1
|
Acero-Bedoya S, Higgs EF, Martinez AC, Tonea R, Gajewski TF. Dendritic cell-intrinsic PTPN22 negatively regulates antitumor immunity and impacts anti-PD-L1 efficacy. J Immunother Cancer 2024; 12:e009588. [PMID: 39461876 DOI: 10.1136/jitc-2024-009588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Individuals with a loss-of-function single-nucleotide polymorphism in the gene encoding PTPN22 have an increased risk for autoimmune diseases, and patients with cancer with such alleles may respond better to checkpoint blockade immunotherapy. Studies in PTPN22 knockout (KO) mice have established it as a negative regulator of T cell responses in cancer models. However, the role of PTPN22 in distinct immune cell compartments, such as dendritic cells (DCs), remains undefined. METHODS We developed a novel PTPN22 conditional KO (cKO) mouse model that enables specific deletion in CD11c+ DCs by crossing to CD11c-Cre transgenic mice. Antitumor immunity was characterized using the B16.SIY and MC38.SIY cancer models and immune profiles of relevant tissues were evaluated by spectral flow cytometry. Antigen uptake, processing, and presentation, as well as DC proliferation to Flt3L, were characterized ex vivo. RESULTS Deletion of PTPN22 in DCs resulted in augmented antitumor immunity in multiple syngeneic tumor models. Tumor antigen-specific CD8+ T cells were increased in the tumor microenvironment (TME) of PTPN22 cKO mice and improved tumor control was CD8+ T cell-dependent. Augmented T cell priming was also detected at early time points in the draining lymph nodes, and these effects were correlated with an increased number of proliferating CD103+ DCs, also seen in the TME. In vitro studies revealed increased DC proliferation in response to Flt3L, as well as increased antigen processing and presentation. PTPN22 cKO mice bearing MC38 parental tumors showed combinatorial benefit with anti-PD-L1 therapy. CONCLUSIONS Deletion of PTPN22 in DCs is sufficient to drive an augmented tumor antigen-specific T cell response, resulting in enhanced tumor control. PTPN22 negatively regulates DC proliferation and antigen processing and presentation. Our work argues that PTPN22 is an attractive therapeutic target for cancer immunotherapy and highlights the potential to modulate antitumor immunity through the manipulation of DC signaling.
Collapse
Affiliation(s)
- Santiago Acero-Bedoya
- Pathology, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Emily F Higgs
- Pathology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Anna C Martinez
- Pathology, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Ruxandra Tonea
- Pathology, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Thomas F Gajewski
- Pathology and Medicine, The University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| |
Collapse
|
2
|
Liu Y, Peng C, Brorson IS, O'Mahony DG, Kelly RL, Heng YJ, Baker GM, Grenaker Alnæs GI, Bodelon C, Stover DG, Van Allen EM, Eliassen AH, Kristensen VN, Tamimi RM, Kraft P. Germline polygenic risk scores are associated with immune gene expression signature and immune cell infiltration in breast cancer. Am J Hum Genet 2024; 111:2150-2163. [PMID: 39270649 PMCID: PMC11480808 DOI: 10.1016/j.ajhg.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
The tumor immune microenvironment (TIME) plays key roles in tumor progression and response to immunotherapy. Previous studies have identified individual germline variants associated with differences in TIME. Here, we hypothesize that common variants associated with breast cancer risk or cancer-related traits, represented by polygenic risk scores (PRSs), may jointly influence immune features in TIME. We derived 154 immune traits from bulk gene expression profiles of 764 breast tumors and 598 adjacent normal tissue samples from 825 individuals with breast cancer in the Nurses' Health Study (NHS) and NHSII. Immunohistochemical staining of four immune cell markers were available for a subset of 205 individuals. Germline PRSs were calculated for 16 different traits including breast cancer, autoimmune diseases, type 2 diabetes, ages at menarche and menopause, body mass index (BMI), BMI-adjusted waist-to-hip ratio, alcohol intake, and tobacco smoking. Overall, we identified 44 associations between germline PRSs and immune traits at false discovery rate q < 0.25, including 3 associations with q < 0.05. We observed consistent inverse associations of inflammatory bowel disease (IBD) and Crohn disease (CD) PRSs with interferon signaling and STAT1 scores in breast tumor and adjacent normal tissue; these associations were replicated in a Norwegian cohort. Inverse associations were also consistently observed for IBD PRS and B cell abundance in normal tissue. We also observed positive associations between CD PRS and endothelial cell abundance in tumor. Our findings suggest that the genetic mechanisms that influence immune-related diseases are also associated with TIME in breast cancer.
Collapse
Affiliation(s)
- Yuxi Liu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cheng Peng
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ina S Brorson
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Denise G O'Mahony
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rebecca L Kelly
- Cancer Prevention Fellowship Program, National Cancer Institute, Rockville, MD, USA; Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Yujing J Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Gabrielle M Baker
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Grethe I Grenaker Alnæs
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Clara Bodelon
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Daniel G Stover
- Division of Medical Oncology, Stefanie Spielman Comprehensive Breast Center, Columbus, OH, USA; Department of Biomedical Informatics, Ohio State University, Columbus, OH, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - A Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
3
|
Skelly DA, Graham JP, Cheng M, Furuta M, Walter A, Stoklasek TA, Yang H, Stearns TM, Poirion O, Zhang JG, Grassmann JDS, Luo D, Flynn WF, Courtois ET, Chang CH, Serreze DV, Menghi F, Reinholdt LG, Liu ET. Mapping the genetic landscape establishing a tumor immune microenvironment favorable for anti-PD-1 response in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603136. [PMID: 39071392 PMCID: PMC11275897 DOI: 10.1101/2024.07.11.603136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Identifying host genetic factors modulating immune checkpoint inhibitor (ICI) efficacy has been experimentally challenging because of variations in both host and tumor genomes, differences in the microbiome, and patient life exposures. Utilizing the Collaborative Cross (CC) multi-parent mouse genetic resource population, we developed an approach that fixes the tumor genomic configuration while varying host genetics. With this approach, we discovered that response to anti-PD-1 (aPD1) immunotherapy was significantly heritable in four distinct murine tumor models (H2 between 0.18-0.40). For the MC38 colorectal carcinoma system (H2 = 0.40), we mapped four significant ICI response quantitative trait loci (QTL) localized to mouse chromosomes (mChr) 5, 9, 15 and 17, and identified significant epistatic interactions between specific QTL pairs. Differentially expressed genes within these QTL were highly enriched for immune genes and pathways mediating allograft rejection and graft vs host disease. Using a cross species analytical approach, we found a core network of 48 genes within the four QTLs that showed significant prognostic value for overall survival in aPD1 treated human cohorts that outperformed all other existing validated immunotherapy biomarkers, especially in human tumors of the previously defined immune subtype 4. Functional blockade of two top candidate immune targets within the 48 gene network, GM-CSF and high affinity IL-2/IL-15 signaling, completely abrogated the MC38 tumor transcriptional response to aPD1 therapy in vivo. Thus, we have established a powerful cross species in vivo platform capable of uncovering host genetic factors that establish the tumor immune microenvironment configuration propitious for ICI response.
Collapse
Affiliation(s)
- Daniel A. Skelly
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - John P. Graham
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | | | - Mayuko Furuta
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Andrew Walter
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | | | | | | | - Olivier Poirion
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Ji-Gang Zhang
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | | | - Diane Luo
- Single Cell Biology Lab, The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - William F. Flynn
- Single Cell Biology Lab, The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Elise T. Courtois
- Single Cell Biology Lab, The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- OB/Gyn Department, UConn Health, Farmington, CT, USA
| | - Chih-Hao Chang
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - David V. Serreze
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - Francesca Menghi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Edison T. Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| |
Collapse
|
4
|
Smith MR, Wang Y, Dixon CB, D'Agostino R, Liu Y, Ruiz J, Oliver G, Miller LD, Topaloglu U, Chan MD, Farris M, Su J, Mileham KF, Li W, Grayson JM, Lycan T, Xing F. Mutations Associated With High-Grade irAEs in NSCLC Patients Receiving Immunotherapies. Clin Lung Cancer 2024:S1525-7304(24)00141-4. [PMID: 39095235 DOI: 10.1016/j.cllc.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVES Compared to low-grade irAEs, high-grade irAEs are more often dose-limiting and can alter the long-term treatment options for a patient. Predicting the incidence of high-grade irAEs would help with treatment selection and therapeutic drug monitoring. MATERIALS AND METHODS We performed a retrospective study of 430 stage III and IV patients with non-small cell lung cancer (NSCLC) who received an immune checkpoint inhibitor (ICI), either with or without chemotherapy, at a single comprehensive cancer center from 2015 to 2022. The study team retrieved sequencing data and complete clinical information, including detailed irAEs medical records. Fisher's exact test was used to determine the association between mutations and the presence or absence of high-grade irAEs. Patients were analyzed separately based on tumor subtypes and sequencing platforms. RESULTS High-grade and low-grade irAEs occurred in 15.2% and 46.2% of patients, respectively. Respiratory and gastrointestinal irAEs were the 2 most common irAEs. The distribution of patients with or without irAEs was similar between ICI and ICI+chemotherapy-treated patients. By analyzing the mutation data, we identified 5 genes (MYC, TEK, FANCA, FAM123B, and MET) with mutations that were correlated with an increased risk of high-grade irAEs. For the adenocarcinoma subtype, mutations in TEK, MYC, FGF19, RET, and MET were associated with high-grade irAEs; while for the squamous subtype, ERBB2 mutations were associated with high-grade irAEs. CONCLUSION This study is the first to demonstrate that specific tumor mutations correlate with the incidence of high-grade irAEs in patients with NSCLC treated with an ICI, providing molecular guidance for treatment selection and drug monitoring.
Collapse
Affiliation(s)
- Margaret R Smith
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Yuezhu Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Caroline B Dixon
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Ralph D'Agostino
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Yin Liu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Jimmy Ruiz
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - George Oliver
- Department of Pharmacy, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Umit Topaloglu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Michael Farris
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN
| | - Kathryn F Mileham
- Department of Solid Tumor Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Wencheng Li
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Thomas Lycan
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC.
| |
Collapse
|
5
|
Wang Y, Xiong C, Yu W, Zhou M, Shugg TA, Hsu FC, Eadon MT, Su J, Song Q. PCCA variant rs16957301 is a novel AKI risk genotype-specific for patients who receive ICI treatment: Real-world evidence from All of Us cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.20.24309197. [PMID: 38946978 PMCID: PMC11213073 DOI: 10.1101/2024.06.20.24309197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Immune checkpoint inhibitors (ICIs) enhance the immune system's ability to target and destroy cancer cells by blocking inhibitory pathways. Despite their efficacy, these treatments can trigger immune-related adverse events (irAEs), such as acute kidney injury (ICI-AKI), complicating patient management. The genetic predispositions to ICI-AKI are not well understood, necessitating comprehensive genomic studies to identify risk factors and improve therapeutic strategies. Objective To identify genetic predispositions for ICI-AKI using large-scale real-world data. Methods A systematic literature search led to 14 candidate variants related to irAEs. We performed a candidate variant association study with these 14 variants using the All of Us cohort (AoU, v7, cutoff date: 7/1/2022). A cohort for cancer patients receiving ICI and a general cohort were established to evaluate ICI-AKI risk. Logistic regression, adjusted for sex, was used to evaluate the impact of each candidate genotype, separately for self-reported and ancestry-estimated race. Kaplan-Meier survival analysis assessed the genetic effects on AKI-free survival. Results The ICI cohort (n=414) showed a one-year AKI incidence rate of 23.2%, significantly higher than the general cohort (6.5%, n=213,282). The rs16957301 variant (chr13:100324308, T>C) in the PCCA gene was a significant risk genotype for ICI-AKI among self-reported Caucasians (Beta=0.93, Bonferroni-corrected P-value=0.047) and ancestry estimated Caucasians (Beta = 0.94, Bonferroni-corrected P-value=0.044). Self-reported Caucasians with the rs16957301 risk genotypes (TC/CC) developed AKI significantly earlier (3.6 months) compared to the reference genotype (TT, 7.0 months, log-rank P=0.04). Consistent results were found in ancestry-estimated Caucasians. This variant did not present significant AKI risks in the general cohort (Beta: -0.008-0.035, FDR: 0.75-0.99). Conclusion Real-world evidence from the All of Us cohort suggests that, in Caucasians, PCCA variant rs16957301 is a novel AKI risk genotype specific to ICI treatment. Additional studies are warranted to validate rs16957301 as risk marker for AKI in Caucasian patients treated with ICIs and to assess its risk in other ancestral populations.
