1
|
Chen K, Li Q, Li Y, Jiang D, Chen L, Jiang J, Li S, Zhang C. Tetraspanins in digestive‑system cancers: Expression, function and therapeutic potential (Review). Mol Med Rep 2024; 30:200. [PMID: 39239742 PMCID: PMC11411235 DOI: 10.3892/mmr.2024.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
The tetraspanin family of membrane proteins is essential for controlling different biological processes such as cell migration, penetration, adhesion, growth, apoptosis, angiogenesis and metastasis. The present review summarized the current knowledge regarding the expression and roles of tetraspanins in different types of cancer of the digestive system, including gastric, liver, colorectal, pancreatic, esophageal and oral cancer. Depending on the type and context of cancer, tetraspanins can act as either tumor promoters or suppressors. In the present review, the importance of tetraspanins in serving as biomarkers and targets for different types of digestive system‑related cancer was emphasized. Additionally, the molecular mechanisms underlying the involvement of tetraspanins in cancer progression and metastasis were explored. Furthermore, the current challenges are addressed and future research directions for advancing investigations related to tetraspanins in the context of digestive system malignancies are proposed.
Collapse
Affiliation(s)
- Kexin Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yangyi Li
- Department of Medical Imaging, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Donghui Jiang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chunxiang Zhang
- Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
2
|
Wang P, Gao X, Zheng W, Zhang J. Potential impact of epithelial splicing regulatory protein 1 (ESRP1) associated with tumor immunity in pancreatic adenocarcinoma. J Proteomics 2024; 308:105277. [PMID: 39127164 DOI: 10.1016/j.jprot.2024.105277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is a prevalent and highly malignant gastrointestinal tumor. Therefore, exploring the mechanisms of drug resistance and immune pathways in PAAD is crucial for clinical treatment. In this study, a total of 497 differentially expressed genes (DEGs) were identified between normal and PAAD samples, and which were enriched to 117 GO terms and 7 functional pathways. Subsequently, 5 overall survival-related DEGs (ESRP1, KRT6A, H2BC11, H2BC4 and KLK) was generated using Cox hazards regression analysis in TCGA dataset. Furthermore, the weighted gene co-expression network analysis revealed a strong association between ESRP1 and PAAD among 5 survival-related DEGs. Patients were divided into two clusters based on ESRP1 expression levels, and low ESRP1 expression existed stronger immune infiltration and higher expression of immunomodulatory targets than high ESRP1 expression by single-sample gene set enrichment analysis, which indicated that low ESRP1 expression was associated with longer survival compared to high ESRP1 expression. Finally, our study also found that immune cells distribution and immunomodulatory targets gene expression in the GEO dataset were similar to the TCGA cohort. Overall, our findings suggest that ESRP1 may play a role in influencing immune contexture and regulating immune function of PAAD patients by integrating data from various databases. SIGNIFICANCE: Utilizing TCGA and GEO datasets, this study uncovers the significant impact of epithelial splicing regulatory protein 1 (ESRP1) on PAAD. ESRP1 emerges as a key regulator of immune function, influencing tumor microenvironment and immune cell infiltration. Cluster analysis shows that low ESRP1 expression correlates with enhanced immune activity, predicting better prognosis. This discovery suggests that ESRP1 can serve as a potential biomarker for the prognosis of PAAD, offering new insights into personalized immunotherapy by influencing immune regulation and tumor progression.
Collapse
Affiliation(s)
- Pengpeng Wang
- Police-Dog Technology Department, Criminal Investigation Police University of China, Shenyang 110034, China
| | - Xiang Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Weijie Zheng
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junnan Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Wang X, Chen L, Zhang W, Sun W, Huang J. Colorectal Cancer-Derived Exosomes Impair CD4 + T Cell Function and Accelerate Cancer Progression via Macrophage Activation. Cancer Biother Radiopharm 2024. [PMID: 39263734 DOI: 10.1089/cbr.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Background: Exosomal programmed death ligand 1 (PD-L1), an exosomal membrane protein found in many tumor types, is reckoned to help regulate the immune microenvironment. However, the functions and the mechanisms underlying the exosome-mediated regulation of the immune microenvironment in colorectal cancer (CRC) remain unknown. Methods: Western blotting was used to investigate the levels of exosomal PD-L1 in the peripheral blood of patients with CRC and healthy controls. A CRC mouse model was constructed by administering 10 mg/kg azoxymethane (AOM) and dextrane sodium sulfate (DSS) intraperitoneally. The mice were then administered the control or CRC-derived exosomes to examine the regulatory effect of the exosomes on macrophage infiltration and CRC development. In vitro studies, using a coculture system, and flow cytometry analysis were conducted to examine the relationship between the regulatory effect of CRC-derived exosomes on CD4+ T cells and tumor-associated macrophages. RNA-seq and reverse transcription-quantitative polymerase chain reaction assays were used to investigate the mechanisms underlying the regulatory effect of the CRC-derived exosomes on macrophage proliferation and the regulation of the immune microenvironment during CRC development. Results: In patients with CRC, higher levels of exosomal PD-L1 were associated with a more severe form of disease. The treatment of mice with AOM/DSS-induced CRC with CRC-derived exosomes resulted in high levels of macrophage proliferation, increased PD-L1 levels in macrophages, and accelerated CRC progression. Importantly, analysis of an in vitro coculture system and flow cytometry analysis showed that the CRC-derived exosomes transported PD-L1 into macrophages and impaired CD4+ T cell function. Preliminary data suggest that the NF-κb signaling pathway regulates the function of CRC-derived exosomal PD-L1-dependent macrophages. Conclusion: CRC-derived exosomes induce the proliferation of macrophages and increase their PD-L1 levels. They also impair CD4+ T cell function and promote CRC progression. Our findings reveal a novel exosomal PD-L1-mediated crosstalk between the CRC cells and immune cells in the CRC microenvironment.
Collapse
Affiliation(s)
- Xiaolong Wang
- Department of Gastrointestinal Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Liang Chen
- Department of Gastrointestinal Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Wenwei Zhang
- Department of Gastrointestinal Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Wei Sun
- Department of Gastrointestinal Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Jianpeng Huang
- Department of Gastrointestinal Surgery, The Third People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
4
|
Liu D, Li C, Deng Z, Luo N, Li W, Hu W, Li X, Qiu Z, Chen J, Peng J. Multi-omics analysis reveals the landscape of tumor microenvironments in left-sided and right-sided colon cancer. Front Med (Lausanne) 2024; 11:1403171. [PMID: 39267963 PMCID: PMC11391487 DOI: 10.3389/fmed.2024.1403171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Background Distinct clinical features and molecular characteristics of left-sided colon cancer (LCC) and right-sided colon cancer (RCC) suggest significant variations in their tumor microenvironments (TME). These differences can impact the efficacy of immunotherapy, making it essential to investigate and understand these disparities. Methods We conducted a multi-omics analysis, including bulk RNA sequencing (bulk RNA-seq), single-cell RNA sequencing (scRNA-seq), and whole-exome sequencing (WES), to investigate the constituents and characteristic differences of the tumor microenvironment (TME) in left-sided colon cancer (LCC) and right-sided colon cancer (RCC). Result Deconvolution algorithms revealed significant differences in infiltrated immune cells between left-sided colon cancer (LCC) and right-sided colon cancer (RCC), including dendritic cells, neutrophils, natural killer (NK) cells, CD4 and CD8 T cells, and M1 macrophages (P < 0.05). Notably, whole-exome sequencing (WES) data analysis showed a significantly higher mutation frequency in RCC compared to LCC (82,187/162 versus 18,726/115, P < 0.01). Single-cell analysis identified predominant tumor cell subclusters in RCC characterized by heightened proliferative potential and increased expression of major histocompatibility complex class I molecules. However, the main CD8 + T cell subpopulations in RCC exhibited a highly differentiated state, marked by T cell exhaustion and recent activation, defined as tumor-specific cytotoxic T lymphocytes (CTLs). Immunofluorescence and flow cytometry results confirmed this trend. Additionally, intercellular communication analysis demonstrated a greater quantity and intensity of interactions between tumor-specific CTLs and tumor cells in RCC. Conclusion RCC patients with an abundance of tumor-specific cytotoxic T lymphocytes (CTLs) and increased immunogenicity of tumor cells in the TME may be better candidates for immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Dongfang Liu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chen Li
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zenghua Deng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Nan Luo
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenxia Li
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenzhe Hu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiang Li
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zichao Qiu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jianfei Chen
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Ninth School of Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
5
|
Zhang W, Wang M, Ji C, Liu X, Gu B, Dong T. Macrophage polarization in the tumor microenvironment: Emerging roles and therapeutic potentials. Biomed Pharmacother 2024; 177:116930. [PMID: 38878638 DOI: 10.1016/j.biopha.2024.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) is a combination of tumor cells and indigenous host stroma, which consists of tumor-infiltrating immune cells, endothelial cells, fibroblasts, pericytes, and non-cellular elements. Tumor-associated macrophages (TAMs) represent the major tumor-infiltrating immune cell type and are generally polarized into two functionally contradictory subtypes, namely classical activated M1 macrophages and alternatively activated M2 macrophages. Macrophage polarization refers to how macrophages are activated at a given time and space. The interplay between the TME and macrophage polarization can influence tumor initiation and progression, making TAM a potential target for cancer therapy. Here, we review the latest investigations on factors orchestrating macrophage polarization in the TME, how macrophage polarization affects tumor progression, and the perspectives in modulating macrophage polarization for cancer immunotherapy.
Collapse
Affiliation(s)
- Wenru Zhang
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Mengmeng Wang
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Chonghao Ji
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaohui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, China
| | - Bowen Gu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States.
| | - Ting Dong
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
6
|
Ye QW, Liu YJ, Li JQ, Han M, Bian ZR, Chen TY, Li JP, Liu SL, Zou X. GJA4 expressed on cancer associated fibroblasts (CAFs)-A 'promoter' of the mesenchymal phenotype. Transl Oncol 2024; 46:102009. [PMID: 38833783 PMCID: PMC11190749 DOI: 10.1016/j.tranon.2024.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/09/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer worldwide. Connexin is a transmembrane protein involved in gap junctions (GJs) formation. Our previous study found that connexin 37 (Cx37), encoded by gap junction protein alpha 4 (GJA4), expressed on fibroblasts acts as a promoter of CRC and is closely related to epithelial-mesenchymal transition (EMT) and tumor immune microenvironment. However, to date, the mechanism concerning the malignancy of GJA4 in tumor stroma has not been studied. METHODS Hematoxylin-eosin (HE) and immunohistochemical (IHC) staining were used to validate the expression and localization of GJA4. Using single-cell analysis, enrichment analysis, spatial transcriptomics, immunofluorescence staining (IF), Sirius red staining, wound healing and transwell assays, western blotting (WB), Cell Counting Kit-8 (CCK8) assay and in vivo experiments, we investigated the possible mechanisms of GJA4 in promoting CRC. RESULTS We discovered that in CRC, GJA4 on fibroblasts is involved in promoting fibroblast activation and promoting EMT through a fibroblast-dependent pathway. Furthermore, GJA4 may act synergistically with M2 macrophages to limit T cell infiltration by stimulating the formation of an immune-excluded desmoplasic barrier. Finally, we found a significantly correlation between GJA4 and pathological staging (P < 0.0001) or D2 dimer (R = 0.03, P < 0.05). CONCLUSION We have identified GJA4 expressed on fibroblasts is actually a promoter of the tumor mesenchymal phenotype. Our findings suggest that the interaction between GJA4+ fibroblasts and M2 macrophages may be an effective target for enhancing tumor immunotherapy.
