1
|
Kopf RK, Banks S, Brent LJN, Humphries P, Jolly CJ, Lee PC, Luiz OJ, Nimmo D, Winemiller KO. Loss of Earth's old, wise, and large animals. Science 2025; 387:eado2705. [PMID: 39571003 DOI: 10.1126/science.ado2705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025]
Abstract
Earth's old animals are in decline. Despite this, emerging research is revealing the vital contributions of older individuals to cultural transmission, population dynamics, and ecosystem processes and services. Often the largest and most experienced, old individuals are most valued by humans and make important contributions to reproduction, information acquisition and cultural transmission, trophic dynamics, and resistance and resilience to natural and anthropogenic disturbance. These observations contrast with the senescence-focused paradigm of old age that has dominated the literature for more than a century yet are consistent with findings from behavioral ecology and life history theory. In this work, we review why the global loss of old individuals can be particularly detrimental to long-lived animals with indeterminate growth; those with increasing reproductive output with age; and those dependent on migration, sociality, and cultural transmission for survival. Longevity conservation is needed to protect the important ecological roles and ecosystem services provided by old animals.
Collapse
Affiliation(s)
- R Keller Kopf
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Sam Banks
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Paul Humphries
- School of Agricultural, Environmental and Veterinary Sciences and Gulbali Institute, Charles Sturt University, Albury, NSW, Australia
| | - Chris J Jolly
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Phyllis C Lee
- Amboseli Trust for Elephants, Langata, Nairobi, Kenya
- Behaviour and Evolution Research Group, Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Osmar J Luiz
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Dale Nimmo
- School of Agricultural, Environmental and Veterinary Sciences and Gulbali Institute, Charles Sturt University, Albury, NSW, Australia
| | - Kirk O Winemiller
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
Mobbs D, Wise T, Tashjian S, Zhang J, Friston K, Headley D. Survival in a world of complex dangers. Neurosci Biobehav Rev 2024; 167:105924. [PMID: 39424109 DOI: 10.1016/j.neubiorev.2024.105924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
How did our nomadic ancestors continually adapt to the seemingly limitless and unpredictable number of dangers in the natural world? We argue that human defensive behaviors are dynamically constructed to facilitate survival in capricious and itinerant environments. We first hypothesize that internal and external states result in state constructions that combine to form a meta-representation. When a threat is detected, it triggers the action construction. Action constructions are formed through two contiguous survival strategies: generalization strategies, which are used when encountering new threats and ecologies. Generalization strategies are associated with cognitive representations that have high dimensionality and which furnish flexible psychological constructs, including relations between threats, and imagination, and which converge through the construction of defensive states. We posit that generalization strategies drive 'explorative' behaviors including information seeking, where the goal is to increase knowledge that can be used to mitigate current and future threats. Conversely, specialization strategies entail lower dimensional representations, which underpin specialized, sometimes reflexive, or habitual survival behaviors that are 'exploitative'. Together, these strategies capture a central adaptive feature of human survival systems: self-preservation in response to a myriad of threats.
Collapse
Affiliation(s)
- Dean Mobbs
- Department of Humanities and Social Sciences, USA; Computation and Neural Systems Program at the California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| | - Toby Wise
- Department of Neuroimaging, King's College London, London, UK
| | | | - JiaJin Zhang
- Department of Humanities and Social Sciences, USA
| | - Karl Friston
- Institute of Neurology, and The Wellcome Centre for Human Imaging, University College London, London WC1N 3AR, UK
| | - Drew Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ 07102, USA
| |
Collapse
|
3
|
Hope SF, Willgohs KR, Dittakul S, Plotnik JM. Do elephants really never forget? What we know about elephant memory and a call for further investigation. Learn Behav 2024:10.3758/s13420-024-00655-y. [PMID: 39438402 DOI: 10.3758/s13420-024-00655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Despite popular culture's promotion of the elephant's ability to "never forget," there is remarkably limited empirical research on the memory capacities of any living elephant species (Asian, Elephas maximus; African savanna, Loxodonta africana; African forest, Loxodonta cyclotis). A growing body of literature on elephant cognition and behavioral ecology has provided insight into the elephant's ability to behave flexibly in changing physical and social environments, but little direct evidence of how memory might relate to this flexibility exists. In this paper, we review and discuss the potential relationships between what we know about elephant cognition and behavior and the elephants' memory for the world around them as they navigate their physical, social, and spatial environments. We also discuss future directions for investigating elephant memory and implications for such research on elephant conservation and human-elephant conflict mitigation.
Collapse
Affiliation(s)
- Sydney F Hope
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA.
| | - Kaitlyn R Willgohs
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
- Department of Psychology, The Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Sangpa Dittakul
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
- Golden Triangle Asian Elephant Foundation, Chiang Saen, Chiang Rai, 57150, Thailand
| | - Joshua M Plotnik
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA.
- Department of Psychology, The Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
4
|
McCormack JL, Arbuckle K, Fullard K, Amos W, Nichols HJ. Lack of intergenerational reproductive conflict, rather than lack of inclusive fitness benefits, explains absence of post-reproductive lifespan in long-finned pilot whales. Behav Ecol 2023; 34:950-959. [PMID: 37969551 PMCID: PMC10636734 DOI: 10.1093/beheco/arad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Life-history theory suggests that individuals should reproduce until death, yet females of a small number of mammals live for a significant period after ceasing reproduction, a phenomenon known as post-reproductive lifespan. It is thought that the evolution of this trait is facilitated by increasing local relatedness throughout a female's lifetime. This allows older females to gain inclusive fitness through helping their offspring (known as a mother effect) and/or grandoffspring (known as a grandmother effect), rather than gaining direct fitness through reproducing. However, older females may only benefit from stopping reproducing when their direct offspring compete with those of their daughters. Here, we investigate whether a lack of post-reproductive lifespan in long-finned pilot whales (Globicephala melas) results from minimal benefits incurred from the presence of older females, or from a lack of costs resulting from mother-daughter co-reproduction. Using microsatellite data, we conducted parentage analysis on individuals from 25 pods and find that younger females were more likely to have offspring if their mother was present in their pod, indicating that mothers may assist inexperienced daughters to reproduce. However, we found no evidence of reproductive conflict between co-reproducing mothers and daughters, indicating that females may be able to reproduce into old age while simultaneously aiding their daughters in reproduction. This highlights the importance of reproductive conflict in the evolution of a post-reproductive lifespan and demonstrates that mother and grandmother effects alone do not result in the evolution of a post-reproductive lifespan.
Collapse
Affiliation(s)
- Jack L McCormack
- Department of Biosciences, Swansea University, Swansea SA2 8PP, Swansea, UK
| | - Kevin Arbuckle
- Department of Biosciences, Swansea University, Swansea SA2 8PP, Swansea, UK
| | - Karen Fullard
- Department of Radiology, Royal Prince Alfred Hospital, Missenden Road, Sydney, New South Wales 2050, Australia
| | - William Amos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, Cambridgeshire, UK
| | - Hazel J Nichols
- Department of Biosciences, Swansea University, Swansea SA2 8PP, Swansea, UK
| |
Collapse
|
5
|
Hoerner F, Rendle-Worthington J, Lawrenz A, Oerke AK, Damerau K, Borragán Santos S, Hard T, Preisfeld G. Differences in Mother-Infant Bond and Social Behavior of African Elephant Calves Living In Situ and Ex Situ. Animals (Basel) 2023; 13:3051. [PMID: 37835656 PMCID: PMC10571591 DOI: 10.3390/ani13193051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
African zoo elephants live in safe environments with sufficient resources, are protected from threats, and have their health and body conditions cared for. Calves ex situ undergo the same developmental stages as in situ and are raised by the whole family unit. However, due to environmental differences, there might be behavioral modifications between calves in situ and ex situ. We hypothesize that these differences increase with ongoing generations. This ethological study compares social and general behavior and the distance calves kept to their mothers' between calves of the first (F1) and second (F2) zoo generation and the wild. Using ethological methods, data were collected for ~90 in situ calves and 16 ex situ (8 F1, 8 F2) between the ages of 0.5 to 4 years (120 observation hours per group). Results showed that in situ calves spent significantly more time close to mothers than the F1 and the F2 zoo generations (F1/in situ: p = <0.001; F2/in situ: p = 0.007). The behaviors of eating, drinking, trunk movement, washing, and affiliative behaviors showed significant differences between in situ and ex situ calves. The amount and distribution of affiliative and agonistic behavior initiated and received by calves was displayed with a greater variety ex situ. Ex situ calves not only performed affiliative but, in contrast to the in situ, also agonistic behavior (F1/in situ: initiated p = 0.002, received p = 0.010; F2/in situ: initiated p = 0.050, received p = 0.037). The comparison of zoo generations suggests that differences did not increase with the generation. The more casual binding between mothers and offspring in zoos and the age-dependent improvement of social behavior of zoo-born calves are seen as a result of elephants' adaptation to secure zoo conditions. The results of this study agree with the faster development of ex situ African elephants, like earlier puberty and more frequent breeding patterns, as known from the literature.