Collapse
|
6
|
Titmuss E, Yu IS, Pleasance ED, Williamson LM, Mungall K, Mungall AJ, Renouf DJ, Moore R, Jones SJM, Marra MA, Laskin JJ, Savage KJ. Exploration of Germline Correlates and Risk of Immune-Related Adverse Events in Advanced Cancer Patients Treated with Immune Checkpoint Inhibitors. Curr Oncol 2024; 31:1865-1875. [PMID: 38668043 PMCID: PMC11048877 DOI: 10.3390/curroncol31040140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are increasingly used in the treatment of many tumor types, and durable responses can be observed in select populations. However, patients may exhibit significant immune-related adverse events (irAEs) that may lead to morbidity. There is limited information on whether the presence of specific germline mutations may highlight those at elevated risk of irAEs. We evaluated 117 patients with metastatic solid tumors or hematologic malignancies who underwent genomic analysis through the ongoing Personalized OncoGenomics (POG) program at BC Cancer and received an ICI during their treatment history. Charts were reviewed for irAEs. Whole genome sequencing of a fresh biopsy and matched normal specimens (blood) was performed at the time of POG enrollment. Notably, we found that MHC class I alleles in the HLA-B27 family, which have been previously associated with autoimmune conditions, were associated with grade 3 hepatitis and pneumonitis (q = 0.007) in patients treated with combination PD-1/PD-L1 and CTLA-4 inhibitors, and PD-1 inhibitors in combination with IDO-1 inhibitors. These data highlight that some patients may have a genetic predisposition to developing irAEs.
Collapse
Affiliation(s)
- Emma Titmuss
- Department of Medical Oncology, BC Cancer, Vancouver, BC V5Z 4E6, Canada; (E.T.); (D.J.R.); (J.J.L.)
| | - Irene S. Yu
- Department of Medical Oncology, BC Cancer, Surrey, BC V3V 1Z2, Canada;
| | - Erin D. Pleasance
- Canada’s Michael Smith Genome Sciences Centre, Vancouver, BC V5Z 4S6, Canada; (E.D.P.); (A.J.M.); (R.M.); (S.J.M.J.); (M.A.M.)
| | - Laura M. Williamson
- Canada’s Michael Smith Genome Sciences Centre, Vancouver, BC V5Z 4S6, Canada; (E.D.P.); (A.J.M.); (R.M.); (S.J.M.J.); (M.A.M.)
| | - Karen Mungall
- Canada’s Michael Smith Genome Sciences Centre, Vancouver, BC V5Z 4S6, Canada; (E.D.P.); (A.J.M.); (R.M.); (S.J.M.J.); (M.A.M.)
| | - Andrew J. Mungall
- Canada’s Michael Smith Genome Sciences Centre, Vancouver, BC V5Z 4S6, Canada; (E.D.P.); (A.J.M.); (R.M.); (S.J.M.J.); (M.A.M.)
| | - Daniel J. Renouf
- Department of Medical Oncology, BC Cancer, Vancouver, BC V5Z 4E6, Canada; (E.T.); (D.J.R.); (J.J.L.)
- Pancreas Centre BC, Vancouver, BC V5Z 1G1, Canada
| | - Richard Moore
- Canada’s Michael Smith Genome Sciences Centre, Vancouver, BC V5Z 4S6, Canada; (E.D.P.); (A.J.M.); (R.M.); (S.J.M.J.); (M.A.M.)
| | - Steven J. M. Jones
- Canada’s Michael Smith Genome Sciences Centre, Vancouver, BC V5Z 4S6, Canada; (E.D.P.); (A.J.M.); (R.M.); (S.J.M.J.); (M.A.M.)
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, Vancouver, BC V5Z 4S6, Canada; (E.D.P.); (A.J.M.); (R.M.); (S.J.M.J.); (M.A.M.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Janessa J. Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC V5Z 4E6, Canada; (E.T.); (D.J.R.); (J.J.L.)
| | - Kerry J. Savage
- Department of Medical Oncology, BC Cancer, Vancouver, BC V5Z 4E6, Canada; (E.T.); (D.J.R.); (J.J.L.)
| |
Collapse
|
7
|
de Joode K, Heersche N, Basak EA, Bins S, van der Veldt AAM, van Schaik RHN, Mathijssen RHJ. Review - The impact of pharmacogenetics on the outcome of immune checkpoint inhibitors. Cancer Treat Rev 2024; 122:102662. [PMID: 38043396 DOI: 10.1016/j.ctrv.2023.102662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
The development of immune checkpoint inhibitors (ICIs) has a tremendous effect on the treatment options for multiple types of cancer. Nonetheless, there is a large interpatient variability in response, survival, and the development of immune-related adverse events (irAEs). Pharmacogenetics is the general term for germline genetic variations, which may cause the observed interindividual differences in response or toxicity to treatment. These genetic variations can either be single-nucleotide polymorphisms (SNPs) or structural variants, such as gene deletions, amplifications or rearrangements. For ICIs, pharmacogenetic variation in the human leukocyte antigen molecules has also been studied with regard to treatment outcome. This review presents a summary of the literature regarding the pharmacogenetics of ICI treatment, discusses the most important known genetic variations and offers recommendations on the application of pharmacogenetics for ICI treatment.
Collapse
Affiliation(s)
- Karlijn de Joode
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Niels Heersche
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Clinical Chemistry, Erasmus MC, Erasmus University Hospital, Rotterdam, the Netherlands
| | - Edwin A Basak
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Astrid A M van der Veldt
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, Erasmus University Hospital, Rotterdam, the Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC, Erasmus University Hospital, Rotterdam, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
8
|
Vu TT, Kim K, Manna M, Thomas J, Remaily BC, Montgomery EJ, Costa T, Granchie L, Xie Z, Guo Y, Chen M, Castillo AMM, Kulp SK, Mo X, Nimmagadda S, Gregorevic P, Owen DH, Ganesan LP, Mace TA, Coss CC, Phelps MA. Decoupling FcRn and tumor contributions to elevated immune checkpoint inhibitor clearance in cancer cachexia. Pharmacol Res 2024; 199:107048. [PMID: 38145833 PMCID: PMC10798214 DOI: 10.1016/j.phrs.2023.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
High baseline clearance of immune checkpoint inhibitors (ICIs), independent of dose or systemic exposure, is associated with cachexia and poor outcomes in cancer patients. Mechanisms linking ICI clearance, cachexia and ICI therapy failure are unknown. Here, we evaluate in four murine models and across multiple antibodies whether altered baseline catabolic clearance of administered antibody requires a tumor and/or cachexia and whether medical reversal of cachexia phenotype can alleviate altered clearance. Key findings include mild cachexia phenotype and lack of elevated pembrolizumab clearance in the MC38 tumor-bearing model. We also observed severe cachexia and decreased, instead of increased, baseline pembrolizumab clearance in the tumor-free cisplatin-induced cachexia model. Liver Fcgrt expression correlated with altered baseline catabolic clearance, though elevated clearance was still observed with antibodies having no (human IgA) or reduced (human H310Q IgG1) FcRn binding. We conclude cachexia phenotype coincides with altered antibody clearance, though tumor presence is neither sufficient nor necessary for altered clearance in immunocompetent mice. Magnitude and direction of clearance alteration correlated with hepatic Fcgrt, suggesting changes in FcRn expression and/or recycling function may be partially responsible, though factors beyond FcRn also contribute to altered clearance in cachexia.
Collapse
Affiliation(s)
- Trang T Vu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Kyeongmin Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Millennium Manna
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Justin Thomas
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Bryan C Remaily
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Emma J Montgomery
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Travis Costa
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Lauren Granchie
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Zhiliang Xie
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Yizhen Guo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Min Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Alyssa Marie M Castillo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Samuel K Kulp
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Xiaokui Mo
- Center for Biostatistics, Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, OSUCCC - James, The Ohio State University, Columbus, OH , USA
| | - Sridhar Nimmagadda
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul Gregorevic
- Department of Anatomy & Physiology and Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Dwight H Owen
- Pelotonia Institute for Immuno-Oncology, OSUCCC - James, The Ohio State University, Columbus, OH , USA; The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Latha P Ganesan
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Thomas A Mace
- Pelotonia Institute for Immuno-Oncology, OSUCCC - James, The Ohio State University, Columbus, OH , USA; The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Christopher C Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - Mitch A Phelps
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, OSUCCC - James, The Ohio State University, Columbus, OH , USA; The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Ibrahim M, Illa-Bochaca I, Fa’ak F, Monson KR, Ferguson R, Lyu C, Vega-Saenz de Miera E, Johannet P, Chou M, Mastroianni J, Darvishian F, Kirchhoff T, Zhong J, Krogsgaard M, Osman I. Kinase Insert Domain Receptor Q472H Pathogenic Germline Variant Impacts Melanoma Tumor Growth and Patient Treatment Outcomes. Cancers (Basel) 2023; 16:18. [PMID: 38201446 PMCID: PMC10778134 DOI: 10.3390/cancers16010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND We previously reported a higher incidence of a pathogenic germline variant in the kinase insert domain receptor (KDR) in melanoma patients compared to the general population. Here, we dissect the impact of this genotype on melanoma tumor growth kinetics, tumor phenotype, and response to treatment with immune checkpoint inhibitors (ICIs) or targeted therapy. METHODS The KDR genotype was determined and the associations between the KDR Q472H variant (KDR-Var), angiogenesis, tumor immunophenotype, and response to MAPK inhibition or ICI treatment were examined. Melanoma B16 cell lines were transfected with KDR-Var or KDR wild type (KDR-WT), and the differences in tumor kinetics were evaluated. We also examined the impact of KDR-Var on the response of melanoma cells to a combination of VEGFR inhibition with MAPKi. RESULTS We identified the KDR-Var genotype in 81/489 (37%) patients, and it was associated with a more angiogenic (p = 0.003) and immune-suppressive tumor phenotype. KDR-Var was also associated with decreased PFS to MAPKi (p = 0.022) and a trend with worse PFS to anti-PD1 therapy (p = 0.06). KDR-Var B16 murine models had increased average tumor volume (p = 0.0027) and decreased CD45 tumor-infiltrating lymphocytes (p = 0.0282). The anti-VEGFR treatment Lenvatinib reduced the tumor size of KDR-Var murine tumors (p = 0.0159), and KDR-Var cells showed synergistic cytotoxicity to the combination of dabrafenib and lenvatinib. CONCLUSIONS Our data demonstrate a role of germline KDR-Var in modulating melanoma behavior, including response to treatment. Our data also suggest that anti-angiogenic therapy might be beneficial in patients harboring this genotype, which needs to be tested in clinical trials.
Collapse
Affiliation(s)
- Milad Ibrahim
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
| | - Irineu Illa-Bochaca
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
| | - Faisal Fa’ak
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
| | - Kelsey R. Monson
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (K.R.M.); (R.F.); (C.L.); (T.K.); (J.Z.)
| | - Robert Ferguson
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (K.R.M.); (R.F.); (C.L.); (T.K.); (J.Z.)
| | - Chen Lyu
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (K.R.M.); (R.F.); (C.L.); (T.K.); (J.Z.)
| | - Eleazar Vega-Saenz de Miera
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
| | - Paul Johannet
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
| | - Margaret Chou
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
| | - Justin Mastroianni
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA (M.K.)
| | - Farbod Darvishian
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA (M.K.)
| | - Tomas Kirchhoff
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (K.R.M.); (R.F.); (C.L.); (T.K.); (J.Z.)
- Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, 522 First Ave, New York, NY 10016, USA
| | - Judy Zhong
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (K.R.M.); (R.F.); (C.L.); (T.K.); (J.Z.)
- Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, 522 First Ave, New York, NY 10016, USA
| | - Michelle Krogsgaard
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA (M.K.)
- Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, 522 First Ave, New York, NY 10016, USA
| | - Iman Osman
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
- Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, 522 First Ave, New York, NY 10016, USA
| |
Collapse
|
10
|
Ferguson R, Chat V, Morales L, Simpson D, Monson KR, Cohen E, Zusin S, Madonna G, Capone M, Simeone E, Pavlick A, Luke JJ, Gajewski TF, Osman I, Ascierto P, Weber J, Kirchhoff T. Germline immunomodulatory expression quantitative trait loci (ieQTLs) associated with immune-related toxicity from checkpoint inhibition. Eur J Cancer 2023; 189:112923. [PMID: 37301715 PMCID: PMC11000635 DOI: 10.1016/j.ejca.2023.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Immune checkpoint inhibition (ICI) has improved clinical outcomes for metastatic melanoma patients; however, 65-80% of patients treated with ICI experience immune-related adverse events (irAEs). Given the plausible link of irAEs with underlying host immunity, we explored whether germline genetic variants controlling the expression of 42 immunomodulatory genes were associated with the risk of irAEs in melanoma patients treated with the single-agent anti-CTLA-4 antibody ipilimumab (IPI). METHODS We identified 42 immunomodulatory expression quantitative trait loci (ieQTLs) most significantly associated with the expression of 382 immune-related genes. These germline variants were genotyped in IPI-treated melanoma patients, collected as part of a multi-institutional collaboration. We tested the association of ieQTLs with irAEs in a discovery cohort of 95 patients, followed by validation in an additional 97 patients. RESULTS We found that the alternate allele of rs7036417, a variant linked to increased expression of SYK, was strongly associated with an increased risk of grade 3-4 toxicity [odds ratio (OR) = 7.46; 95% confidence interval (CI) = 2.65-21.03; p = 1.43E-04]. This variant was not associated with response (OR = 0.90; 95% CI = 0.37-2.21; p = 0.82). CONCLUSION We report that rs7036417 is associated with increased risk of severe irAEs, independent of IPI efficacy. SYK plays an important role in B-cell/T-cell expansion, and increased pSYK has been reported in patients with autoimmune disease. The association between rs7036417 and IPI irAEs in our data suggests a role of SYK overexpression in irAE development. These findings support the hypothesis that inherited variation in immune-related pathways modulates ICI toxicity and suggests SYK as a possible future target for therapies to reduce irAEs.
Collapse
Affiliation(s)
- Robert Ferguson
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA; Departments of Population Health and Environmental Medicine, New York University-Grossman School of Medicine, New York, NY, USA; The Interdisciplinary Melanoma Cooperative Group, New York University-Grossman School of Medicine, New York, NY, USA
| | - Vylyny Chat
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA; Departments of Population Health and Environmental Medicine, New York University-Grossman School of Medicine, New York, NY, USA; The Interdisciplinary Melanoma Cooperative Group, New York University-Grossman School of Medicine, New York, NY, USA
| | - Leah Morales
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA; Departments of Population Health and Environmental Medicine, New York University-Grossman School of Medicine, New York, NY, USA; The Interdisciplinary Melanoma Cooperative Group, New York University-Grossman School of Medicine, New York, NY, USA
| | - Danny Simpson
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA; Departments of Population Health and Environmental Medicine, New York University-Grossman School of Medicine, New York, NY, USA; The Interdisciplinary Melanoma Cooperative Group, New York University-Grossman School of Medicine, New York, NY, USA
| | - Kelsey R Monson
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA; Departments of Population Health and Environmental Medicine, New York University-Grossman School of Medicine, New York, NY, USA; The Interdisciplinary Melanoma Cooperative Group, New York University-Grossman School of Medicine, New York, NY, USA
| | - Elisheva Cohen
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA; Departments of Population Health and Environmental Medicine, New York University-Grossman School of Medicine, New York, NY, USA; The Interdisciplinary Melanoma Cooperative Group, New York University-Grossman School of Medicine, New York, NY, USA
| | - Sarah Zusin
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA; Departments of Population Health and Environmental Medicine, New York University-Grossman School of Medicine, New York, NY, USA; The Interdisciplinary Melanoma Cooperative Group, New York University-Grossman School of Medicine, New York, NY, USA
| | - Gabriele Madonna
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Mariaelena Capone
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Ester Simeone
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Anna Pavlick
- Division of Hematology & Medical Oncology, the Cutaneous Oncology Program, Weill Cornell Medicine and New York-Presbyterian, New York, USA
| | - Jason J Luke
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Thomas F Gajewski
- Department of Pathology, University of Chicago, Chicago, IL, USA; Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA; Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Iman Osman
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA; The Interdisciplinary Melanoma Cooperative Group, New York University-Grossman School of Medicine, New York, NY, USA; Department of Medicine, New York University-Grossman School of Medicine, New York, NY, USA; Ronald O. Perelman Department of Dermatology, New York University-Grossman School of Medicine, New York, NY, USA
| | - Paolo Ascierto
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Jeffrey Weber
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA; The Interdisciplinary Melanoma Cooperative Group, New York University-Grossman School of Medicine, New York, NY, USA; Department of Medicine, New York University-Grossman School of Medicine, New York, NY, USA
| | - Tomas Kirchhoff
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA; Departments of Population Health and Environmental Medicine, New York University-Grossman School of Medicine, New York, NY, USA; The Interdisciplinary Melanoma Cooperative Group, New York University-Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Talwar JV, Laub D, Pagadala MS, Castro A, Lewis M, Luebeck GE, Gorman BR, Pan C, Dong FN, Markianos K, Teerlink CC, Lynch J, Hauger R, Pyarajan S, Tsao PS, Morris GP, Salem RM, Thompson WK, Curtius K, Zanetti M, Carter H. Autoimmune alleles at the major histocompatibility locus modify melanoma susceptibility. Am J Hum Genet 2023; 110:1138-1161. [PMID: 37339630 PMCID: PMC10357503 DOI: 10.1016/j.ajhg.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Autoimmunity and cancer represent two different aspects of immune dysfunction. Autoimmunity is characterized by breakdowns in immune self-tolerance, while impaired immune surveillance can allow for tumorigenesis. The class I major histocompatibility complex (MHC-I), which displays derivatives of the cellular peptidome for immune surveillance by CD8+ T cells, serves as a common genetic link between these conditions. As melanoma-specific CD8+ T cells have been shown to target melanocyte-specific peptide antigens more often than melanoma-specific antigens, we investigated whether vitiligo- and psoriasis-predisposing MHC-I alleles conferred a melanoma-protective effect. In individuals with cutaneous melanoma from both The Cancer Genome Atlas (n = 451) and an independent validation set (n = 586), MHC-I autoimmune-allele carrier status was significantly associated with a later age of melanoma diagnosis. Furthermore, MHC-I autoimmune-allele carriers were significantly associated with decreased risk of developing melanoma in the Million Veteran Program (OR = 0.962, p = 0.024). Existing melanoma polygenic risk scores (PRSs) did not predict autoimmune-allele carrier status, suggesting these alleles provide orthogonal risk-relevant information. Mechanisms of autoimmune protection were neither associated with improved melanoma-driver mutation association nor improved gene-level conserved antigen presentation relative to common alleles. However, autoimmune alleles showed higher affinity relative to common alleles for particular windows of melanocyte-conserved antigens and loss of heterozygosity of autoimmune alleles caused the greatest reduction in presentation for several conserved antigens across individuals with loss of HLA alleles. Overall, this study presents evidence that MHC-I autoimmune-risk alleles modulate melanoma risk unaccounted for by current PRSs.
Collapse
Affiliation(s)
- James V Talwar
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - David Laub
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Meghana S Pagadala
- Biomedical Science Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrea Castro
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - McKenna Lewis
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Georg E Luebeck
- Public Health Sciences Division, Herbold Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Booz Allen Hamilton, Inc., McLean, VA 22102, USA
| | - Cuiping Pan
- Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto, CA, USA
| | - Frederick N Dong
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Booz Allen Hamilton, Inc., McLean, VA 22102, USA
| | - Kyriacos Markianos
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02115, USA
| | - Craig C Teerlink
- Department of Veterans Affairs Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Julie Lynch
- Department of Veterans Affairs Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Richard Hauger
- VA San Diego Healthcare System, La Jolla, CA, USA; Center for Behavioral Genetics of Aging, University of California San Diego, La Jolla, CA, USA; Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Department of Medicine, Brigham Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Philip S Tsao
- Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto, CA, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald P Morris
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rany M Salem
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Wesley K Thompson
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| | - Kit Curtius
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; The Laboratory of Immunology, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, Division of Hematology and Oncology, University of California San Diego, La Jolla, CA 92093, USA
| | - Hannah Carter
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Xin Z, You L, Li J, Na F, Chen M, Song J, Bai L, Chen H, Zhai J, Zhou X, Zhou J, Ying B. Immunogenetic polymorphisms predict therapeutic efficacy and survival outcomes in tumor patients receiving PD-1/PD-L1 blockade. Int Immunopharmacol 2023; 121:110469. [PMID: 37311357 DOI: 10.1016/j.intimp.2023.110469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND While immune checkpoint inhibitors (ICIs) demonstrate remarkable clinical responses, only a small subset of patients obtains benefits. Genes linked to the tumor immune system are confirmed to be critical for the treatment of ICIs, and their polymorphisms can contribute to ICI efficacy. Here, we examined the potential of immunogenetic variations to predict the efficacy and survival of the PD-1/PD-L1 blockade. METHODS Cancerous patients receiving PD-1/PD-L1 blockade were recruited and followed up. Pivotal genes related to tumor-immunity were filtered through a protein-protein interaction network and the degree algorithm in Cytoscape. Finally, 39 genetic variants were genotyped through multiplex genotyping assays. Association analyses between variants and ICI efficacy and progression-free survival (PFS) were performed. RESULTS Overall, 318 patients were ultimately enrolled. Hence, three immunogenetic variants were identified as predictors of PD-1/PD-L1 blockade response. Mutant alleles from ATG7 rs7625881, CD274 rs2297136, and TLR4 rs1927911 were all at increased risk of tumor progression following ICI therapy (OR: 1.475, 1.641, 1.462, respectively; P value: 0.028, 0.017, 0.027, respectively). Significant immunogenetic variants also attained similar trends in the PD-1 blockade, lung cancer, or lung cancer using PD-1 blockade subgroups. Furthermore, the mutant genotypes of CD274 rs2297136 (GG as the reference: HR: 0.50 (95%CI: 0.29-0.88), P value: 0.015) and TLR4 rs1927911 (AA as the reference: HR: 0.65 (95%CI: 0.47-0.91), P value: 0.012) indicated poorer PFS and were both independent prognostic factors. CONCLUSION Immunogenetic polymorphisms, including ATG7 rs7625881, CD274 rs2297136, and TLR4 rs1927911, were first identified as potential predictors of response to PD-1/PD-L1 blockade in tumor patients.