Collapse
Affiliation(s)
- Qian-Wen Ye
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China; No.1 Clinical Medicial College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Yuan-Jie Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China; No.1 Clinical Medicial College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Jia-Qi Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China; No.1 Clinical Medicial College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Mei Han
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Ze-Ren Bian
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China; No.1 Clinical Medicial College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Tian-Yuan Chen
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China; No.1 Clinical Medicial College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Jie-Pin Li
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Shen-Lin Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China.
| | - Xi Zou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Nanjing, Jiangsu, PR China.
| |
Collapse
|
7
|
Wang L, Zhao J, Shi L, Wang B, Zhang X. The effect of combined head and tail approach during laparoscopic D3 lymph node dissection on pain severity and complications in patients with right colon cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03585-3. [PMID: 38967738 DOI: 10.1007/s12094-024-03585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE To examine the impact of a combined craniocaudal approach on pain and complications during laparoscopic D3 lymph node dissection in clients diagnosed with right colon cancer (RCC). METHODS 100 RCC patients were divided into Group A and Group B. Both groups underwent laparoscopic D3 lymph node dissection, with Group A undergoing an intermediate approach and Group B undergoing a combined head and tail approach. Two groups of patients' perioperative (surgical time, intraoperative blood loss, number of lymph node dissection) indicators, postoperative recovery (postoperative exhaust time, postoperative hospital stay, drainage tube removal time) indicators, perioperative pain level (VAS scores 1, 3, and 5 days following surgery), and incidence of complications (vascular injury, intestinal obstruction, anastomotic bleeding, incision infection), and the therapeutic efficacy [CEA, CA19-9] indicators were compared. RESULTS Clients in the B team had substantially shorter operating times and considerably fewer intraoperative hemorrhage than those in the A team. The VAS grades of clients in the B team were considerably lower than those in the A team the day following surgery. Clients in the B team experienced vascular injury at a substantially lower rate than those in the A team. The overall incidence rate of problems did not differ statistically significantly between the A team and the B team. Following therapy, teams A and B's CEA and CA19-9 levels were considerably lower than those of the same team prior to therapy. CONCLUSION Combined craniocaudal technique can significantly reduce intraoperative bleeding, postoperative pain, and the risk of sequelae from vascular injuries.
Collapse
Affiliation(s)
- Liang Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, Anhui, China
| | - Jun Zhao
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, Anhui, China
| | - Lianghui Shi
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, Anhui, China
| | - Bing Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, Anhui, China
| | - Xiaofeng Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, Anhui, China.
| |
Collapse
|
8
|
Li Y, Guo Y, Chen F, Cui Y, Chen X, Shi G. Male breast cancer differs from female breast cancer in molecular features that affect prognoses and drug responses. Transl Oncol 2024; 45:101980. [PMID: 38701649 PMCID: PMC11088352 DOI: 10.1016/j.tranon.2024.101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/13/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Male breast cancer (MBC) is a rare malignancy with a worse prognosis than female breast cancer (FBC). Current MBC treatment strategies are based on those for FBC. However, molecular differences between MBC and FBC with respect to prognosis and drug responses remain unclear. METHODS After controlling for confounding factors with propensity score matching (PSM), differences between MBC and FBC were comprehensively analyzed using many types of data: survival, immune microenvironments, sex hormone responses, drug sensitivity, transcriptomes, genomes, epigenomes, and proteomes. RESULTS Overall survival (OS) and cancer-specific survival (CSS) were both worse for MBC than for FBC. Differentially expressed mRNAs were enriched in numerous cancer-related functions and pathways, with SPAG16 and STOX1 being as the most important prognosis-related mRNAs for MBC. Competing endogenous RNA (ceRNA) and transcription factor (TF)-mRNA regulatory networks contain potential prognostic genes. Nine genes had higher mutation frequencies in MBC than in FBC. MBC shows a comparatively poor response to immunotherapy, with five proteins that promote breast cancer progression being highly expressed in MBC. MBC may be more responsive than FBC to estrogen. We detected six United States Food and Drug Administration (FDA)-approved therapeutic target genes as being differentially expressed between MBC and FBC. CONCLUSION The poor prognosis of MBC compared to FBC is due to numerous molecular differences and resulting drug responses.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150081, China
| | - Yan Guo
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150081, China; Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi Province 030013, China
| | - Fengzhi Chen
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150081, China
| | - Yuqing Cui
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150081, China
| | - Xuesong Chen
- Department of Oncology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China; NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, Heilongjiang Province 150001, China.
| | - Guangyue Shi
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150081, China.
| |
Collapse
|
9
|
Wang Z, Niu D. To explore the prognostic characteristics of colon cancer based on tertiary lymphoid structure-related genes and reveal the characteristics of tumor microenvironment and drug prediction. Sci Rep 2024; 14:13555. [PMID: 38867070 PMCID: PMC11169531 DOI: 10.1038/s41598-024-64308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
In order to construct a prognostic evaluation model of TLS features in COAD and better realize personalized precision medicine in COAD. Colon adenocarcinoma (COAD) is a common malignant tumor of the digestive system. At present, there is no effective prognostic marker to predict the prognosis of patients. Tertiary lymphoid structure (TLS) affects cancer progression by regulating immune microenvironment. Mining COAD biomarkers based on TLS-related genes helps to improve the prognosis of patients. In order to construct a prognostic evaluation model of TLS features in COAD and better realize personalized precision medicine in COAD. The mRNA expression data and clinical information of COAD and adjacent tissues were downloaded from the Cancer Genome Atlas database. The differentially expressed TLS-related genes of COAD relative to adjacent tissues were obtained by differential analysis. TLS gene co-expression analysis was used to mine genes highly related to TLS, and the intersection of the two was used to obtain candidate genes. Univariate, LASSO, and multivariate Cox regression analysis were performed on candidate genes to screen prognostic markers to construct a risk assessment model. The differences of immune characteristics were evaluated by ESTIMATE, ssGSEA and CIBERSORT in high and low risk groups of prognostic model. The difference of genomic mutation between groups was evaluated by tumor mutation burden score. Screening small molecule drugs through the GDSC library. Finally, a nomogram was drawn to evaluate the clinical value of the prognostic model. Seven TLS-related genes ADAM8, SLC6A1, PAXX, RIMKLB, PTH1R, CD1B, and MMP10 were screened to construct a prognostic model. Survival analysis showed that patients in the high-risk group had significantly lower overall survival rates. Immune microenvironment analysis showed that patients in the high-risk group had higher immune indicators, indicating higher immunity. The genomic mutation patterns of the high-risk and low-risk groups were significantly different, especially the KRAS mutation frequency was significantly higher in the high-risk group. Drug sensitivity analysis showed that the low-risk group was more sensitive to Erlotinib, Savolitinib and VE _ 822, which may be used as a potential drug for COAD treatment. Finally, the nomogram constructed by pathological features combined with RiskScore can accurately evaluate the prognosis of COAD patients. This study constructed and verified a TLS model that can predict COAD. More importantly, it provides a reference standard for guiding the prognosis and immunotherapy of COAD patients.
Collapse
Affiliation(s)
- Zhanmei Wang
- Department of Oncology, Qilu Hospital of Shandong University, Qingdao, 266000, China
| | - Dongguang Niu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao City, 266000, Shandong Province, China.
| |
Collapse
|
10
|
Putro E, Carnevale A, Marangio C, Fulci V, Paolini R, Molfetta R. New Insight into Intestinal Mast Cells Revealed by Single-Cell RNA Sequencing. Int J Mol Sci 2024; 25:5594. [PMID: 38891782 PMCID: PMC11171657 DOI: 10.3390/ijms25115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells distributed in all tissues and strategically located close to blood and lymphatic vessels and nerves. Thanks to the expression of a wide array of receptors, MCs act as tissue sentinels, able to detect the presence of bacteria and parasites and to respond to different environmental stimuli. MCs originate from bone marrow (BM) progenitors that enter the circulation and mature in peripheral organs under the influence of microenvironment factors, thus differentiating into heterogeneous tissue-specific subsets. Even though MC activation has been traditionally linked to IgE-mediated allergic reactions, a role for these cells in other pathological conditions including tumor progression has recently emerged. However, several aspects of MC biology remain to be clarified. The advent of single-cell RNA sequencing platforms has provided the opportunity to understand MCs' origin and differentiation as well as their phenotype and functions within different tissues, including the gut. This review recapitulates how single-cell transcriptomic studies provided insight into MC development as well as into the functional role of intestinal MC subsets in health and disease.
