1
|
Stokovic N, Ivanjko N, Javor A, Pecin M, Muzina K, Stepanic ZM, Capak H, Vrbanac Z, Maticic D, Vukicevic S. Regeneration of a Rabbit Segmental Defect with a New Bone Therapy: Autologous Blood Coagulum with Bone Morphogenetic Protein 6 and Synthetic Ceramics. Biomater Res 2025; 29:0140. [PMID: 39911304 PMCID: PMC11794767 DOI: 10.34133/bmr.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/13/2024] [Accepted: 01/05/2025] [Indexed: 02/07/2025] Open
Abstract
Segmental defects of long bones are among the most challenging and debilitating conditions in clinical medicine. Osteogrow-C is a novel osteoinductive device composed of recombinant human bone morphogenetic protein 6 (rhBMP6) delivered within autologous blood coagulum (ABC) with calcium phosphate ceramics that was proven efficacious in preclinical models of spinal fusion. This study aimed to evaluate the efficacy of Osteogrow-C in comparison to that of other osteoinductive therapies in a clinically relevant segmental defect model in rabbits. Segmental defects (15 mm) of rabbit ulna were treated with Osteogrow-C containing different synthetic ceramic particles (tricalcium phosphate [TCP] and TCP/hydroxyapatite 40%/60%), Osteogrow (rhBMP6/ABC), Infuse (rhBMP2/absorbable collagen sponge), and control implants without bone morphogenetic proteins. Defect healing was evaluated by in vivo x-ray scans 4, 8, and 17 weeks after the surgery, and animals were killed after 17 weeks for further radiographical and histological assessment. Evaluation of x-ray images, micro-computed tomography, and histological sections revealed that both Osteogrow-C formulations as well as Osteogrow and Infuse promoted healing of the ulnar segmental defect. However, radiographic scores were higher in animals treated with Osteogrow-C than those for the other used therapies. Moreover, evaluation of in vivo x-ray scans revealed that Osteogrow-C with TCP ceramics induced the most rapid defect bridging. On the other hand, control implants (ABC/TCP and ABC/biphasic calcium phosphate) promoted limited osteogenesis without defect bridging. The findings of this study suggest that Osteogrow-C is a promising safe therapeutic solution for the treatment of large bone defects, providing relief to millions of patients suffering from this debilitating condition.
Collapse
Affiliation(s)
- Nikola Stokovic
- Laboratory for Mineralized Tissues, School of Medicine,
University of Zagreb, Zagreb, Croatia
- Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, School of Medicine,
University of Zagreb, Zagreb, Croatia
- Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Ana Javor
- Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
- Department of Radiology, Ultrasound Diagnostics, and Physical Therapy, Faculty of Veterinary Medicine,
University of Zagreb, Zagreb, Croatia
| | - Marko Pecin
- Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
- Clinics for Surgery, Orthopedics, and Ophthalmology, Faculty of Veterinary Medicine,
University of Zagreb, Zagreb, Croatia
| | - Katarina Muzina
- Department of Inorganic Chemical Technology and Non-metals, Faculty of Chemical Engineering and Technology,
University of Zagreb, Zagreb, Croatia
| | - Zeljka Magdalena Stepanic
- Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
- Clinics for Surgery, Orthopedics, and Ophthalmology, Faculty of Veterinary Medicine,
University of Zagreb, Zagreb, Croatia
| | - Hrvoje Capak
- Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
- Department of Radiology, Ultrasound Diagnostics, and Physical Therapy, Faculty of Veterinary Medicine,
University of Zagreb, Zagreb, Croatia
| | - Zoran Vrbanac
- Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
- Department of Radiology, Ultrasound Diagnostics, and Physical Therapy, Faculty of Veterinary Medicine,
University of Zagreb, Zagreb, Croatia
| | - Drazen Maticic
- Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
- Clinics for Surgery, Orthopedics, and Ophthalmology, Faculty of Veterinary Medicine,
University of Zagreb, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, School of Medicine,
University of Zagreb, Zagreb, Croatia
- Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| |
Collapse
|
2
|
Matic Jelic I, Stokovic N, Ivanjko N, Pecina M, Kufner V, Bordukalo Niksic T, Vukicevic S. Systemic inhibition of bone morphogenetic protein 1.3 as a possible treatment for laminin-related congenital muscular dystrophy. INTERNATIONAL ORTHOPAEDICS 2025; 49:45-52. [PMID: 39621123 DOI: 10.1007/s00264-024-06389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
Congenital muscular dystrophy (CMD) is a group of rare neuromuscular disorders typically characterized by the onset of symptoms at birth or within the first two years of life. CMDs are relatively rare, but extremely severe pathological conditions currently without a safe and effective therapeutic solution. Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is among the most frequent CMDs and it is caused by mutations in the LAMA2 gene that encodes for the α2 chain of laminin-211 (merosin). Laminin-211 is a crucial constituent of the basement membrane that provides muscle fibre stability and signal transduction. Bone morphogenetic protein 1.3 (BMP1.3) is evolutionarily conserved and structurally related to mammalian Tolloid-like metalloproteinase (mTld) that is involved in the processing of procollagens, non-collagenous extracellular matrix proteins, and growth factor-related proteins. Recently, it has been shown that BMP1.3 is present in circulation and its levels are elevated in patients with chronic kidney failure, hepatic fibrosis, and acute myocardial infarction. It has been demonstrated that administering the BMP1.3 antibody ameliorated kidney, liver, and heart function in animal disease models. Furthermore, we observed highly enhanced BMP1.3 gene expression in the skeletal muscles of mice with congenital muscular dystrophy. Therefore, we hypothesize that BMP1.3 inhibition represents a novel therapeutic strategy for reversing the progression of CMD. The development of an anti-BMP1.3 therapy might lead to groundbreaking changes in CMD treatment and provide relief to numerous patients suffering from this disabling disease.
Collapse
Affiliation(s)
- Ivona Matic Jelic
- Laboratory for Mineralized Tissues, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marko Pecina
- Department of Orthopaedic Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues, University of Zagreb School of Medicine, Zagreb, Croatia
| | | | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, University of Zagreb School of Medicine, Zagreb, Croatia.
| |
Collapse
|
3
|
Wang D, Qi G, Zhang M, Carlson B, Gernon M, Burton D, Sun XS, Wang J. Peptide Hydrogel for Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 In Vitro. J Funct Biomater 2024; 15:369. [PMID: 39728169 DOI: 10.3390/jfb15120369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
This study aimed to investigate the impact of varying the formulation of a specific peptide hydrogel (PepGel) on the release kinetics of rhBMP-2 in vitro. Three PepGel formulations were assessed: (1) 50% v/v (peptides volume/total volume) PepGel, where synthetic peptides were mixed with crosslinking reagents and rhBMP-2 solution; (2) 67% v/v PepGel; (3) 80% v/v PepGel. Each sample was loaded with 12 µg of rhBMP-2 and incubated in PBS. Released rhBMP-2 was quantified by ELISA at 1 h, 6 h, and 1, 2, 4, 7, 10, 14, and 21 days. To explore how PepGel formulations influence rhBMP-2 release, the gel porosities, swelling ratios, and mechanical properties of the three PepGel formulations were quantitatively analyzed. The results showed that rhBMP-2 encapsulated with 50% v/v PepGel exhibited a sustained release over the 21-day experiment, while the 67% and 80% v/v PepGels demonstrated significantly lower rhBMP-2 release rates compared to the 50% formulation after day 7. Higher histological porosity of PepGel was significantly correlated with increased rhBMP-2 release rates. Conversely, the swelling ratio and elastic modulus of the 50% v/v PepGel were significantly lower than that of the 67% and 80% v/v formulations. In conclusion, this study indicates that varying the formulation of crosslinked PepGel can control rhBMP-2 release rates in vitro by modulating gel porosity, swelling ratio, and mechanical properties. Encapsulation with 50% v/v PepGel offers a sustained rhBMP-2 release pattern in vitro; if replicated in vivo, this could mitigate the adverse effects associated with burst release of rhBMP-2 in clinical applications.
Collapse
Affiliation(s)
- Dalin Wang
- Department of Orthopedic Surgery, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Guangyan Qi
- Department of Biological and Agricultural Engineering, Kansas State University, Seaton Hall, 919 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Mingcai Zhang
- Department of Orthopedic Surgery, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Brandon Carlson
- Department of Orthopedic Surgery, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Matthew Gernon
- Department of Orthopedic Surgery, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Douglas Burton
- Department of Orthopedic Surgery, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Xiuzhi Susan Sun
- Department of Biological and Agricultural Engineering, Kansas State University, Seaton Hall, 919 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Jinxi Wang
- Department of Orthopedic Surgery, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Nazzal MK, Battina HL, Tewari NP, Mostardo SL, Nagaraj RU, Zhou D, Awosanya OD, Majety SK, Samson S, Blosser RJ, Dadwal UC, Mulcrone PL, Kacena MA. The effects of young and aged, male and female megakaryocyte conditioned media on angiogenic properties of endothelial cells. Aging (Albany NY) 2024; 16:13181-13200. [PMID: 39578050 PMCID: PMC11719103 DOI: 10.18632/aging.206077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/11/2024] [Indexed: 11/24/2024]
Abstract
With aging, the risk of fractures and compromised healing increases. Angiogenesis plays a significant role in bone healing and is impaired with aging. We have previously shown the impact of megakaryocytes (MKs) in regulating bone healing. Notably, MKs produce factors known to promote angiogenesis. We examined the effects of conditioned media (CM) generated from MKs derived from young (3-4-month-old) and aged (22-24-month-old), male and female C57BL/6J mice on bone marrow endothelial cell (BMEC) growth and function. Female MK CM, regardless of age, caused a >65% increase in BMEC proliferation and improved vessel formation by >115%. Likewise, young male MK CM increased vessel formation by 160%. Although aged male MK CM resulted in >150% increases in the formation of vascular nodes and meshes, 62% fewer vessels formed compared to young male MK CM treatment. Aged female MK CM improved migration by over 2500%. However, aged female and male MK CM caused less wound closure. MK CM treatments also significantly altered the expression of several genes including PDGFRβ, CXCR4, and CD36 relative to controls and between ages. Further testing of mechanisms responsible for age-associated differences may allow for novel strategies to improve MK-mediated angiogenesis and bone healing, particularly within the aging population.
Collapse
Affiliation(s)
- Murad K. Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hanisha L. Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nikhil P. Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah L. Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Rohit U. Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Donghui Zhou
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Olatundun D. Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Saveda K. Majety
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sue Samson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rachel J. Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Ushashi C. Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Patrick L. Mulcrone
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Cheers GM, Weimer LP, Neuerburg C, Arnholdt J, Gilbert F, Thorwächter C, Holzapfel BM, Mayer-Wagner S, Laubach M. Advances in implants and bone graft types for lumbar spinal fusion surgery. Biomater Sci 2024; 12:4875-4902. [PMID: 39190323 DOI: 10.1039/d4bm00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The increasing prevalence of spinal disorders worldwide necessitates advanced treatments, particularly interbody fusion for severe cases that are unresponsive to non-surgical interventions. This procedure, especially 360° lumbar interbody fusion, employs an interbody cage, pedicle screw-and-rod instrumentation, and autologous bone graft (ABG) to enhance spinal stability and promote fusion. Despite significant advancements, a persistent 10% incidence of non-union continues to result in compromised patient outcomes and escalated healthcare costs. Innovations in lumbar stabilisation seek to mimic the properties of natural bone, with evolving implant materials like titanium (Ti) and polyetheretherketone (PEEK) and their composites offering new prospects. Additionally, biomimetic cages featuring precisely engineered porosities and interconnectivity have gained traction, as they enhance osteogenic differentiation, support osteogenesis, and alleviate stress-shielding. However, the limitations of ABG, such as harvesting morbidities and limited fusion capacity, have spurred the exploration of sophisticated solutions involving advanced bone graft substitutes. Currently, demineralised bone matrix and ceramics are in clinical use, forming the basis for future investigations into novel bone graft substitutes. Bioglass, a promising newcomer, is under investigation despite its observed rapid absorption and the potential for foreign body reactions in preclinical studies. Its clinical applicability remains under scrutiny, with ongoing research addressing challenges related to burst release and appropriate dosing. Conversely, the well-documented favourable osteogenic potential of growth factors remains encouraging, with current efforts focused on modulating their release dynamics to minimise complications. In this evidence-based narrative review, we provide a comprehensive overview of the evolving landscape of non-degradable spinal implants and bone graft substitutes, emphasising their applications in lumbar spinal fusion surgery. We highlight the necessity for continued research to improve clinical outcomes and enhance patient well-being.
Collapse
Affiliation(s)
- Giles Michael Cheers
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Lucas Philipp Weimer
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Carl Neuerburg
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Jörg Arnholdt
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Christoph Thorwächter
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Boris Michael Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Markus Laubach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
6
|
Mata M, Salvador-Clavell R, Ródenas-Rochina J, Sancho-Tello M, Gallego Ferrer G, Gómez Ribelles JL. Mesenchymal Stem Cells Cultured in a 3D Microgel Environment Containing Platelet-Rich Plasma Significantly Modify Their Chondrogenesis-Related miRNA Expression. Int J Mol Sci 2024; 25:937. [PMID: 38256011 PMCID: PMC10815493 DOI: 10.3390/ijms25020937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this work is to study the effect of platelet factors on the differentiation of mesenchymal stem cells (MSCs) to hyaline cartilage chondrocytes in a three-dimensional environment. MSCs were cultured in a microgel environment with a chondrogenic medium. The microgel consisted of microspheres that combine gelatin and platelet-rich plasma (PRP). The gelatin/PRP microdroplets were produced by emulsion. The gelatin containing the microdroplets was enzymatically gelled, retaining PRP and, just before seeding the cells, platelets were activated by adding calcium chloride so that platelet growth factors were released into the culture media but not before. Platelet activation was analyzed before activation to rule out the possibility that the gelatin cross-linking process itself activated the platelets. The gene expression of characteristic chondrogenic markers and miRNA expression were analyzed in cells cultured in a differentiation medium and significant differences were found between gelation/PRP microgels and those containing only pure gelatin. In summary, the gelatin microspheres effectively encapsulated platelets that secreted and released factors that significantly contributed to cellular chondrogenic differentiation. At the same time, the microgel constituted a 3D medium that provided the cells with adherent surfaces and the possibility of three-dimensional cell-cell contact.