Collapse
Affiliation(s)
- Franziska Hoerner
- Department of Zoology, University of Wuppertal, 42119 Wuppertal, Germany
| | | | | | - Ann-Kathrin Oerke
- Endocrinology Laboratory, German Primate Centre, 37077 Goettingen, Germany
| | - Karsten Damerau
- Department of Ecology, Europa-Universität Flensburg, 24943 Flensburg, Germany
| | | | | | - Gela Preisfeld
- Department of Zoology, University of Wuppertal, 42119 Wuppertal, Germany
| |
Collapse
|
6
|
Mc Auley MT. An evolutionary perspective of lifespan and epigenetic inheritance. Exp Gerontol 2023; 179:112256. [PMID: 37460026 DOI: 10.1016/j.exger.2023.112256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
In the last decade epigenetics has come to the fore as a discipline which is central to biogerontology. Age associated epigenetic changes are routinely linked with pathologies, including cardiovascular disease, cancer, and Alzheimer's disease; moreover, epigenetic clocks are capable of correlating biological age with chronological age in many species including humans. Recent intriguing empirical observations also suggest that inherited epigenetic effects could influence lifespan/longevity in a variety of organisms. If this is the case, an imperative exists to reconcile lifespan/longevity associated inherited epigenetic processes with the evolution of ageing. This review will critically evaluate inherited epigenetic effects from an evolutionary perspective. The overarching aim is to integrate the evidence which suggests epigenetic inheritance modulates lifespan/longevity with the main evolutionary theories of ageing.
Collapse
|
7
|
Vacher MC, Durrant CS, Rose J, Hall AJ, Spires‐Jones TL, Gunn‐Moore F, Dagleish MP. Alzheimer's disease-like neuropathology in three species of oceanic dolphin. Eur J Neurosci 2023; 57:1161-1179. [PMID: 36514861 PMCID: PMC10947196 DOI: 10.1111/ejn.15900] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and the primary cause of disability and dependency among elderly humans worldwide. AD is thought to be a disease unique to humans although several other animals develop some aspects of AD-like pathology. Odontocetes (toothed whales) share traits with humans that suggest they may be susceptible to AD. The brains of 22 stranded odontocetes of five different species were examined using immunohistochemistry to investigate the presence or absence of neuropathological hallmarks of AD: amyloid-beta plaques, phospho-tau accumulation and gliosis. Immunohistochemistry revealed that all aged animals accumulated amyloid plaque pathology. In three animals of three different species of odontocete, there was co-occurrence of amyloid-beta plaques, intraneuronal accumulation of hyperphosphorylated tau, neuropil threads and neuritic plaques. One animal showed well-developed neuropil threads, phospho-tau accumulation and neuritic plaques, but no amyloid plaques. Microglia and astrocytes were present as expected in all brain samples examined, but we observed differences in cell morphology and numbers between individual animals. The simultaneous occurrence of amyloid-beta plaques and hyperphosphorylated tau pathology in the brains of odontocetes shows that these three species develop AD-like neuropathology spontaneously. The significance of this pathology with respect to the health and, ultimately, death of the animals remains to be determined. However, it may contribute to the cause(s) of unexplained live-stranding in some odontocete species and supports the 'sick-leader' theory whereby healthy conspecifics in a pod mass strand due to high social cohesion.
Collapse
Affiliation(s)
| | - Claire S. Durrant
- Centre for Discovery Brain Sciences and UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Jamie Rose
- Centre for Discovery Brain Sciences and UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Ailsa J. Hall
- Sea Mammal Research Unit, Scottish Oceans InstituteUniversity of St. AndrewsFifeUK
| | - Tara L. Spires‐Jones
- Centre for Discovery Brain Sciences and UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | | | - Mark P. Dagleish
- School of Biodiversity, One Health and Veterinary Medicine, Pathology DepartmentUniversity of GlasgowScotlandUK
| |
Collapse
|
8
|
Vogt G. Environmental Adaptation of Genetically Uniform Organisms with the Help of Epigenetic Mechanisms-An Insightful Perspective on Ecoepigenetics. EPIGENOMES 2022; 7:1. [PMID: 36648862 PMCID: PMC9844400 DOI: 10.3390/epigenomes7010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Organisms adapt to different environments by selection of the most suitable phenotypes from the standing genetic variation or by phenotypic plasticity, the ability of single genotypes to produce different phenotypes in different environments. Because of near genetic identity, asexually reproducing populations are particularly suitable for the investigation of the potential and molecular underpinning of the latter alternative in depth. Recent analyses on the whole-genome scale of differently adapted clonal animals and plants demonstrated that epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs are among the molecular pathways supporting phenotypic plasticity and that epigenetic variation is used to stably adapt to different environments. Case studies revealed habitat-specific epigenetic fingerprints that were maintained over subsequent years pointing at the existence of epigenetic ecotypes. Environmentally induced epimutations and corresponding gene expression changes provide an ideal means for fast and directional adaptation to changing or new conditions, because they can synchronously alter phenotypes in many population members. Because microorganisms inclusive of human pathogens also exploit epigenetically mediated phenotypic variation for environmental adaptation, this phenomenon is considered a universal biological principle. The production of different phenotypes from the same DNA sequence in response to environmental cues by epigenetic mechanisms also provides a mechanistic explanation for the "general-purpose genotype hypothesis" and the "genetic paradox of invasions".
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Abegglen LM, Harrison TM, Moresco A, Fowles JS, Troan BV, Kiso WK, Schmitt D, Boddy AM, Schiffman JD. Of Elephants and Other Mammals: A Comparative Review of Reproductive Tumors and Potential Impact on Conservation. Animals (Basel) 2022; 12:2005. [PMID: 35953994 PMCID: PMC9367617 DOI: 10.3390/ani12152005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Reproductive tumors can impact conception, pregnancy, and birth in mammals. These impacts are well documented in humans, while data in other mammals are limited. An urgent need exists to understand the reproductive impact of these lesions in endangered species, because some endangered species have a documented high prevalence of reproductive tumors. This article documents that the prevalence of both benign and malignant neoplasia differs between African and Asian elephants, with Asian elephants more frequently diagnosed and negatively affected by both. The prevalence of these tumors across mammalian species is compared, and impact plus treatment options in human medicine are reviewed to inform decision making in elephants. Evidence suggests that reproductive tumors can negatively impact elephant conservation. Future studies that document reproductive outcomes, including the success of various treatment approaches in elephants with tumors will benefit conservation efforts.