Collapse
Affiliation(s)
| | | | | | | | - Rossella Paolini
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (E.P.); (A.C.); (C.M.); (V.F.); (R.M.)
| | | |
Collapse
|
11
|
Zhang H, Song Q, Shang K, Li Y, Jiang L, Yang L. Tspan protein family: focusing on the occurrence, progression, and treatment of cancer. Cell Death Discov 2024; 10:187. [PMID: 38649381 PMCID: PMC11035590 DOI: 10.1038/s41420-024-01961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
The Tetraspanins (Tspan) protein family, also known as the tetraspanin family, contains 33 family members that interact with other protein molecules such as integrins, adhesion molecules, and T cell receptors by forming dimers or heterodimers. The Tspan protein family regulates cell proliferation, cell cycle, invasion, migration, apoptosis, autophagy, tissue differentiation, and immune response. More and more studies have shown that Tspan proteins are involved in tumorigenesis, epithelial-mesenchymal transition, thrombosis, tumor stem cell, and exosome signaling. Some drugs and microRNAs can inhibit Tspan proteins, thus providing new strategies for tumor therapy. An in-depth understanding of the functions and regulatory mechanisms of the Tspan protein family, which can promote or inhibit tumor development, will provide new strategies for targeted interventions in the future.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Qinghang Song
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Kaiwen Shang
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Liangqian Jiang
- Department of Medical Genetics, Linyi People's Hospital, Linyi, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
12
|
Fay M, Clavijo PE, Allen CT. Heterogeneous characterization of neutrophilic cells in head and neck cancers. Head Neck 2024; 46:10.1002/hed.27774. [PMID: 38622975 PMCID: PMC11473716 DOI: 10.1002/hed.27774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Neutrophilic cells are among the most abundant immune populations within the head and neck tumor microenvironment (TME) and harbor multiple mechanisms of immunosuppression. Despite these important features, neutrophilic cells may be underrepresented in contemporary studies that aim to comprehensively characterize the immune landscape of the TME due to discrepancies in tissue processing and analysis techniques. Here, we review the role of pathologically activated neutrophilic cells within the TME and pitfalls of various approaches used to study their frequency and function in clinical samples. METHODS The literature was identified by searching PubMed for "immune landscape" and "tumor immune microenvironment" in combination with keywords describing solid tumor malignancies. Key publications that assessed the immune composition of solid tumors derived from human specimens were included. The tumor and blood processing methodologies in each study were reviewed in depth and correlated with the reported abundance of neutrophilic cells. RESULTS Neutrophilic cells do not survive cryopreservation, and many studies fail to identify and study neutrophilic cell populations due to cryopreservation of clinical samples for practical reasons. Additional single-cell transcriptomic studies filter out neutrophilic cells due to low transcriptional counts. CONCLUSIONS This report can help readers critically interpret studies aiming to comprehensively study the immune TME that fail to identify and characterize neutrophilic cells.
Collapse
Affiliation(s)
- Magdalena Fay
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul E. Clavijo
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T. Allen
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Ding H, Teng Y, Gao P, Zhang Q, Wang M, Yu Y, Fan Y, Zhu L. Construction of a prognostic model for lung adenocarcinoma based on m6A/m5C/m1A genes. Hum Mol Genet 2024; 33:563-582. [PMID: 38142284 DOI: 10.1093/hmg/ddad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Developing a prognostic model for lung adenocarcinoma (LUAD) that utilizes m6A/m5C/m1A genes holds immense importance in providing precise prognosis predictions for individuals. METHODS This study mined m6A/m5C/m1A-related differential genes in LUAD based on public databases, identified LUAD tumor subtypes based on these genes, and further built a risk prognostic model grounded in differential genes between subtypes. The immune status between high- and low-risk groups was investigated, and the distribution of feature genes in tumor immune cells was analyzed using single-cell analysis. Based on the expression levels of feature genes, a projection of chemotherapeutic and targeted drugs was made for individuals identified as high-risk. Ultimately, cell experiments were further verified. RESULTS The 6-gene risk prognosis model based on differential genes between tumor subtypes had good predictive performance. Individuals classified as low-risk exhibited a higher (P < 0.05) abundance of infiltrating immune cells. Feature genes were mainly distributed in tumor immune cells like CD4+T cells, CD8+T cells, and regulatory T cells. Four drugs with relatively low IC50 values were found in the high-risk group: Elesclomol, Pyrimethamine, Saracatinib, and Temsirolimus. In addition, four drugs with significant positive correlation (P < 0.001) between IC50 values and feature gene expression were found, including Alectinib, Estramustine, Brigatinib, and Elesclomol. The low expression of key gene NTSR1 reduced the IC50 value of irinotecan. CONCLUSION Based on the m6A/m5C/m1A-related genes in LUAD, LUAD patients were divided into 2 subtypes, and a m6A/m5C/m1A-related LUAD prognostic model was constructed to provide a reference for the prognosis prediction of LUAD.
Collapse
Affiliation(s)
- Hao Ding
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Yuanyuan Teng
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Ping Gao
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Qi Zhang
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Mengdi Wang
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Yi Yu
- Department of General Practice, Jiankang Road Community Health Service Center, NO. 239 Zhongshan East Road, Jingkou District, Zhenjiang City, Jiangsu Province 212008, China
| | - Yueping Fan
- Department of Respiratory, Jurong Branch Hospital, Affiliated Hospital of Jiangsu University, NO. 8 Huayang South Road, Jurong City, Zhenjiang City, Jiangsu Province 212400, China
| | - Li Zhu
- Department of Nephrology, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| |
Collapse
|
14
|
Wang Q, Zhong W, Shen X, Hao Z, Wan M, Yang X, An R, Zhu H, Cai H, Li T, Lv Y, Dong X, Chen G, Liu A, Du J. Tertiary lymphoid structures predict survival and response to neoadjuvant therapy in locally advanced rectal cancer. NPJ Precis Oncol 2024; 8:61. [PMID: 38431733 PMCID: PMC10908779 DOI: 10.1038/s41698-024-00533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Tertiary lymphoid structure (TLS) contributes to the anti-tumor immune response, and predicts the prognosis of colorectal cancer patients. However, the potential impact of TLS in shaping the immune status of rectal adenocarcinoma, and the intrinsic relationship between TLS and neoadjuvant therapies (neoTx) remain unclear. We performed hematoxylin-eosin staining, immunohistochemical and biomolecular analyses to investigate TLS and tumor-infiltrating lymphocytes (TILs) in 221 neoTx-treated and 242 treatment-naïve locally advanced rectal cancer (LARC) patients. High TLS density was significantly associated with the absence of vascular invasion, a lower neutrophil-to-lymphocyte ratio, increased TLS maturity, a longer recurrence-free survival (RFS) (hazard ratio [HR] 0.2985 95% confidence interval [CI] 0.1894-0.4706, p < 0.0001) and enhanced infiltration of adaptive immune cells. Biomolecular analysis showed that high TLS-score was strongly associated with more infiltration of immune cells and increased activation of immune-related pathways. TLS+ tumors in pre-treatment specimens were associated with a higher proportion of good respond (62.5% vs. 29.8%, p < 0.0002) and pathological complete remission (pCR) (40.0% vs. 11.1%, p < 0.0001), and significantly increased RFS (HR 0.3574 95%CI 0.1489-0.8578 p = 0.0213) compared with TLS- tumors in the neoTx cohort, which was confirmed in GSE119409 and GSE150082. Further studies showed that neoTx significantly reduced TLS density and maturity, and abolished the prognostic value of TLS. Our study illustrates that TLS may have a key role in mediating the T-cell-inflamed tumor microenvironment, which also provides a new direction for neoTx, especially neoadjuvant immunotherapy, in LRAC patients.
Collapse
Affiliation(s)
- Qianyu Wang
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
- The Second School of Clinical Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Wentao Zhong
- The Second School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Xiaofei Shen
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zechen Hao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510030, China
| | - Meng Wan
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101, China
| | - Xiaopeng Yang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101, China
| | - Ran An
- Department of Pathology, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
| | - Hongyan Zhu
- Department of Pathology, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
| | - Huiyun Cai
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
| | - Tao Li
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
| | - Yuan Lv
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
| | - Xing Dong
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
| | - Gang Chen
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China.
| | - Aijun Liu
- Department of Pathology, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China.
| | - Junfeng Du
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China.
| |
Collapse
|
15
|
Gao Y, Ren J, Chen K, Guan G. Construction and validation of a prognostic signature for mucinous colonic adenocarcinoma based on N7-methylguanosine-related long non-coding RNAs. J Gastrointest Oncol 2024; 15:203-219. [PMID: 38482248 PMCID: PMC10932661 DOI: 10.21037/jgo-23-980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/21/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Mucinous colonic adenocarcinoma remains a challenging disease due to its high propensity for metastasis and recurrence. N7-methylguanosine (m7G) and long non-coding RNA (lncRNA) are closely associated with the occurrence and progression of tumors. However, research on m7G-related lncRNA in mucinous colonic adenocarcinoma is lacking. Therefore, we sought to explore the prognostic impact of m7G-related lncRNAs in mucinous adenocarcinoma (MC) patients. METHODS In this study, Pearson analysis was used to identify m7G-related lncRNAs from transcriptome data in The Cancer Genome Atlas (TCGA). Univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression were used to further screen m7G-related lncRNAs and incorporate them into a prognostic signature. Based on the risk model, patients were divided into low- and high-risk groups and randomly assigned to the training set and test sets in a 6:4 ratio. Kaplan-Meier, receiver operating characteristic (ROC) curve, multivariate regression, and nomogram analyses were used to confirm the accuracy of the signature. The CIBERSORT algorithm was used to calculate the degree of immune cell infiltration (ICI). Finally, the correlation of the prognostic signature with tumor mutational burden (TMB) and immunophenotype score (IPS) was evaluated. RESULTS A total of 432 m7G-related lncRNAs were identified by Pearson analysis. Univariate Cox regression, LASSO regression and survival analysis were performed to further select six m7G-related lncRNAs (P<0.05): AC254629.1, LINC01133, LINC01134, MHENCR, SMIM2-AS1, and XACT. Based on the risk model, heat maps, Kaplan-Meier curves, and ROC curves were constructed, and the results showed that there were significant differences in expression levels and survival status between the two risk groups. The area under the ROC curve (AUC) values for 3-, 5-, and 10-year survival in the training set were 0.944, 0.957, and 1.000, respectively. And in the test set were 0.964, 1.000, and 1.000, respectively. Subsequently, univariate and multivariate regression analyses of clinical characteristics and risk score were performed. The results of risk score were [hazard ratio (HR): 6.458, 95% confidence interval (CI): 2.708-15.403, P<0.001; HR: 7.280, 95% CI: 2.500-21.203, P<0.001], respectively. Using the risk score as an independent prognostic factor, the AUC of it over 3, 5, and 10 years was 0.911, 0.955, and 0.961, respectively. Calibration plots for the nomogram show that the model calibration line is very close to the ideal calibration line, indicating good calibration. The level of ICI was significantly different in the different risk groups. Survival analysis showed that, regardless of TMB risk, patients with MC and a high-risk score consistently had a poor overall survival (OS). CONCLUSIONS The m7G-related lncRNA prognostic signature has potential value for the prognosis of mucinous colonic adenocarcinoma.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Colorectal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Colorectal Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinjin Ren
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Kunqi Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Guoxian Guan
- Department of Colorectal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Colorectal Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Abdominal Surgery Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Liu K, Xia D, Bian H, Peng L, Dai S, Liu C, Jiang C, Wang Y, Jin J, Bi L. Regulator of G protein signaling-1 regulates immune infiltration and macrophage polarization in clear cell renal cell carcinoma. Int Urol Nephrol 2024; 56:451-466. [PMID: 37735297 PMCID: PMC10808153 DOI: 10.1007/s11255-023-03794-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE To better understand how to clear cell renal cell cancer (ccRCC) is affected by the regulator of G protein signaling-1 (RGS1), its effect on immune infiltration, macrophage polarization, tumor proliferation migration, and to explore whether RGS1 may serve as a marker and therapeutic target for ccRCC. PATIENTS AND METHODS In this study, a total of 20 surgical specimens of patients with pathological diagnosis of ccRCC admitted to the Department of Urology of the Second Affiliated Hospital of Anhui Medical University from November 2021 to June 2022 were selected for pathological and protein testing, while the expression of RGS1 in tumors, immune infiltration, and macrophage polarization, particularly M2 macrophage linked to the development of tumor microenvironment (TME), were combined with TGCA database and GO analysis. We also further explored and studied the expression and function of RGS1 in TME, investigated how RGS1 affected tumor growth, migration, apoptosis, and other traits, and initially explored the signaling pathways and mechanisms that RGS1 may affect. RESULTS RGS1 was found to be expressed at higher quantities in ccRCC than in normal cells or tissues, according to bioinformatics analysis and preliminary experimental data from this work. Using the TCGA database and GO analysis to describe the expression of RGS1 in a range of tumors, it was found that ccRCC had a much higher level of RGS1 expression than other tumor types. The results of gene enrichment analysis indicated that overexpression of RGS1 may be associated with immune infiltration. The outcomes of in vitro tests revealed that RGS1 overexpression in ccRCC did not significantly alter the proliferation and migration ability of ccRCC, but RGS1 overexpression promoted apoptosis in ccRCC. By in vitro co-culture experiments, RGS1 overexpression inhibited M2 macrophage polarization and also suppressed the Jagged-1/Notch signaling pathway. CONCLUSIONS RGS1 is highly expressed in ccRCC, while overexpression of RGS1 may increase immune infiltration in the TME and reduce the polarization of M2 macrophages while promoting apoptosis in ccRCC.