Collapse
Affiliation(s)
- Manuel Mata
- Departamento de Patología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain; (R.S.-C.); (M.S.-T.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.R.-R.); (G.G.F.); (J.L.G.R.)
| | - Rubén Salvador-Clavell
- Departamento de Patología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain; (R.S.-C.); (M.S.-T.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Joaquín Ródenas-Rochina
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.R.-R.); (G.G.F.); (J.L.G.R.)
| | - María Sancho-Tello
- Departamento de Patología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain; (R.S.-C.); (M.S.-T.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Gloria Gallego Ferrer
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.R.-R.); (G.G.F.); (J.L.G.R.)
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
| | - José Luis Gómez Ribelles
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.R.-R.); (G.G.F.); (J.L.G.R.)
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
7
|
Ivanjko N, Stokovic N, Milesevic M, Rumenovic V, Windhager R, Sampath KT, Kovacic N, Grcevic D, Vukicevic S. rhBMP6 in autologous blood coagulum is a preferred osteoinductive device to rhBMP2 on bovine collagen sponge in the rat ectopic bone formation assay. Biomed Pharmacother 2023; 169:115844. [PMID: 37948990 DOI: 10.1016/j.biopha.2023.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Osteoinductive BMPs require a suitable delivery system for treating various pathological conditions of the spine and segmental bone defects. INFUSE, the only commercially available BMP-based osteoinductive device, consisting of rhBMP2 on bovine absorbable collagen sponge (ACS) showed major disadvantages due to serious side effects. A novel osteoinductive device, OSTEOGROW, comprised of rhBMP6 dispersed within autologous blood coagulum (ABC) is a promising therapy for bone regeneration, subjected to several clinical trials for diaphysial bone repair and spinal fusion. In the present study, we have examined the release dynamics showing that the ABC carrier provided a slower, more steady BMP release in comparison to the ACS. Rat subcutaneous assay was employed to evaluate cellular events and the time course of ectopic osteogenesis. The host cellular response to osteoinductive implants was evaluated by flow cytometry, while dynamics of bone formation and maintenance in time were evaluated by histology, immunohistochemistry and micro CT analyses. Flow cytometry revealed that the recruitment of lymphoid cell populations was significantly higher in rhBMP6/ABC implants, while rhBMP2/ACS implants recruited more myeloid populations. Furthermore, rhBMP6/ABC implants more efficiently attracted early and committed progenitor cells. Dynamics of bone formation induced by rhBMP2/ACS was characterized by a delayed endochondral ossification process in comparison to rhBMP6/ABC implants. Besides, rhBMP6/ABC implants induced more ectopic bone volume in all observed time points in comparison to rhBMP2/ACS implants. These results indicate that OSTEOGROW was superior to INFUSE due to ABC's advantages as a carrier and rhBMP6 superior efficacy in inducing bone.
Collapse
Affiliation(s)
- Natalia Ivanjko
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Marina Milesevic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Viktorija Rumenovic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Natasa Kovacic
- Croatian Institute for Brain Research, Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danka Grcevic
- Croatian Institute for Brain Research, Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia.
| |
Collapse
|
8
|
Ivanjko N, Stokovic N, Pecin M, Vnuk D, Smajlovic A, Ivkic N, Capak H, Javor A, Vrbanac Z, Maticic D, Vukicevic S. Calcium phosphate ceramics combined with rhBMP6 within autologous blood coagulum promote posterolateral lumbar fusion in sheep. Sci Rep 2023; 13:22079. [PMID: 38086987 PMCID: PMC10716416 DOI: 10.1038/s41598-023-48878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Posterolateral spinal fusion (PLF) is a procedure used for the treatment of degenerative spine disease. In this study we evaluated Osteogrow-C, a novel osteoinductive device comprised of recombinant human Bone morphogenetic protein 6 (rhBMP6) dispersed in autologous blood coagulum with synthetic ceramic particles, in the sheep PLF model. Osteogrow-C implants containing 74-420 or 1000-1700 µm ceramic particles (TCP/HA 80/20) were implanted between L4-L5 transverse processes in sheep (Ovis Aries, Merinolaandschaf breed). In the first experiment (n = 9 sheep; rhBMP6 dose 800 µg) the follow-up period was 27 weeks while in the second experiment (n = 12 sheep; rhBMP6 dose 500 µg) spinal fusion was assessed by in vivo CT after 9 weeks and at the end of the experiment after 14 (n = 6 sheep) and 40 (n = 6 sheep) weeks. Methods of evaluation included microCT, histological analyses and biomechanical testing. Osteogrow-C implants containing both 74-420 and 1000-1700 µm ceramic particles induced radiographic solid fusion 9 weeks following implantation. Ex-vivo microCT and histological analyses revealed complete osseointegration of newly formed bone with adjacent transverse processes. Biomechanical testing confirmed that fusion between transverse processes was complete and successful. Osteogrow-C implants induced spinal fusion in sheep PLF model and therefore represent a novel therapeutic solution for patients with degenerative disc disease.
Collapse
Affiliation(s)
- Natalia Ivanjko
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 11, 10000, Zagreb, Croatia
- Center of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 11, 10000, Zagreb, Croatia
- Center of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Pecin
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Drazen Vnuk
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Smajlovic
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Niko Ivkic
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Capak
- Department of Radiology, Ultrasound Diagnostics and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Javor
- Department of Radiology, Ultrasound Diagnostics and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Zoran Vrbanac
- Department of Radiology, Ultrasound Diagnostics and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Drazen Maticic
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 11, 10000, Zagreb, Croatia.
- Center of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
9
|
Lerch RJ, Gulati A, Highlander PD. Revision of Subtalar Joint Arthrodesis: Considerations for Bone Grafting, Fixation Constructs, and Three-Dimensional Printing. Clin Podiatr Med Surg 2023; 40:633-648. [PMID: 37716742 DOI: 10.1016/j.cpm.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
Subtalar joint arthrodesis is a commonly used procedure for numerous pathologic conditions in the foot and ankle. Although rarely performed in isolation, this procedure can provide successful resolution of various lower-extremity complaints. There are traditional approaches to isolated subtalar joint arthrodesis; however, when these fail, the authors recommend alternatives to enhance the success of revisional surgery. These include the use of intramedullary nailing, larger harvest of autograft, and metallic wedge.
Collapse
Affiliation(s)
- Ryan J Lerch
- The Reconstruction Institute, The Bellevue Hospital, 1400 West Main Street, Bellevue, OH 44811, USA
| | - Amar Gulati
- Progressive Feet, 611 South Carlin Springs Road, Suite 508, Arlington, VA 22204, USA
| | - Peter D Highlander
- The Reconstruction Institute, The Bellevue Hospital, 1400 West Main Street, Bellevue, OH 44811, USA.
| |
Collapse
|
10
|
Cavka M, Delimar D, Rezan R, Zigman T, Duric KS, Cimic M, Dumic-Cule I, Prutki M. Complications of Percutaneous Vertebroplasty: A Pictorial Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1536. [PMID: 37763655 PMCID: PMC10533082 DOI: 10.3390/medicina59091536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
Percutaneous vertebroplasty is a minimally invasive treatment technique for vertebral body compression fractures. The complications associated with this technique can be categorized into mild, moderate, and severe. Among these, the most prevalent complication is cement leakage, which may insert into the epidural, intradiscal, foraminal, and paravertebral regions, and even the venous system. The occurrence of a postprocedural infection carries a notable risk which is inherent to any percutaneous procedure. While the majority of these complications manifest without symptoms, they can potentially lead to severe outcomes. This review aims to consolidate the various complications linked to vertebroplasty, drawing from the experiences of a single medical center.
Collapse
Affiliation(s)
- Mislav Cavka
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia; (M.C.); (R.R.); (M.P.)
| | - Domagoj Delimar
- Department of Orthopaedic Surgery, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia; (T.Z.); (K.S.D.); (M.C.)
| | - Robert Rezan
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia; (M.C.); (R.R.); (M.P.)
| | - Tomislav Zigman
- School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia; (T.Z.); (K.S.D.); (M.C.)
- Department of Surgery, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Kresimir Sasa Duric
- School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia; (T.Z.); (K.S.D.); (M.C.)
- Department of Neurosurgery, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Mislav Cimic
- School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia; (T.Z.); (K.S.D.); (M.C.)
| | - Ivo Dumic-Cule
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia; (M.C.); (R.R.); (M.P.)
- Department of Nursing, University North, 104 Brigade 3, 42000 Varazdin, Croatia
| | - Maja Prutki
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia; (M.C.); (R.R.); (M.P.)
- School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia; (T.Z.); (K.S.D.); (M.C.)
| |
Collapse
|
11
|
Ruan X, Gu J, Chen M, Zhao F, Aili M, Zhang D. Multiple roles of ALK3 in osteoarthritis. Bone Joint Res 2023; 12:397-411. [PMID: 37394235 PMCID: PMC10315222 DOI: 10.1302/2046-3758.127.bjr-2022-0310.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.
Collapse
Affiliation(s)
- Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinning Gu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Mingyang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fulin Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Munire Aili
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Ruan X, Zhang Z, Aili M, Luo X, Wei Q, Zhang D, Bai M. Activin receptor-like kinase 3: a critical modulator of development and function of mineralized tissues. Front Cell Dev Biol 2023; 11:1209817. [PMID: 37457289 PMCID: PMC10347416 DOI: 10.3389/fcell.2023.1209817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Mineralized tissues, such as teeth and bones, pose significant challenges for repair due to their hardness, low permeability, and limited blood flow compared to soft tissues. Bone morphogenetic proteins (BMPs) have been identified as playing a crucial role in mineralized tissue formation and repair. However, the application of large amounts of exogenous BMPs may cause side effects such as inflammation. Therefore, it is necessary to identify a more precise molecular target downstream of the ligands. Activin receptor-like kinase 3 (ALK3), a key transmembrane receptor, serves as a vital gateway for the transmission of BMP signals, triggering cellular responses. Recent research has yielded new insights into the regulatory roles of ALK3 in mineralized tissues. Experimental knockout or mutation of ALK3 has been shown to result in skeletal dysmorphisms and failure of tooth formation, eruption, and orthodontic tooth movement. This review summarizes the roles of ALK3 in mineralized tissue regulation and elucidates how ALK3-mediated signaling influences the physiology and pathology of teeth and bones. Additionally, this review provides a reference for recommended basic research and potential future treatment strategies for the repair and regeneration of mineralized tissues.
Collapse
Affiliation(s)
- Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaowei Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Munire Aili
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiang Luo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qiang Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Pan Y, Jiang Z, Ye Y, Zhu D, Li N, Yang G, Wang Y. Role and Mechanism of BMP4 in Regenerative Medicine and Tissue Engineering. Ann Biomed Eng 2023:10.1007/s10439-023-03173-6. [PMID: 37014581 DOI: 10.1007/s10439-023-03173-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/21/2023] [Indexed: 04/05/2023]
Abstract
Bone morphogenetic protein 4 (BMP4) is emerging as a promising cytokine for regenerative medicine and tissue engineering. BMP4 has been shown to promote the regeneration of teeth, periodontal tissue, bone, cartilage, the thymus, hair, neurons, nucleus pulposus, and adipose tissue, as well as the formation of skeletal myotubes and vessels. BMP4 can also contribute to the formation of tissues in the heart, lung, and kidney. However, there are certain deficiencies, including the insufficiency of the mechanism of BMP4 in some fields and an appropriate carrier of BMP4 for clinical use. There has also been a lack of in vivo experiments and orthotopic transplantation studies in some fields. BMP4 has great distance from the clinical application. Therefore, there are many BMP4-related studies waiting to be explored. This review mainly discusses the effects, mechanisms, and applications of BMP4 in regenerative medicine and tissue engineering over the last 10 years in various domains and possible improvements. BMP4 has shown great potential in regenerative medicine and tissue engineering. The research of BMP4 has broad development space and great value.