Collapse
Affiliation(s)
- Zhaodan Xin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Liting You
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China; Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Jin Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Feifei Na
- Department of Thoracic Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Min Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province 570102, PR China
| | - Jiajia Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Ling Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Hao Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Jianzhao Zhai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Xiaohan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China.
| |
Collapse
|
13
|
Xin Z, You L, Na F, Li J, Chen M, Song J, Bai L, Chen J, Zhou J, Ying B. Immunogenetic variations predict immune-related adverse events for PD-1/PD-L1 inhibitors. Eur J Cancer 2023; 184:124-136. [PMID: 36917924 DOI: 10.1016/j.ejca.2023.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND PD-1/PD-L1 inhibitors have brought remarkable benefits but can cause profound immune-related adverse events (irAEs). The host immunogenetic background is likely to play a role in irAE susceptibility. In this study, we aimed to identify potential immunogenetic biomarkers to predict irAEs. METHODS Patients with solid tumours receiving PD-1/PD-L1 blockade were recruited and followed up. Genes considered pivotal contributors to tumour-immunity and autoimmune diseases were screened out via protein-protein interaction network and Cytoscape. Consequently, thirty-nine variants in eighteen genes were genotyped using the multiplex genotyping assay. Association analysis between genetic variants and irAEs as well as irAEs-free survival was performed. RESULTS Four immunogenetic variants as predictive biomarkers of irAEs were identified. The C allele of Mitogen-Activated Protein Kinase 1 (MAPK1) rs3810610 (odds ratio [OR] = 1.495, 95% confidence interval [CI] = 1.093-2.044, P = 0.012) was a risk predictor while the A allele of PTPRC rs6428474 (OR = 0.717, 95% CI = 0.521-0.987, P = 0.041) was a protective factor for all-grade irAEs. The A allele of ADAD1 rs17388568 (OR = 2.599, 95% CI = 1.355-4.983, P = 0.003) increased the risk while the G allele of IL6 rs1800796 (OR = 0.425, 95% CI = 0.205-0.881, P = 0.018) protected patients from high-grade irAEs. Significant immunogenetic variants reached a similar tendency in PD-1 blockade or lung cancer subgroups. In multivariate Cox regression analysis, the MAPK1 rs3810610 was an independent factor regarding all-grade irAEs-free survival (CC versus CT or TT: hazard ratio [HR] = 0.71, 95% CI = 0.52-0.99, P = 0.042). ADAD1 rs17388568 (AA versus AG or GG: HR = 0.11, 95% CI = 0.025-0.49, P = 0.004) and IL6 rs1800796 (GG or GC versus CC: HR = 3.10, 95% CI = 1.315-7.29, P = 0.01) were independent variables for high-grade irAEs-free survival. CONCLUSION We first identified several immunogenetic polymorphisms associated with irAEs and irAEs-free survival in PD-1/PD-L1 blockade-treated tumour patients, and they may serve as potential predictive biomarkers.
Collapse
Affiliation(s)
- Zhaodan Xin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Liting You
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China; Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Feifei Na
- Department of Thoracic Cancer, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Jin Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Min Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province 570100, PR China
| | - Jiajia Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ling Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
14
|
Chat V, Dagayev S, Moran U, Snuderl M, Weber J, Ferguson R, Osman I, Kirchhoff T. A genome-wide association study of germline variation and melanoma prognosis. Front Oncol 2023; 12:1050741. [PMID: 36741706 PMCID: PMC9894711 DOI: 10.3389/fonc.2022.1050741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023] Open
Abstract
Background The high mortality of cutaneous melanoma (CM) is partly due to unpredictable patterns of disease progression in patients with early-stage lesions. The reliable prediction of advanced disease risk from early-stage CM, is an urgent clinical need, especially given the recent expansion of immune checkpoint inhibitor therapy to the adjuvant setting. In our study, we comprehensively investigated the role of germline variants as CM prognostic markers. Methods We performed a genome-wide association analysis in two independent cohorts of N=551 (discovery), and N=550 (validation) early-stage immunotherapy-naïve melanoma patients. A multivariable Cox proportional hazard regression model was used to identify associations with overall survival in the discovery group, followed by a validation analysis. Transcriptomic profiling and survival analysis were used to elucidate the biological relevance of candidate genes associated with CM progression. Results We found two independent associations of germline variants with melanoma prognosis. The alternate alleles of these two SNPs were both associated with an increased risk of death [rs60970102 in MELK: HR=3.14 (2.05-4.81), p=1.48×10-7; and rs77480547 in SH3BP4: HR=3.02 (2.02-4.52), p=7.58×10-8, both in the pooled cohort]. The addition of the combined risk alleles (CRA) of the identified variants into the prognostic model improved the predictive power, as opposed to a model of clinical covariates alone. Conclusions Our study provides suggestive evidence of novel melanoma germline prognostic markers, implicating two candidate genes: an oncogene MELK and a tumor suppressor SH3BP4, both previously suggested to affect CM progression. Pending further validation, these findings suggest that the genetic factors may improve the prognostic stratification of high-risk early-stage CM patients, and propose putative biological insights for potential therapeutic investigation of these targets to prevent aggressive outcome from early-stage melanoma.
Collapse
Affiliation(s)
- Vylyny Chat
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States,Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, United States,The Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, United States
| | - Sasha Dagayev
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States,Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, United States,The Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, United States
| | - Una Moran
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States,The Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, United States
| | - Matija Snuderl
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Jeffrey Weber
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States,The Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, United States
| | - Robert Ferguson
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States,Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, United States,The Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, United States,*Correspondence: Tomas Kirchhoff, ; Robert Ferguson,
| | - Iman Osman
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States,The Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, United States,Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
| | - Tomas Kirchhoff
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States,Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, United States,The Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, United States,*Correspondence: Tomas Kirchhoff, ; Robert Ferguson,
| |
Collapse
|
15
|
Germline genetic variation and predicting immune checkpoint inhibitor induced toxicity. NPJ Genom Med 2022; 7:73. [PMID: 36564402 PMCID: PMC9789157 DOI: 10.1038/s41525-022-00345-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionised the treatment of various cancer types. ICIs reinstate T-cell function to elicit an anti-cancer immune response. The resulting immune response can however have off-target effects which manifest as autoimmune type serious immune-related adverse events (irAE) in ~10-55% of patients treated. It is currently challenging to predict both who will experience irAEs and to what severity. Identification of patients at high risk of serious irAE would revolutionise patient care. While the pathogenesis driving irAE development is still unclear, host genetic factors are proposed to be key determinants of these events. This review presents current evidence supporting the role of the host genome in determining risk of irAE. We summarise the spectrum and timing of irAEs following treatment with ICIs and describe currently reported germline genetic variation associated with expression of immuno-modulatory factors within the cancer immunity cycle, development of autoimmune disease and irAE occurrence. We propose that germline genetic determinants of host immune function and autoimmune diseases could also explain risk of irAE development. We also endorse genome-wide association studies of patients being treated with ICIs to identify genetic variants that can be used in polygenic risk scores to predict risk of irAE.
Collapse
|
16
|
Pani F, Yasuda Y, Rousseau ST, Bermea KC, Roshanmehr S, Wang R, Yegnasubramanian S, Caturegli P, Adamo L. Preconditioning of the immune system modulates the response of papillary thyroid cancer to immune checkpoint inhibitors. J Immunother Cancer 2022; 10:jitc-2022-005538. [PMID: 36521928 PMCID: PMC9756278 DOI: 10.1136/jitc-2022-005538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The response of solid tumors such as papillary thyroid cancer (PTC) to immune checkpoint inhibitors (ICIs) is highly variable. The biological basis of this variability remains unknown. METHODS To test the hypothesis that preconditioning of the immune system modulates the therapeutic effect of ICIs, we used a murine model where PTC and iodine exacerbated thyroiditis (IET) can be induced in a temporally predictable fashion. A total of 122 mice were divided into 3 experimental groups. In the first one, named concomitant IET and PTC (No.=40), IET, and PTC were induced at the same time; in the second one, named pre-existing IET (No.=44), IET was induced prior to the induction of PTC; in the third one, named no IET (No.=38), only PTC was induced. Following disease induction, mice of each group were treated with anti-PD-1 antibody, anti-lymphocyte activation gene 3 antibody (anti-Lag3), anti-T-cell immunoglobulin and mucin domain 3 antibody (anti-Tim3), or IgG control. Ten weeks after the initial ICI injection, mice were sacrificed to collect the thyroid gland for histological analysis, to quantify the incidence and burden of PTC, and to perform high-throughput single-cell RNA sequencing of infiltrating CD45+ cells. RESULTS In the concomitant IET and PTC group, ICI treatment reduced PTC incidence (p=0.002 comparing treatment with any ICI vs control), while it had no effect in the pre-existing IET and no IET groups. Single-cell sequencing of thyroidal CD45+ cells showed that the different ICIs tested had both specific and shared effects on all the components of the thyroidal immune cell infiltrate. The shared effect of the tested ICIs was dependent on the presence of pre-existing versus concomitant IET. In the context of concomitant IET, ICI treatment resulted in the modulation of a greater number of pathways related to both innate and adaptive immunity. CONCLUSIONS Response to ICIs depends on the status of the immune system of the treated individual. Modulation of the immune system should be explored as a tool to improve response to ICIs in patients with PTC or other forms of cancer.
Collapse
Affiliation(s)
- Fabiana Pani
- Division of Cardiology, Department of Internal Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,GRC No. 16, GRC Tumeurs Thyroïdiennes, Thyroid and Endocrine Tumors Department; Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan,Division of Immunology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sylvie T Rousseau
- Division of Cardiology, Department of Internal Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin C Bermea
- Division of Cardiology, Department of Internal Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Solmaz Roshanmehr
- Division of Immunology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rulin Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patrizio Caturegli
- Division of Immunology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luigi Adamo
- Division of Cardiology, Department of Internal Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Pani F, Caria P, Yasuda Y, Makoto M, Mariotti S, Leenhardt L, Roshanmehr S, Caturegli P, Buffet C. The Immune Landscape of Papillary Thyroid Cancer in the Context of Autoimmune Thyroiditis. Cancers (Basel) 2022; 14:cancers14174287. [PMID: 36077831 PMCID: PMC9454449 DOI: 10.3390/cancers14174287] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The association between papillary thyroid cancer and Hashimoto’s thyroiditis went through a long-standing human debate recently elucidated by the establishment of a novel mouse model. Papillary thyroid carcinoma is an excellent model for studying the tumor immune microenvironment because it is naturally accompanied by immune cells, making it a good candidate for the treatment with immune checkpoint inhibitors. Abstract Papillary thyroid cancer (PTC) often co-occurs with Hashimoto’s thyroiditis, an association that has long been reported in clinical studies, remaining controversial. Experimental evidence has recently shown that pre-existing thyroiditis has a beneficial effect on PTC growth and progression by a distinctive expansion of effector memory CD8 T cells. Although the link between inflammation and PTC might involve different components of the immune system, a deep characterization of them which includes T cells, B cells and tertiary lymphoid structures, Mye-loid cells, Neutrophils, NK cells and dendritic cells will be desirable. The present review article considers the role of the adaptive and innate immune response surrounding PTC in the context of Hashimoto’s thyroiditis. This review will focus on the current knowledge by in vivo and in vitro studies specifically performed on animals’ models; thyroid cancer cells and human samples including (i) the dual role of tumor-infiltrating lymphocytes; (ii) the emerging role of B cells and tertiary lymphoid structures; (iii) the role of myeloid cells, dendritic cells, and natural killer cells; (iv) the current knowledge of the molecular biomarkers implicated in the complex link between thyroiditis and PTC and the potential implication of cancer immunotherapy in PTC patients in the context of thyroiditis.