Collapse
Affiliation(s)
- Lisa M. Abegglen
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
- Exotic Species Cancer Research Alliance, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Tara M. Harrison
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
- Exotic Species Cancer Research Alliance, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Anneke Moresco
- Exotic Species Cancer Research Alliance, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Reproductive Health Surveillance Program, Morrison, CO 80465, USA
| | - Jared S. Fowles
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Brigid V. Troan
- Exotic Species Cancer Research Alliance, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Wendy K. Kiso
- White Oak Conservation Foundation, Yulee, FL 32097, USA
| | - Dennis Schmitt
- Department of Animal Science, William H. Darr College of Agriculture, Missouri State University, Springfield, MO 65809, USA
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
- Exotic Species Cancer Research Alliance, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Joshua D. Schiffman
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
- Exotic Species Cancer Research Alliance, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Peel Therapeutics, Inc., Salt Lake City, UT 84108, USA
| |
Collapse
|
10
|
Guldemond RAR, Louw CJ, Maré C, Nørgaard C, van Aarde RJ. Demographic responses of an insular elephant population to removal as a management intervention. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Robert A. R. Guldemond
- Conservation Ecology Research Unit, Department of Zoology & Entomology University of Pretoria Hatfield South Africa
| | - Cornelius J. Louw
- Conservation Ecology Research Unit, Department of Zoology & Entomology University of Pretoria Hatfield South Africa
| | - Celesté Maré
- Conservation Ecology Research Unit, Department of Zoology & Entomology University of Pretoria Hatfield South Africa
| | - Camilla Nørgaard
- Conservation Ecology Research Unit, Department of Zoology & Entomology University of Pretoria Hatfield South Africa
| | - Rudi J. van Aarde
- Conservation Ecology Research Unit, Department of Zoology & Entomology University of Pretoria Hatfield South Africa
| |
Collapse
|
11
|
Parker JM, Wittemyer G. Orphaning stunts growth in wild African elephants. CONSERVATION PHYSIOLOGY 2022; 10:coac053. [PMID: 35919453 PMCID: PMC9341231 DOI: 10.1093/conphys/coac053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 05/29/2023]
Abstract
Orphans of several species suffer social and physiological consequences such as receiving more aggression from conspecifics and lower survival. One physiological consequence of orphaning, stunted growth, has been identified in both humans and chimpanzees, but has not been assessed in a non-primate species. Here, we tested whether wild African elephant orphans show evidence of stunted growth. We measured individually known female elephants in the Samburu and Buffalo Springs National Reserves of Kenya, with a rangefinder capable of calculating height, to estimate a von Bertalanffy growth curve for female elephants of the study population. We then compared measurements of known orphans and non-orphans of various ages, using a Bayesian analysis to assess variation around the derived growth curve. We found that orphans are shorter for their age than non-orphans. However, results suggest orphans may partially compensate for stunting through later growth, as orphans who had spent a longer time without their mother had heights more similar to non-orphans. More age mates in an individual's family were associated with taller height, suggesting social support from peers may contribute to increased growth. Conversely, more adult females in an individual's family were associated with shorter height, suggesting within-group competition for resources with older individuals may reduce juvenile growth. Finally, we found a counterintuitive result that less rainfall in the first 6 years of life was correlated with taller height, potentially reflecting the unavoidable bias of measuring individuals who were fit enough to survive conditions of low rainfall as young calves. Reduced growth of individuals has been shown to reduce survival and reproduction in other species. As such, stunting in wildlife orphans may negatively affect fitness and represents an indirect effect of ivory poaching on African elephants.
Collapse
Affiliation(s)
- Jenna M Parker
- Corresponding author: San Diego Zoo Wildlife Alliance, 15600 San Pasqual Valley Road, Escondido, CA 92027, USA.
| | - George Wittemyer
- Save the Elephants, Marula Manor, Marula Lane, Karen, Nairobi 00200, Kenya
- Graduate Degree Program in Ecology, Colorado State University, 102 Johnson Hall, Fort Collins, CO 80523, USA
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, 1474 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
12
|
Abstract
AbstractAll mammals experience different life stages as they develop, each of which is characterised by particular physical and behavioural changes. Despite the emergence of sophisticated behaviour analysis techniques, the ways in which social behaviour varies by life stage, and how this is influenced by an individual’s sex, is relatively understudied in most social mammals other than primates and elephants. Understanding the social requirements of mammals should be a central and critical component to their conservation, captive management and welfare. Here, we apply social network analysis techniques to understand how social behaviour differs with life stage in the giraffe, a gregarious fission–fusion mammal. We studied two wild populations of giraffes in Kenya and found that adolescents have significantly stronger associations with adolescents of their own sex first and foremost, then adults of their own sex. Other associations were significantly lower than would be expected, or non-significant. Our results suggest that adolescence in both male and female giraffes shares similar features to adolescence in other social mammal species. We discuss how the application of such knowledge might improve the management and welfare of captive giraffes.
Collapse
|
13
|
Hauenstein S, Jassoy N, Mupepele A, Carroll T, Kshatriya M, Beale CM, Dormann CF. A systematic map of demographic data from elephant populations throughout Africa: implications for poaching and population analyses. Mamm Rev 2022. [DOI: 10.1111/mam.12291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Severin Hauenstein
- Department of Biometry and Environmental System Analysis University of Freiburg 79106FreiburgGermany
- Department of Biology University of York YorkYO10 5DDUK
| | - Noémi Jassoy
- Department of Biometry and Environmental System Analysis University of Freiburg 79106FreiburgGermany
| | - Anne‐Christine Mupepele
- Department of Biometry and Environmental System Analysis University of Freiburg 79106FreiburgGermany
- Department of Nature Conservation and Landscape Ecology University of Freiburg Freiburg79106Germany
| | - Thea Carroll
- CITES Secretariat – MIKE Programme United Nations Environment Programme 30552‐00100NairobiKenya
| | - Mrigesh Kshatriya
- CITES Secretariat – MIKE Programme United Nations Environment Programme 30552‐00100NairobiKenya
| | | | - Carsten F. Dormann
- Department of Biometry and Environmental System Analysis University of Freiburg 79106FreiburgGermany
| |
Collapse
|
14
|
Abstract
The genetic basis for the emergence of creativity in modern humans remains a mystery despite sequencing the genomes of chimpanzees and Neanderthals, our closest hominid relatives. Data-driven methods allowed us to uncover networks of genes distinguishing the three major systems of modern human personality and adaptability: emotional reactivity, self-control, and self-awareness. Now we have identified which of these genes are present in chimpanzees and Neanderthals. We replicated our findings in separate analyses of three high-coverage genomes of Neanderthals. We found that Neanderthals had nearly the same genes for emotional reactivity as chimpanzees, and they were intermediate between modern humans and chimpanzees in their numbers of genes for both self-control and self-awareness. 95% of the 267 genes we found only in modern humans were not protein-coding, including many long-non-coding RNAs in the self-awareness network. These genes may have arisen by positive selection for the characteristics of human well-being and behavioral modernity, including creativity, prosocial behavior, and healthy longevity. The genes that cluster in association with those found only in modern humans are over-expressed in brain regions involved in human self-awareness and creativity, including late-myelinating and phylogenetically recent regions of neocortex for autobiographical memory in frontal, parietal, and temporal regions, as well as related components of cortico-thalamo-ponto-cerebellar-cortical and cortico-striato-cortical loops. We conclude that modern humans have more than 200 unique non-protein-coding genes regulating co-expression of many more protein-coding genes in coordinated networks that underlie their capacities for self-awareness, creativity, prosocial behavior, and healthy longevity, which are not found in chimpanzees or Neanderthals.