Collapse
Affiliation(s)
- Yiqi Pan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Yuer Ye
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
14
|
Baek DC, Hwang SJ, Lee JS, Wang JH, Son CG, Lee EJ. A Mixture of Cervus elaphus sibiricus and Glycine max (L.) Merrill Inhibits Ovariectomy-Induced Bone Loss Via Regulation of Osteogenic Molecules in a Mouse Model. Int J Mol Sci 2023; 24:4876. [PMID: 36902303 PMCID: PMC10003697 DOI: 10.3390/ijms24054876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Osteoporosis is a metabolic skeletal disease characterized by lowered bone mineral density and quality, which lead to an increased risk of fracture. The aim of this study was to evaluate the anti-osteoporosis effects of a mixture (called BPX) of Cervus elaphus sibiricus and Glycine max (L.) Merrill and its underlying mechanisms using an ovariectomized (OVX) mouse model. BALB/c female mice (7 weeks old) were ovariectomized. From 12 weeks of ovariectomy, mice were administered BPX (600 mg/kg) mixed in a chow diet for 20 weeks. Changes in bone mineral density (BMD) and bone volume (BV), histological findings, osteogenic markers in serum, and bone formation-related molecules were analyzed. Ovariectomy notably decreased the BMD and BV scores, while these were significantly attenuated by BPX treatment in the whole body, femur, and tibia. These anti-osteoporosis effects of BPX were supported by the histological findings for bone microstructure from H&E staining, increased activity of alkaline phosphatase (ALP), but a lowered activity of tartrate-resistant acid phosphatase (TRAP) in the femur, along with other parameters in the serum, including TRAP, calcium (Ca), osteocalcin (OC), and ALP. These pharmacological actions of BPX were explained by the regulation of key molecules in the bone morphogenetic protein (BMP) and mitogen-activated protein kinase (MAPK) pathways. The present results provide experimental evidence for the clinical relevance and pharmaceutical potential of BPX as a candidate for anti-osteoporosis treatment, especially under postmenopausal conditions.
Collapse
Affiliation(s)
- Dong-Cheol Baek
- Institute of Bioscience & Integrative Medicine, Daejeon Korean Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Daejeon 35235, Republic of Korea
| | - Seung-Ju Hwang
- Institute of Bioscience & Integrative Medicine, Daejeon Korean Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Daejeon 35235, Republic of Korea
| | - Jin-Seok Lee
- Institute of Bioscience & Integrative Medicine, Daejeon Korean Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Daejeon 35235, Republic of Korea
| | - Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon Korean Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Daejeon 35235, Republic of Korea
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon Korean Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Daejeon 35235, Republic of Korea
| | - Eun-Jung Lee
- Department of Korean Rehabilitation Medicine, Daejeon Korean Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Daejeon 35235, Republic of Korea
| |
Collapse
|
15
|
Fukuda T, Suzuki E, Fukuda R. Bone morphogenetic protein signaling is a possible therapeutic target in gynecologic cancer. Cancer Sci 2023; 114:722-729. [PMID: 36468782 PMCID: PMC9986083 DOI: 10.1111/cas.15682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β (TGFβ) superfamily. BMPs play crucial roles in embryogenesis and bone remodeling. Recently, BMP signaling has been found to have diverse effects on different types of tumors. In this review, we summarized the effects of BMP signaling on gynecologic cancer. BMP signaling has tumor-promoting effects on ovarian cancer (OC) and endometrial cancer (EC), whereas it has tumor-suppressing effects on uterine cervical cancer (UCC). Interestingly, EC has frequent gain-of-function mutations in ACVR1, encoding one of the type I BMP receptors, which are also observed in fibrodysplasia ossificans progressiva and diffuse intrinsic pontine glioma. Little is known about the relationship between BMP signaling and other gynecologic cancers. Tumor-promoting effects of BMP signaling in OC and EC are dependent on the promotion of cancer stemness and epithelial-mesenchymal transition (EMT). In accordance, BMP receptor kinase inhibitors suppress the cell growth and migration of OC and EC. Since both cancer stemness and EMT are associated with chemoresistance, BMP signaling activation might also be an important mechanism by which OC and EC patients acquire chemoresistance. Therefore, BMP inhibitors are promising for OC and EC patients even if they become resistant to standard chemotherapy. In contrast, BMP signaling inhibits UCC growth in vitro. However, the in vivo effects of BMP signaling have not been elucidated in UCC. In conclusion, BMP signaling has a variety of functions, depending on the types of gynecologic cancer. Therefore, targeting BMP signaling should improve the treatment of patients with gynecologic cancer.
Collapse
Affiliation(s)
- Tomohiko Fukuda
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Eri Suzuki
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Risa Fukuda
- Division of Dermatology, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
16
|
Stokovic N, Ivanjko N, Rumenovic V, Breski A, Sampath KT, Peric M, Pecina M, Vukicevic S. Comparison of synthetic ceramic products formulated with autologous blood coagulum containing rhBMP6 for induction of bone formation. INTERNATIONAL ORTHOPAEDICS 2022; 46:2693-2704. [PMID: 35994064 DOI: 10.1007/s00264-022-05546-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE Osteogrow, an osteoinductive device containing recombinant human Bone Morphogenetic Protein 6 (rhBMP6) in autologous blood coagulum, is a novel therapeutic solution for bone regeneration. This study aimed to evaluate different commercially available calcium phosphate synthetic ceramic particles as a compression-resistant matrix (CRM) added to Osteogrow implants to enhance their biomechanical properties. METHODS Osteogrow implants with the addition of Vitoss, ChronOs, BAM, and Dongbo ceramics (Osteogrow-C, where C stands for ceramics) were evaluated in the rodent subcutaneous ectopic bone formation assay. Osteogrow-C device was prepared as follows: rhBMP6 was added to blood, and blood was mixed with ceramics and left to coagulate. Osteogrow-C was implanted subcutaneously in the axillary region of Sprague-Dawley rats and the outcome was analyzed 21 days following implantation using microCT, histology, morphometric analyses, and immunohistochemistry. RESULTS Osteogrow-C implants with all tested ceramic particles induced the formation of the bone-ceramic structure containing cortical bone, the bone between the particles, and bone at the ceramic surfaces. The amount of newly formed bone was significant in all experimental groups; however, the highest bone volume was measured in Osteogrow-C implants with highly porous Vitoss ceramics. The trabecular number was highest in Osteogrow-C implants with Vitoss and ChronOs ceramics while trabeculae were thicker in implants containing BAM and Dongbo ceramics. The immunological response and inflammation were comparable among ceramic particles evaluated in this study. CONCLUSION Osteogrow-C bone regenerative device was effective with a broad range of commercially available synthetic ceramics providing a promising therapeutic solution for the regeneration of long bone fracture nonunion, large segmental defects, and spinal fusion surgeries.
Collapse
Affiliation(s)
- Nikola Stokovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Viktorija Rumenovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Anita Breski
- Department of Pathology and Cytology, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Mihaela Peric
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
- Department for Intracellular Communication, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Pecina
- Department of Orthopaedic Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia.
| |
Collapse
|
17
|
Gao X, Hwang MP, Wright N, Lu A, Ruzbarsky JJ, Huard M, Cheng H, Mullen M, Ravuri S, Wang B, Wang Y, Huard J. The use of heparin/polycation coacervate sustain release system to compare the bone regenerative potentials of 5 BMPs using a critical sized calvarial bone defect model. Biomaterials 2022; 288:121708. [PMID: 36031459 PMCID: PMC10129760 DOI: 10.1016/j.biomaterials.2022.121708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/01/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022]
Abstract
Nonunion following bone fracture and segmental bone defects are challenging clinical conditions. To combat this clinical dilemma, development of new bone tissue engineering therapies using biocompatible materials to deliver bone growth factors is desirable. This aim of this study is to use a heparin/polycation coacervate sustained-release platform to compare 5 bone morphogenetic proteins (BMPs) for promoting bone defect healing in a critical sized calvarial defect model. The in vitro 3D osteogenic pellet cultures assays demonstrated that BMPs 2, 4, 6, 7 and 9 all enhanced mineralization in vitro compared to the control group. BMP2 resulted in higher mineralized volume than BMP4 and BMP6. All BMPs and the control group activated the pSMAD5 signaling pathway and expressed osterix (OSX). The binding of BMP2 with coacervate significantly increased the coacervate average particle size. BMP2, 4, 6, & 7 bound to coacervate significantly increased the Zeta potential of the coacervate while BMP9 binding showed insignificant increase. Furthermore, using a monolayer culture osteogenic assay, it was found that hMDSCs cultured in the coacervate BMP2 osteogenic medium expressed higher levels of RUNX2, OSX, ALP and COX-2 compared to the control and BMPs 4, 6, 7 & 9. Additionally, the coacervate complex can be loaded with up to 2 μg of BMP proteins for sustained release. In vivo, when BMPs were delivered using the coacervate sustained release system, BMP2 was identified to be the most potent BMP promoting bone regeneration and regenerated 10 times of new bone than BMPs 4, 6 & 9. BMP7 also stimulated robust bone regeneration when compared to BMPs 4, 6 & 9. The quality of the newly regenerated bone by all BMPs delivered by coacervate is equivalent to the host bone consisting of bone matrix and bone marrow with normal bone architecture. Although the defect was not completely healed at 6 weeks, coacervate sustain release BMPs, particularly BMP2 and BMP7, could represent a new strategy for treatment of bone defects and non-unions.
Collapse
Affiliation(s)
- Xueqin Gao
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Mintai P Hwang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Nathaniel Wright
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Aiping Lu
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Joseph J Ruzbarsky
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Matthieu Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Haizi Cheng
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, USA
| | - Michael Mullen
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Sudheer Ravuri
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA.
| |
Collapse
|
18
|
Maekawa S, Cho YD, Kauffmann F, Yao Y, Sugai JV, Zhong X, Schmiedeler C, Kinra N, Moy A, Larsson L, Lahann J, Giannobile WV. BMP Gene-Immobilization to Dental Implants Enhances Bone Regeneration. ADVANCED MATERIALS INTERFACES 2022; 9:2200531. [PMID: 36387968 PMCID: PMC9645788 DOI: 10.1002/admi.202200531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 05/24/2023]
Abstract
For individuals who have experienced tooth loss, dental implants are an important treatment option for oral reconstruction. For these patients, alveolar bone augmentation and acceleration of osseointegration optimize implant stability. Traditional oral surgery often requires invasive procedures, which can result in prolonged treatment time and associated morbidity. It has been previously shown that chemical vapor deposition (CVD) polymerization of functionalized [2.2]paracyclophanes can be used to anchor gene encoding vectors onto biomaterial surfaces and local delivery of a bone morphogenetic protein (BMP)-encoding vector can increase alveolar bone volume and density in vivo. This study is the first to combine the use of CVD technology and BMP gene delivery on titanium for the promotion of bone regeneration and bone to implant contact in vivo. BMP-7 tethered to titanium surface enhances osteoblast cell differentiation and alkaline phosphatase activity in vitro and increases alveolar bone regeneration and % bone to implant contact similar to using high doses of exogenously applied BMP-7 in vivo. The use of this innovative gene delivery strategy on implant surfaces offers an alternative treatment option for targeted alveolar bone reconstruction.
Collapse
Affiliation(s)
- Shogo Maekawa
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-5810, Japan
| | - Young-Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University, Dental Hospital, Yeongeon-dong, Jongno-gu, Seoul 03080, South Korea
| | - Frederic Kauffmann
- Department of Oral and Craniomaxillofacial Surgery, Center for Dental Medicine, University Medical Center Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Yao Yao
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - James V Sugai
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaoyang Zhong
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Caroline Schmiedeler
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Nitin Kinra
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Alyssa Moy
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Lena Larsson
- Department of Periodontology, Institute of Odontology, University of Gothenburg, Gothenburg 41390, Sweden
| | - Joerg Lahann
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - William V Giannobile
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
19
|
Biomaterial-Mediated Protein Expression Induced by Peptide-mRNA Nanoparticles Embedded in Lyophilized Collagen Scaffolds. Pharmaceutics 2022; 14:pharmaceutics14081619. [PMID: 36015245 PMCID: PMC9414905 DOI: 10.3390/pharmaceutics14081619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
In our aging society, the number of patients suffering from poorly healing bone defects increases. Bone morphogenetic proteins (BMPs) are used in the clinic to promote bone regeneration. However, poor control of BMP delivery and thus activity necessitates high doses, resulting in adverse effects and increased costs. It has been demonstrated that messenger RNA (mRNA) provides a superior alternative to protein delivery due to local uptake and prolonged expression restricted to the site of action. Here, we present the development of porous collagen scaffolds incorporating peptide-mRNA nanoparticles (NPs). Nanoparticles were generated by simply mixing aqueous solutions of the cationic cell-penetrating peptide PepFect14 (PF14) and mRNA. Peptide-mRNA complexes were uniformly distributed throughout the scaffolds, and matrices fully preserved cell attachment and viability. There was a clear dependence of protein expression on the incorporated amount of mRNA. Importantly, after lyophilization, the mRNA formulation in the collagen scaffolds retained activity also at 4 °C over two weeks. Overall, our results demonstrate that collagen scaffolds incorporating peptide-mRNA complexes hold promise as off-the-shelf functional biomaterials for applications in regenerative medicine and constitute a viable alternative to lipid-based mRNA formulations.
Collapse
|
20
|
Long-term posterolateral spinal fusion in rabbits induced by rhBMP6 applied in autologous blood coagulum with synthetic ceramics. Sci Rep 2022; 12:11649. [PMID: 35803983 PMCID: PMC9270325 DOI: 10.1038/s41598-022-14931-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Autologous bone graft substitute (ABGS) containing rhBMP6 in autologous blood coagulum (Osteogrow) is a novel therapeutic solution for bone regeneration. This study is aimed to investigate the long-term outcome of ABGS with synthetic ceramics (Osteogrow-C) in rabbit posterolateral spinal fusion (PLF) model. Osteogrow-C implants were implanted bilaterally between rabbit lumbar transverse processes. We compared the outcome following implantation of ABGS with ceramic particles of different chemical composition (TCP and biphasic ceramics containing both TCP and HA) and size (500–1700 µm and 74–420 µm). Outcome was analyzed after 14 and 27 weeks by microCT, histology, and biomechanical analyses. Successful bilateral spinal fusion was observed in all animals at the end of observation period. Chemical composition of ceramic particles has impact on the PLF outcome via resorption of TCP ceramics, while ceramics containing HA were only partially resorbed. Moreover, persistence of ceramic particles subsequently resulted with an increased bone volume in implants with small particles containing high proportion of HA. ABGS (rhBMP6/ABC) with various synthetic ceramic particles promoted spinal fusion in rabbits. This is the first presentation of BMP-mediated ectopic bone formation in rabbit PLF model with radiological, histological, and biomechanical features over a time course of up to 27 weeks.