Collapse
Affiliation(s)
- Kun Liu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Dian Xia
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Hege Bian
- School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Longfei Peng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shuxin Dai
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chang Liu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chao Jiang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yi Wang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Juan Jin
- School of Basic Medicine, Anhui Medical University, Hefei, China.
| | - Liangkuan Bi
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China.
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
17
|
Wang L, Yin Y, Liu P, Chen H, Xu M. Identification of TTC21A as a Potential Prognostic Marker in Head and Neck Squamous Cell Carcinoma: In Silico Analysis. Cancer Genomics Proteomics 2024; 21:41-53. [PMID: 38151293 PMCID: PMC10756347 DOI: 10.21873/cgp.20428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND/AIM Tetratricopeptide repeat domain 21A (TTC21A) plays a crucial role in ciliary function and has been associated with various pathogenic processes, including carcinogenesis. However, its role in head and neck squamous cell carcinoma (HNSCC) has not been elucidated. MATERIALS AND METHODS Based on the sequencing and microarray data of HNSCC from publicly available databases, the expression of TTC21A was compared between different subgroups based on clinical and molecular parameters. The survival analysis and regression analysis were conducted using the Kaplan-Meier method and the Cox method, respectively. Functional analysis was performed by the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and gene set enrichment analysis (GSEA) tools. Immune infiltration analysis was performed based on the expression of TTC21A. RESULTS TTC21A decreased in tumor tissues and was associated with N stage, histologic grade, HPV infection, and TP53 mutation in HNSCC. TTC21A was an independent indicator of overall survival for patients with HNSCC. A high level of TTC21A expression indicated a favorable prognosis. The TTC21A expression level was involved with immune-related signaling regulation, immune-related gene expression, and immune cell infiltration. TTC21A expression was potent in predicting immunotherapeutic benefits. CONCLUSION TTC21A, as a potential predictor of favorable outcomes and immunotherapy response for HNSCC, is related to immune-related signaling regulation, immune-related gene expression, and immune cell infiltration.
Collapse
Affiliation(s)
- Lili Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, P.R. China
| | - Yanping Yin
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
- Department of Clinical Laboratory, Center for Disease Control and Prevention of Tianqiao District, Jinan, P.R. China
| | - Peng Liu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, P.R. China
| | - Hanxiang Chen
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, P.R. China;
| | - Miao Xu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, P.R. China;
| |
Collapse
|
18
|
Sun R, Chen Z, Qu X, Zhang J, Liu L, Zhong Z, Zhang W, Fan Y. Comprehensive Characterization of HATs and HDACs in Human Cancers Reveals Their Role in Immune Checkpoint Blockade. Crit Rev Eukaryot Gene Expr 2024; 34:41-53. [PMID: 37824391 DOI: 10.1615/critreveukaryotgeneexpr.2023049102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Histone acetylation that controlled by two mutually antagonistic enzyme families, histone acetyl transferases (HATs) and histone deacetylases (HDACs), as one of major epigenetic mechanisms controls transcription and its abnormal regulation was implicated in various aspects of cancer. However, the comprehensive understanding of HDACs and HATs in cancer is still lacking. Systematically analysis through 33 cancer types based on next-generation sequence data reveals heterogeneous expression pattern of HDACs and HATs across different cancer types. In particular, HDAC10 and HDAC6 show significant downregulation in most cancers. Principal components analysis (PCA) of pan-cancer reveals significant difference of HDACs and HATs between normal tissues and normal tissue adjacent to the tumor. The abnormal expression of HDACs and HATs was partially due to CNV and DNA methylation in multiple types of cancer. Prognostic significance (AUC reached 0.736) of HDACs and HATs demonstrates a five-gene signature including KAT2A, HAT1, KAT5, CREBBP and SIRT1 in KIRC. Analysis of NCI-60 drug database reveals the cytotoxic effect of several drugs are associated with dysregulated expression of HDACs and HATs. Analysis of immune infiltration and immunotherapy reveals that KAT2B and HDAC9 are associated with immune infiltration and immunotherapy. Our analysis provided comprehensive understanding of the regulation and implication of HDACs and HATs in pan-cancer. These findings provide novel evidence for biological investigating potential individual HDACs and HATs in the development and therapy of cancer in the future.
Collapse
Affiliation(s)
- Rong Sun
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Zike Chen
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Xuanhao Qu
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Jie Zhang
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Lehan Liu
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Zhuheng Zhong
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Weibing Zhang
- Nantong Center for Disease Control and Prevention, Nantong 226001, China
| | - Yihui Fan
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China; Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
19
|
Shi C, Ma J, Zhang T, Shi Y, Duan W, Huang D, Zhang H, Zeng Y. Genetic profile of Chinese patients with small bowel cancer categorized by anatomic location. BMC Med Genomics 2023; 16:289. [PMID: 37974218 PMCID: PMC10652443 DOI: 10.1186/s12920-023-01736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Small bowel cancer (SBC) is a very rare solid malignancy. Consequently, compared with other malignant gastrointestinal tumors, our knowledge regarding SBC, specifically its molecular attributes, remains limited. Herein, we aim to provide an overview of the gene characteristics of Chinese patients with SBC, We particularly focus on elucidating the genetic intricacies that differentiate SBC patients whose primary tumors originate in distinct anatomical regions within the small bowel. METHODS During the period ranging from February 2018 to December 2022, a total of 298 tumor samples were consecutively collected from Chinese patients diagnosed with small bowel cancer.. Next-generation sequencing (NGS) was performed to detect gene mutation, assess microsatellite instability (MSI), and evaluate tumor mutational burden (TMB). Additionally,, IHC was used to analyze the level of PD-L1 expression within the samples. RESULTS The outcomes of the next-generation sequencing (NGS) unveiled the predominant gene mutations observed in Chinese patients with small bowel cancer (SBC). The top ten gene mutations identified were as follows: TP53 (53%), KRAS (51%), APC (31%), SMAD4 (19%), VEGFA (15%), CDKN2A (15%), RAC1 (15%), LRP1B (14%), MGMT (14%, CD74 (13%). Subsequent analysis revealed disparities in the gene landscape between the cohort in this study and that of the Memorial Sloan Kettering Cancer Center (MSKCC), Notably, distinguishable mutational frequencies were identified in several genes, including ERBB2, FBXW7, PIK3CA, etc. which exhibited contrasting presence in both this cohort and the MSKCC cohort.. Furthermore, we noticed variations in the frequency of gene mutations among SBC patients depending on the specific anatomical site where the tumors originated within the small bowel. In addition, the distribution of patients with high microsatellite instability (MSI-H) and tumor mutational burden (TMB) levels varied among SBC patients with tumors originating from the duodenum, jejunum, and ileum. CONCLUSION Chinese patients with small bowel cancer exhibited a distinct genetic profile in comparison to other populations, highlighting a unique genetic landscape. Furthermore, noticeable disparities in the genetic landscape were observed between patients with cancer situated in the duodenum and those with cancer affecting other regions of the small bowel, this suggests that these patients should be treated differently.
Collapse
Affiliation(s)
- Chengmin Shi
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Kunming Medical University, No 295, Xichang Road, Kunming, Yunnan Province, 650032, P.R. China
| | - Junrui Ma
- School of Nursing, Yunnan University of Traditional Chinese Medicines, Kunming, Yunnan, 650504, P.R. China
| | - Tong Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Kunming Medical University, No 295, Xichang Road, Kunming, Yunnan Province, 650032, P.R. China
| | - Yanqiang Shi
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Kunming Medical University, No 295, Xichang Road, Kunming, Yunnan Province, 650032, P.R. China
| | - Weiming Duan
- The Medical Department, 3D Medicines Inc., Building 2, Block B, 158 XinJunhuan Street, Pujiang Hi-Tech Park, MinHang District, Shanghai, 201114, P.R. China
| | - Depei Huang
- The Medical Department, 3D Medicines Inc., Building 2, Block B, 158 XinJunhuan Street, Pujiang Hi-Tech Park, MinHang District, Shanghai, 201114, P.R. China
| | - Hushan Zhang
- The Medical Department, 3D Medicines Inc., Building 2, Block B, 158 XinJunhuan Street, Pujiang Hi-Tech Park, MinHang District, Shanghai, 201114, P.R. China.