Collapse
|
15
|
Lee PC, Moss CJ, Njiraini N, Poole JH, Sayialel K, Fishlock VL. Cohort consequences of drought and family disruption for male and female African elephants. Behav Ecol 2021. [DOI: 10.1093/beheco/arab148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Cohort effects, reflecting early adversity or advantage, have persisting consequences for growth, reproductive onset, longevity, and lifetime reproductive success. In species with prolonged life histories, cohort effects may establish variation in age-sex structures, while social structure may buffer individuals against early adversity. Using periods of significant ecological adversity, we examined cohort effects for male and female elephants (Loxodonta africana) over almost 50 years in Amboseli, Kenya. Mortality spiked during severe droughts with highest mortality among calves under 2 years and females over 40 years. Deaths of oldest females resulted in social disruption via matriarch turnover, with potential impacts on resource acquisition for survivors. We predicted that survivors of high mortality and social challenges would have altered life-history trajectories, with later age at first reproduction and reduced age-specific fertility for females and slow transitions to independence and late-onset of potential mating or musth among males. Contrary to expectations, there were no persisting early drought effects on female age at first conception while matriarch loss around puberty accelerated reproductive onset. Experience of an early life drought did not influence age-specific reproductive rates once females commenced reproduction. Males who survived an early drought exhibited complex consequences: male age at family independence was later with larger peer cohort size, but earlier with drought in year of independence (13.9 vs 14.6 years). Early drought had no effect on age at first musth, but male reproductive onset was weakly associated with the number of peers (negative) and age at independence (positive).
Collapse
Affiliation(s)
- Phyllis C Lee
- Amboseli Trust for Elephants, Langata, Nairobi, Kenya
- Behaviour & Evolution Research Group, Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | | | | | - Joyce H Poole
- ElephantVoices, Buskhellinga 3, 3236 Sandefjord, Norway
| | | | - Vicki L Fishlock
- Amboseli Trust for Elephants, Langata, Nairobi, Kenya
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, UK
| |
Collapse
|
16
|
Köhler M, Herridge V, Nacarino-Meneses C, Fortuny J, Moncunill-Solé B, Rosso A, Sanfilippo R, Palombo MR, Moyà-Solà S. Palaeohistology reveals a slow pace of life for the dwarfed Sicilian elephant. Sci Rep 2021; 11:22862. [PMID: 34819557 PMCID: PMC8613187 DOI: 10.1038/s41598-021-02192-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
The 1-m-tall dwarf elephant Palaeoloxodon falconeri from the Pleistocene of Sicily (Italy) is an extreme example of insular dwarfism and epitomizes the Island Rule. Based on scaling of life-history (LH) traits with body mass, P. falconeri is widely considered to be ‘r-selected’ by truncation of the growth period, associated with an early onset of reproduction and an abbreviated lifespan. These conjectures are, however, at odds with predictions from LH models for adaptive shifts in body size on islands. To settle the LH strategy of P. falconeri, we used bone, molar, and tusk histology to infer growth rates, age at first reproduction, and longevity. Our results from all approaches are congruent and provide evidence that the insular dwarf elephant grew at very slow rates over an extended period; attained maturity at the age of 15 years; and had a minimum lifespan of 68 years. This surpasses not only the values predicted from body mass but even those of both its giant sister taxon (P. antiquus) and its large mainland cousin (L. africana). The suite of LH traits of P. falconeri is consistent with the LH data hitherto inferred for other dwarfed insular mammals. P. falconeri, thus, not only epitomizes the Island Rule but it can also be viewed as a paradigm of evolutionary change towards a slow LH that accompanies the process of dwarfing in insular mammals.
Collapse
Affiliation(s)
- Meike Köhler
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | | | - Carmen Nacarino-Meneses
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.,Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Josep Fortuny
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Blanca Moncunill-Solé
- Dipartimento di Scienze, Università degli Studi Roma Tre, Roma, Italy.,Centro de Investigacións Científicas Avanzadas, Universidade da Coruña, A Coruña, Spain
| | - Antonietta Rosso
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Catania, Catania, Italy
| | - Rossana Sanfilippo
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Catania, Catania, Italy
| | - Maria Rita Palombo
- c7o Earth Science Department, IGAG-CNR, Sapienza University of Rome, Rome, Italy
| | - Salvador Moyà-Solà
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
17
|
Campbell-Staton SC, Arnold BJ, Gonçalves D, Granli P, Poole J, Long RA, Pringle RM. Ivory poaching and the rapid evolution of tusklessness in African elephants. Science 2021; 374:483-487. [PMID: 34672738 DOI: 10.1126/science.abe7389] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Shane C Campbell-Staton
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,Institute for Society and Genetics, University of California, Los Angeles, CA 90095, USA
| | - Brian J Arnold
- Department of Computer Science, Princeton University, Princeton, NJ 08540, USA.,Center for Statistics and Machine Learning, Princeton University, Princeton, NJ 08540, USA
| | - Dominique Gonçalves
- Gorongosa National Park, Sofala 00000, Mozambique.,Durrell Institute of Conservation and Ecology, University of Kent, Canterbury CT2 7NR, UK
| | | | - Joyce Poole
- ElephantVoices, San Francisco, CA 94111, USA
| | - Ryan A Long
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Robert M Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
18
|
Chusyd DE, Ackermans NL, Austad SN, Hof PR, Mielke MM, Sherwood CC, Allison DB. Aging: What We Can Learn From Elephants. FRONTIERS IN AGING 2021; 2:726714. [PMID: 35822016 PMCID: PMC9261397 DOI: 10.3389/fragi.2021.726714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022]
Abstract
Elephants are large-brained, social mammals with a long lifespan. Studies of elephants can provide insight into the aging process, which may be relevant to understanding diseases that affect elderly humans because of their shared characteristics that have arisen through independent evolution. Elephants become sexually mature at 12 to 14 years of age and are known to live into, and past, their 7th decade of life. Because of their relatively long lifespans, elephants may have evolved mechanisms to counter age-associated morbidities, such as cancer and cognitive decline. Elephants rely heavily on their memory, and engage in multiple levels of competitive and collaborative relationships because they live in a fission-fusion system. Female matrilineal relatives and dependent offspring form tight family units led by an older-aged matriarch, who serves as the primary repository for social and ecological knowledge in the herd. Similar to humans, elephants demonstrate a dependence on social bonds, memory, and cognition to navigate their environment, behaviors that might be associated with specializations of brain anatomy. Compared with other mammals, the elephant hippocampus is proportionally smaller, whereas the temporal lobe is disproportionately large and expands laterally. The elephant cerebellum is also relatively enlarged, and the cerebral cortex is highly convoluted with numerous gyral folds, more than in humans. Last, an interesting characteristic unique to elephants is the presence of at least 20 copies of the TP53 tumor suppressor gene. Humans have only a single copy. TP53 encodes for the p53 protein, which is known to orchestrate cellular response to DNA damage. The effects of these multiple copies of TP53 are still being investigated, but it may be to protect elephants against multiple age-related diseases. For these reasons, among others, studies of elephants would be highly informative for aging research. Elephants present an underappreciated opportunity to explore further common principles of aging in a large-brained mammal with extended longevity. Such research can contribute to contextualizing our knowledge of age-associated morbidities in humans.