Collapse
|
21
|
Bordukalo-Nikšić T, Kufner V, Vukičević S. The Role Of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications. Front Immunol 2022; 13:869422. [PMID: 35558080 PMCID: PMC9086899 DOI: 10.3389/fimmu.2022.869422] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
In response to mechanical forces and the aging process, bone in the adult skeleton is continuously remodeled by a process in which old and damaged bone is removed by bone-resorbing osteoclasts and subsequently is replaced by new bone by bone-forming cells, osteoblasts. During this essential process of bone remodeling, osteoclastic resorption is tightly coupled to osteoblastic bone formation. Bone-resorbing cells, multinuclear giant osteoclasts, derive from the monocyte/macrophage hematopoietic lineage and their differentiation is driven by distinct signaling molecules and transcription factors. Critical factors for this process are Macrophage Colony Stimulating Factor (M-CSF) and Receptor Activator Nuclear Factor-κB Ligand (RANKL). Besides their resorption activity, osteoclasts secrete coupling factors which promote recruitment of osteoblast precursors to the bone surface, regulating thus the whole process of bone remodeling. Bone morphogenetic proteins (BMPs), a family of multi-functional growth factors involved in numerous molecular and signaling pathways, have significant role in osteoblast-osteoclast communication and significantly impact bone remodeling. It is well known that BMPs help to maintain healthy bone by stimulating osteoblast mineralization, differentiation and survival. Recently, increasing evidence indicates that BMPs not only help in the anabolic part of bone remodeling process but also significantly influence bone catabolism. The deletion of the BMP receptor type 1A (BMPRIA) in osteoclasts increased osteoblastic bone formation, suggesting that BMPR1A signaling in osteoclasts regulates coupling to osteoblasts by reducing bone-formation activity during bone remodeling. The dual effect of BMPs on bone mineralization and resorption highlights the essential role of BMP signaling in bone homeostasis and they also appear to be involved in pathological processes in inflammatory disorders affecting bones and joints. Certain BMPs (BMP2 and -7) were approved for clinical use; however, increased bone resorption rather than formation were observed in clinical applications, suggesting the role BMPs have in osteoclast activation and subsequent osteolysis. Here, we summarize the current knowledge of BMP signaling in osteoclasts, its role in osteoclast resorption, bone remodeling, and osteoblast–osteoclast coupling. Furthermore, discussion of clinical application of recombinant BMP therapy is based on recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Tatjana Bordukalo-Nikšić
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukičević
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
22
|
Rajendran AK, Amirthalingam S, Hwang NS. A brief review of mRNA therapeutics and delivery for bone tissue engineering. RSC Adv 2022; 12:8889-8900. [PMID: 35424872 PMCID: PMC8985089 DOI: 10.1039/d2ra00713d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
The therapeutics for bone tissue regeneration requires constant advancements owing to the steady increase in the number of patients suffering from bone-related disorders, and also to find efficient and cost-effective treatment modalities. One of the major advancements in the field of therapeutics is the development of mRNAs. mRNAs, which have been extensively tested for the vaccines, could be very well utilized as a potential inducer for bone regeneration. The ability of mRNAs to enter the cells and instruct the cellular machinery to produce the required native proteins such as BMP or VEGF is a great way to avoid the issues faced with growth factor deliveries such as the production cost, loss of biological function etc. However, there have been a few hurdles for using mRNAs as an effective therapeutic agent, such as proper dosing, tolerating the degradation by RNases, improving the half-life, controlling the spatio-temporal release and reducing the off-target effects. This brief review discusses the various developments in the field of mRNA therapeutics especially for bone tissue engineering, how nano-formulations are being developed to effectively deliver the mRNAs into the cells by evading the immune responses, how researchers have developed certain strategies to increase the half-life, to successfully deliver the mRNAs to specific bone defect area and bring about effective bone regeneration.
Collapse
Affiliation(s)
- Arun Kumar Rajendran
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University Seoul 08826 Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University Seoul 08826 Republic of Korea
- Institute for Engineering Research, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
23
|
Niikura T, Oda T, Jimbo N, Komatsu M, Oe K, Fukui T, Matsumoto T, Hayashi S, Matsushita T, Itoh T, Kuroda R. Immunohistochemical analysis revealed the expression of bone morphogenetic proteins-4, 6, 7, and 9 in human induced membrane samples treated with the Masquelet technique. J Orthop Surg Res 2022; 17:29. [PMID: 35033126 PMCID: PMC8760771 DOI: 10.1186/s13018-022-02922-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/06/2022] [Indexed: 01/11/2023] Open
Abstract
Background Induced membrane (IM) is the key component of Masquelet reconstruction surgery for the treatment of bone defects. IM is formed around the cement spacer and is known to secrete growth factors and osteoinductive factors. However, there is limited evidence available concerning the presence of osteoinductive factors in IM. This study aimed to investigate the existence of bone morphogenetic proteins (BMPs) in IM harvested from patients during the treatment of bone defects using the Masquelet technique. Methods This study involved six patients whose bone defects had been treated using the Masquelet technique. The affected sites were the femur (n = 3) and the tibia (n = 3). During the second-stage surgery, 1 cm2 pieces of IM were harvested. Histological sections of IM were immunostained with anti-BMP-4, 6, 7, and 9 antibodies. Human bone tissue served as the positive control. Results The presence of BMP-4, 6, 7, and 9 was observed in all IM samples. Further, immunolocalization of BMP-4, 6, 7, and 9 was observed in blood vessels and fibroblasts in all IM samples. Immunolocalization of BMP-4, 6, 7, and 9 was also observed in bone tissue within the IM in one sample, in which osteogenesis inside the IM was observed. Conclusions This study showed that osteoinductive factors BMP-4, 6, 7, and 9 were present in the IM harvested from patients, providing evidence indicating that the Masquelet technique effectively contributes to healing large bone defects. Therefore, it may be possible for surgeons to omit the addition of BMPs to bone grafts, given the endogenous secretion of BMPs from the IM.
Collapse
Affiliation(s)
- Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Takahiro Oda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Naoe Jimbo
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masato Komatsu
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keisuke Oe
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoaki Fukui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
24
|
Henkel J, Medeiros Savi F, Berner A, Fountain S, Saifzadeh S, Steck R, Epari DR, Woodruff MA, Knackstedt M, Schuetz MA, Hutmacher DW. Scaffold-guided bone regeneration in large volume tibial segmental defects. Bone 2021; 153:116163. [PMID: 34461285 DOI: 10.1016/j.bone.2021.116163] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Large volume losses in weight bearing long bones are a major challenge in clinical practice. Despite multiple innovations over the last decades, significant limitations subsist in current clinical treatment options which is driving a strong clinical demand for clinically translatable treatment alternatives, including bone tissue engineering applications. Despite these shortcomings, preclinical large animal models of large volume segmental bone defects to investigate the regenerative capacity of bone tissue engineering strategies under clinically relevant conditions are rarely described in literature. We herein present a newly established preclinical ovine animal model for the treatment of XL volume (19 cm3) segmental tibial defects. In eight aged male Merino sheep (age > 6 years) a mid-diaphyseal tibial segmental defect was created and stabilized with a 5.6 mm Dynamic Compression Plate (DCP). We present short-term (3 months) and long-term (12-15 months) results of a pilot study using medical grade Polycaprolactone-Tricalciumphosphate (mPCL-TCP) scaffolds combined with a dose of 2 mg rhBMP-7 delivered in Platelet-Rich- Plasma (PRP). Furthermore, detailed analyses of the mechanical properties of the scaffolds as well as interfragmentary movement (IFM) and DCP-surface strain in vitro and a comprehensive description of the surgical and post-surgery protocol and post-mortem analysis is given.
Collapse
Affiliation(s)
- Jan Henkel
- Centre in Transformative Biomimetics in Bioengineering, Queensland University of Technology, Kelvin Grove, Australia; Department of Trauma Surgery, Lutheran Hospital Goettingen-Weende, Goettingen, Germany
| | - Flavia Medeiros Savi
- Centre in Transformative Biomimetics in Bioengineering, Queensland University of Technology, Kelvin Grove, Australia; ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Australia; Faculty of Engineering, School of Mechanical Medical & Process Engineering, Queensland University of Technology, Kelvin Grove, Australia
| | - Arne Berner
- Department of Trauma Surgery, University Hospital of Regensburg, Regensburg, Germany; Australian Research Council Industrial Transformation Training Centre in Additive Biomanufacturing, Australia
| | - Stephanie Fountain
- Faculty of Engineering, School of Mechanical Medical & Process Engineering, Queensland University of Technology, Kelvin Grove, Australia
| | - Siamak Saifzadeh
- Centre in Transformative Biomimetics in Bioengineering, Queensland University of Technology, Kelvin Grove, Australia; Faculty of Engineering, School of Mechanical Medical & Process Engineering, Queensland University of Technology, Kelvin Grove, Australia; Medical Engineering Research Facility, Queensland University of Technology, Brisbane, Australia
| | - Roland Steck
- Medical Engineering Research Facility, Queensland University of Technology, Brisbane, Australia
| | - Devakar R Epari
- Faculty of Engineering, School of Mechanical Medical & Process Engineering, Queensland University of Technology, Kelvin Grove, Australia
| | - Maria A Woodruff
- Faculty of Engineering, School of Mechanical Medical & Process Engineering, Queensland University of Technology, Kelvin Grove, Australia
| | - Mark Knackstedt
- Department of Applied Mathematics, Australian National University (ANU), Canberra, Australia
| | - Michael A Schuetz
- Jamieson Trauma Institute, Royal Brisbane Hospital, Herston, Australia
| | - Dietmar W Hutmacher
- Centre in Transformative Biomimetics in Bioengineering, Queensland University of Technology, Kelvin Grove, Australia; ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Australia; Faculty of Engineering, School of Mechanical Medical & Process Engineering, Queensland University of Technology, Kelvin Grove, Australia; Australian Research Council Industrial Transformation Training Centre in Additive Biomanufacturing, Australia; Jamieson Trauma Institute, Royal Brisbane Hospital, Herston, Australia.
| |
Collapse
|
25
|
Stokovic N, Ivanjko N, Erjavec I, Breski A, Peric M, Vukicevic S. Zoledronate Bound to Ceramics Increases Ectopic Bone Volume Induced by rhBMP6 Delivered in Autologous Blood Coagulum in Rats. Biomedicines 2021; 9:biomedicines9101487. [PMID: 34680604 PMCID: PMC8533060 DOI: 10.3390/biomedicines9101487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022] Open
Abstract
Autologous bone graft substitute (ABGS) containing rhBMP6 in autologous blood coagulum (ABC) with synthetic ceramics is a novel therapeutic solution for bone repair. The aim of this study was to investigate whether the application of Zoledronate (ZOL) with ABGS might enhance the properties of newly formed bone. The effect of ZOL on bone induction was tested in a rat subcutaneous implant model. ZOL bound to synthetic ceramics was added into ABGS implants, and the quantity, quality, and longevity of the induced bone were assessed by micro-CT, histomorphometry, and histology over a period of 365 days. Local use of ZOL in the ABGS implants with ceramics had no influence on the bone volume (BV) on day 14 but subsequently significantly increased BV on days 35, 50, 105, 140, and 365 compared to the control implants. Locally applied ZOL had a similar effect in all of the applied doses (2–20 µg), while its systemic use on stimulating the BV of newly induced bone by ABGS depended on the time of application. BV was increased when ZOL was applied systemically on day 14 but had no effect when applied on day 35. The administration of ZOL bound to ceramics in ABGS increased and maintained the BV over a period of one year, offering a novel bone tissue engineering strategy for treating bone defects and spinal fusions.
Collapse
Affiliation(s)
- Nikola Stokovic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (N.S.); (N.I.); (I.E.)
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (N.S.); (N.I.); (I.E.)
| | - Igor Erjavec
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (N.S.); (N.I.); (I.E.)
| | - Anita Breski
- Department of Pathology and Cytology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Mihaela Peric
- Department for Intracellular Communication, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia;
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (N.S.); (N.I.); (I.E.)