Collapse
Affiliation(s)
- Fabiana Pani
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
- Correspondence: or
| | - Paola Caria
- Department of Biomedical Sciences, Biochemistry, Biology and Genetics Unit, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Km 0.700, Monserrato, 09042 Cagliari, Italy
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Miyara Makoto
- Inserm, Centre d’Immunologie et des Maladies Infectieuses-Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Stefano Mariotti
- Department of Medical Sciences and Public Health, Endocrinology Unit, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Laurence Leenhardt
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
| | - Solmaz Roshanmehr
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Patrizio Caturegli
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Camille Buffet
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
| |
Collapse
|
18
|
Bai X, Shoushtari AN, Betof Warner A, Si L, Tang B, Cui C, Yang X, Wei X, Quach HT, Cann CG, Zhang MZ, Pallan L, Harvey C, Kim MS, Kasumova G, Sharova T, Cohen JV, Lawrence DP, Freedman C, Fadden RM, Rubin KM, Frederick DT, Flaherty KT, Long GV, Menzies AM, Sullivan RJ, Boland GM, Johnson DB, Guo J. Benefit and toxicity of programmed death-1 blockade vary by ethnicity in patients with advanced melanoma: an international multicentre observational study. Br J Dermatol 2022; 187:401-410. [PMID: 35293617 DOI: 10.1111/bjd.21241] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/20/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Programmed cell death receptor-1 (PD-1) monotherapy is a standard treatment for advanced cutaneous melanoma, but its efficacy and toxicity are defined in white populations and remain poorly characterized in other ethnic groups, such as East Asian, Hispanic and African. OBJECTIVES To determine the efficacy and toxicity of PD-1 monotherapy in different ethnic groups. METHODS Clinical data for patients with unresectable or advanced melanoma treated with anti-PD-1 monotherapy between 2009 and 2019 were collected retrospectively from five independent institutions in the USA, Australia and China. Tumour response, survival and immune-related adverse events (irAEs) were compared by ethnicity (white vs. East Asian/Hispanic/African) across different melanoma subtypes: nonacral cutaneous (NAC)/unknown primary (UP) and acral/mucosal/uveal. RESULTS In total, 1135 patients were included. White patients had significantly higher objective response rate (ORR) [54%, 95% confidence interval (CI) 50-57% vs. 20%, 95% CI 13-28%; adjusted P < 0·001] and longer progression-free survival (14·2 months, 95% CI 10·7-20·3 vs. 5·4 months, 95% CI 4·5-7·0; adjusted P < 0·001) than East Asian, Hispanic and African patients in the NAC and UP subtypes. White ethnicity remained independently associated with a higher ORR (odds ratio 4·10, 95% CI 2·48-6·81; adjusted P < 0·001) and longer PFS (hazard ratio 0·58, 95% CI 0·46-0·74; adjusted P < 0·001) in multivariate analyses after adjustment for age, sex, primary anatomical location, metastasis stage, baseline lactate dehydrogenase level, mutational status and prior systemic treatment. White and East Asian/Hispanic/African patients shared similar ORR and progression-free survival in acral/mucosal/uveal melanomas. Similar melanoma-subtype-specific ethnic discrepancies were observed in complete response rate and overall survival. White patients had higher rates of gastrointestinal irAEs but lower rates of endocrine, liver and other rare types of irAEs. These differences in irAEs by ethnicity were not attributable to varying melanoma subtypes. CONCLUSIONS Ethnic discrepancy in clinical benefit is specific to melanoma subtype, and East Asian, Hispanic and African patients with NAC and UP melanomas have poorer clinical benefits than previously recognized. The ethnic discrepancy in toxicity observed across different melanoma subtypes warrants an ethnicity-based irAE surveillance strategy. More research is needed to elucidate the molecular and immunological determinants of these differences. What is already known about this topic? There is a great difference in response to immunotherapy between different subtypes of melanoma (cutaneous, mucosal, acral and uveal) in patients with advanced disease. What does this study add? Our data show for the first time that there are differences between different ethnic groups in terms of both response and toxicity to immunotherapy beyond the well-appreciated discrepancies due to melanoma subtype.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Alexander N Shoushtari
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Allison Betof Warner
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Bixia Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Chuanliang Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaoling Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
- Department of Medical Oncology, Shanxi Bethune Hospital, Shanxi, China
| | - Xiaoting Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Henry T Quach
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher G Cann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Z Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lalit Pallan
- Melanoma Institute Australia, The University of Sydney, Royal North Shore and Mater Hospitals, Sydney, Australia
| | - Catriona Harvey
- Melanoma Institute Australia, The University of Sydney, Royal North Shore and Mater Hospitals, Sydney, Australia
| | - Michelle S Kim
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gyulnara Kasumova
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tatyana Sharova
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Justine V Cohen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Donald P Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Christine Freedman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Riley M Fadden
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Krista M Rubin
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Dennie T Frederick
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Royal North Shore and Mater Hospitals, Sydney, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Royal North Shore and Mater Hospitals, Sydney, Australia
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
19
|
Yu IS, Wee K, Williamson L, Titmuss E, An J, Naderi-Azad S, Metcalf C, Yip S, Horst B, Jones SJM, Paton K, Nelson BH, Marra M, Laskin JJ, Savage KJ. Exceptional response to combination ipilimumab and nivolumab in metastatic uveal melanoma: Insights from genomic analysis. Melanoma Res 2022; 32:278-285. [PMID: 35726793 DOI: 10.1097/cmr.0000000000000810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Uveal melanoma is the most common intraocular malignancy and has a poor prognosis compared to other melanoma subtypes with a median overall survival of 6-10 months. With immune checkpoint inhibitor therapy, either PD-1 inhibitor alone or combination ipilimumab/nivolumab (anti-CTLA-4/anti-PD-1), responses are rare and often not durable. We present a case report of a now 66-year-old woman with diffuse metastatic uveal melanoma previously treated with a combination of ipilimumab/nivolumab, followed by maintenance nivolumab. Almost complete resolution of all sites of metastatic disease was observed except for one liver metastasis which regressed partially on immunotherapy. Notably, the patient had a significantly elevated BMI and developed widespread vitiligo on treatment. Whole-genome and transcriptome analysis was performed on the residual liver biopsy and molecular markers that may have contributed to the exceptional response were investigated. Several alterations were observed in genes involved in T-cell responses. Estimates of tumour infiltrating immune cells indicated a high level of plasma cells compared to other uveal melanoma cases, a finding previously associated with indolent disease. The patient also carried several germline SNPs that may have contributed to her treatment response as well as widespread vitiligo. Whole-genome and transcriptome sequencing have provided insight into potential molecular underpinnings of an exceptional treatment response in a tumour type typically associated with poor prognosis. Immunological findings suggest a role for plasma cells in the tumour microenvironment. Elevated BMI and the development of vitiligo may be clinically relevant factors for predicting response to immune checkpoint inhibitor therapy, warranting further studies in patients with uveal melanoma.
Collapse
Affiliation(s)
- Irene S Yu
- Department of Medical Oncology, BC Cancer
| | - Kathleen Wee
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia
| | - Laura Williamson
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia
| | - Emma Titmuss
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia
| | - Jianghong An
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia
| | - Sheida Naderi-Azad
- Faculty of Medicine, University of Toronto, 1 King's College Cir, Toronto, Ontario
| | | | - Stephen Yip
- Department of Pathology and Laboratory Medicine
| | - Basil Horst
- Department of Pathology and Laboratory Medicine
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia
- Department of Medical Genetics
| | - Katherine Paton
- Department of Ophthalmology and Visual Sciences, University of British Columbia
| | - Brad H Nelson
- Department of Medical Genetics
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Marco Marra
- Department of Medical Oncology, BC Cancer
- Department of Medical Genetics
| | | | | |
Collapse
|
20
|
Gunjur A, Manrique‐Rincón AJ, Klein O, Behren A, Lawley TD, Welsh SJ, Adams DJ. 'Know thyself' - host factors influencing cancer response to immune checkpoint inhibitors. J Pathol 2022; 257:513-525. [PMID: 35394069 PMCID: PMC9320825 DOI: 10.1002/path.5907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionised oncology and are now standard-of-care for the treatment of a wide variety of solid neoplasms. However, tumour responses remain unpredictable, experienced by only a minority of ICI recipients across malignancy types. Therefore, there is an urgent need for better predictive biomarkers to identify a priori the patients most likely to benefit from these therapies. Despite considerable efforts, only three such biomarkers are FDA-approved for clinical use, and all rely on the availability of tumour tissue for immunohistochemical staining or genomic assays. There is emerging evidence that host factors - for example, genetic, metabolic, and immune factors, as well as the composition of one's gut microbiota - influence the response of a patient's cancer to ICIs. Tantalisingly, some of these factors are modifiable, paving the way for co-therapies that may enhance the therapeutic index of these treatments. Herein, we review key host factors that are of potential biomarker value for response to ICI therapy, with a particular focus on the proposed mechanisms for these influences. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ashray Gunjur
- Experimental Cancer Genetics, Wellcome Sanger InstituteHinxtonUK,Olivia Newton‐John Cancer Research InstituteLa Trobe University School of Cancer MedicineHeidelbergAustralia
| | - Andrea J Manrique‐Rincón
- Experimental Cancer Genetics, Wellcome Sanger InstituteHinxtonUK,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of MedicineUniversity of CambridgeCambridgeUK
| | - Oliver Klein
- Olivia Newton‐John Cancer Research InstituteLa Trobe University School of Cancer MedicineHeidelbergAustralia,Department of Medical OncologyAustin HealthHeidelbergAustralia
| | - Andreas Behren
- Olivia Newton‐John Cancer Research InstituteLa Trobe University School of Cancer MedicineHeidelbergAustralia,Department of MedicineUniversity of MelbourneParkvilleAustralia
| | | | - Sarah J Welsh
- Department of SurgeryUniversity of CambridgeCambridgeUK,Cambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger InstituteHinxtonUK
| |
Collapse
|
21
|
Li H, van der Merwe PA, Sivakumar S. Biomarkers of response to PD-1 pathway blockade. Br J Cancer 2022; 126:1663-1675. [PMID: 35228677 PMCID: PMC9174485 DOI: 10.1038/s41416-022-01743-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/17/2022] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
The binding of T cell immune checkpoint proteins programmed death 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) to their ligands allows immune evasion by tumours. The development of therapeutic antibodies, termed checkpoint inhibitors, that bind these molecules or their ligands, has provided a means to release this brake on the host anti-tumour immune response. However, these drugs are costly, are associated with potentially severe side effects, and only benefit a small subset of patients. It is therefore important to identify biomarkers that discriminate between responders and non-responders. This review discusses the determinants for a successful response to antibodies that bind PD-1 or its ligand PD-L1, dividing them into markers found in the tumour biopsy and those in non-tumour samples. It provides an update on the established predictive biomarkers (tumour PD-L1 expression, tumour mismatch repair deficiency and tumour mutational burden) and assesses the evidence for new potential biomarkers.
Collapse
Affiliation(s)
- Hanxiao Li
- Green Templeton College, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
22
|
Chao BN, Carrick DM, Filipski KK, Nelson SA. Overview of Research on Germline Genetic Variation in Immune Genes and Cancer Outcomes. Cancer Epidemiol Biomarkers Prev 2022; 31:495-506. [PMID: 35027433 DOI: 10.1158/1055-9965.epi-21-0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/13/2021] [Accepted: 01/06/2022] [Indexed: 11/16/2022] Open
Abstract
Since the late 19th century, the immune system has been known to play a role in cancer risk, initiation, and progression. Genome-wide association studies (GWAS) have identified hundreds of genetic risk loci for autoimmune and inflammatory diseases, yet the connection between human genetic variation and immune-mediated response to cancer treatments remains less well-explored. Understanding inherited genetic variation, with respect to germline genetic polymorphisms that affect immune system pathways, could lead to greater insights about how these processes may best be harnessed to successfully treat cancer. Our goal in this manuscript was to understand progress and challenges in assessing the role of inherited genetic variation in response to cancer treatments. Overall, the 39 studies reviewed here suggest that germline genetic variation in immune system related genes may potentially affect responses to cancer treatments. Although further research is needed, considering information on germline immune genetic variation may help, in some cases, to optimize cancer treatment.
Collapse
Affiliation(s)
- Brittany N Chao
- Division of Cancer Control and Population Sciences, NCI, NIH, Rockville, Maryland
| | - Danielle M Carrick
- Division of Cancer Control and Population Sciences, NCI, NIH, Rockville, Maryland
| | - Kelly K Filipski
- Division of Cancer Control and Population Sciences, NCI, NIH, Rockville, Maryland
| | - Stefanie A Nelson
- Division of Cancer Control and Population Sciences, NCI, NIH, Rockville, Maryland
| |
Collapse
|
23
|
Pan B, Ren L, Onuchic V, Guan M, Kusko R, Bruinsma S, Trigg L, Scherer A, Ning B, Zhang C, Glidewell-Kenney C, Xiao C, Donaldson E, Sedlazeck FJ, Schroth G, Yavas G, Grunenwald H, Chen H, Meinholz H, Meehan J, Wang J, Yang J, Foox J, Shang J, Miclaus K, Dong L, Shi L, Mohiyuddin M, Pirooznia M, Gong P, Golshani R, Wolfinger R, Lababidi S, Sahraeian SME, Sherry S, Han T, Chen T, Shi T, Hou W, Ge W, Zou W, Guo W, Bao W, Xiao W, Fan X, Gondo Y, Yu Y, Zhao Y, Su Z, Liu Z, Tong W, Xiao W, Zook JM, Zheng Y, Hong H. Assessing reproducibility of inherited variants detected with short-read whole genome sequencing. Genome Biol 2022; 23:2. [PMID: 34980216 PMCID: PMC8722114 DOI: 10.1186/s13059-021-02569-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Reproducible detection of inherited variants with whole genome sequencing (WGS) is vital for the implementation of precision medicine and is a complicated process in which each step affects variant call quality. Systematically assessing reproducibility of inherited variants with WGS and impact of each step in the process is needed for understanding and improving quality of inherited variants from WGS. RESULTS To dissect the impact of factors involved in detection of inherited variants with WGS, we sequence triplicates of eight DNA samples representing two populations on three short-read sequencing platforms using three library kits in six labs and call variants with 56 combinations of aligners and callers. We find that bioinformatics pipelines (callers and aligners) have a larger impact on variant reproducibility than WGS platform or library preparation. Single-nucleotide variants (SNVs), particularly outside difficult-to-map regions, are more reproducible than small insertions and deletions (indels), which are least reproducible when > 5 bp. Increasing sequencing coverage improves indel reproducibility but has limited impact on SNVs above 30×. CONCLUSIONS Our findings highlight sources of variability in variant detection and the need for improvement of bioinformatics pipelines in the era of precision medicine with WGS.