Collapse
Affiliation(s)
- Daniella E. Chusyd
- Department of Epidemiology and Biostatistics, Indiana University-Bloomington, Bloomington, IN, United States
- *Correspondence: Daniella E. Chusyd,
| | - Nicole L. Ackermans
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Steven N. Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michelle M. Mielke
- Division of Epidemiology, Department of Quantitative Health Sciences and Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, DC, United States
| | - David B. Allison
- Department of Epidemiology and Biostatistics, Indiana University-Bloomington, Bloomington, IN, United States
| |
Collapse
|
19
|
Muller Z, Harris S. A review of the social behaviour of the giraffe
Giraffa camelopardalis
: a misunderstood but socially complex species. Mamm Rev 2021. [DOI: 10.1111/mam.12268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zoe Muller
- School of Biological Sciences University of Bristol Bristol Life Sciences Building, 24 Tyndall Avenue Bristol BS8 1TQ UK
| | - Stephen Harris
- School of Biological Sciences University of Bristol Bristol Life Sciences Building, 24 Tyndall Avenue Bristol BS8 1TQ UK
| |
Collapse
|
20
|
Quantum propensities in the brain cortex and free will. Biosystems 2021; 208:104474. [PMID: 34242745 DOI: 10.1016/j.biosystems.2021.104474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/24/2022]
Abstract
Capacity of conscious agents to perform genuine choices among future alternatives is a prerequisite for moral responsibility. Determinism that pervades classical physics, however, forbids free will, undermines the foundations of ethics, and precludes meaningful quantification of personal biases. To resolve that impasse, we utilize the characteristic indeterminism of quantum physics and derive a quantitative measure for the amount of free will manifested by the brain cortical network. The interaction between the central nervous system and the surrounding environment is shown to perform a quantum measurement upon the neural constituents, which actualize a single measurement outcome selected from the resulting quantum probability distribution. Inherent biases in the quantum propensities for alternative physical outcomes provide varying amounts of free will, which can be quantified with the expected information gain from learning the actual course of action chosen by the nervous system. For example, neuronal electric spikes evoke deterministic synaptic vesicle release in the synapses of sensory or somatomotor pathways, with no free will manifested. In cortical synapses, however, vesicle release is triggered indeterministically with probability of 0.35 per spike. This grants the brain cortex, with its over 100 trillion synapses, an amount of free will exceeding 96 terabytes per second. Although reliable deterministic transmission of sensory or somatomotor information ensures robust adaptation of animals to their physical environment, unpredictability of behavioral responses initiated by decisions made by the brain cortex is evolutionary advantageous for avoiding predators. Thus, free will may have a survival value and could be optimized through natural selection.
Collapse
|
21
|
Prado NA, Brown JL, Zoller JA, Haghani A, Yao M, Bagryanova LR, Campana MG, E. Maldonado J, Raj K, Schmitt D, Robeck TR, Horvath S. Epigenetic clock and methylation studies in elephants. Aging Cell 2021; 20:e13414. [PMID: 34118182 PMCID: PMC8282242 DOI: 10.1111/acel.13414] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/15/2021] [Accepted: 05/08/2021] [Indexed: 11/30/2022] Open
Abstract
Age-associated DNA-methylation profiles have been used successfully to develop highly accurate biomarkers of age ("epigenetic clocks") in humans, mice, dogs, and other species. Here we present epigenetic clocks for African and Asian elephants. These clocks were developed using novel DNA methylation profiles of 140 elephant blood samples of known age, at loci that are highly conserved between mammalian species, using a custom Infinium array (HorvathMammalMethylChip40). We present epigenetic clocks for Asian elephants (Elephas maximus), African elephants (Loxodonta africana), and both elephant species combined. Two additional human-elephant clocks were constructed by combining human and elephant samples. Epigenome-wide association studies identified elephant age-related CpGs and their proximal genes. The products of these genes play important roles in cellular differentiation, organismal development, metabolism, and circadian rhythms. Intracellular events observed to change with age included the methylation of bivalent chromatin domains, and targets of polycomb repressive complexes. These readily available epigenetic clocks can be used for elephant conservation efforts where accurate estimates of age are needed to predict demographic trends.
Collapse
Affiliation(s)
- Natalia A. Prado
- Center for Species SurvivalSmithsonian Conservation Biology InstituteFront RoyalVAUSA
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteWashingtonDCUSA
| | - Janine L. Brown
- Center for Species SurvivalSmithsonian Conservation Biology InstituteFront RoyalVAUSA
| | - Joseph A. Zoller
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCAUSA
| | - Amin Haghani
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Mingjia Yao
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCAUSA
| | - Lora R. Bagryanova
- Department of EpidemiologyFielding School of Public HealthUniversity of CaliforniaLos Angeles, Los AngelesCAUSA
| | - Michael G. Campana
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteWashingtonDCUSA
| | - Jesús E. Maldonado
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteWashingtonDCUSA
| | - Ken Raj
- Radiation Effects DepartmentCentre for Radiation, Chemical and Environmental HazardsPublic Health EnglandDidcotUK
| | - Dennis Schmitt
- College of AgricultureMissouri State UniversitySpringfieldMOUSA
| | | | - Steve Horvath
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCAUSA
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
22
|
Comizzoli P, Ottinger MA. Understanding Reproductive Aging in Wildlife to Improve Animal Conservation and Human Reproductive Health. Front Cell Dev Biol 2021; 9:680471. [PMID: 34095152 PMCID: PMC8170016 DOI: 10.3389/fcell.2021.680471] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Similar to humans and laboratory animals, reproductive aging is observed in wild species-from small invertebrates to large mammals. Aging issues are also prevalent in rare and endangered species under human care as their life expectancy is longer than in the wild. The objectives of this review are to (1) present conserved as well as distinctive traits of reproductive aging in different wild animal species (2) highlight the value of comparative studies to address aging issues in conservation breeding as well as in human reproductive medicine, and (3) suggest next steps forward in that research area. From social insects to mega-vertebrates, reproductive aging studies as well as observations in the wild or in breeding centers often remain at the physiological or organismal scale (senescence) rather than at the germ cell level. Overall, multiple traits are conserved across very different species (depletion of the ovarian reserve or no decline in testicular functions), but unique features also exist (endless reproductive life or unaltered quality of germ cells). There is a broad consensus about the need to fill research gaps because many cellular and molecular processes during reproductive aging remain undescribed. More research in male aging is particularly needed across all species. Furthermore, studies on reproductive aging of target species in their natural habitat (sentinel species) are crucial to define more accurate reproductive indicators relevant to other species, including humans, sharing the same environment. Wild species can significantly contribute to our general knowledge of a crucial phenomenon and provide new approaches to extend the reproductive lifespan.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United States
| | - Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
23
|
Behaviour, Evolution and Life Histories. Anim Behav 2021. [DOI: 10.1007/978-3-030-82879-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Abstract
Aging occurs in all sexually reproducing organisms. That is, physical degradation over time occurs from conception until death. While the life span of a species is often viewed as a benchmark of aging, the pace and intensity of physical degradation over time varies owing to environmental influences, genetics, allocation of energetic investment, and phylogenetic history. Significant variation in aging within mammals, primates, and great apes, including humans, is therefore common across species. The evolution of aging in the hominin lineage is poorly known; however, clues can be derived from the fossil record. Ongoing advances continue to shed light on the interactions between life-history variables such as reproductive effort and aging. This review presents our current understanding of the evolution of aging in humans, drawing on population variation, comparative research, trade-offs, and sex differences, as well as tissue-specific patterns of physical degradation. Implications for contemporary health challenges and the future of human evolutionary anthropology research are also discussed.