- Correspondence:
| |
Collapse
|
26
|
Gao X, Cheng H, Sun X, Lu A, Ruzbarsky JJ, Wang B, Huard J. Comparison of Autologous Blood Clots with Fibrin Sealant as Scaffolds for Promoting Human Muscle-Derived Stem Cell-Mediated Bone Regeneration. Biomedicines 2021; 9:biomedicines9080983. [PMID: 34440188 PMCID: PMC8391974 DOI: 10.3390/biomedicines9080983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 01/01/2023] Open
Abstract
Background. Fibrin sealant has been used as a scaffold to deliver genetically modified human muscle-derived stem cells (hMDSCs) for bone regeneration. Alternatively, autologous blood clots are safe, economic scaffolds. This study compared autologous blood clot (BC) with fibrin sealant (FS) as a scaffold to deliver lenti-BMP2/GFP-transduced hMDSCs for bone regeneration. Methods. In vitro osteogenic differentiation was performed using 3D pellet culture and evaluated using microCT and Von Kossa staining. The lenti-GFP transduced cells were then mixed with human blood for evaluation of osteogenic differentiation. Furthermore, a murine critical- sized calvarial defect model was utilized to compare BC and FS scaffolds for lenti-BMP2/GFP-transduced hMDSCs mediated bone regeneration and evaluated with micro-CT and histology. Results. Lenti-BMP2/GFP transduced hMDSCs formed significantly larger mineralized pellets than non-transduced hMDSCs. hMDSCs within the human blood clot migrated out and differentiated into ALP+ osteoblasts. In vivo, BC resulted in significantly less new bone formation within a critical-sized calvarial bone defect than FS scaffold, despite no difference observed for GFP+ donor cells, osteoclasts, and osteoblasts in the newly formed bone. Conclusions. Human lenti-BMP2/GFP-transduced hMDSCs can efficiently undergo osteogenic differentiation in vitro. Unexpectedly, the newly regenerated bone in BC group was significantly less than the FS group. The autologous blood clot scaffold is less efficacious for delivering stem cells for bone regeneration than fibrin sealant.
Collapse
Affiliation(s)
- Xueqin Gao
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (X.G.); (A.L.)
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.C.); (X.S.)
| | - Haizi Cheng
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.C.); (X.S.)
| | - Xuying Sun
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.C.); (X.S.)
| | - Aiping Lu
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (X.G.); (A.L.)
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.C.); (X.S.)
| | | | - Bing Wang
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15140, USA;
- Department of Medicine, Division of Cardiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15140, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15140, USA
| | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (X.G.); (A.L.)
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.C.); (X.S.)
- Correspondence:
| |
Collapse
|
27
|
Eichholz KF, Federici A, Riffault M, Woods I, Mahon OR, O’Driscoll L, Hoey DA. Extracellular Vesicle Functionalized Melt Electrowritten Scaffolds for Bone Tissue Engineering. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Kian F. Eichholz
- Department of Mechanical, Aeronautical and Biomedical Engineering Materials and Surface Science Institute University of Limerick Limerick Ireland
- Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering School of Engineering Trinity College Dublin Dublin Ireland
| | - Angelica Federici
- Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering School of Engineering Trinity College Dublin Dublin Ireland
| | - Mathieu Riffault
- Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering School of Engineering Trinity College Dublin Dublin Ireland
| | - Ian Woods
- Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering School of Engineering Trinity College Dublin Dublin Ireland
| | - Olwyn R. Mahon
- Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering School of Engineering Trinity College Dublin Dublin Ireland
| | - Lorraine O’Driscoll
- School of Pharmacy and Pharmaceutical Sciences Trinity College Dublin Dublin Ireland
- Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
- Trinity St. James's Cancer Institute Trinity College Dublin Dublin Ireland
| | - David A. Hoey
- Department of Mechanical, Aeronautical and Biomedical Engineering Materials and Surface Science Institute University of Limerick Limerick Ireland
- Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering School of Engineering Trinity College Dublin Dublin Ireland
- Advanced Materials and Bioengineering Research Centre Trinity College Dublin & RCSI Dublin Ireland
| |
Collapse
|
28
|
Conta G, Libanori A, Tat T, Chen G, Chen J. Triboelectric Nanogenerators for Therapeutic Electrical Stimulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007502. [PMID: 34014583 DOI: 10.1002/adma.202007502] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Current solutions developed for the purpose of in and on body (IOB) electrical stimulation (ES) lack autonomous qualities necessary for comfortable, practical, and self-dependent use. Consequently, recent focus has been placed on developing self-powered IOB therapeutic devices capable of generating therapeutic ES for human use. With the recent invention of the triboelectric nanogenerator (TENG), harnessing passive human biomechanical energy to develop self-powered systems has allowed for the introduction of novel therapeutic ES solutions. TENGs are especially effective at providing ES for IOB therapeutic systems given their bioconformability, low cost, simple manufacturability, and self-powering capabilities. Due to the key role of naturally induced electrical signals in many physiological functions, TENG-induced ES holds promise to provide a novel paradigm in therapeutic interventions. The aim here is to detail research on IOB TENG devices applied for ES-based therapy in the fields of regenerative medicine, neurology, rehabilitation, and pharmaceutical engineering. Furthermore, considering TENG-produced ES can be measured for sensing applications, this technology is paving the way to provide a fully autonomous personalized healthcare system, capable of IOB energy generation, sensing, and therapeutic intervention. Considering these grounds, it seems highly relevant to review TENG-ES research and applications, as they could constitute the foundation and future of personalized healthcare.
Collapse
Affiliation(s)
- Giorgio Conta
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Trinny Tat
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
29
|
Bone Morphogenetic Proteins, Carriers, and Animal Models in the Development of Novel Bone Regenerative Therapies. MATERIALS 2021; 14:ma14133513. [PMID: 34202501 PMCID: PMC8269575 DOI: 10.3390/ma14133513] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
Bone morphogenetic proteins (BMPs) possess a unique ability to induce new bone formation. Numerous preclinical studies have been conducted to develop novel, BMP-based osteoinductive devices for the management of segmental bone defects and posterolateral spinal fusion (PLF). In these studies, BMPs were combined with a broad range of carriers (natural and synthetic polymers, inorganic materials, and their combinations) and tested in various models in mice, rats, rabbits, dogs, sheep, and non-human primates. In this review, we summarized bone regeneration strategies and animal models used for the initial, intermediate, and advanced evaluation of promising therapeutical solutions for new bone formation and repair. Moreover, in this review, we discuss basic aspects to be considered when planning animal experiments, including anatomical characteristics of the species used, appropriate BMP dosing, duration of the observation period, and sample size.
Collapse
|
30
|
Iwan A, Moskalewski S, Hyc A. Growth factor profile in calcified cartilage from the metaphysis of a calf costochondral junction, the site of initial bone formation. Biomed Rep 2021; 14:54. [PMID: 33884197 PMCID: PMC8056382 DOI: 10.3892/br.2021.1430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
Endochondral bone formation is orchestrated by growth factors produced by chondrocytes and deposited in the cartilage matrix. Whilst some of these factors have been identified, the complete list and their relationship remains unknown. In the present study, the growth factors were isolated from non-calcified and calcified cartilage of costochondral junctions. Cartilage dissected from the ribs of 6-20-week-old calves was purchased from a local butcher within 24 h of the death of the animal. The isolation involved hyaluronidase digestion, guanidinium hydrochloride (GuHCl) extraction, HCl decalcification and GuHCl extraction of the decalcified matrix. Growth factors were purified by heparin chromatography and their quantities were estimated using ELISA. Decalcified cartilage was also used for protein sequence analysis (data are available via ProteomeXchange; ID, PXD021781). Bone morphogenetic protein-7 (BMP-7), growth/differentiation factor-5 (GDF-5) and NEL-like protein-1 (NELL-1), all known growth factors that stimulate bone formation, quantitatively accounted for the majority of the material obtained in all steps of isolation. Thus, cartilage serves as a store for growth factors. During initial bone formation septoclasts release osteoclastogenesis-stimulating factors deposited in non-calcified cartilage. Osteoclasts dissolve calcified cartilage and transport the released factors required for the stimulation of osteoprogenitor cells to deposit osteoid. High concentrations of BMP-7, GDF-5 and NELL-1 at the site of initial bone formation may suggest that their synergistic action favours osteogenesis.
Collapse
Affiliation(s)
- Anna Iwan
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw PL02004, Poland
| | - Stanisław Moskalewski
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw PL02004, Poland
| | - Anna Hyc
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw PL02004, Poland
| |
Collapse
|
31
|
Pecin M, Stokovic N, Ivanjko N, Smajlovic A, Kreszinger M, Capak H, Vrbanac Z, Oppermann H, Maticic D, Vukicevic S. A novel autologous bone graft substitute containing rhBMP6 in autologous blood coagulum with synthetic ceramics for reconstruction of a large humerus segmental gunshot defect in a dog: The first veterinary patient to receive a novel osteoinductive therapy. Bone Rep 2021; 14:100759. [PMID: 33732816 PMCID: PMC7937538 DOI: 10.1016/j.bonr.2021.100759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Background Management of large segmental defects is one of the most challenging issues in bone repair biology. Autologous bone graft substitute (ABGS) containing rhBMP6 within autologous blood coagulum (ABC) with synthetic ceramics is a novel biocompatible therapeutic solution for bone regeneration. Case presentation A 2-year old dog was brought to the veterinary clinics due to pain and bleeding from the right front leg after being unintendedly hit by a gunshot. Radiological examination revealed a large, 3 cm long multisegmental defect of the humerus on the right front leg with a loss of anatomical structure in the distal portion of the bone. The defect was treated surgically and an external fixator was inserted to ensure immobilization. Complete lack of bone formation 3 months following surgery required a full reconstruction of the defect site with a novel ABGS (rhBMP6 in ABC with ceramic particles) to avoid front leg amputation. The healing was then followed for the next 16 months. The callus formation was observed on x-ray images 2 months following ABGS implantation. The bone segments progressively fused together leading to the defect rebridgment allowing removal of the external fixator by 4 months after the reconstruction surgery. At the end of the observation period, the function of the leg was almost fully restored while analyses of the humeral CT sections revealed restoration and cortices rebridgment with a renewal of uniform medullary canal including structural reconstruction of the distal humerus. Conclusion This large humeral gunshot segmental defect of the front leg in a dog was saved from amputation via inducing bone regeneration using a novel ABGS osteoinductive device containing BMP6 in ABC.
Collapse
Affiliation(s)
- Marko Pecin
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Smajlovic
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Kreszinger
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Capak
- Department of Radiology, Ultrasound Diagnostics and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Zoran Vrbanac
- Department of Radiology, Ultrasound Diagnostics and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Drazen Maticic
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Corresponding author at: Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 11, 10000 Zagreb, Croatia.
| |
Collapse
|
32
|
Arthur A, Gronthos S. Clinical Application of Bone Marrow Mesenchymal Stem/Stromal Cells to Repair Skeletal Tissue. Int J Mol Sci 2020; 21:E9759. [PMID: 33371306 PMCID: PMC7767389 DOI: 10.3390/ijms21249759] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
There has been an escalation in reports over the last decade examining the efficacy of bone marrow derived mesenchymal stem/stromal cells (BMSC) in bone tissue engineering and regenerative medicine-based applications. The multipotent differentiation potential, myelosupportive capacity, anti-inflammatory and immune-modulatory properties of BMSC underpins their versatile nature as therapeutic agents. This review addresses the current limitations and challenges of exogenous autologous and allogeneic BMSC based regenerative skeletal therapies in combination with bioactive molecules, cellular derivatives, genetic manipulation, biocompatible hydrogels, solid and composite scaffolds. The review highlights the current approaches and recent developments in utilizing endogenous BMSC activation or exogenous BMSC for the repair of long bone and vertebrae fractures due to osteoporosis or trauma. Current advances employing BMSC based therapies for bone regeneration of craniofacial defects is also discussed. Moreover, this review discusses the latest developments utilizing BMSC therapies in the preclinical and clinical settings, including the treatment of bone related diseases such as Osteogenesis Imperfecta.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| |
Collapse
|
33
|
Abstract
This chapter provides an overview of the growth factors active in bone regeneration and healing. Both normal and impaired bone healing are discussed, with a focus on the spatiotemporal activity of the various growth factors known to be involved in the healing response. The review highlights the activities of most important growth factors impacting bone regeneration, with a particular emphasis on those being pursued for clinical translation or which have already been marketed as components of bone regenerative materials. Current approaches the use of bone grafts in clinical settings of bone repair (including bone grafts) are summarized, and carrier systems (scaffolds) for bone tissue engineering via localized growth factor delivery are reviewed. The chapter concludes with a consideration of how bone repair might be improved in the future.
Collapse
|
34
|
Chen CH, Hsu EL, Stupp SI. Supramolecular self-assembling peptides to deliver bone morphogenetic proteins for skeletal regeneration. Bone 2020; 141:115565. [PMID: 32745692 PMCID: PMC7680412 DOI: 10.1016/j.bone.2020.115565] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Recombinant human bone morphogenetic proteins (BMPs) have shown clinical success in promoting bone healing, but they are also associated with unwanted side effects. The development of improved BMP carriers that can retain BMP at the defect site and maximize its efficacy would decrease the therapeutic BMP dose and thus improve its safety profile. In this review, we discuss the advantages of using self-assembling peptides, a class of synthetic supramolecular biomaterials, to deliver recombinant BMPs. Peptide amphiphiles (PAs) are a broad class of self-assembling peptides, and the use of PAs for BMP delivery and bone regeneration has been explored extensively over the past decade. Like many self-assembling peptide systems, PAs can be designed to form nanofibrous supramolecular biomaterials in which molecules are held together by non-covalent bonds. Chemical and biological functionality can be added to PA nanofibers, through conjugation of chemical moieties or biological epitopes to PA molecules. For example, PA nanofibers have been designed to bind heparan sulfate, a natural polysaccharide that is known to bind BMPs and potentiate their signal. Alternatively, PA nanofibers have been designed to synthetically mimic the structure and function of heparan sulfate, or to directly bind BMP specifically. In small animal models, these bio-inspired PA materials have shown the capacity to promote bone regeneration using BMP at doses 10-100 times lower than established therapeutic doses. These promising results have motivated further evaluation of PAs in large animal models, where their safety and efficacy must be established before clinical translation. We conclude with a discussion on the possiblity of combining PAs with other materials used in orthopaedic surgery to maximize their utility for clinical translation.