- Zhaotong Health Vocational College, Zhaotong, Yunnan, 657000, P.R. China.
| | - Yujian Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Kunming Medical University, No 295, Xichang Road, Kunming, Yunnan Province, 650032, P.R. China.
| |
Collapse
|
20
|
Hong Z, Wang T, Wang W, Jing H, Tang H, Xu M, Pan C, Mu X, Zhang D, Gao G, Gao Z, Luo H, Zhou Y. Proteomic Profiling and Tumor Microenvironment Characterization Reveal Molecular and Immunological Hallmarks of Left-Sided and Right-Sided Colon Cancer Tumorigenesis. J Proteome Res 2023; 22:2973-2984. [PMID: 37590507 DOI: 10.1021/acs.jproteome.3c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Left-sided and right-sided colon cancer (LSCC and RSCC) display different biological and clinical characteristics. However, the differences in their tumorigenesis and tumor microenvironment remain unclear. In this study, we profiled the proteomic landscapes of LSCC and RSCC with data-independent acquisition mass spectrometry (DIA-MS) using fresh tumor and adjacent normal tissues from 24 patients. A total of 7403 proteingroups were primarily identified with DIA-MS. After quality control, 7212 proteingroups were used for further analysis. Through comparing the difference in proteomic profiles between LSCC and RSCC samples, 2556 commonly and 1982 region-type-specific regulated proteingroups were characterized. During the development of LSCC and RSCC, metabolic, growth, cell division, cell adhesion, and migration pathways were found to be significantly dysregulated (P < 0.05), which was further confirmed by transcriptome data from TCGA. Compared to RSCC, most parts of the immune-related signatures, immune cell infiltration scores, and overall immune scores of LSCC were higher. The systematic elucidation of proteomic and transcriptomic profiles in this work improves our understanding of tumorigenesis and immune microenvironment characteristics of LSCC and RSCC.
Collapse
Affiliation(s)
- Zhu Hong
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin 300121, China
| | - Tao Wang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin 300121, China
| | - Wei Wang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen 518081, China
| | - Haoren Jing
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin 300121, China
| | - Hongzhen Tang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen 518081, China
| | - Mingyue Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin 300121, China
| | - Chaohu Pan
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen 518081, China
| | - Xiaojing Mu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin 300121, China
| | - Di Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin 300121, China
| | - Guochao Gao
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin 300121, China
| | - Zihe Gao
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin 300121, China
| | - Haitao Luo
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen 518081, China
| | - Yi Zhou
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin 300121, China
| |
Collapse
|
21
|
Su C, Yu R, Hong X, Zhang P, Guo Y, Cai JC, Hou J. CXCR4 Expressed by Tumor-Infiltrating B Cells in Gastric Cancer Related to Survival in the Tumor Microenvironment: An Analysis Combining Single-Cell RNA Sequencing with Bulk RNA Sequencing. Int J Mol Sci 2023; 24:12890. [PMID: 37629071 PMCID: PMC10454711 DOI: 10.3390/ijms241612890] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
According to the World Health Organization (WHO), gastric cancer (GC) is the fourth leading cause of tumor-related mortality globally and one of the most prevalent malignant tumors. To better understand the role of tumor-infiltrating B cells (TIBs) in GC, this work used single-cell RNA sequencing (scRNA-Seq) and bulk RNA sequencing (bulk RNA-Seq) data to identify candidate hub genes. Both scRNA-Seq and bulk RNA-Seq data for stomach adenocarcinoma (STAD) were obtained from the GEO and TCGA databases, respectively. Using scRNA-seq data, the FindNeighbors and FindClusters tools were used to group the cells into distinct groups. Immune cell clusters were sought in the massive RNA-seq expression matrix using the single-sample gene set enrichment analysis (ssGSEA). The expression profiles were used in Weighted Gene Coexpression Network Analysis (WGCNA) to build TCGA's gene coexpression networks. Next, univariate Cox regression, LASSO regression, and Kaplan-Meier analyses were used to identify hub genes in scRNA-seq data from sequential B-cell analyses. Finally, we examined the correlation between the hub genes and TIBs utilizing the TISIDB database. We confirmed the immune-related markers in clinical validation samples using reverse transcriptase polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC). 15 cell clusters were classified in the scRNA-seq database. According to the WGCNA findings, the green module is most associated with cancer and B cells. The intersection of 12 genes in two separate datasets (scRNA and bulk) was attained for further analysis. However, survival studies revealed that increased C-X-C motif chemokine receptor 4 (CXCR4) expression was linked to worse overall survival. CXCR4 expression is correlated with active, immature, and memory B cells in STAD were identified. Finally, RT-PCR and IHC assays verified that in GC, CXCR4 is overexpressed, and its expression level correlates with TIBs. We used scRNA-Seq and bulk RNA-Seq to study STAD's cellular composition. We found that CXCR4 is highly expressed by TIBs in GC, suggesting that it may serve as a hub gene for these cells and a starting point for future research into the molecular mechanisms by which these immune cells gain access to tumors and potentially identify therapeutic targets.
Collapse
Affiliation(s)
- Chen Su
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China; (C.S.); (R.Y.)
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361102, China; (X.H.); (P.Z.); (Y.G.)
| | - Rong Yu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China; (C.S.); (R.Y.)
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361102, China; (X.H.); (P.Z.); (Y.G.)
| | - Xiaoquan Hong
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361102, China; (X.H.); (P.Z.); (Y.G.)
- Department of General Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Panpan Zhang
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361102, China; (X.H.); (P.Z.); (Y.G.)
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yingying Guo
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361102, China; (X.H.); (P.Z.); (Y.G.)
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jian-Chun Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China; (C.S.); (R.Y.)
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361102, China; (X.H.); (P.Z.); (Y.G.)
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China; (C.S.); (R.Y.)
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361102, China; (X.H.); (P.Z.); (Y.G.)
| |
Collapse
|
22
|
Cao L, Zhang S, Yao D, Ba Y, Weng Q, Yang J, Zhang H, Ren Y. Comparative analyses of the prognosis, tumor immune microenvironment, and drug treatment response between left-sided and right-sided colon cancer by integrating scRNA-seq and bulk RNA-seq data. Aging (Albany NY) 2023; 15:7098-7123. [PMID: 37480572 PMCID: PMC10415577 DOI: 10.18632/aging.204894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/30/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND In this study, we compared the prognosis, tumor immune microenvironment (TIM), and drug treatment response between left-sided (LCC) and right-sided (RCC) colon cancer to predict outcomes in patients with LCC and RCC. METHODS Based on identified differentially expressed genes and using single-cell RNA sequencing data, we constructed and validated a prognostic model for LCC and RCC patients in the TCGA-COAD cohort and GSE103479 cohort. Moreover, we compared the differences of TIM characteristics and drug treatment response between LCC and RCC patients. RESULTS We constructed and validated a five-gene prognostic model for LCC patients and a four-gene prognostic model for RCC patients, and both showed excellent performance. The RCC patients with higher risk scores were significantly associated with greater metastasis (P = 2.6×10-5), N stage (P = 0.012), advanced pathological stage (P = 1.4×10-4), and more stable microsatellite status (P = 0.007) but not T stage (P = 0.200). For LCC patients, the risk scores were not significantly associated with tumor stage and microsatellite status (P > 0.05). Additionally, immune infiltration by CD8 and regulatory T cells and M0, M1, and M2 macrophages differed significantly between LCC and RCC patients (P < 0.05). APC and TP53 mutations were significantly more common in LCC patients (P < 0.05). In contrast, KRAS, SYNE1, and MUC16 mutations were significantly more common in RCC patients (P < 0.05). In addition, tumor mutation burden values were significantly higher in RCC patients than in LCC patients (P = 5.9×10-8). Moreover, the expression of immune checkpoint targets was significantly higher in RCC patients than in LCC patients (P < 0.05), indicating that RCC patients maybe more sensitive to immunotherapy. However, LCC and RCC patients did not differ significantly in their sensitivity to eight selected chemicals or target drugs (P > 0.05). The average half-maximal inhibitory concentrations for camptothecin, teniposide, vinorelbine, and mitoxantrone were significantly lower in low-risk than in high-risk RCC patients (P < 0.05), indicating that the lower risk score of RCC patients, the more sensitive they were to these four drugs. CONCLUSIONS We investigated the differences in prognosis, TIM, and drug treatment response between LCC and RCC patients, which may contribute to accurate colon cancer prognosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Lichao Cao
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - Shenrui Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
| | - Danni Yao
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - Ying Ba
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
| | - Qi Weng
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
| | - Jin Yang
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - Hezi Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
| | - Yanan Ren
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
23
|
Huang X, Liu Y, Qian C, Shen Q, Wu M, Zhu B, Feng Y. CHSY3 promotes proliferation and migration in gastric cancer and is associated with immune infiltration. J Transl Med 2023; 21:474. [PMID: 37461041 PMCID: PMC10351153 DOI: 10.1186/s12967-023-04333-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/09/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND The glycosyltransferase CHSY3 is a CHSY family member, yet its importance in the context of gastric cancer development remains incompletely understood. The present study was thus developed to explore the mechanistic importance of CHSY3 as a regulator of gastric cancer. METHODS Expression of CHSY3 was verified by TCGA, GEO and HPA databases. Kaplan-Meier curve, ROC, univariate cox, multivariate cox, and nomogram models were used to verify the prognostic impact and predictive value of CHSY3. KEGG and GO methods were used to identify signaling pathways associated with CHSY3. TIDE and IPS scores were used to assess the immunotherapeutic value of CHSY3. WGCNA, Cytoscape constructs PPI networks and random forest models to identify key Hub genes. Finally, qRT-PCR and immunohistochemical staining were performed to verify CHSY3 expression in clinical specimens. The ability of CHSY3 to regulate tumor was further assessed by CCK-8 assay and cloning assay, EDU assay, migration assay, invasion assay, and xenograft tumor model analysis. RESULTS The expression of CHSY3 was discovered to be abnormally upregulated in GC tissues through TCGA, GEO, and HPA databases, and the expression of CHSY3 was associated with poor prognosis in GC patients. Correlation analysis and Cox regression analysis revealed higher CHSY3 expression in higher T staging, an independent prognostic factor for GC. Moreover, elevated expression of CHSY3 was found to reduce the benefit of immunotherapy as assessed by the TIDE score and IPS score. Then, utilizing WGCNA, the PPI network constructed by Cytoscape, and random forest model, the Hub genes of COL5A2, POSTN, COL1A1, and FN1 associated with immunity were screened. Finally, the expression of CHSY3 in GC tissues was verified by qRT-PCR and immunohistochemical staining. Moreover, the expression of CHSY3 was further demonstrated by in vivo and in vitro experiments to promote the proliferation, migration, and invasive ability of GC. CONCLUSIONS The results of this study suggest that CHSY3 is an important regulator of gastric cancer progression, highlighting its promise as a therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Xinkun Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Graduate School, Dalian Medical University, Dalian, 116000, Liaoning, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China
| | - Yonghui Liu
- Department of Laboratory Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Chenyu Qian
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical school, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China
| | - Qicheng Shen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical school, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China
| | - Menglong Wu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Graduate School, Dalian Medical University, Dalian, 116000, Liaoning, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China
| | - Bin Zhu
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China.
- Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China.
| | - Ying Feng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Medical school, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
24
|
Cong S, Bai S, Bi Y, Wang Y, Jin S, He H. Construction of molecular typing in LIHC microenvironment based on lipid metabolism-related genes. Am J Cancer Res 2023; 13:2814-2840. [PMID: 37559997 PMCID: PMC10408469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 04/11/2023] [Indexed: 08/11/2023] Open
Abstract
Consensus on the stage of liver hepatocellular carcinoma (LIHC) in patients is difficult, which restricts the diagnosis and treatment of liver cancer. Molecular typing based on genes related to the lipid metabolism pathways can reflect deeper characteristics of liver cancer and complement the deficiency of the clinical staging system. In this study, we constructed and verified two cell subtypes: C1 and C2 in LIHC, based on six lipid metabolic pathway-associated genes identified in two independent external validation cohorts comprising single-cell RNA-sequencing technology (scRNA-Seq) data and bulk RNA-seq data downloaded from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database. The C2 subtype showed poorer prognosis, higher immune scores, and greater correlation with pathways associated with tumor progression as compared to the C1 subtype. Moreover, the sensitivity of many tested targeted drugs in C1 was relative to C2. Furthermore, Gene Set Enrichment Analysis (GSEA) revealed several significantly enriched oncological signatures and metabolic processes, which might help elucidate the underlying molecular mechanisms. At the same time, we identified there were significantly different metabolites in C1 and C2 subtypes using 11 LIHC tissue samples. In conclusion, we constructed two molecular subtypes based on the lipid metabolism-associated genes, which may provide valuable information to further study the pathogenesis and devise clinical management strategies for LIHC.
Collapse
Affiliation(s)
- Shan Cong
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, China
| | - Shanshan Bai
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, China
| | - Yanfang Bi
- Department of Nursing, The First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, China
| | - Yu Wang
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, China
| | - Shi Jin
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, China
| | - Hui He
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, China
| |
Collapse
|
25
|
Yang Y, Li J, Jing C, Zhai Y, Bai Z, Yang Y, Deng W. Inhibition of neuroactive ligand-receptor interaction pathway can enhance immunotherapy response in colon cancer: an in silico study. Expert Rev Anticancer Ther 2023; 23:1205-1215. [PMID: 37555253 DOI: 10.1080/14737140.2023.2245567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND The potential mechanism underlying the association between Homologous recombination deficiency (HRD) and immunotherapy in colon cancer has not been investigated. METHODS The exon sequencing data and transcriptome data of 456 colon adenocarcinoma (COAD) patients were obtained from the TCGA database. Pathway activity score was calculated by GSVA methods and engaged in further survival analysis. The prognostic value of the candidate pathways was validated in an external GEO cohort and an immunotherapy cohort. RESULTS Patients with high HRD were associated with poor prognosis, lower tumor mutation burden and microsatellite instability, higher fraction genome alteration, and less sensitivity to immunotherapy in COAD. And then, the neuroactive ligand-receptor interaction pathway was over-activated in high-HRD tumors and associated with immunosuppression in colon cancer with high HRD. Besides, the pathway was associated with prognosis and immunotherapy response in COAD. Moreover, genes in this pathway such as LTB4R2 can be used as a novel target for therapy development in colon cancer. CONCLUSION Our study not only revealed the potential mechanism of HRD and the function of the neuroactive ligand-receptor interaction pathway in colon cancer but also provided new clues for the improvement of immunotherapy response in colon cancer.
Collapse
Affiliation(s)
- Yun Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jun Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chao Jing
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuhao Zhai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yingchi Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wei Deng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
26
|
Mou T, Zhu H, Jiang Y, Xu X, Cai L, Zhong Y, Luo J, Zhang Z. Heterogeneity of cancer-associated fibroblasts in head and neck squamous cell carcinoma. Transl Oncol 2023; 35:101717. [PMID: 37320872 DOI: 10.1016/j.tranon.2023.101717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) consist of heterogeneous cellular populations that contribute critical roles in head and neck squamous cell carcinoma (HNSCC). A series of computer-aided analyses were performed to determine various aspects of CAFs in HNSCC, including their cellular heterogeneity, prognostic value, relationship with immune suppression and immunotherapeutic response, intercellular communication, and metabolic activity. The prognostic significance of CKS2+ CAFs was verified using immunohistochemistry. Our findings revealed that fibroblasts group demonstrated prognostic significance, with the CKS2+ subset of inflammatory CAFs (iCAFs) exhibiting a significant correlation with unfavorable prognosis and being localized in close proximity to cancer cells. Patients with a high infiltration of CKS2+ CAFs had a poor overall survival rate. There is a negative correlation between CKS2+ iCAFs and cytotoxic CD8+ T cells and natural killer (NK) cells, while a positive correlation was found with exhausted CD8+ T cells. Additionally, patients in Cluster 3, characterized by a high proportion of CKS2+ iCAFs, and patients in Cluster 2, characterized by a high proportion of CKS2- iCAFs and CENPF-/MYLPF- myofibroblastic CAFs (myCAFs), did not exhibit significant immunotherapeutic responses. Moreover, close interactions was confirmed to exist between cancer cells and CKS2+ iCAFs/ CENPF+ myCAFs. Furthermore, CKS2+ iCAFs demonstrated the highest level of metabolic activity. In summary, our study enhances the understanding of the heterogeneity of CAFs and provided insights into improving the efficacy of immunotherapies and prognostic accuracy for HNSCC patients.
Collapse
Affiliation(s)
- Tingchen Mou
- Department of stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Haoran Zhu
- Xi'an Jiaotong University Health Science Center, Xi'an 710000, Shaanxi Province, China
| | - Yanbo Jiang
- Department of Maxillofacial Surgery, Liuzhou People's Hospital (Liuzhou People's Hospital affiliated to Guangxi Medical University), Liuzhou 545000, Guangxi Province, China
| | - Xuhui Xu
- Department of stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Lina Cai
- Department of stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Yuan Zhong
- Department of stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Jun Luo
- Department of stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Zhenxing Zhang
- Department of stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China.
| |
Collapse
|
27
|
Yao J, Liang Z, Duan L, G Y, Liu J, An G. Construction of a novel immune response prediction signature to predict the efficacy of immune checkpoint inhibitors in clear cell renal cell carcinoma patients. Heliyon 2023; 9:e15925. [PMID: 37484396 PMCID: PMC10360603 DOI: 10.1016/j.heliyon.2023.e15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 07/25/2023] Open
Abstract
Background Immune checkpoint inhibitor (ICI) treatment has enhanced survival outcomes in clear cell renal cell carcinoma (ccRCC) patients. Nevertheless, the effectiveness of immunotherapy in ccRCC patients is restricted and we intended to develop and characterize an immune response prediction signature (IRPS) to forecast the efficacy of immunotherapy. Methods RNA-seq expression profile and clinicopathologic characteristics of 539 kidney cancer and 72 patients with normal specimens, were downloaded from the Cancer Genome Atlas (TCGA) database, while the Gene Expression Omnibus (GEO) database was used as the validation set, which included 24 ccRCC samples. Utilization of the TCGA data and immune genes databases (ImmPort and the InnateDB), we explored through Weighted Gene Co-expression Network Analysis (WGCNA), along with Least Absolute Shrinkage and Selection Operator method (LASSO), and constructed an IRPS for kidney cancer patients. GSEA and CIBERSORT were performed to declare the molecular and immunologic mechanism underlying the predictive value of IRPS. The Human Protein Atlas (HPA) was deployed to verify the protein expressions of IRPS genes. Tumor immune dysfunction and exclusion (TIDE) score and immunophenoscore (IPS) were computed to determine the risk of immune escape and value the discrimination of IRPS. A ccRCC cohort with anti-PD-1 therapy was obtained as an external validation data set to verify the predictive value of IRPS. Results We constructed a 10 gene signature related to the prognosis and immune response of ccRCC patients. Considering the IRPS risk score, patients were split into high and low risk groups. Patients with high risk in the TCGA cohort tended towards advanced tumor stage and grade with poor prognosis (p < 0.001), which was validated in GEO database (p = 0.004). High-risk group tumors were related with lower PD-L1 expression, higher TMB, higher MSIsensor score, lower IPS, higher TIDE score, and enriched Treg cells, which might be the potential mechanism of immune dysfunction and exclusion. Patients in the IRPS low risk group had better PFS (HR:0.73; 95% CI: 0.54-1.0; P = 0.047). Conclusion A novel biomarker of IRPS was constructed to predict the benefit of immunotherapy, which might lead to more individualized prognoses and tailored therapy for kidney cancer patients.
Collapse
Affiliation(s)
- Jiannan Yao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ziwei Liang
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ling Duan
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yang G
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jian Liu
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Guangyu An
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| |
Collapse
|
28
|
Chao G, Zhang L. Correlation analysis of PBX family with immune invasion and drug sensitivity in colon adenocarcinoma. Heliyon 2023; 9:e17220. [PMID: 37360109 PMCID: PMC10285256 DOI: 10.1016/j.heliyon.2023.e17220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Objedtive Pre-B cell leukemia (PBX) has been found to be associated with cancer, but poorly studied with colon adenocarcinoma (COAD). In this study, the correlation between PBX family and COAD pathogenesis and immune cytokine infiltration was further explored by analyzing online tumor databases, in order to find new biomarkers for the diagnosis of COAD. Methods The online database was used to analyze gene differential expression, methylation level, gene mutation rate, immune infiltration difference, drug sensitivity, and so on. Results PBX1 and PBX3 decreased in COAD. PBX2 and PBX4 increased. The expression of PBX1 and PBX2 in different clinical stages was different. PBX4 was valuable for the prognosis of COAD. PBX family has correlation between COAD and immune infiltration. PBX2 was correlated with different pathological stages. PBX3 had the highest gene mutation rate, followed by PBX1, PBX2 and PBX4. PBX1, PBX2 and PBX4 were correlated with the sensitivity of multiple drugs. Conclusion The PBX family is differentially expressed in COAD and has a genetic mutation, and its protein network is closely related to the HOX family and is associated with immune infiltration of COAD.