Collapse
|
25
|
Mikuła-Pietrasik J, Pakuła M, Markowska M, Uruski P, Szczepaniak-Chicheł L, Tykarski A, Książek K. Nontraditional systems in aging research: an update. Cell Mol Life Sci 2020; 78:1275-1304. [PMID: 33034696 PMCID: PMC7904725 DOI: 10.1007/s00018-020-03658-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Research on the evolutionary and mechanistic aspects of aging and longevity has a reductionist nature, as the majority of knowledge originates from experiments on a relatively small number of systems and species. Good examples are the studies on the cellular, molecular, and genetic attributes of aging (senescence) that are primarily based on a narrow group of somatic cells, especially fibroblasts. Research on aging and/or longevity at the organismal level is dominated, in turn, by experiments on Drosophila melanogaster, worms (Caenorhabditis elegans), yeast (Saccharomyces cerevisiae), and higher organisms such as mice and humans. Other systems of aging, though numerous, constitute the minority. In this review, we collected and discussed a plethora of up-to-date findings about studies of aging, longevity, and sometimes even immortality in several valuable but less frequently used systems, including bacteria (Caulobacter crescentus, Escherichia coli), invertebrates (Turritopsis dohrnii, Hydra sp., Arctica islandica), fishes (Nothobranchius sp., Greenland shark), reptiles (giant tortoise), mammals (blind mole rats, naked mole rats, bats, elephants, killer whale), and even 3D organoids, to prove that they offer biogerontologists as much as the more conventional tools. At the same time, the diversified knowledge gained owing to research on those species may help to reconsider aging from a broader perspective, which should translate into a better understanding of this tremendously complex and clearly system-specific phenomenon.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Martyna Pakuła
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Małgorzata Markowska
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | | | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| |
Collapse
|
26
|
Lemaître JF, Ronget V, Gaillard JM. Female reproductive senescence across mammals: A high diversity of patterns modulated by life history and mating traits. Mech Ageing Dev 2020; 192:111377. [PMID: 33031803 DOI: 10.1016/j.mad.2020.111377] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/15/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022]
Abstract
Senescence patterns are highly variable across the animal kingdom. However, while empirical evidence of actuarial senescence in vertebrates is accumulating in the wild and life history correlates of actuarial senescence are increasingly identified, both the extent and variation of reproductive senescence across species remain poorly studied. Here, we performed the first large-scale analysis of female reproductive senescence across 101 mammalian species that encompassed a wide range of Orders. We found evidence of reproductive senescence in 68.31 % of the species, which demonstrates that reproductive senescence is pervasive in mammals. As expected from allometric rules, the onset of reproductive senescence occurs later and the rate of reproductive senescence decreases with increasing body mass and delayed age at first reproduction. Moreover, for a given pace of life, females displaying a high level of multiple mating and/or with induced ovulation senesce earlier than females displaying a low level of multiple mating and/or with spontaneous ovulation. These results suggest that both female mating behavior and reproductive physiology shape the diversity of reproductive senescence patterns across mammals. We propose future avenues of research regarding the role played by environmental conditions or reproductive features (e.g. type of placentation) on the evolution of reproductive senescence.
Collapse
Affiliation(s)
- Jean-François Lemaître
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69622, Villeurbanne, France.
| | - Victor Ronget
- Unité Eco-Anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Diderot, F-75016, Paris, France
| | - Jean-Michel Gaillard
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69622, Villeurbanne, France
| |
Collapse
|
27
|
Reichert S, Berger V, Jackson J, Chapman SN, Htut W, Mar KU, Lummaa V. Maternal age at birth shapes offspring life-history trajectory across generations in long-lived Asian elephants. J Anim Ecol 2020; 89:996-1007. [PMID: 31222736 DOI: 10.1111/1365-2656.13049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/14/2019] [Indexed: 11/30/2022]
Abstract
Advanced maternal age at birth can have pronounced consequences for offspring health, survival and reproduction. If carried over to the next generation, such fitness effects could have important implications for population dynamics and the evolution of ageing, but these remain poorly understood. While many laboratory studies have investigated maternal age effects, relatively few studies have been conducted in natural populations, and they usually only present a "snapshot" of an offspring's lifetime. In the present study, we focus on how maternal age influences offspring life-history trajectories and performance in a long-lived mammal. We use a multigenerational demographic dataset of semi-captive Asian elephants to investigate maternal age effects on several offspring life-history traits: condition, reproductive success and overall survival. We show that offspring born to older mothers display reduced overall survival but higher reproductive success, and reduced survival of their own progeny. Our results show evidence of a persistent effect of maternal age on fitness across generations in a long-lived mammal. By highlighting transgenerational effects on the fitness of the next generation associated with maternal age, the present study helps increase our understanding of factors contributing to individual variation in ageing rates and fitness.
Collapse
Affiliation(s)
- Sophie Reichert
- Department of Biology, University of Turku, Turku, Finland
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Vérane Berger
- Department of Biology, University of Turku, Turku, Finland
| | - John Jackson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | | - Win Htut
- Ministry of Natural Resources and Environmental Conservation, Myanma Timber Enterprise, Yangon, Myanmar
| | - Khyne U Mar
- Department of Biology, University of Turku, Turku, Finland
| | - Virpi Lummaa
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
28
|
Consequences of maternal loss before and after weaning in male and female wild chimpanzees. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-2804-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Brown JL. Update on Comparative Biology of Elephants: Factors Affecting Reproduction, Health and Welfare. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:243-273. [PMID: 31471800 DOI: 10.1007/978-3-030-23633-5_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Asian (Elephas maximus) and African (Loxodonta africana) elephants serve as important keystone, umbrella and flagship species. Despite that, population numbers are declining, due mainly to poaching and habitat destruction. Understanding reproductive mechanisms is vital to effective management, particularly insurance populations in captivity, and to that end, long-term biological databases are key to understanding how intrinsic and extrinsic factors affect reproductive function at individual and population levels. Through decades of hormonal and ultrasonographic monitoring, many unique aspects of zoo elephant reproduction have been identified, including differences in luteal steroidogenic activity, follicular maturation, pituitary gonadotropin secretion, fetal development and reproductive tract anatomy. Reproductive problems also hamper captive propagation efforts, particularly those related to abnormal or lack of ovarian cyclicity. Recent large-scale, multi-institutional studies and use of epidemiological approaches have identified factors important for good welfare and reproduction, which include enrichment, feeding diversity, good elephant-keeper relations, social compatibility, exercise, and not being obese. There are notable differences in reproductive mechanisms between Asian and African elephants, as well as the factors that influence reproduction and welfare, suggesting species-targeted management approaches are needed to maximize fitness. In the first edition, we discussed reproductive function in male and female elephants. Since then, a number of significant advances have been made primarily in female elephants, which will be the focus of this updated review.
Collapse
Affiliation(s)
- Janine L Brown
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA.
| |
Collapse
|
30
|
Hauenstein S, Kshatriya M, Blanc J, Dormann CF, Beale CM. African elephant poaching rates correlate with local poverty, national corruption and global ivory price. Nat Commun 2019; 10:2242. [PMID: 31138804 PMCID: PMC6538616 DOI: 10.1038/s41467-019-09993-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/11/2019] [Indexed: 11/09/2022] Open
Abstract
Poaching is contributing to rapid declines in elephant populations across Africa. Following high-profile changes in the political environment, the overall number of illegally killed elephants in Africa seems to be falling, but to evaluate potential conservation interventions we must understand the processes driving poaching rates at local and global scales. Here we show that annual poaching rates in 53 sites strongly correlate with proxies of ivory demand in the main Chinese markets, whereas between-country and between-site variation is strongly associated with indicators of corruption and poverty. Our analysis reveals a recent decline in annual poaching mortality rate from an estimated peak of over 10% in 2011 to <4% in 2017. Based on these findings, we suggest that continued investment in law enforcement could further reduce poaching, but is unlikely to succeed without action that simultaneously reduces ivory demand and tackles corruption and poverty. Ivory poaching has decreased since 2011, and understanding why may help to further prevent losses to elephant populations. Here the authors show correlations between poaching rates and poverty and corruption-related indices, and proxies of ivory demand.