Collapse
Affiliation(s)
- Charlotte H Chen
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA; Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA
| | - Erin L Hsu
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA; Department of Orthopaedic Surgery, Northwestern University, 676 North St. Clair Street, Chicago, IL 60611, USA
| | - Samuel I Stupp
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA; Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Medicine, Northwestern University, 676 North St. Clair Street, Chicago, IL 60611, USA.
| |
Collapse
|
35
|
Sampath TK, Vukicevic S. Biology of bone morphogenetic protein in bone repair and regeneration: A role for autologous blood coagulum as carrier. Bone 2020; 141:115602. [PMID: 32841742 DOI: 10.1016/j.bone.2020.115602] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
Abstract
BMPs were purified from demineralized bone matrix based on their ability to induce new bone in vivo and they represent a large member of the TGF-β superfamily of proteins. BMPs serve as morphogenic signals for mesenchymal stem cell migration, proliferation and subsequently differentiation into cartilage and bone during embryonic development. A BMP when implanted with a collagenous carrier in a rat subcutaneous site is capable of inducing new bone by mimicking the cellular events of embryonic bone formation. Based on this biological principle, BMP2 and BMP7 containing collagenous matrix as carrier have been developed as bone graft substitutes for spine fusion and long bone fractures. Here, we describe a novel autologous bone graft substitute that contains BMP6 delivered within an autologous blood coagulum as carrier and summarize the biology of osteogenic BMPs in the context of bone repair and regeneration specifically the critical role that carrier plays to support osteogenesis.
Collapse
Affiliation(s)
- T Kuber Sampath
- perForm Biologics Inc., Holliston, MA 01746, United States of America.
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
36
|
Stokovic N, Ivanjko N, Erjavec I, Milosevic M, Oppermann H, Shimp L, Sampath KT, Vukicevic S. Autologous bone graft substitute containing rhBMP6 within autologous blood coagulum and synthetic ceramics of different particle size determines the quantity and structural pattern of bone formed in a rat subcutaneous assay. Bone 2020; 141:115654. [PMID: 32977068 DOI: 10.1016/j.bone.2020.115654] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 01/10/2023]
Abstract
Bone morphogenetic proteins (BMPs) are potent osteoinductive agents for bone tissue engineering. In order to define optimal properties of a novel autologous bone graft substitute (ABGS) containing rhBMP6 within the autologous blood coagulum (ABC) and ceramic particles as a compression resistant matrix (CRM), we explored the influence of their amount, chemical composition and particle size on the quantity and quality of bone formation in the rat subcutaneous assay. Tested ceramic particles included tricalcium phosphate (TCP), hydroxyapatite (HA) and biphasic calcium phosphate ceramic (BCP), containing TCP and HA in 80/20 ratio of different particle sizes (small 74-420 μm, medium 500-1700 μm and large 1000-4000 μm). RhBMP6 was either mixed with ABC or lyophilized on CRM prior to use with ABC. The experiments were terminated on day 21 and implants were analysed by microCT, histology and histomorphometry. Addition of CRM to ABGS containing rhBMP6 in ABC significantly increased the amount of newly formed bone and the optimal CRM/ABC ratio was found to be around 100 mg/500 μL. MicroCT analyses revealed that all tested ABGS formulations induced an extensive new bone formation and there were no differences between the two methods of rhBMP6 application as determined by the bone volume. However, the particle size played a significant role in the quantity and quality of newly formed bone. ABGS containing small particles induced new bone forming a dense trabecular network, cortical bone at the rim, bone and bone marrow in apposition to and in between ceramic particles. ABGS containing medium and large particles also resulted in new bone on the surface of particles as well as inside the pores. Histomorphometric analysis revealed that the ceramics particle size correlated with the quality of trabecular pattern of newly formed bone, bone/bone marrow ratio as observed in apposition and between particles, and the ratio between the cortical and trabecular bone. By employing rat subcutaneous implant assay, we showed for the first time that the size of synthetic ceramics particles affected the osteogenesis as defined by both the quantity and quality of ectopic bone.
Collapse
Affiliation(s)
- Nikola Stokovic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Croatia
| | - Igor Erjavec
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Croatia
| | - Milan Milosevic
- Department for Environmental Health, Occupational and Sports Medicine, Andrija Štampar School of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | | | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Croatia.
| |
Collapse
|
37
|
Durdevic D, Vlahovic T, Pehar S, Miklic D, Oppermann H, Bordukalo-Niksic T, Gavrankapetanovic I, Jamakosmanovic M, Milosevic M, Martinovic S, Sampath TK, Peric M, Grgurevic L, Vukicevic S. A novel autologous bone graft substitute comprised of rhBMP6 blood coagulum as carrier tested in a randomized and controlled Phase I trial in patients with distal radial fractures. Bone 2020; 140:115551. [PMID: 32730930 DOI: 10.1016/j.bone.2020.115551] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
Bone morphogenetic proteins (BMPs) are known to induce new bone formation in vivo but treating trabecular bone defects with a BMP based therapeutic remains controversial. Here, we evaluated the safety and efficacy of a novel Autologous Bone Graft Substitute (ABGS) comprised of recombinant human BMP6 (rhBMP6) dispersed within an autologous blood coagulum (ABC) as a physiological natural carrier in patients with a closed distal radial fracture (DRF). We enrolled 32 patients in a randomized, standard of care (SoC) and placebo (PBO) controlled, double-blinded Phase I First in Human (FiH) clinical trial. ABGS was prepared from peripheral blood as 250 μg rhBMP6/mL ABC or PBO (1 mL ABC containing excipients only) and was administered dorsally via a syringe injection into the fracture site following closed fracture fixation with 3 Kirschner wires. Patients carried an immobilization for 5 weeks and were followed-up for 0 to 26 weeks by clinical examination, safety, serial radiographic analyses and CT. During the 13 weeks follow-up and at 26 weeks post study there were no serious adverse reactions recorded. The results showed that there were no detectable anti-rhBMP6 antibodies in the blood of any of the 32 patients at 13- and 26-weeks following treatment. Pharmacokinetic analyses of plasma from patients treated with ABGS showed no detectable rhBMP6 at any time point within the first 24 h following administration. The CT image and radiographic analyses score from patients treated with AGBS showed significantly accelerated bone healing as compared to PBO and SoC at 5 and 9 weeks (with high effect sizes and P = 0.027), while at week 13 all patients had similar healing outcomes. In conclusion, we show that intraosseous administration of ABGS (250 μg rhBMP6/mL ABC) into the distal radial fracture site demonstrated a good tolerability with no serious adverse reactions as well as early accelerated trabecular bone healing as compared to control PBO and SoC patients.
Collapse
Affiliation(s)
- Dragan Durdevic
- Clinical Hospital Center "Sisters of Mercy", Clinic of Traumatology, Draskoviceva 19, 10000 Zagreb, Croatia
| | - Tomislav Vlahovic
- Clinical Hospital Center "Sisters of Mercy", Clinic of Traumatology, Draskoviceva 19, 10000 Zagreb, Croatia
| | - Sanja Pehar
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 11, 10000 Zagreb, Croatia
| | - Dina Miklic
- Clinical Hospital Center "Sisters of Mercy", Clinic of Traumatology, Draskoviceva 19, 10000 Zagreb, Croatia
| | - Hermann Oppermann
- Genera Research, Svetonedeljska 2, Kalinovica, 10436, Rakov Potok, Croatia
| | - Tatjana Bordukalo-Niksic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 11, 10000 Zagreb, Croatia
| | - Ismet Gavrankapetanovic
- University Clinical Center Sarajevo, Clinic of Orthopedics and Traumatology, Bolnicka 25, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mehmed Jamakosmanovic
- University Clinical Center Sarajevo, Clinic of Orthopedics and Traumatology, Bolnicka 25, 71000 Sarajevo, Bosnia and Herzegovina
| | - Milan Milosevic
- School of Public Health "Andrija Stampar", University of Zagreb School of Medicine, Rockefellerova 4, 10000 Zagreb, Croatia
| | | | | | - Mihaela Peric
- Department for Intracellular Communication, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 2, 10000 Zagreb, Croatia
| | - Lovorka Grgurevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 11, 10000 Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 11, 10000 Zagreb, Croatia.
| |
Collapse
|
38
|
Štoković N, Ivanjko N, Pećin M, Erjavec I, Karlović S, Smajlović A, Capak H, Milošević M, Bubić Špoljar J, Vnuk D, Matičić D, Oppermann H, Sampath TK, Vukičević S. Evaluation of synthetic ceramics as compression resistant matrix to promote osteogenesis of autologous blood coagulum containing recombinant human bone morphogenetic protein 6 in rabbit posterolateral lumbar fusion model. Bone 2020; 140:115544. [PMID: 32730919 DOI: 10.1016/j.bone.2020.115544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022]
Abstract
Posterolateral lumbar fusion (PLF) is a commonly performed surgical procedure for the treatment of pathological conditions of the lumbosacral spine. In the present study, we evaluated an autologous bone graft substitute (ABGS) containing rhBMP6 in autologous blood coagulum (ABC) and synthetic ceramics used as compression resistant matrix (CRM) in the rabbit PLF model. In the pilot PLF rabbit experiment, we tested four different CRMs (BCP 500-1700 μm, BCP 1700-2500 μm and two different TCP in the form of slabs) which were selected based on achieving uniform ABC distribution. Next, ABGS implants composed of 2.5 mL ABC with 0.5 g ceramic particles (TCP or BCP (TCP/HA 80/20) of particle size 500-1700 μm) and 125 μg rhBMP6 (added to blood or lyophilized on ceramics) were placed bilaterally between transverse processes of the lumbar vertebrae (L5-L6) following exposition and decortication in 12 New Zealand White Rabbits observed for 7 weeks following surgery. Spinal fusion outcome was analysed by μCT, palpatory segmental mobility testing and selected specimens were either tested biomechanically (three-point bending test) and/or processed histologically. The total fusion success rate was 90.9% by both μCT analyses and by palpatory segmental mobility testing. The volume of newly formed bone between experimental groups with TCP or BCP ceramics and the different method of rhBMP6 application was comparable. The newly formed bone and ceramic particles integrated with the transverse processes on histological sections resulting in superior biomechanical properties. The results were retrospectively found superior to allograft devitalized mineralized bone as a CRM as reported previously in rabbit PLF. Overall, this novel ABGS containing rhBMP6, ABC and the specific 500-1700 μm synthetic ceramic particles supported new bone formation for the first time and successfully promoted posterolateral lumbar fusion in rabbits.
Collapse
Affiliation(s)
- Nikola Štoković
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Marko Pećin
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Igor Erjavec
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Sven Karlović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Ana Smajlović
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Capak
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Milan Milošević
- Department for Environmental Health, Occupational and Sports Medicine, Andrija Štampar School of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jadranka Bubić Špoljar
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Dražen Vnuk
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dražen Matičić
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | - Slobodan Vukičević
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia.
| |
Collapse
|
39
|
Lademann F, Hofbauer LC, Rauner M. The Bone Morphogenetic Protein Pathway: The Osteoclastic Perspective. Front Cell Dev Biol 2020; 8:586031. [PMID: 33178699 PMCID: PMC7597383 DOI: 10.3389/fcell.2020.586031] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022] Open
Abstract
Bone health crucially relies on constant bone remodeling and bone regeneration, both tightly controlled processes requiring bone formation and bone resorption. Plenty of evidence identifies bone morphogenetic proteins (BMP) as major players in osteoblast differentiation and thus, bone formation. However, in recent past years, researchers also increasingly reported on the pivotal role of these multi-functional growth factors in osteoclast formation and activity. This review aims to summarize the current knowledge of BMP signaling within the osteoclast lineage, its role in bone resorption, and osteoblast-osteoclast coupling. Furthermore, subsequent clinical implications for recombinant BMP therapy will be discussed in view of recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Lorenz C. Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
40
|
Stokovic N, Ivanjko N, Milesevic M, Matic Jelic I, Bakic K, Rumenovic V, Oppermann H, Shimp L, Sampath TK, Pecina M, Vukicevic S. Synthetic ceramic macroporous blocks as a scaffold in ectopic bone formation induced by recombinant human bone morphogenetic protein 6 within autologous blood coagulum in rats. INTERNATIONAL ORTHOPAEDICS 2020; 45:1097-1107. [PMID: 33052447 DOI: 10.1007/s00264-020-04847-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE We have recently developed an autologous bone graft substitute (ABGS) containing recombinant human bone morphogenetic protein 6 (rhBMP6) in autologous blood coagulum (ABC) that induces new bone formation in vivo. In order to improve biomechanical properties of the implant, compression resistant matrix (CRM) consisting of synthetic ceramics in the form of macroporous cylinders was added to the ABGS and we evaluated the biomechanical properties and the quantity and quality of bone formation following subcutaneous implantation in rats. METHODS ABGS implants containing rhBMP6 in ABC with cylindrical ceramic blocks were implanted subcutaneously (n = 6 per time point) in the axillary region of Sprague-Dawley rats and removed at specified time points (7, 14, 21, 35, and 50 days). The quantity and quality of newly formed bone were analyzed by microCT, histology, and histomorphometric analyses. Biomechanical properties of ABGS formulations were determined by employing the cut test. RESULTS MicroCT analyses revealed that ABGS implants induced formation of new bone within ceramic blocks. Histological analysis revealed that on day seven following implantation, the endochondral ossification occupied the peripheral part of implants. On days 14 and 21, newly formed bone was present both around the ceramic block and through the pores inside the block. On both days 35 and 50, cortical bone encircled the ceramic block while inside the block, bone covered the ceramic surface surrounding the pores. Within the osseous circles, there were few trabeculae and bone marrow containing adipocytes. ABGS containing cylindrical ceramic blocks were more rigid and had significantly increased stiffness compared with implants containing ceramic particles as CRM. CONCLUSION We demonstrated that macroporous ceramic blocks in a form of cylinders are promising CRMs with good handling and enhanced biomechanical properties, supporting bone formation with ABGS containing rhBMP6 within autologous blood coagulum. Hence, ABGS containing ceramic blocks should be tested in preclinical models including diaphyseal segmental defects and non-unions in larger animals.