Collapse
Affiliation(s)
- Bohu Pan
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Luyao Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | | | | | | | | | - Len Trigg
- Real Time Genomics, Hamilton, New Zealand
| | - Andreas Scherer
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- EATRIS ERIC- European Infrastructure for Translational Medicine, Amsterdam, the Netherlands
| | - Baitang Ning
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Chaoyang Zhang
- School of Computing Sciences and Computer Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | | | - Chunlin Xiao
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Eric Donaldson
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Gokhan Yavas
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | | | | | | | - Joe Meehan
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Jing Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, China
| | - Jingcheng Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jun Shang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | | | - Lianhua Dong
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | | | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ping Gong
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 39180, USA
| | | | | | - Samir Lababidi
- Office of Health Informatics, Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | | | - Steve Sherry
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Tao Han
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tao Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tieliu Shi
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wanwan Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Weigong Ge
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Wen Zou
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Wenjing Guo
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Wenjun Bao
- SAS Institute Inc., Cary, NC, 27513, USA
| | - Wenzhong Xiao
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yoichi Gondo
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Zhenqiang Su
- Takeda Pharmaceuticals, Cambridge, MA, 02139, USA
| | - Zhichao Liu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Wenming Xiao
- Division of Molecular Genetics and Pathology, Center for Device and Radiological Health, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Justin M Zook
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China.
- Human Phenome Institute, Fudan University, Shanghai, 200438, China.
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
24
|
Darbeheshti F. The Immunogenetics of Melanoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:383-396. [DOI: 10.1007/978-3-030-92616-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Motofei IG. Nobel Prize for immune checkpoint inhibitors, understanding the immunological switching between immunosuppression and autoimmunity. Expert Opin Drug Saf 2021; 21:599-612. [PMID: 34937484 DOI: 10.1080/14740338.2022.2020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) are a revolutionary form of immunotherapy in cancer. However, the percentage of patients responding to therapy is relatively low, while adverse effects occur in a large number of patients. In addition, the therapeutic mechanisms of ICIs are not yet completely described. AREAS COVERED The initial view (articles published in PubMed, Scopus, Web of Science, etc.) was that ICIs increase tumor-specific immunity. Recent data (collected from the same databases) suggest that the ICIs pharmacotherapy actually extends beyond the topic of immune reactivity, including additional immune pathways, such as disrupting immunosuppression and increasing tumor-specific autoimmunity. Unfortunately, there is no clear delimitation between these specific autoimmune reactions that are therapeutically beneficial, and nonspecific autoimmune reactions/toxicity that can be extremely severe side effects. EXPERT OPINION Immune checkpoint mechanisms perform a non-selective immune regulation, maintaining a dynamic balance between immunosuppression and autoimmunity. By blocking these mechanisms, ICIs actually perform an immunological reset, decreasing immunosuppression and increasing tumor-specific immunity and predisposition to autoimmunity. The predisposition to autoimmunity induces both side effects and beneficial autoimmunity. Consequently, further studies are necessary to maximize the beneficial tumor-specific autoimmunity, while reducing the counterproductive effect of associated autoimmune toxicity.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Surgery/ Oncology, Carol Davila University, Bucharest, Romania.,Department of Surgery/ Oncology, St. Pantelimon Hospital, Bucharest, Romania
| |
Collapse
|
26
|
Abdel-Wahab N, Diab A, Yu RK, Futreal A, Criswell LA, Tayar JH, Dadu R, Shannon V, Shete SS, Suarez-Almazor ME. Genetic determinants of immune-related adverse events in patients with melanoma receiving immune checkpoint inhibitors. Cancer Immunol Immunother 2021; 70:1939-1949. [PMID: 33409738 PMCID: PMC10992432 DOI: 10.1007/s00262-020-02797-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) can cause profound immune-related adverse events (irAEs). The host genetic background is likely to play a role in irAE susceptibility because the presentation of toxicity varies among patients and many do not develop irAEs despite continued ICI use. We sought to identify potential genetic markers conferring risk for irAEs. METHODS We conducted a pilot exploratory study in 89 melanoma patients who received ICIs (44 with irAEs, and 45 without irAEs after at least 1 year from starting treatment). Genotyping was performed using the Infinium Multi-Ethnic Global-8 v1.0 Bead Chip. The genotype data were extracted using PLINK (v1.90b3.34) and processed for quality control. Population structure-based clustering was carried out using IBS matrix, pairwise population concordance test (p < 1 × 10-3), and phenotype distribution for all study participants, resulting in seven population structure-based clusters. In the analytical stage, 599,931 variants in autosomal chromosomes were included for the association study. The association test was performed using an additive genetic model with exact logistic regression, adjusted for age, sex, and population cluster. RESULTS A total of 30 variants or single-nucleotide polymorphisms with p < 1 × 10-4 were identified; 12 were associated with an increased risk of irAEs, and the remaining 18 were associated with a decreased risk. Overall, nine of the identified single-nucleotide polymorphisms mapped to eight unique genes that have been associated with autoimmunity or inflammatory diseases. CONCLUSION Several genetic variants associated with irAEs were identified. Additional larger studies are needed to validate these findings and establish their potential functional relevance.
Collapse
Affiliation(s)
- Noha Abdel-Wahab
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Assiut University Hospitals, Assiut, Egypt
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adi Diab
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert K Yu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lindsey A Criswell
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jean H Tayar
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ramona Dadu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vickie Shannon
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanjay S Shete
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Maria E Suarez-Almazor
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
27
|
Parakh S, Musafer A, Paessler S, Witkowski T, Suen CSNLW, Tutuka CSA, Carlino MS, Menzies AM, Scolyer RA, Cebon J, Dobrovic A, Long GV, Klein O, Behren A. PDCD1 Polymorphisms May Predict Response to Anti-PD-1 Blockade in Patients With Metastatic Melanoma. Front Immunol 2021; 12:672521. [PMID: 34177913 PMCID: PMC8220213 DOI: 10.3389/fimmu.2021.672521] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/21/2021] [Indexed: 01/06/2023] Open
Abstract
A significant number of patients (pts) with metastatic melanoma do not respond to anti-programmed cell death 1 (PD1) therapies. Identifying predictive biomarkers therefore remains an urgent need. We retrospectively analyzed plasma DNA of pts with advanced melanoma treated with PD-1 antibodies, nivolumab or pembrolizumab, for five PD-1 genotype single nucleotide polymorphisms (SNPs): PD1.1 (rs36084323, G>A), PD1.3 (rs11568821, G>A), PD1.5 (rs2227981, C>T) PD1.6 (rs10204225, G>A) and PD1.9 (rs2227982, C>T). Clinico-pathological and treatment parameters were collected, and presence of SNPs correlated with response, progression free survival (PFS) and overall survival (OS). 115 patients were identified with a median follow up of 18.7 months (range 0.26 – 52.0 months). All were Caucasian; 27% BRAF V600 mutation positive. At PD-1 antibody commencement, 36% were treatment-naïve and 52% had prior ipilimumab. The overall response rate was 43%, 19% achieving a complete response. Overall median PFS was 11.0 months (95% CI 5.4 - 17.3) and median OS was 31.1 months (95% CI 23.2 - NA). Patients with the G/G genotype had more complete responses than with A/G genotype (16.5% vs. 2.6% respectively) and the G allele of PD1.3 rs11568821 was significantly associated with a longer median PFS than the AG allele, 14.1 vs. 7.0 months compared to the A allele (p=0.04; 95% CI 0.14 – 0.94). No significant association between the remaining SNPs and responses, PFS or OS were observed. Despite limitations in sample size, this is the first study to demonstrate an association of a germline PD-1 polymorphism and PFS in response to anti-PD-1 therapy in pts with metastatic melanoma. Extrinsic factors like host germline polymorphisms should be considered with tumor intrinsic factors as predictive biomarkers for immune checkpoint regulators.
Collapse
Affiliation(s)
- Sagun Parakh
- Medical Oncology Unit, Austin Health, Melbourne, VIC, Australia.,Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia.,La Trobe University School of Cancer Medicine, Melbourne, VIC, Australia
| | - Ashan Musafer
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia.,La Trobe University School of Cancer Medicine, Melbourne, VIC, Australia
| | - Sabrina Paessler
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
| | - Tom Witkowski
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia.,La Trobe University School of Cancer Medicine, Melbourne, VIC, Australia
| | - Connie S N Li Wai Suen
- Department of Mathematics and Statistics, La Trobe University, Melbourne, VIC, Australia
| | | | - Matteo S Carlino
- Department of Medical Oncology, Westmead and Blacktown Hospitals, Sydney, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan Cebon
- Medical Oncology Unit, Austin Health, Melbourne, VIC, Australia.,Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia.,La Trobe University School of Cancer Medicine, Melbourne, VIC, Australia
| | - Alexander Dobrovic
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia.,La Trobe University School of Cancer Medicine, Melbourne, VIC, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia.,Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Oliver Klein
- Medical Oncology Unit, Austin Health, Melbourne, VIC, Australia.,Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia.,La Trobe University School of Cancer Medicine, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Brahmer JR, Abu-Sbeih H, Ascierto PA, Brufsky J, Cappelli LC, Cortazar FB, Gerber DE, Hamad L, Hansen E, Johnson DB, Lacouture ME, Masters GA, Naidoo J, Nanni M, Perales MA, Puzanov I, Santomasso BD, Shanbhag SP, Sharma R, Skondra D, Sosman JA, Turner M, Ernstoff MS. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J Immunother Cancer 2021; 9:e002435. [PMID: 34172516 PMCID: PMC8237720 DOI: 10.1136/jitc-2021-002435] [Citation(s) in RCA: 342] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are the standard of care for the treatment of several cancers. While these immunotherapies have improved patient outcomes in many clinical settings, they bring accompanying risks of toxicity, specifically immune-related adverse events (irAEs). There is a need for clear, effective guidelines for the management of irAEs during ICI treatment, motivating the Society for Immunotherapy of Cancer (SITC) to convene an expert panel to develop a clinical practice guideline. The panel discussed the recognition and management of single and combination ICI irAEs and ultimately developed evidence- and consensus-based recommendations to assist medical professionals in clinical decision-making and to improve outcomes for patients.