Collapse
|
29
|
Xie C, Hu J, Hu Q, Jiang L, Chen W. Classification of the mitochondrial ribosomal protein-associated molecular subtypes and identified a serological diagnostic biomarker in hepatocellular carcinoma. Front Surg 2023; 9:1062659. [PMID: 36684217 PMCID: PMC9853988 DOI: 10.3389/fsurg.2022.1062659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Purpose The objective of this study was to sort out innovative molecular subtypes associated with mitochondrial ribosomal proteins (MRPs) to predict clinical therapy response and determine the presence of circulating markers in hepatocellular carcinoma (HCC) patients. Methods Using an unsupervised clustering method, we categorized the relative molecular subtypes of MRPs in HCC patients. The prognosis, biological properties, immune checkpoint inhibitor and chemotherapy response of the patients were clarified. A signature and nomogram were developed to evaluate the prognosis. Enzyme-linked immunosorbent assay (ELISA) measured serum mitochondrial ribosomal protein L9 (MRPL9) levels in liver disease patients and normal individuals. Receiver operating characteristic (ROC) curves were conducted to calculate the diagnostic effect. The Cell Counting Kit 8 was carried out to examine cell proliferation, and flow cytometry was used to investigate the cell cycle. Transwell assay was applied to investigate the potential of cell migration and invasion. Western blot detected corresponding changes of biological markers. Results Participants were classified into two subtypes according to MRPs expression levels, which were characterized by different prognoses, biological features, and marked differences in response to chemotherapy and immune checkpoint inhibitors. Serum MRPL9 was significantly higher in HCC patients than in normal individuals and the benign liver disease group. ROC curve analysis showed that MRPL9 was superior to AFP and Ferritin in differentiating HCC from healthy and benign patients, or alone. Overexpressed MRPL9 could enhance aggressiveness and facilitate the G1/S progression in HCC cells. Conclusion We constructed novel molecular subtypes based on MRPs expression in HCC patients, which provided valuable strategies for the prediction of prognosis and clinical personalized treatment. MRPL9 might act as a reliable circulating diagnostic biomarker and therapeutic target for HCC patients.
Collapse
Affiliation(s)
| | | | | | | | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
30
|
Li J, Yang C, Zheng Y. Identification of a tissue resident memory CD8 T cell-related risk score signature for colorectal cancer, the association with TME landscapes and therapeutic responses. Front Genet 2023; 13:1088230. [PMID: 36685946 PMCID: PMC9845416 DOI: 10.3389/fgene.2022.1088230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Backgrounds: The tissue resident memory CD8 T cell (Trm) constitutes an important component of the local immunity. In the context of malignant tumors, mounting evidence also supports the potential anti-tumor property of this cell subset. Therefore, identification of Trm marker genes and exploration of the causative effect of Trm in shaping tumor microenvironment (TME) heterogeneity might provide novel insights for the comprehensive management of cancer patients. Methods: By dissecting a single T cell transcriptome dataset, we acquired marker genes for Trm, which were latter applied to bulk RNA sequencing profiles of two large colorectal cancer (CRC) patient cohorts downloaded from TCGA and GEO databases. First, colorectal cancer patients were divided into different Trm clusters using consensus clustering algorithm. Then, we established a Trm-related gene (TRMRG) risk score signature and tested its efficacy in predicting prognosis for colorectal cancer patients. Moreover, a sequence of rigorous and robust analyses were also carried out to investigate the potential role of Trm-related gene risk score in tumor microenvironment remodeling and therapeutic utility of it in colorectal cancer treatment. Results: A total of 49 Trm marker genes were identified by analyzing single cell RNA sequencing profiles. First, colorectal cancer patients were successfully classified into two Trm clusters with significant heterogeneity in functional enrichment patterns and tumor microenvironment landscapes. Then, we developed a Trm-related gene risk score signature and divided patients into different risk levels. High risk patients were characterized by attenuated immunogenicity, weakened sensitivity to immunotherapy, as well as adverse clinical outcomes. While low risk patients with advantages in survival exhibited increased immunogenicity, stronger metabolic activity and improved immunotherapeutic responses. Conclusion: Through combinatorial analysis of single cell and bulk RNA sequencing data, the present study identified Trm to play a non-negligible role in regulating the complexity and heterogeneity of tumor microenvironment for colorectal cancer. Moreover, the Trm-related gene risk score signature developed currently was corroborated to be tightly correlated with prognosis and therapeutic responses of colorectal cancer patients, thus exhibiting potential application value for clinical practice.
Collapse
|
31
|
Jiang XF, Zhang BM, Du FQ, Guo JN, Wang D, Li YE, Deng SH, Cui BB, Liu YL. Exploring biomarkers for prognosis and neoadjuvant chemosensitivity in rectal cancer: Multi-omics and ctDNA sequencing collaboration. Front Immunol 2022; 13:1013828. [PMID: 36569844 PMCID: PMC9780298 DOI: 10.3389/fimmu.2022.1013828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction This study aimed to identified the key genes and sequencing metrics for predicting prognosis and efficacy of neoadjuvant chemotherapy (nCT) in rectal cancer (RC) based on genomic DNA sequencing in samples with different origin and multi-omics association database. Methods We collected 16 RC patients and obtained DNA sequencing data from cancer tissues and plasma cell-free DNA before and after nCT. Various gene variations were analyzed, including single nucleotide variants (SNV), copy number variation (CNV), tumor mutation burden (TMB), copy number instability (CNI) and mutant-allele tumor heterogeneity (MATH). We also identified genes by which CNV level can differentiate the response to nCT. The Cancer Genome Atlas database and the Clinical Proteomic Tumor Analysis Consortium database were used to further evaluate the specific role of therapeutic relevant genes and screen out the key genes in multi-omics levels. After the intersection of the screened genes from differential expression analysis, survival analysis and principal components analysis dimensionality reduction cluster analysis, the key genes were finally identified. Results The genes CNV level of principal component genes in baseline blood and cancer tissues could significantly distinguish the two groups of patients. The CNV of HSP90AA1, EGFR, SRC, MTOR, etc. were relatively gained in the better group compared with the poor group in baseline blood. The CNI and TMB was significantly different between the two groups. The increased expression of HSP90AA1, EGFR, and SRC was associated with increased sensitivity to multiple chemotherapeutic drugs. The nCT predictive score obtained by therapeutic relevant genes could be a potential prognostic indicator, and the combination with TMB could further refine prognostic prediction for patients. After a series of analysis in multi-omics association database, EGFR and HSP90AA1 with significant differences in multiple aspects were identified as the key predictive genes related to prognosis and the sensitivity of nCT. Discussion This work revealed that effective combined application and analysis in multi-omics data are critical to search for predictive biomarkers. The key genes EGFR and HSP90AA1 could serve as an effective biomarker to predict prognose and neoadjuvant chemosensitivity.
Collapse
Affiliation(s)
- Xiu-Feng Jiang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bo-Miao Zhang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fen-Qi Du
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dan Wang
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Yi-En Li
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China,*Correspondence: Bin-Bin Cui, ; Yan-Long Liu,
| | - Yan-Long Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China,*Correspondence: Bin-Bin Cui, ; Yan-Long Liu,
| |
Collapse
|
32
|
Shen T, Song Y, Wang X, Wang H. Characterizing the molecular heterogeneity of clear cell renal cell carcinoma subgroups classified by miRNA expression profile. Front Mol Biosci 2022; 9:967934. [PMID: 36090028 PMCID: PMC9459094 DOI: 10.3389/fmolb.2022.967934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a heterogeneous disease that is associated with poor prognosis. Recent works have revealed the significant roles of miRNA in ccRCC initiation and progression. Comprehensive characterization of ccRCC based on the prognostic miRNAs would contribute to clinicians’ early detection and targeted treatment. Here, we performed unsupervised clustering using TCGA-retrieved prognostic miRNAs expression profiles. Two ccRCC subtypes were identified after assessing principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and consensus heatmaps. We found that the two subtypes are associated with distinct clinical features, overall survivals, and molecular characteristics. C1 cluster enriched patients in relatively early stage and have better prognosis while patients in C2 cluster have poor prognosis with relatively advanced state. Mechanistically, we found the differentially expressed genes (DEGs) between the indicated subgroups dominantly enriched in biological processes related to transmembrane transport activity. In addition, we also revealed a miRNA-centered DEGs regulatory network, which severed as essential regulators in both transmembrane transport activity control and ccRCC progression. Together, our work described the molecular heterogeneity among ccRCC cancers, provided potential targets served as effective biomarkers for ccRCC diagnosis and prognosis, and paved avenues to better understand miRNA-directed regulatory network in ccRCC progression.
Collapse
Affiliation(s)
- Tao Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- *Correspondence: Tao Shen, ; Yingdong Song,
| | - Yingdong Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
- *Correspondence: Tao Shen, ; Yingdong Song,
| | - Xiangting Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
| | - Haiyang Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
33
|
Tieng FYF, Lee LH, Ab Mutalib NS. Deciphering colorectal cancer immune microenvironment transcriptional landscape on single cell resolution - A role for immunotherapy. Front Immunol 2022; 13:959705. [PMID: 36032085 PMCID: PMC9399368 DOI: 10.3389/fimmu.2022.959705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 12/26/2022] Open
Abstract
Single cell RNA sequencing (scRNA-seq) is a novel high-throughput technique that enables the investigation of a single cell's entire transcriptome. It elucidates intricate cellular networks and generates indices that will eventually enable the development of more targeted and personalized medications. The importance of scRNA-seq has been highlighted in complex biological systems such as cancer and the immune system, which exhibit significant cellular heterogeneity. Colorectal cancer (CRC) is the third most common type of cancer and the second leading cause of cancer-related death globally. Chemotherapy continues to be used to treat these patients. However, 5-FU has been utilized in chemotherapy regimens with oxaliplatin and irinotecan since the 1960s and is still used today. Additionally, chemotherapy-resistant metastatic CRCs with poor prognoses have been treated with immunotherapy employing monoclonal antibodies, immune checkpoint inhibitors, adoptive cell therapy and cancer vaccines. Personalized immunotherapy employing tumor-specific neoantigens allows for treating each patient as a distinct group. Sequencing and multi-omics approaches have helped us identify patients more precisely in the last decade. The introduction of modern methods and neoantigen-based immunotherapy may usher in a new era in treating CRC. The unmet goal is to better understand the cellular and molecular mechanisms that contribute to CRC pathogenesis and resistance to treatment, identify novel therapeutic targets, and make more stratified and informed treatment decisions using single cell approaches. This review summarizes current scRNA-seq utilization in CRC research, examining its potential utility in the development of precision immunotherapy for CRC.