Collapse
Affiliation(s)
- Nikola Stokovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Marina Milesevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Ivona Matic Jelic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Kristian Bakic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Viktorija Rumenovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | | | | | | | - Marko Pecina
- Department of Orthopaedic Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia. .,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia.
| |
Collapse
|
41
|
Živković JM, Stojanović ST, Vukelić-Nikolić MĐ, Radenković MB, Najdanović JG, Ćirić M, Najman SJ. Macrophages' contribution to ectopic osteogenesis in combination with blood clot and bone substitute: possibility for application in bone regeneration strategies. INTERNATIONAL ORTHOPAEDICS 2020; 45:1087-1095. [PMID: 33025084 DOI: 10.1007/s00264-020-04826-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/22/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Given the great potential of macrophages in the processes of tissue repair and regeneration, the aim of our study was to examine the contribution that macrophages will have in osteogenic process when combined and implanted with blood clot (BC) and mineral bone substitute (MBS) in mice subcutaneous implantation model. METHODS Three types of implants were constructed and implanted subcutaneously into BALB/c mice: (1) RMBM implants (made of resident tissue macrophages, BC and MBS), (2) BM implants (made of BC and MBS), and (3) M implants (made of MBS only) where the last two served as control implants. One, two, four and eight weeks after implantation implants were explanted, and histochemical, immunohistochemical, and histomorphometric analyses were performed. RESULTS Increased vascularization, particularly pronounced two and four weeks after implantation and pronounced tissue infiltration in eight week term in RMBM implants compared with both other types, likewise the presence of osteoblast-like cells, osteoid-like structures, and more prominent osteopontin and osteocalcin immunoexpression in RMBM implants indicated more pronounced osteogenic process within them. CONCLUSION Our results suggest that macrophages deserve to be considered as a cell component when constructing implants in bone regenerative medicine strategies to improve bone fracture healing process.
Collapse
Affiliation(s)
- Jelena M Živković
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, 18108, Serbia. .,Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, 18108, Serbia.
| | - Sanja T Stojanović
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, 18108, Serbia.,Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, 18108, Serbia
| | - Marija Đ Vukelić-Nikolić
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, 18108, Serbia.,Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, 18108, Serbia
| | - Milena B Radenković
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, 18108, Serbia
| | - Jelena G Najdanović
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, 18108, Serbia.,Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, 18108, Serbia
| | - Milan Ćirić
- Institute of Physiology, Faculty of Medicine, University of Niš, Niš, 18108, Serbia
| | - Stevo J Najman
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, 18108, Serbia.,Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, 18108, Serbia
| |
Collapse
|
42
|
Chiari C, Grgurevic L, Bordukalo-Niksic T, Oppermann H, Valentinitsch A, Nemecek E, Staats K, Schreiner M, Trost C, Kolb A, Kainberger F, Pehar S, Milosevic M, Martinovic S, Peric M, Sampath TK, Vukicevic S, Windhager R. Recombinant Human BMP6 Applied Within Autologous Blood Coagulum Accelerates Bone Healing: Randomized Controlled Trial in High Tibial Osteotomy Patients. J Bone Miner Res 2020; 35:1893-1903. [PMID: 32543706 PMCID: PMC7689741 DOI: 10.1002/jbmr.4107] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022]
Abstract
Bone morphogenetic proteins (BMPs) are potent osteogenic proteins that induce new bone formation in vivo. However, their effect on bone healing in the trabecular bone surfaces remains challenging. We evaluated the safety and efficacy of recombinant human BMP6 (rhBMP6) applied within an autologous blood coagulum (ABC) in a surgically created wedge defect of the proximal tibia in patients undergoing high tibial osteotomy (HTO) for varus deformity and medial osteoarthritis of the knee. We enrolled 20 HTO patients in a randomized, placebo-controlled, double-blinded phase I/II clinical trial. RhBMP6/ABC (1.0 mg/10 mL ABC prepared from peripheral blood) or placebo (10 mL ABC containing excipients) was administered into the tibial wedge defects. Patients were followed for 0 to 24 months by clinical examination (safety) and computed tomography (CT) and serial radiographic analyses (efficacy). The results show that there were no detectable anti-rhBMP6 antibodies in the blood of any of the 20 patients at 14 weeks after implantation. During the 24 months of follow-up, there were no serious adverse reactions recorded. The CT scans from defects of patients treated with rhBMP6/ABC showed an accelerated bone healing compared with placebo at 9 weeks (47.8 ± 24.1 versus 22.2 ± 12.3 mg/cm3 ; p = 0.008) and at 14 weeks (89.7 ± 29.1 versus 53.6 ± 21.9 mg/cm3 ; p = 0.006) follow-up. Radiographic analyses at weeks 6 and 24 and months 12 and 24 suggested the advanced bone formation and remodeling in rhBMP6/ABC-treated patients. In conclusion, we show that rhBMP6/ABC at a dose of 100 μg/mL accelerated bone healing in patients undergoing HTO without serious adverse events and with a good tolerability compared with placebo alone. Overall, for the first time, a BMP-based osteogenic implant was examined against a placebo for bone healing efficacy in the trabecular bone surface, using an objective bone mineral density measurement system. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Catharina Chiari
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Lovorka Grgurevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tatjana Bordukalo-Niksic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | | | | | - Elena Nemecek
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Kevin Staats
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Markus Schreiner
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Carmen Trost
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Alexander Kolb
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Franz Kainberger
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Sanja Pehar
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Milan Milosevic
- Department of Environmental and Occupational Health and Sports, School of Public Health, "Andrija Stampar,", University of Zagreb School of Medicine, Zagreb, Croatia
| | | | - Mihaela Peric
- Department for Intracellular Communication, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | | | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
43
|
Lammens J, Maréchal M, Delport H, Geris L, Oppermann H, Vukicevic S, Luyten FP. A cell-based combination product for the repair of large bone defects. Bone 2020; 138:115511. [PMID: 32599225 DOI: 10.1016/j.bone.2020.115511] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 01/19/2023]
Abstract
Regenerative cell-based implants using periosteum-derived stem cells were developed for the treatment of large 3 cm fresh and 4.5 centimeter biological compromised bone gaps in a tibial sheep model and compared with an acellular ceramic-collagen void filler. It was hypothesized that the latter is insufficient to heal large skeletal defects due to reduced endogenous biological potency. To this purpose a comparison was made between the ceramic dicalciumphosphate scaffold (CopiOs®) as such, the same ceramic coated with clinical grade Bone Morphogenetic Protein 2 and 6 (BMP) only or a BMP coated cell-seeded combination product. These implants were evaluated in 2 sheep models, a fresh 3 cm critical size tibial defect and a 4.5 cm biologically exhausted tibial defect. For the groups in which growth factors were applied, BMP-6 was chosen at a dose of 344 μg for 3 cm and 1.500 μg or 3.800 μg for 4.5 cm defects. An additional group in the 4.5 cm defect was tested using BMP-2 in a dose of 1.500 μg. For all the cell based implants autologous periosteum-derived cells were used which were cultured in monolayer during 6 weeks. For the fresh defect 408 million cells and for the biologically exhausted tibial defect 612 million cells were drop-seeded on the BMP coated scaffolds. Bone healing was studied during 16 weeks postimplantation, using standard radiographs. While fresh defects responded to all treatments, regardless the use of cells, the biologically hampered defects responded in half of the cases and only if the BMP-cell combination product was used, supporting the concept that cell-based therapies may become attractive in treating defects with a compromised biological status.
Collapse
Affiliation(s)
- Johan Lammens
- Department of Orthopaedic Surgery, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering of the KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Marina Maréchal
- Prometheus, Division of Skeletal Tissue Engineering of the KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Skeletal Biology and Engineering Research Center, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Hendrik Delport
- Prometheus, Division of Skeletal Tissue Engineering of the KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering of the KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Skeletal Biology and Engineering Research Center, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300, 3001 Heverlee (Leuven), Belgium; Biomechanics Research Unit, GIGA In silico medicine, University of Liège, Quartier Hôpital, Avenue de l'Hôpital 1, 4000 Liège 1, Belgium
| | - Hermann Oppermann
- Genera Research, Svetonedeljska cesta 2, 10436 Kalinovica, Sveta Nedelja, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Šalata ul. 2, 10000 Zagreb, Croatia
| | - Frank P Luyten
- Prometheus, Division of Skeletal Tissue Engineering of the KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Skeletal Biology and Engineering Research Center, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
44
|
Sallent I, Capella-Monsonís H, Procter P, Bozo IY, Deev RV, Zubov D, Vasyliev R, Perale G, Pertici G, Baker J, Gingras P, Bayon Y, Zeugolis DI. The Few Who Made It: Commercially and Clinically Successful Innovative Bone Grafts. Front Bioeng Biotechnol 2020; 8:952. [PMID: 32984269 PMCID: PMC7490292 DOI: 10.3389/fbioe.2020.00952] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Bone reconstruction techniques are mainly based on the use of tissue grafts and artificial scaffolds. The former presents well-known limitations, such as restricted graft availability and donor site morbidity, while the latter commonly results in poor graft integration and fixation in the bone, which leads to the unbalanced distribution of loads, impaired bone formation, increased pain perception, and risk of fracture, ultimately leading to recurrent surgeries. In the past decade, research efforts have been focused on the development of innovative bone substitutes that not only provide immediate mechanical support, but also ensure appropriate graft anchoring by, for example, promoting de novo bone tissue formation. From the countless studies that aimed in this direction, only few have made the big jump from the benchtop to the bedside, whilst most have perished along the challenging path of clinical translation. Herein, we describe some clinically successful cases of bone device development, including biological glues, stem cell-seeded scaffolds, and gene-functionalized bone substitutes. We also discuss the ventures that these technologies went through, the hindrances they faced and the common grounds among them, which might have been key for their success. The ultimate objective of this perspective article is to highlight the important aspects of the clinical translation of an innovative idea in the field of bone grafting, with the aim of commercially and clinically informing new research approaches in the sector.
Collapse
Affiliation(s)
- Ignacio Sallent
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland
- Science Foundation Ireland Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Héctor Capella-Monsonís
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland
- Science Foundation Ireland Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Philip Procter
- Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
- GPBio Ltd., Shannon, Ireland
| | - Ilia Y. Bozo
- Histograft LLC, Moscow, Russia
- Federal Medical Biophysical Center of FMBA of Russia, Moscow, Russia
| | - Roman V. Deev
- Histograft LLC, Moscow, Russia
- I.I. Mechnikov North-Western State Medical University, Saint Petersburg, Russia
| | - Dimitri Zubov
- State Institute of Genetic & Regenerative Medicine NAMSU, Kyiv, Ukraine
- Medical Company ilaya, Kyiv, Ukraine
| | - Roman Vasyliev
- State Institute of Genetic & Regenerative Medicine NAMSU, Kyiv, Ukraine
- Medical Company ilaya, Kyiv, Ukraine
| | | | | | - Justin Baker
- Viscus Biologics LLC, Cleveland, OH, United States
| | | | - Yves Bayon
- Sofradim Production, A Medtronic Company, Trévoux, France
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland
- Science Foundation Ireland Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
45
|
Grgurevic L, Erjavec I, Gupta M, Pecin M, Bordukalo-Niksic T, Stokovic N, Vnuk D, Farkas V, Capak H, Milosevic M, Bubic Spoljar J, Peric M, Vuckovic M, Maticic D, Windhager R, Oppermann H, Sampath TK, Vukicevic S. Autologous blood coagulum containing rhBMP6 induces new bone formation to promote anterior lumbar interbody fusion (ALIF) and posterolateral lumbar fusion (PLF) of spine in sheep. Bone 2020; 138:115448. [PMID: 32450340 DOI: 10.1016/j.bone.2020.115448] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023]
Abstract
In the present study, we evaluated an autologous bone graft substitute (ABGS) composed of recombinant human BMP6 (rhBMP6) dispersed within autologous blood coagulum (ABC) used as a physiological carrier for new bone formation in spine fusion sheep models. The application of ABGS included cervical cage for use in the anterior lumbar interbody fusion (ALIF), while for the posterolateral lumbar fusion (PLF) sheep model allograft devitalized bone particles (ALLO) were applied with and without use of instrumentation. In the ALIF model, ABGS (rhBMP6/ABC/cage) implants fused significantly when placed in between the L4-L5 vertebrae as compared to control (ABC/cage) which appears to have a fibrocartilaginous gap, as examined by histology and micro CT analysis at 16 weeks following surgery. In the PLF model, ABGS implants with or without ALLO showed a complete fusion when placed ectopically in the gutter bilaterally between two decorticated L4-L5 transverse processes at a success rate of 88% without instrumentation and at 80% with instrumentation; however the bone volume was 50% lower in the instrumentation group than without, as examined by histology, radiographs, micro CT analyses and biomechanical testing at 27 weeks following surgery. The newly formed bone was uniform within ABGS implants resulting in a biomechanically competent and histologically qualified fusion with an optimum dose in the range of 100 μg rhBMP6 per mL ABC, while in the implants that contained ALLO, the mineralized bone particles were substituted by the newly formed remodeling bone via creeping substitution. These findings demonstrate for the first time that ABGS (rhBMP6/ABC) without and with ALLO particles induced a robust bone formation with a successful fusion in sheep models of ALIF and PLF, and that autologous blood coagulum (ABC) can serve as a preferred physiological native carrier to induce new bone at low doses of rhBMP6 and to achieve a successful spinal fusion.