Collapse
Affiliation(s)
- Julie R Brahmer
- Department of Oncology and the Thoracic Oncology, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, Maryland, USA
| | - Hamzah Abu-Sbeih
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Paolo Antonio Ascierto
- Unit of Melanoma Cancer Immunotherapy and Innovative Therapy, National Tumour Institute IRCCS Fondazione 'G. Pascale', Napoli, Italy
| | - Jill Brufsky
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Laura C Cappelli
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Frank B Cortazar
- Massachusetts General Hospital, Boston, Massachusetts, USA
- New York Nephrology Vasculitis and Glomerular Center, Albany, New York, USA
| | - David E Gerber
- Department of Hematology and Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lamya Hamad
- Department of Pharmacy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Eric Hansen
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Mario E Lacouture
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gregory A Masters
- Department of Medicine, Helen F. Graham Cancer Center, Newark, Delaware, USA
| | - Jarushka Naidoo
- Department of Oncology and the Thoracic Oncology, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, Maryland, USA
- Department of Oncology, Beaumont Hospital Dublin, The Royal College of Surgeons of Ireland, Dublin, Ireland
| | - Michele Nanni
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Miguel-Angel Perales
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Bianca D Santomasso
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Satish P Shanbhag
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cancer Specialist of North Florida, Fleming Island, Florida, USA
| | - Rajeev Sharma
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Jeffrey A Sosman
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical Center, Chicago, Illinois, USA
| | - Michelle Turner
- Department of Oncology and the Thoracic Oncology, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, Maryland, USA
| | - Marc S Ernstoff
- Division of Cancer Treatment & Diagnosis, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
29
|
Sayaman RW, Saad M, Thorsson V, Hu D, Hendrickx W, Roelands J, Porta-Pardo E, Mokrab Y, Farshidfar F, Kirchhoff T, Sweis RF, Bathe OF, Heimann C, Campbell MJ, Stretch C, Huntsman S, Graff RE, Syed N, Radvanyi L, Shelley S, Wolf D, Marincola FM, Ceccarelli M, Galon J, Ziv E, Bedognetti D. Germline genetic contribution to the immune landscape of cancer. Immunity 2021; 54:367-386.e8. [PMID: 33567262 DOI: 10.1016/j.immuni.2021.01.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 10/14/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
Understanding the contribution of the host's genetic background to cancer immunity may lead to improved stratification for immunotherapy and to the identification of novel therapeutic targets. We investigated the effect of common and rare germline variants on 139 well-defined immune traits in ∼9000 cancer patients enrolled in TCGA. High heritability was observed for estimates of NK cell and T cell subset infiltration and for interferon signaling. Common variants of IFIH1, TMEM173 (STING1), and TMEM108 were associated with differential interferon signaling and variants mapping to RBL1 correlated with T cell subset abundance. Pathogenic or likely pathogenic variants in BRCA1 and in genes involved in telomere stabilization and Wnt-β-catenin also acted as immune modulators. Our findings provide evidence for the impact of germline genetics on the composition and functional orientation of the tumor immune microenvironment. The curated datasets, variants, and genes identified provide a resource toward further understanding of tumor-immune interactions.
Collapse
Affiliation(s)
- Rosalyn W Sayaman
- Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Biological Sciences and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Mohamad Saad
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar; Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | | | - Donglei Hu
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wouter Hendrickx
- Research Branch, Sidra Medicine, PO Box 26999 Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Jessica Roelands
- Research Branch, Sidra Medicine, PO Box 26999 Doha, Qatar; Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Eduard Porta-Pardo
- Barcelona Supercomputing Center (BSC); Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08034 Barcelona, Catalonia, Spain
| | - Younes Mokrab
- Research Branch, Sidra Medicine, PO Box 26999 Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar; Weill Cornell Medicine, Doha, Qatar
| | - Farshad Farshidfar
- Department of Oncology, University of Calgary, Alberta AB T2N 4N1, Canada; Arnie Charbonneau Cancer Institute, Calgary, Alberta AB T2N 4N1, Canada; Department of Biomedical Data Science and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Tenaya Therapeutics, South San Francisco, CA 94080, USA
| | - Tomas Kirchhoff
- Perlmutter Cancer Center, New York University School of Medicine, New York University Langone Health, New York, NY 10016, USA
| | - Randy F Sweis
- Department of Medicine, Section of Hematology/Oncology, Committee on Clinical Pharmacology and Pharmacogenomics, Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Oliver F Bathe
- Department of Oncology, University of Calgary, Alberta AB T2N 4N1, Canada; Arnie Charbonneau Cancer Institute, Calgary, Alberta AB T2N 4N1, Canada; Department of Surgery, University of Calgary, Calgary, Alberta AB T2N 4N1, Canada
| | | | - Michael J Campbell
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cynthia Stretch
- Department of Oncology, University of Calgary, Alberta AB T2N 4N1, Canada; Arnie Charbonneau Cancer Institute, Calgary, Alberta AB T2N 4N1, Canada
| | - Scott Huntsman
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Najeeb Syed
- Research Branch, Sidra Medicine, PO Box 26999 Doha, Qatar; Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Laszlo Radvanyi
- Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Simon Shelley
- Department of Research and Development, Leukemia Therapeutics, LLC, Hull, MA 02045, USA
| | - Denise Wolf
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Michele Ceccarelli
- Department of Electrical Engineering and Information Technology, University of Naples "Federico II," 80128 Naples, Italy; Istituto di Ricerche Genetiche "G. Salvatore," Biogem s.c.ar.l., 83031 Ariano Irpino, Italy
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre Le Cancer, Centre de Recherche de Cordeliers, Université de Paris, Sorbonne Université, Paris, France
| | - Elad Ziv
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Davide Bedognetti
- Research Branch, Sidra Medicine, PO Box 26999 Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar; Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, 16132 Genoa, Italy.
| |
Collapse
|
30
|
Ascierto PA, Butterfield LH, Campbell K, Daniele B, Dougan M, Emens LA, Formenti S, Janku F, Khleif SN, Kirchhoff T, Morabito A, Najjar Y, Nathan P, Odunsi K, Patnaik A, Paulos CM, Reinfeld BI, Skinner HD, Timmerman J, Puzanov I. Perspectives in immunotherapy: meeting report from the "Immunotherapy Bridge" (December 4th-5th, 2019, Naples, Italy). J Transl Med 2021; 19:13. [PMID: 33407605 PMCID: PMC7789268 DOI: 10.1186/s12967-020-02627-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/20/2020] [Indexed: 12/30/2022] Open
Abstract
Over the last few years, numerous clinical trials and real-world experience have provided a large amount of evidence demonstrating the potential for long-term survival with immunotherapy agents across various malignancies, beginning with melanoma and extending to other tumours. The clinical success of immune checkpoint blockade has encouraged increasing development of other immunotherapies. It has been estimated that there are over 3000 immuno-oncology trials ongoing, targeting hundreds of disease and immune pathways. Evolving topics on cancer immunotherapy, including the state of the art of immunotherapy across various malignancies, were the focus of discussions at the Immunotherapy Bridge meeting (4-5 December, 2019, Naples, Italy), and are summarised in this report.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Cancer Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Via Mariano Semmola, 80131, Naples, Italy.
| | - Lisa H Butterfield
- PICI Research & Development, Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Katie Campbell
- PICI Research & Development, Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Michael Dougan
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Leisha A Emens
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Silvia Formenti
- Sandra and Edward Meyer Cancer Center, Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Filip Janku
- Division of Cancer Medicine, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir N Khleif
- The Loop Immuno-Oncology Research Laboratory, Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| | - Tomas Kirchhoff
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Alessandro Morabito
- Thoracic Medical Oncology, National Cancer Institute, IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Yana Najjar
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kunle Odunsi
- Center for Immunotherapy and Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Akash Patnaik
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | - Heath D Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Timmerman
- University of California, Los Angeles, Los Angeles, CA, USA
| | - Igor Puzanov
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
31
|
Gulati N, Donnelly D, Qian Y, Moran U, Johannet P, Zhong J, Osman I. Revisiting the association between skin toxicity and better response in advanced cancer patients treated with immune checkpoint inhibitors. J Transl Med 2020; 18:430. [PMID: 33176813 PMCID: PMC7659132 DOI: 10.1186/s12967-020-02612-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/05/2020] [Indexed: 01/14/2023] Open
Abstract
Background Immune checkpoint inhibition (ICI) improves survival outcomes for patients with several types of cancer including metastatic melanoma (MM), but serious immune-related adverse events requiring intervention with immunosuppressive medications occur in a subset of patients. Skin toxicity (ST) has been reported to be associated with better response to ICI. However, understudied factors, such as ST severity and potential survivor bias, may influence the strength of these observed associations. Methods To examine the potential confounding impact of such variables, we analyzed advanced cancer patients enrolled prospectively in a clinicopathological database with protocol-driven follow up and treated with ICI. We tested the associations between developing ST, stratified as no (n = 617), mild (n = 191), and severe (n = 63), and progression-free survival (PFS) and overall survival (OS) in univariable and multivariable analyses. We defined severe ST as a skin event that required treatment with systemic corticosteroids. To account for the possibility of longer survival associating with adverse events instead of the reverse, we treated ST as a time-dependent covariate in an adjusted model. Results Both mild and severe ST were significantly associated with improved PFS and OS (all P < 0.001). However, when adjusting for the time from treatment initiation to time of skin event, severe ST was not associated with PFS benefit both in univariable and multivariable analyses (P = 0.729 and P = 0.711, respectively). Receiving systemic steroids for ST did not lead to significant differences in PFS or OS compared to patients who did not receive systemic steroids. Conclusions Our data reveal the influence of time to event and its severity as covariates in analyzing the relationship between ST and ICI outcomes. These differences in outcomes cannot be solely explained by the use of immunosuppressive medications, and thus highlight the importance of host- and disease-intrinsic factors in determining ICI response and toxicity. Trial registration: The patient data used in this manuscript come from patients who were prospectively enrolled in two institutional review board-approved databases at NYU Langone Health (institutional review board #10362 and #S16-00122).
Collapse
Affiliation(s)
- Nicholas Gulati
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY, USA
| | - Douglas Donnelly
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yingzhi Qian
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Una Moran
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY, USA
| | - Paul Johannet
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY, USA
| | - Judy Zhong
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Iman Osman
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
32
|
Cheung VTF, Brain O. Immunotherapy induced enterocolitis and gastritis - What to do and when? Best Pract Res Clin Gastroenterol 2020; 48-49:101703. [PMID: 33317787 DOI: 10.1016/j.bpg.2020.101703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 01/31/2023]
Abstract
Oncological treatment has been revolutionised by the advent of immune checkpoint inhibitors (ICPi), which block inhibitory immune pathways to enhance anti-tumour responses and improve survival. This mode of action is non-specific so can cause immune-related adverse events, of which diarrhoea and enterocolitis are amongst the most common. ICPi-enterocolitis frequently leads to cancer therapy interruption. ICPi-gastritis typically occurs at a later stage of ICPi therapy and can present more insidiously with nausea and vomiting. ICPi-enterocolitis and gastritis are treated with corticosteroids, with refractory cases typically requiring biologic therapy. This review will briefly consider the pathogenesis of ICPi-induced GI disease, before focussing on the practical management of these conditions. The anticipated global increase in ICPi use across cancer types highlights the importance of prospective research in order that we can understand the immuno-microbiology of ICPi-enterocolitis and gastritis. This will lead to predictive biomarkers and help to define optimal treatment regimens.
Collapse
Affiliation(s)
- Vincent Ting Fung Cheung
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Oliver Brain
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|
33
|
Ascierto PA, Puzanov I, Agarwala SS, Blank C, Carvajal RD, Demaria S, Dummer R, Ernstoff M, Ferrone S, Fox BA, Gajewski TF, Garbe C, Hwu P, Lo RS, Long GV, Luke JJ, Osman I, Postow MA, Sullivan RJ, Taube JM, Trinchieri G, Zarour HM, Caracò C, Thurin M. Perspectives in melanoma: meeting report from the "Melanoma Bridge" (December 5th-7th, 2019, Naples, Italy). J Transl Med 2020; 18:346. [PMID: 32894202 PMCID: PMC7487701 DOI: 10.1186/s12967-020-02482-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
The melanoma treatment landscape changed in 2011 with the approval of the first anti-cytotoxic T-lymphocyte-associated protein (CTLA)-4 checkpoint inhibitor and of the first BRAF-targeted monoclonal antibody, both of which significantly improved overall survival (OS). Since then, improved understanding of the tumor microenvironment (TME) and tumor immune-evasion mechanisms has resulted in new approaches to targeting and harnessing the host immune response. The approval of new immune and targeted therapies has further improved outcomes for patients with advanced melanoma and other combination modalities are also being explored such as chemotherapy, radiotherapy, electrochemotherapy and surgery. In addition, different strategies of drugs administration including sequential or combination treatment are being tested. Approaches to overcome resistance and to potentiate the immune response are being developed. Increasing evidence emerges that tissue and blood-based biomarkers can predict the response to a therapy. The latest findings in melanoma research, including insights into the tumor microenvironment and new biomarkers, improved understanding of tumor immune response and resistance, novel approaches for combination strategies and the role of neoadjuvant and adjuvant therapy, were the focus of discussions at the Melanoma Bridge meeting (5-7 December, 2019, Naples, Italy), which are summarized in this report.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Via Mariano Semmola, 80131, Naples, Italy.