Collapse
Affiliation(s)
- Severin Hauenstein
- Department of Biometry and Environmental System Analysis, University of Freiburg, 79106, Freiburg, Germany. .,Department of Biology, University of York, YO10 5DD, York, UK.
| | - Mrigesh Kshatriya
- United Nations Environment Programme, MIKE - CITES Secretariat, P.O. Box. 30552-00100, Nairobi, Kenya
| | - Julian Blanc
- United Nations Environment Programme, MIKE - CITES Secretariat, P.O. Box. 30552-00100, Nairobi, Kenya.,Wildlife Management Unit, Ecosystems Division, United Nations Environment Programme, P.O. Box. 30552-00100, Nairobi, Kenya
| | - Carsten F Dormann
- Department of Biometry and Environmental System Analysis, University of Freiburg, 79106, Freiburg, Germany
| | - Colin M Beale
- Department of Biology, University of York, YO10 5DD, York, UK
| |
Collapse
|
31
|
Wilson V, Guenther A, Øverli Ø, Seltmann MW, Altschul D. Future Directions for Personality Research: Contributing New Insights to the Understanding of Animal Behavior. Animals (Basel) 2019; 9:E240. [PMID: 31096599 PMCID: PMC6562689 DOI: 10.3390/ani9050240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 01/28/2023] Open
Abstract
As part of the European Conference on Behavioral Biology 2018, we organized a symposium entitled, "Animal personality: providing new insights into behavior?" The aims of this symposium were to address current research in the personality field, spanning both behavioral ecology and psychology, to highlight the future directions for this research, and to consider whether differential approaches to studying behavior contribute something new to the understanding of animal behavior. In this paper, we discuss the study of endocrinology and ontogeny in understanding how behavioral variation is generated and maintained, despite selection pressures assumed to reduce this variation. We consider the potential mechanisms that could link certain traits to fitness outcomes through longevity and cognition. We also address the role of individual differences in stress coping, mortality, and health risk, and how the study of these relationships could be applied to improve animal welfare. From the insights provided by these topics, we assert that studying individual differences through the lens of personality has provided new directions in behavioral research, and we encourage further research in these directions, across this interdisciplinary field.
Collapse
Affiliation(s)
- Vanessa Wilson
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göettingen, Germany.
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University, 37077 Göettingen, Germany.
- Leibniz ScienceCampus Primate Cognition, 37077 Göttingen, Germany.
| | - Anja Guenther
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.
| | - Øyvind Øverli
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, NO-0508 Oslo, Norway.
| | | | - Drew Altschul
- Department of Psychology, The University of Edinburgh, Edinburgh EH8 9JZ, UK.
- Center for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh EH8 9JZ, UK.
- Scottish Primate Research Group.
| |
Collapse
|
32
|
Goldenberg SZ, Douglas-Hamilton I, Wittemyer G. Inter-generational change in African elephant range use is associated with poaching risk, primary productivity and adult mortality. Proc Biol Sci 2019; 285:rspb.2018.0286. [PMID: 29794044 DOI: 10.1098/rspb.2018.0286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/25/2018] [Indexed: 11/12/2022] Open
Abstract
Repeated use of the same areas may benefit animals as they exploit familiar sites, leading to consistent home ranges over time that can span generations. Changing risk landscapes may reduce benefits associated with home range fidelity, however, and philopatric animals may alter movement in response to new pressures. Despite the importance of range changes to ecological and evolutionary processes, little tracking data have been collected over the long-term nor has range change been recorded in response to human pressures across generations. Here, we investigate the relationships between ecological, demographic and human variables and elephant ranging behaviour across generations using 16 years of tracking data from nine distinct female social groups in a population of elephants in northern Kenya that was heavily affected by ivory poaching during the latter half of the study. Nearly all groups-including those that did not experience loss of mature adults-exhibited a shift north over time, apparently in response to increased poaching in the southern extent of the study area. However, loss of mature adults appeared to be the primary indicator of range shifts and expansions, as generational turnover was a significant predictor of range size increases and range centroid shifts. Range expansions and northward shifts were associated with higher primary productivity and lower poached carcass densities, while westward shifts exhibited a trend to areas with higher values of primary productivity and higher poached carcass densities relative to former ranges. Together these results suggest a trade-off between resource access, mobility and safety. We discuss the relevance of these results to elephant conservation efforts and directions meriting further exploration in this disrupted society of a keystone species.
Collapse
Affiliation(s)
- Shifra Z Goldenberg
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA .,Save the Elephants, Nairobi 00200, Kenya
| | - Iain Douglas-Hamilton
- Save the Elephants, Nairobi 00200, Kenya.,Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - George Wittemyer
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA.,Save the Elephants, Nairobi 00200, Kenya
| |
Collapse
|
33
|
Moir RD, Tanzi RE. Low Evolutionary Selection Pressure in Senescence Does Not Explain the Persistence of Aβ in the Vertebrate Genome. Front Aging Neurosci 2019; 11:70. [PMID: 30983989 PMCID: PMC6447958 DOI: 10.3389/fnagi.2019.00070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/12/2019] [Indexed: 01/08/2023] Open
Abstract
The argument is frequently made that the amyloid-β protein (Aβ) persists in the human genome because Alzheimer's disease (AD) primarily afflicts individuals over reproductive age and, therefore, there is low selective pressure for the peptide's elimination or modification. This argument is an important premise for AD amyloidosis models and therapeutic strategies that characterize Aβ as a functionless and intrinsically pathological protein. Here, we review if evolutionary theory and data on the genetics and biology of Aβ are consistent with low selective pressure for the peptide's expression in senescence. Aβ is an ancient neuropeptide expressed across vertebrates. Consistent with unusually high evolutionary selection constraint, the human Aβ sequence is shared by a majority of vertebrate species and has been conserved across at least 400 million years. Unlike humans, the overwhelming majority of vertebrate species do not cease reproduction in senescence and selection pressure is maintained into old age. Hence, low selective pressure in senescence does not explain the persistence of Aβ across the vertebrate genome. The "Grandmother hypothesis" (GMH) is the prevailing model explaining the unusual extended postfertile period of humans. In the GMH, high risk associated with birthing in old age has lead to early cessation of reproduction and a shift to intergenerational care of descendants. The rechanneling of resources to grandchildren by postreproductive individuals increases reproductive success of descendants. In the GMH model, selection pressure does not end following menopause. Thus, evolutionary models and phylogenetic data are not consistent with the absence of reproductive selection pressure for Aβ among aged vertebrates, including humans. Our analysis suggests an alternative evolutionary model for the persistence of Aβ in the vertebrate genome. Aβ has recently been identified as an antimicrobial effector molecule of innate immunity. High conservation across the Chordata phylum is consistent with strong positive selection pressure driving human Aβ's remarkable evolutionary longevity. Ancient origins and widespread conservation suggest the human Aβ sequence is highly optimized for its immune role. We detail our analysis and discuss how the emerging "Antimicrobial Protection Hypothesis" of AD may provide insights into possible evolutionary roles for Aβ in infection, aging, and disease etiology.
Collapse
Affiliation(s)
- Robert D. Moir
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School – Massachusetts General Hospital, Boston, MA, United States
| | | |
Collapse
|
34
|
van Noordwijk MA, Utami Atmoko SS, Knott CD, Kuze N, Morrogh-Bernard HC, Oram F, Schuppli C, van Schaik CP, Willems EP. The slow ape: High infant survival and long interbirth intervals in wild orangutans. J Hum Evol 2018; 125:38-49. [PMID: 30502896 DOI: 10.1016/j.jhevol.2018.09.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 11/17/2022]
Abstract
Orangutans (Pongo spp.) are reported to have extremely slow life histories, including the longest average interbirth intervals of all mammals. Such slow life history can be viable only when unavoidable mortality is kept low. Thus, orangutans' survivorship under natural conditions is expected to be extremely high. Previous estimates of orangutan life history were based on captive individuals living under very different circumstances or on small samples from wild populations. Here, we combine birth data from seven field sites, each with demographic data collection for at least 10 years (range 12-43 years) on wild orangutans to better document their life history. Using strict criteria for data inclusion, we calculated infant survival, interbirth intervals and female age at first reproduction, across species, subspecies and islands. We found an average closed interbirth interval of 7.6 years, as well as consistently very high pre-weaning survival for males and females. Female survival of 94% until age at first birth (at around age 15 years) was higher than reported for any other mammal species under natural conditions. Similarly, annual survival among parous females is very high, but longevity remains to be estimated. Current data suggest no major life history differences between Sumatran and Bornean orangutans. The high offspring survival is remarkable, noting that modern human populations seem to have reached the same level of survival only in the 20th century. The orangutans' slow life history illustrates what can be achieved if a hominoid bauplan is exposed to low unavoidable mortality. Their high survival is likely due to their arboreal and non-gregarious lifestyle, and has allowed them to maintain viable populations, despite living in low-productivity habitats. However, their slow life history also implies that orangutans are highly vulnerable to a catastrophic population crash in the face of drastic habitat change.