Collapse
Affiliation(s)
- Lovorka Grgurevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Igor Erjavec
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Munish Gupta
- Department of Orthopedic Surgery, Washington University, St. Louis, MO 63110, USA
| | - Marko Pecin
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tatjana Bordukalo-Niksic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Drazen Vnuk
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Vladimir Farkas
- Division of Molecular Biology, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | - Hrvoje Capak
- Department of Radiology, School of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Milan Milosevic
- Department of Environmental and Occupational Health and Sports, School of Public Health "Andrija Stampar", University of Zagreb School of Medicine, Rockefellerova 4, 10000 Zagreb, Croatia
| | - Jadranka Bubic Spoljar
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Mihaela Peric
- Center for Translational and Clinical Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mirta Vuckovic
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Drazen Maticic
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia.
| |
Collapse
|
46
|
Keceli HG, Bayram C, Celik E, Ercan N, Demirbilek M, Nohutcu RM. Dual delivery of platelet-derived growth factor and bone morphogenetic factor-6 on titanium surface to enhance the early period of implant osseointegration. J Periodontal Res 2020; 55:694-704. [PMID: 32776328 DOI: 10.1111/jre.12756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To test the surface properties and in vitro effects of a new sequential release system on MC3T3-E1 cells for improved osseointegration. BACKGROUND BMP6-loaded anodized titanium coated with PDGF containing silk fibroin (SF) may improve osseointegration. METHODS Titanium surfaces were electrochemically anodized, and SF layer was covered via electrospinning. Five experimental groups (unanodized Ti (Ti), anodized Ti (AnTi), anodized + BMP6-loaded Ti (AnTi-BMP6), anodized + BMP6 loaded + silk fibroin-coated Ti (AnTi-BMP6-SF), and anodized + BMP6-loaded + silk fibroin with PDGF-coated Ti (AnTi-BMP6-PDGF-SF)) were tested. After SEM characterization, contact angle analysis, and FTIR analysis, the amount of released PDGF and BMP6 was detected using ELISA. Cell proliferation (XTT), mineralization, and gene expression (RUNX2 and ALPL) were also evaluated. RESULTS After successful anodization and loading of PDGF and BMP6, contact angle measurements showed hydrophobicity for TiO2 and hydrophilicity for protein-adsorbed surfaces. In FTIR, protein-containing surfaces exhibited amide-I, amide-II, and amide-III bands at 1600 cm-1 -1700 cm-1 , 1520 cm-1 -1540 cm-1 , and 1220 cm-1 -1300 cm-1 spectrum levels with a significant peak in BMP6- and/or SF-loaded groups at 1100 cm-1 . PDGF release and BMP6 release were delayed, and relatively slower release was detected in SF-coated surfaces. Higher MC3T3-E1 proliferation and mineralization and lower gene expression of RUNX2 and ALPL were detected in AnTi-BMP6-PDGF-SF toward day 28. CONCLUSION The new system revealed a high potential for an improved early osseointegration period by means of a better factor release curve and contribution to the osteoblastic cell proliferation, mineralization, and associated gene expression.
Collapse
Affiliation(s)
- H Gencay Keceli
- Periodontology Department, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Cem Bayram
- Department of Nanotechnology and Nanomedicine, Institute of Science and Technology, Hacettepe University, Ankara, Turkey
| | - Ekin Celik
- Medical Biology Department, Faculty of Medicine, Kirsehir Ahi Evran University, Kirsehir, Turkey
| | - Nuray Ercan
- Periodontology Department, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey
| | - Murat Demirbilek
- Advanced Technologies Application and Research Center, Hacettepe University, Ankara, Turkey
| | - Rahime Meral Nohutcu
- Periodontology Department, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
47
|
Ghezzi B, Parisi L, Vurro F, Alfieri I, Toffoli A, Meglioli M, Mozzoni B, Ghiacci G, Macaluso GM. Tetracalcium phosphate and biphasic tetracalcium phosphate/tricalcium phosphate powders' effects evaluation on human osteoblasts. ACTA ACUST UNITED AC 2020; 69:87-94. [PMID: 32181607 DOI: 10.23736/s0026-4970.20.04272-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Calcium ions levels in bone niches have been demonstrated to severely influence new bone formation. Osteoinductive scaffolds containing calcium have been largely studied to control the release of calcium in bone regeneration and tissue engineering purpose. The aim of the present study was, firstly, to synthesize two different resorbable calcium phosphate-based powders, thought to be reservoirs of calcium ions, and secondary, to investigate their effects on human osteoblasts, in order to develop a suitable titanium coating material. METHODS Tetracalcium phosphate (A450) and biphasic tetracalcium phosphatae/tricalcium phosphate (A850) powders were prepared with an innovative method. The presence of calcium phosphate structures was chemically confirmed with XRD. Furthermore, powders macroscopic aspect was observed with a stereomicroscope. For in-vitro experiments, human osteoblastic cells were cultured in the presence of A450 and A850, and assayed for viability and metabolic activity through Crystal Violet and MTT, respectively. RESULTS Our synthesis led to the formation of calcium phosphates in both samples, even though A850 presented a higher level of crystallinity and a more powdery aspects than A450. Both the samples enhanced the viability of cultured cells, inhibiting cell metabolic activity in the case of A850, which furthermore showed to be internalized by cells. CONCLUSIONS We developed two different kind of calcium phosphate-based powders and we tested their effect on human osteoblasts, underlying the possibility of use calcium phosphate-based coatings to enhance cell response on implantable materials.
Collapse
Affiliation(s)
- Benedetta Ghezzi
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy
| | - Ludovica Parisi
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy - .,Laboratory for Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Filippo Vurro
- Istituto dei Materiali per l'Elettronica e il Magnetisimo (IMEM-CNR), Parma, Italy
| | - Ilaria Alfieri
- Department of Chemical Sciences, Life and Environmental Sustainability, University of Parma, Parma, Italy
| | - Andrea Toffoli
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy
| | - Matteo Meglioli
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy
| | - Beatrice Mozzoni
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy
| | - Giulia Ghiacci
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy
| | - Guido M Macaluso
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy.,Istituto dei Materiali per l'Elettronica e il Magnetisimo (IMEM-CNR), Parma, Italy
| |
Collapse
|
48
|
Teng F, Wei L, Yu D, Deng L, Zheng Y, Lin H, Liu Y. Vertical bone augmentation with simultaneous implantation using deproteinized bovine bone block functionalized with a slow delivery of BMP-2. Clin Oral Implants Res 2020; 31:215-228. [PMID: 31730250 DOI: 10.1111/clr.13558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/01/2019] [Accepted: 10/30/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We hypothesized that a biomimetic calcium phosphate (CaP) coating which incorporates morphogenetic protein 2 (BMP-2) on the deproteinized bovine bone (DBB) blocks could be used to enhance the vertical alveolar ridge augmentation for the one-stage onlay surgery with simultaneous implants insertion. We aimed to test this hypothesis in vivo. MATERIAL AND METHODS Beagles dogs were used for the study (n = 6 specimens per group). One month after building the edentulous animal model, 4 mm vertical alveolar bone loss were surgically created and four groups of blocks (W × L × H: 7 mm × 10 mm × 4 mm) were randomly fixed onto the reduced alveolar ridge by implants: (a) DBB blocks alone (negative control group); (b) DBB blocks with superficial adsorption of 50 μg BMP-2 (ad.BMP-2 group); (c) DBB blocks coated by biomimetic CaP coating which incorporates 50 μg BMP-2 (inc.BMP-2 group); and (d) autologous bone blocks (positive control group). After 3 months of healing, samples were harvested for micro-CT and histomorphometric analyses. RESULTS In histomorphometry, the inc.BMP-2 group showed a significantly thicker (coronal-apically) and wider (buccal-lingually) augmented bone area, better bone-to-implant contact than the negative control group. In both the micro-CT and histomorphometry, the inc.BMP-2 group showed more mineralized tissue than the negative control group and the inc.BMP-2 group also showed significantly more newly formed bone and residual grafts than the negative control group in the upper half of the blocks. In micro-CT, the inc.BMP-2 group showed significantly more bone-to-graft contact percentage than the ad.BMP-2 group. In both micro-CT and histomorphometry, the inc.BMP-2 group showed significantly more percentage of mineralized tissue than the ad.BMP-2 group. No significant differences were found between the inc.BMP-2 group and the positive control group either in micro-CT or in histomorphometry. CONCLUSIONS The DBB blocks with coating-delivered BMP-2 significantly enhanced the efficacy of vertical alveolar bone augmentation, compared with the unloaded blocks and blocks with adsorbed BMP-2, in the one-stage onlay surgery with simultaneous implant insertion.
Collapse
Affiliation(s)
- Fei Teng
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China.,Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Lingfei Wei
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands.,Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Dedong Yu
- 2nd Dental Center, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Liquan Deng
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanna Zheng
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haiyan Lin
- Hangzhou Dental Hospital, Hangzhou, China
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Posa F, Grab AL, Martin V, Hose D, Seckinger A, Mori G, Vukicevic S, Cavalcanti-Adam EA. Copresentation of BMP-6 and RGD Ligands Enhances Cell Adhesion and BMP-Mediated Signaling. Cells 2019; 8:E1646. [PMID: 31847477 PMCID: PMC6953040 DOI: 10.3390/cells8121646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
We report on the covalent immobilization of bone morphogenetic protein 6 (BMP-6) and its co-presentation with integrin ligands on a nanopatterned platform to study cell adhesion and signaling responses which regulate the transdifferentiation of myoblasts into osteogenic cells. To immobilize BMP-6, the heterobifunctional linker MU-NHS is coupled to amine residues of the growth factor; this prevents its internalization while ensuring that its biological activity is maintained. Additionally, to allow cells to adhere to such platform and study signaling events arising from the contact to the surface, we used click-chemistry to immobilize cyclic-RGD carrying an azido group reacting with PEG-alkyne spacers via copper-catalyzed 1,3-dipolar cycloaddition. We show that the copresentation of BMP-6 and RGD favors focal adhesion formation and promotes Smad 1/5/8 phosphorylation. When presented in low amounts, BMP-6 added to culture media of cells adhering to the RGD ligands is less effective than BMP-6 immobilized on the surfaces in inducing Smad complex activation and in inhibiting myotube formation. Our results suggest that a local control of ligand density and cell signaling is crucial for modulating cell response.
Collapse
Affiliation(s)
- Francesca Posa
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto, 71122 Foggia, Italy
| | - Anna Luise Grab
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
- Genome Biology Unit, EMBL, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Volker Martin
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Dirk Hose
- Laboratory for Myeloma Research and Medical Clinic V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Anja Seckinger
- Laboratory for Myeloma Research and Medical Clinic V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto, 71122 Foggia, Italy
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Šalata 11, 10000 Zagreb, Croatia
| | - Elisabetta Ada Cavalcanti-Adam
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
50
|
Vukicevic S, Grgurevic L, Erjavec I, Pecin M, Bordukalo-Niksic T, Stokovic N, Lipar M, Capak H, Maticic D, Windhager R, Sampath TK, Gupta M. Autologous blood coagulum is a physiological carrier for BMP6 to induce new bone formation and promote posterolateral lumbar spine fusion in rabbits. J Tissue Eng Regen Med 2019; 14:147-159. [PMID: 31671243 PMCID: PMC7027565 DOI: 10.1002/term.2981] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/27/2019] [Accepted: 10/17/2019] [Indexed: 12/22/2022]
Abstract
In the present study, we describe autologous blood coagulum (ABC) as a physiological carrier for BMP6 to induce new bone formation. Recombinant human BMP6 (rhBMP6), dispersed within ABC and formed as an autologous bone graft substitute (ABGS), was evaluated either with or without allograft bone particles (ALLO) in rat subcutaneous implants and in a posterolateral lumbar fusion (PLF) model in rabbits. ABGS induced endochondral bone differentiation in rat subcutaneous implants. Coating ALLO by ABC significantly decreased the formation of multinucleated foreign body giant cells (FBGCs) in implants, as compared with ALLO alone. However, addition of rhBMP6 to ABC/ALLO induced a robust endochondral bone formation with little or no FBGCs in the implant. In rabbit PLF model, ABGS induced new bone formation uniformly within the implant resulting in a complete fusion when placed between two lumbar transverse processes in the posterolateral gutter with an optimum dose of 100‐μg rhBMP6 per ml of ABC. ABGS containing ALLO also resulted in a fusion where the ALLO was replaced by the newly formed bone via creeping substitution. Our findings demonstrate for the first time that rhBMP6, with ABC as a carrier, induced a robust bone formation with a complete spinal fusion in a rabbit PLF model. RhBMP6 was effective at low doses with ABC serving as a physiological substratum providing a permissive environment by protecting against foreign body reaction elicited by ALLO.
Collapse
Affiliation(s)
- Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Lovorka Grgurevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Igor Erjavec
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marko Pecin
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Tatjana Bordukalo-Niksic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marija Lipar
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Capak
- Department of Radiology, School of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Drazen Maticic
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Munish Gupta
- Department of Orthopedic Surgery, Washington University, St. Louis, MO
| |
Collapse
|