Collapse
Affiliation(s)
- Francis Yew Fu Tieng
- Universiti Kebangsaan Malaysia (UKM) Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Nurul-Syakima Ab Mutalib
- Universiti Kebangsaan Malaysia (UKM) Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Dai L, Wang X, Bai T, Liu J, Chen B, Li T, Yang W. Identification of a novel cellular senescence-related signature for the prediction of prognosis and immunotherapy response in colon cancer. Front Genet 2022; 13:961554. [PMID: 35991564 PMCID: PMC9386482 DOI: 10.3389/fgene.2022.961554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
The study was conducted to construct a cellular senescence-related risk score signature to predict prognosis and immunotherapy response in colon cancer. Colon cancer data were acquired from the Gene Expression Omnibus and The Cancer Genome Atlas databases. And cellular senescence-related genes were obtained from the CellAge database. The colon cancer data were classified into different clusters based on cellular senescence-related gene expression. Next, prognostic differential genes among clusters were identified with survival analysis. A cellular senescence-related risk score signature was developed by performing the LASSO regression analysis. Finally, PCA analysis, t-SNE analysis, Kaplan-Meier survival analysis, ROC analysis, univariate Cox regression analysis, multivariate Cox regression analysis, C-index analysis, meta-analysis, immune infiltration analysis, and IPS score analysis were used to evaluate the significance of the risk signature for predicting prognosis and immunotherapy response in colon cancer. The colon cancer data were classified into three clusters. The patients in cluster A and cluster B had longer survival. A cellular senescence-related risk score signature was developed. Patients in the low-risk score group showed a better prognosis. The risk score signature could predict colon cancer patients’ prognosis independently of other clinical characteristics. The risk score signature predicted the prognosis of colon cancer patients more accurately than other signatures. Patients in the low-risk score group showed a better response to immunotherapy. The opposite was true for the high-risk score group. In conclusion, the cellular senescence-related risk score signature could be used for the prediction of prognosis and immunotherapy response in colon cancer.
Collapse
|
35
|
Xing J, Jia Z, Li Y, Han Y. Construction of immunotherapy-related prognostic gene signature and small molecule drug prediction for cutaneous melanoma. Front Oncol 2022; 12:939385. [PMID: 35957907 PMCID: PMC9358033 DOI: 10.3389/fonc.2022.939385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Background Cutaneous melanoma (CM), a kind of skin cancer with a high rate of advanced mortality, exhibits a wide variety of driver and transmitter gene alterations in the immunological tumor microenvironment (TME) associated with tumor cell survival and proliferation. Methods We analyzed the immunological infiltration of TME cells in normal and malignant tissues using 469 CM and 556 normal skin samples. We used a single sample gene set enrichment assay (ssGSEA) to quantify the relative abundance of 28 cells, then used the LASSO COX regression model to develop a riskScore prognostic model, followed by a small molecule drug screening and molecular docking validation, which was then validated using qRT-PCR and IHC. Results We developed a prognosis model around seven essential protective genes for the first time, dramatically elevated in tumor tissues, as did immune cell infiltration. Multivariate Cox regression results indicated that riskScore is an independent and robust prognostic indicator, and its predictive value in immunotherapy was verified. Additionally, we identified Gabapentin as a possible small molecule therapeutic for CM. Conclusions A riskScore model was developed in this work to analyze patient prognosis, TME cell infiltration features, and treatment responsiveness. The development of this model not only aids in predicting patient response to immunotherapy but also has significant implications for the development of novel immunotherapeutic agents and the promotion of tailored treatment regimens.
Collapse
Affiliation(s)
- Jiahua Xing
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Ziqi Jia
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Li
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yan Han, ; Yan Li,
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yan Han, ; Yan Li,
| |
Collapse
|
36
|
Xing J, Guo L, Jia Z, Li Y, Han Y. The Multi-Omics Landscape and Clinical Relevance of the Immunological Signature of Phagocytosis Regulators: Implications for Risk Classification and Frontline Therapies in Skin Cutaneous Melanoma. Cancers (Basel) 2022; 14:cancers14153582. [PMID: 35892841 PMCID: PMC9331497 DOI: 10.3390/cancers14153582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In this study, we focused on exploring phagocytosis regulators’ expression and mutational characteristics in skin cutaneous melanoma samples and delineating two molecular subtypes based on expression characteristics. We determined the relationship between phagocytosis regulators and survival by survival analysis of molecular subtypes. We then constructed a survival model (PRRS) to further quantify the criteria. Moreover, we combined pathway analysis, immune infiltration analysis, and mutation analysis to deeply explore the effects of phagocytosis regulators on skin cutaneous melanoma samples. Abstract Tumor-associated macrophages (TAMs) have gained considerable attention as therapeutic targets. Monoclonal antibody treatments directed against tumor antigens contribute significantly to cancer cell clearance by activating macrophages to phagocytose tumor cells. Due to its complicated genetic and molecular pathways, skin cutaneous melanoma (SKCM) has not yet attained the expected clinical efficacy and prognosis when compared to other skin cancers. Therefore, we chose TAMs as an entrance point. This study aimed to thoroughly assess the dysregulation and regulatory role of phagocytosis regulators in SKCM, as well as to understand their regulatory patterns in SKCM. This study subtyped prognosis-related phagocytosis regulators to investigate prognostic differences between subtypes. Then, we screened prognostic factors and constructed phagocytosis-related scoring models for survival prediction using differentially expressed genes (DEGs) between subtypes. Additionally, we investigated alternative treatment options using chemotherapeutic drug response data and clinical cohort treatment data. We first characterized and generalized phagocytosis regulators in SKCM and extensively examined the tumor immune cell infiltration. We created two phagocytosis regulator-related system (PRRS) phenotypes and derived PRRS scores using a principal component analysis (PCA) technique. We discovered that subtypes with low PRRS scores had a poor prognosis and decreased immune checkpoint-associated gene expression levels. We observed significant therapeutic and clinical improvements in patients with higher PRRS scores. Our findings imply that the PRRS scoring system can be employed as an independent and robust prognostic biomarker, serving as a critical reference point for developing novel immunotherapeutic methods.
Collapse
Affiliation(s)
- Jiahua Xing
- The First Medical Center, Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing 100853, China; (J.X.); (L.G.); (Y.L.)
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Lingli Guo
- The First Medical Center, Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing 100853, China; (J.X.); (L.G.); (Y.L.)
| | - Ziqi Jia
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China;
| | - Yan Li
- The First Medical Center, Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing 100853, China; (J.X.); (L.G.); (Y.L.)
| | - Yan Han
- The First Medical Center, Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing 100853, China; (J.X.); (L.G.); (Y.L.)
- Correspondence:
| |
Collapse
|
37
|
Peng X, Xu Z, Guo Y, Zhu Y. Necroptosis-Related Genes Associated With Immune Activity and Prognosis of Colorectal Cancer. Front Genet 2022; 13:909245. [PMID: 35783272 PMCID: PMC9243386 DOI: 10.3389/fgene.2022.909245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022] Open
Abstract
This study aims at screening out the key necroptosis-related genes in colorectal cancer and elucidating the role of necroptosis-related genes in the immune activity and prognosis of colorectal cancer (CRC). The CRC patients’ data were downloaded from The Cancer Genome Atlas (TCGA). The non-negative matrix factorization method was applied to identify new molecular subgroups. Survival analysis and single sample Gene Set Enrichment Analysis were performed to determinate the differences in the overall survival time and immune status of the subgroups. Prognostic model was constructed on the basis of univariate Cox regression and LASSO analysis. Functional analyses were used to explore the potential mechanisms. Based on prognostic related necroptosis genes, we identify two molecular subgroups with significantly different survival. The better prognosis was associated with more active immune infiltration and upregulated expression of immune checkpoints. We screened nine necroptosis related genes as key prognostic genes and established a risk model, which showed a good potential for survival prediction in colorectal cancer. Nomogram assessment showed that the model had high reliability for predicting the prognosis of colorectal cancer patients. The high-risk and low-risk group also has different sensitivity to immunotherapy and commonly used drugs for colorectal cancer. Overall, necroptosis related genes were involved in the immune microenvironment of colorectal cancer patient, could be utilized to predict the prognosis of colorectal cancer and develop more individualized treatment.
Collapse
Affiliation(s)
- Xinyi Peng
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Zhili Xu
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Yong Guo
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
- *Correspondence: Yong Guo, ; Ying Zhu,
| | - Ying Zhu
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
- *Correspondence: Yong Guo, ; Ying Zhu,
| |
Collapse
|
38
|
Jiang Y, Ouyang W, Zhang C, Yu Y, Yao H. Prognosis and Immunotherapy Response With a Novel Golgi Apparatus Signature-Based Formula in Lung Adenocarcinoma. Front Cell Dev Biol 2022; 9:817085. [PMID: 35127727 PMCID: PMC8811463 DOI: 10.3389/fcell.2021.817085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 11/15/2022] Open
Abstract
The Golgi apparatus (GA) is a cellular organelle that participates in the packaging, modification, and transport of proteins and lipids from the endoplasmic reticulum to be further fabricated before being presented to other cellular components. Recent studies have demonstrated that GA facilitates numerous cellular processes in cancer development. Therefore, this study aimed to establish a novel lung adenocarcinoma (LUAD) risk evaluation model based on GA gene signatures. In this study, we used TCGA-LUAD (n = 500) as the training cohort and GSE50081 (n = 127), GSE68465 (442), and GSE72094 (398) as the validation cohorts. Two immunotherapy datasets (GSE135222 and GSE126044) were also obtained from a previous study. Based on machine algorithms and bioinformatics methods, a GA gene-related risk score (GARS) was established. We found that the GARS independently predicted the prognosis of LUAD patients and remained effective across stages IA to IIIA. Then, we identified that the GARS was highly correlated with mutations in P53 and TTN. Further, this study identified that GARS is related to multiple immune microenvironmental characteristics. Furthermore, we investigated GSE135222 and GSE126044 and found that a lower GARS may be indicative of an improved therapeutic effect of PD-1/PD-L1 therapy. We also found that high GARS may lead to a better response to multiple anticancer drugs. Finally, we established a nomogram to better guide clinical application. To our knowledge, this is the first study to demonstrate a novel GA signature-based risk score formula to predict clinical prognosis and guide the treatment of LUAD patients.
Collapse
Affiliation(s)
- Yupeng Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Center of Phase I Clinical Trial, Center of Breast Tumor, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenhao Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Center of Phase I Clinical Trial, Center of Breast Tumor, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chenzi Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Center of Phase I Clinical Trial, Center of Breast Tumor, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Artificial Intelligence & Digital Media Concentration Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
- *Correspondence: Yunfang Yu, ; Herui Yao,
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Center of Phase I Clinical Trial, Center of Breast Tumor, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Artificial Intelligence & Digital Media Concentration Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
- *Correspondence: Yunfang Yu, ; Herui Yao,
| |
Collapse
|