| | - Igor Puzanov
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | - Richard D Carvajal
- Columbia University Irving Medical Center, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Marc Ernstoff
- Roswell Park Comprehensive Cancer Center, Jacobs School of Medicine and Biomedical Sciences, State University, Buffalo, NY, USA
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bernard A Fox
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Cancer Institute, Portland, OR, USA
| | - Thomas F Gajewski
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Department of Medicine (Section of Haematology/Oncology), University of Chicago, Chicago, IL, USA
| | - Claus Garbe
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, Anderson Cancer Center, Houston, TX, USA
| | - Roger S Lo
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney and Royal North Shore and Mater Hospitals, Sydney, Australia
| | - Jason J Luke
- Medicine University of Chicago, Chicago, IL, USA
| | - Iman Osman
- The Interdisciplinary Melanoma Program, New York University Langone Medical Center, NYU Grossman Medical School, New York, NY, USA
| | - Michael A Postow
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Ryan J Sullivan
- Melanoma Program, Mass General Cancer Center, Boston, MA, USA
| | - Janis M Taube
- Division of Dermatopathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hassane M Zarour
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corrado Caracò
- Department Melanoma, Soft Tissue, Muscle-Skeletal and Head-Neck, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Magdalena Thurin
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, NCI, Bethesda, MD, USA
| |
Collapse
|
34
|
Guo L, Wei R, Lin Y, Kwok HF. Clinical and Recent Patents Applications of PD-1/PD-L1 Targeting Immunotherapy in Cancer Treatment-Current Progress, Strategy, and Future Perspective. Front Immunol 2020; 11:1508. [PMID: 32733486 PMCID: PMC7358377 DOI: 10.3389/fimmu.2020.01508] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Targeting PD-L1 and PD-1 interactions is a relatively new therapeutic strategy used to treat cancer. Inhibitors of PD-1/PD-L1 include peptides, small molecule chemical compounds, and antibodies. Several approved antibodies targeting PD-1 or PD-L1 have been patented with good curative effect in various cancer types in clinical practices. While the current antibody therapy is facing development bottleneck, some companies have tried to develop PD-L1 companion tests to select patients with better diagnosis potential. Meanwhile, many companies have recently synthesized small molecule inhibitors of PD-1/PD-L1 interactions and focused on searching for novel biomarker to predict the efficacy of anti-PD-1/PD-L1 drugs. This review summarized clinical studies and patent applications related to PD-1/PD-L1 targeted therapy and also discussed progress in inhibitors of PD-1/PD-L1.
Collapse
Affiliation(s)
- Libin Guo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, China
| | - Ran Wei
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, China
| | - Yao Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, China
| |
Collapse
|
35
|
Biological Factors behind Melanoma Response to Immune Checkpoint Inhibitors. Int J Mol Sci 2020; 21:ijms21114071. [PMID: 32517213 PMCID: PMC7313051 DOI: 10.3390/ijms21114071] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Modern immunotherapy together with targeted therapy has revolutionized the treatment of advanced melanoma. Inhibition of immune checkpoints significantly improved the median overall survival and gave hope to many melanoma patients. However, this treatment has three serious drawbacks: high cost, serious side effects, and an effectiveness limited only to approximately 50% of patients. Some patients do not derive any or short-term benefit from this treatment due to primary or secondary resistance. The response to immunotherapy depends on many factors that fall into three main categories: those associated with melanoma cells, those linked to a tumor and its microenvironment, and those classified as individual ontogenic and physiological features of the patient. The first category comprises expression of PD-L1 and HLA proteins on melanoma cells as well as genetic/genomic metrics such as mutational load, (de)activation of specific signaling pathways and epigenetic factors. The second category is the inflammatory status of the tumor: “hot” versus “cold” (i.e., high versus low infiltration of immune cells). The third category comprises metabolome and single nucleotide polymorphisms of specific genes. Here we present up-to-date data on those biological factors influencing melanoma response to immunotherapy with a special focus on signaling pathways regulating the complex process of anti-tumor immune response. We also discuss their potential predictive capacity.
Collapse
|
36
|
Coureau M, Meert AP, Berghmans T, Grigoriu B. Efficacy and Toxicity of Immune -Checkpoint Inhibitors in Patients With Preexisting Autoimmune Disorders. Front Med (Lausanne) 2020; 7:137. [PMID: 32457912 PMCID: PMC7220995 DOI: 10.3389/fmed.2020.00137] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy is an important armamentarium for cancer treatment nowadays. Apart from their significant effectiveness in controlling disease they also generate potential severe immune related adverse effects. Preexistence of immune related conditions may eventually predispose to the development of more severe complication and extreme caution have been taken in treating these patients. We performed a literature review searching for case reports and case series in order to offer evidence-based data for clinical management of these patients. Preexisting serological-only immune abnormalities or presence of a predisposing genetic background does not seem to confer significant risk but existing data is scarce. Most patients with preexistent autoimmune diseases can probably treated with checkpoint inhibitors as they seem to have at least the same response rate as the general cancer population. Under treatment, a significant part of them (at least 30%) can experience a flare of their baseline disease which can sometime be severe. Life-threatening cases seems rare and disease flare can be generally managed with steroids. The volume of available data is more important for rheumatologic diseases than for inflammatory bowel diseases were more caution should be observed. However, it has to be kept in mind that new immune related adverse effects (IrAE) are seen with a similar frequency as the flare of the baseline disease. Both flare-up's and newly developed IrAE are generally manageable with a careful clinical follow-up and prompt therapy.
Collapse
Affiliation(s)
- Michelle Coureau
- Service des Soins Intensifs et Urgences Oncologiques, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Anne-Pascale Meert
- Service des Soins Intensifs et Urgences Oncologiques, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Thierry Berghmans
- Service d'Oncologie Medicale, Unité d'Oncologie Thoracique, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Bogdan Grigoriu
- Service des Soins Intensifs et Urgences Oncologiques, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
37
|
Collins M, Soularue E, Marthey L, Carbonnel F. Management of Patients With Immune Checkpoint Inhibitor-Induced Enterocolitis: A Systematic Review. Clin Gastroenterol Hepatol 2020; 18:1393-1403.e1. [PMID: 32007539 DOI: 10.1016/j.cgh.2020.01.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have improved the treatment of several cancers. These drugs increase T-cell activity and the antitumor immune response but also have immune-related adverse effects that can affect the gastrointestinal (GI) tract. These adverse effects have been observed in 7% to 30% of patients treated with ICIs. As the number of diseases treated with ICIs increases, gastroenterologists will see more patients with ICI-induced GI adverse events. We performed a systematic review of the incidence, risk factors, clinical manifestations, and management of the adverse effects of ICIs on the GI tract. Treatment with anti-cytotoxic T-lymphocyte-associated antigen-4 often causes severe enterocolitis, whereas treatment with inhibitors of programmed cell death 1 have less frequent and more diverse adverse effects. Management of patients with GI adverse effects of ICIs should involve first ruling out other disorders, followed by assessment of severity, treatment with corticosteroids, and rapid introduction of infliximab therapy for nonresponders.
Collapse
Affiliation(s)
- Michael Collins
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France; Paris Saclay University, Le Kremlin Bicêtre, France; INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
| | - Emilie Soularue
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France
| | - Lysiane Marthey
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France
| | - Franck Carbonnel
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France; Paris Saclay University, Le Kremlin Bicêtre, France; INSERM 1018, UPS, UVSQ Institut Gustave Roussy, Villejuif Cedex, France.
| |
Collapse
|
38
|
Cappelli LC, Thomas MA, Bingham CO, Shah AA, Darrah E. Immune checkpoint inhibitor-induced inflammatory arthritis as a model of autoimmune arthritis. Immunol Rev 2020; 294:106-123. [PMID: 31930524 PMCID: PMC7047521 DOI: 10.1111/imr.12832] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
The development of inflammatory arthritis in patients receiving immune checkpoint inhibitor therapy is increasingly recognized due to the growing use of these drugs for the treatment of cancer. This represents an important opportunity not only to define the mechanisms responsible for the development of this immune-related adverse event and to ultimately predict or prevent its development, but also to provide a unique window into early events in the development of inflammatory arthritis. Knowledge gained through the study of this patient population, for which the inciting event is known, could shed light into the pathogenesis of autoimmune arthritis. This review will highlight the clinical and immunologic features of these entities to define common elements for future study.
Collapse
Affiliation(s)
- Laura C. Cappelli
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Mekha A. Thomas
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Clifton O. Bingham
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Ami A. Shah
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Erika Darrah
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| |
Collapse
|
39
|
Genetic and Epigenetic Biomarkers of Immune Checkpoint Blockade Response. J Clin Med 2020; 9:jcm9010286. [PMID: 31968651 PMCID: PMC7019273 DOI: 10.3390/jcm9010286] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 02/06/2023] Open
Abstract
Checkpoint inhibitor therapy constitutes a promising cancer treatment strategy that targets the immune checkpoints to re-activate silenced T cell cytotoxicity. In recent pivotal trials, immune checkpoint blockade (ICB) demonstrated durable responses and acceptable toxicity, resulting in the regulatory approval of 8 checkpoint inhibitors to date for 15 cancer indications. However, up to ~85% of patients present with innate or acquired resistance to ICB, limiting its clinical utility. Current response biomarker candidates, including DNA mutation and neoantigen load, immune profiles, as well as programmed death-ligand 1 (PD-L1) expression, are only weak predictors of ICB response. Thus, identification of novel, more predictive biomarkers that could identify patients who would benefit from ICB constitutes one of the most important areas of immunotherapy research. Aberrant DNA methylation (5mC) and hydroxymethylation (5hmC) were discovered in multiple cancers, and dynamic changes of the epigenomic landscape have been identified during T cell differentiation and activation. While their role in cancer immunosuppression remains to be elucidated, recent evidence suggests that 5mC and 5hmC may serve as prognostic and predictive biomarkers of ICB-sensitive cancers. In this review, we describe the role of epigenetic phenomena in tumor immunoediting and other immune evasion related processes, provide a comprehensive update of the current status of ICB-response biomarkers, and highlight promising epigenomic biomarker candidates.
Collapse
|
40
|
Kirchhoff T, Ferguson R. Germline Genetics in Immuno-oncology: From Genome-Wide to Targeted Biomarker Strategies. Methods Mol Biol 2020; 2055:93-117. [PMID: 31502148 DOI: 10.1007/978-1-4939-9773-2_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In immuno-oncology (IO), the baseline host factors attract significant clinical interest as promising predictive biomarker candidates primarily due to the feasibility of noninvasive testing and the personalized potential of IO outcome prediction catered to individual patients. Growing evidence from experimental or population-based studies suggests that the host genetic factors contribute to the immunological status of a patient as it plays out at the multiple rate-limiting steps of the cancer immunity cycle. Recent observations suggest that germline genetics may be associated with tumor microenvironment phenotypes, autoimmune toxicities, and/or efficacy of immunotherapy regimens and overall cancer survival. Despite these highly intriguing indications, the potential of germline genetic factors as personalized biomarkers of immune-checkpoint inhibition (ICI) remains vastly unexplored. In this chapter, we review the rationale for exploring the germline genetic factors as novel biomarkers predictive of IO outcomes, including ICI efficacy, toxicity, or survival, and discuss the approaches for the identification of such germline genetic surrogates. Specifically, we focus on strategies for mapping the germline genetic biomarkers of ICI using genome-wide scans (genome-wide association analyses, next-generation sequencing technologies), followed by targeted assays, to be applied in clinical use. As we discuss the limitations, we highlight a need for large collaborative consortia in these efforts and sketch possible avenues for incorporating germline genetic factors into emerging multifactorial approaches for more personalized prediction of ICI outcomes.
Collapse
Affiliation(s)
- Tomas Kirchhoff
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| | - Robert Ferguson
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
41
|
|
42
|
Chat V, Ferguson R, Kirchhoff T. Germline genetic host factors as predictive biomarkers in immuno-oncology. IMMUNO-ONCOLOGY AND TECHNOLOGY 2019; 2:14-21. [PMID: 35756849 PMCID: PMC9216465 DOI: 10.1016/j.iotech.2019.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|