFS and OS. In addition, with regard to the counting location of TILs, subgroup analysis revealed that only high FOXP3+ infiltrates in the tumor stroma (ST) were significantly associated with OS (HR = 0.38, 95% confidence interval (CI) = 0.22-0.67, P = 0.0007), whereas in invasive margin (IM), high density of CD3+ infiltrating cells indicated increased DFS (HR = 0.76, 95% CI = 0.62-0.93, P = 0.008). At the tumor center (TC), high CD8+ T cells infiltration was associated with improved DFS (HR = 0.50, 95% CI = 0.38-0.65, P < 0.00001). In RC, whether CSS or OS, high-density TIL was associated with improved prognosis. CONCLUSION In a single counting site, high-density TILs reflect favorable prognostic value in CC or RC. For CC, more prospective studies are needed to verify whether different anatomical sites affect the distribution of TILs and thus the prognosis of patients. For RC, further studies should analyze the prognostic value of the immune score.
Collapse
Affiliation(s)
- Yamei Zhao
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xiaoxu Ge
- Department of Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jiawei He
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yi Cheng
- Departments of Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zhanhuai Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jian Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China.
| | - Lifeng Sun
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|