Collapse
Affiliation(s)
- Maria A van Noordwijk
- Department of Anthropology, University of Zürich, Winterthurerstr 190, 8057, Zürich, Switzerland.
| | - S Suci Utami Atmoko
- Fakultas Biologi, Universitas Nasional, Jln Sawo Manila, Jakarta, 12520, Indonesia
| | - Cheryl D Knott
- Department of Anthropology, Boston University, Boston, MA, 02215, USA
| | - Noko Kuze
- Department of Anthropology, The National Museum of Nature and Science, Ibaraki, 305-0005, Japan
| | - Helen C Morrogh-Bernard
- Borneo Nature Foundation, Palangkaraya 73112, Indonesia; College of Life and Environmental Science, University of Exeter, Cornwall, TR10 9FE, England, UK
| | - Felicity Oram
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, 88400, Malaysia; HUTAN-Kinabatangan Orangutan Conservation Programme Sandakan, Sabah, 88999, Malaysia
| | - Caroline Schuppli
- Department of Anthropology, University of Zürich, Winterthurerstr 190, 8057, Zürich, Switzerland
| | - Carel P van Schaik
- Department of Anthropology, University of Zürich, Winterthurerstr 190, 8057, Zürich, Switzerland
| | - Erik P Willems
- Department of Anthropology, University of Zürich, Winterthurerstr 190, 8057, Zürich, Switzerland
| |
Collapse
|
35
|
Why does women's fertility end in mid-life? Grandmothering and age at last birth. J Theor Biol 2018; 461:84-91. [PMID: 30340055 DOI: 10.1016/j.jtbi.2018.10.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/30/2018] [Accepted: 10/15/2018] [Indexed: 11/23/2022]
Abstract
Great apes, the other living members of our hominid family, become decrepit before the age of forty and rarely outlive their fertile years. In contrast, women - even in high mortality hunter-gatherer populations - usually remain healthy and productive well beyond menopause. The grandmother hypothesis aims to account for the evolution of this distinctive feature of human life history. Our previous mathematical simulations of that hypothesis fixed the end of female fertility at the age of 45, based on the similarities among living hominids, and then modeled the evolution of human-like longevity from an ancestral state, like that of the great apes, due only to grandmother effects. A major modification here allows the age female fertility ends to vary as well, directly addressing a version of the question, influentially posed by GC Williams six decades ago: Why isn't menopause later in humans? Our model is an agent-based model (ABM) that accounts for the coevolution of both expected adult lifespan and end of female fertility as selection maximizes reproductive value. We find that grandmother effects not only drive the population from an equilibrium representing a great ape-like longevity to a new human-like longevity, they also maintain the observed termination of women's fertility before the age of 50.
Collapse
|
36
|
|
37
|
Rodrigues AMM. Demography, life history and the evolution of age-dependent social behaviour. J Evol Biol 2018; 31:1340-1353. [DOI: 10.1111/jeb.13308] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/15/2018] [Accepted: 06/12/2018] [Indexed: 11/29/2022]
|
38
|
Kuiper TR, Druce DJ, Druce HC. Demography and social dynamics of an African elephant population 35 years after reintroduction as juveniles. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Timothy R. Kuiper
- Ezemvelo KZN Wildlife (EKZNW) Cascades South Africa
- Interdisciplinary Centre for Conservation ScienceDepartment of ZoologyUniversity of Oxford Oxford UK
| | - Dave J. Druce
- Ezemvelo KZN Wildlife (EKZNW) Cascades South Africa
- School of Life SciencesUniversity of KwaZulu‐Natal Scottsville South Africa
| | - Heleen C. Druce
- School of Life SciencesUniversity of KwaZulu‐Natal Scottsville South Africa
| |
Collapse
|
39
|
Podani J, Kun Á, Szilágyi A. How Fast Does Darwin's Elephant Population Grow? JOURNAL OF THE HISTORY OF BIOLOGY 2018; 51:259-281. [PMID: 28726021 DOI: 10.1007/s10739-017-9488-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In "The Origin of Species," Darwin describes a hypothetical example illustrating that large, slowly reproducing mammals such as the elephant can reach very large numbers if population growth is not affected by regulating factors. The elephant example has since been cited in various forms in a wide variety of books, ranging from educational material to encyclopedias. However, Darwin's text was changed over the six editions of the book, although some errors in the mathematics persisted throughout. In addition, full details of the problem remained hidden in his correspondence with readers of the Origin. As a result, Darwin's example is very often misinterpreted, misunderstood or presented as if it were a fact. We show that the population growth of Darwin's elephant population can be modeled by the Leslie matrix method, which we generalize here to males as well. Darwin's most often cited figure, about 19 million elephants after 750 years is not a typical outcome, actually a very unlikely result under more realistic, although still hypothetical situations. We provide a recursion formula suggesting that Darwin's original model corresponds to a tribonacci series, a proof showing that sex ratio is constant over all age classes, and a derivation of a generating function of the sequence.
Collapse
Affiliation(s)
- János Podani
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös University, Pázmány P. s. 1.C, 1117, Budapest, Hungary.
- MTA-ELTE-MTM Ecology Research Group, Eötvös University, Pázmány P. s. 1.C, 1117, Budapest, Hungary.
| | - Ádám Kun
- MTA-ELTE-MTM Ecology Research Group, Eötvös University, Pázmány P. s. 1.C, 1117, Budapest, Hungary
| | - András Szilágyi
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Eötvös University, Pázmány P. s. 1.C, 1117, Budapest, Hungary
| |
Collapse
|
40
|
Hamel S, Gaillard JM, Yoccoz NG, Bassar RD, Bouwhuis S, Caswell H, Douhard M, Gangloff EJ, Gimenez O, Lee PC, Smallegange IM, Steiner UK, Vedder O, Vindenes Y. General conclusion to the special issue Moving forward on individual heterogeneity. OIKOS 2018. [DOI: 10.1111/oik.05223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Sandra Hamel
- Dept of Arctic and Marine Biology; UiT The Arctic Univ. of Norway; Tromsø Norway
| | | | - Nigel G. Yoccoz
- Dept of Arctic and Marine Biology; UiT The Arctic Univ. of Norway; Tromsø Norway
| | - Ron D. Bassar
- Dept of Biology; Williams College; Williamstown MA USA
| | - Sandra Bouwhuis
- Inst of Avian Research ‘Vogelwarte Helgoland’; Wilhelmshaven Germany
| | - Hal Caswell
- Inst. for Biodiversity and Ecosystem Dynamics; Univ. of Amsterdam; Amsterdam the Netherlands
| | | | - Eric J. Gangloff
- Station d’Ecologie Théorique et Expérimentale du CNRS; Moulis France
| | - Olivier Gimenez
- CEFE UMR 5175; CNRS, Univ. de Montpellier, Univ. Paul-Valéry Montpellier; Montpellier France
| | - Phylis C. Lee
- Psychology, Faculty of Natural Sciences; Univ. of Stirling; Stirling UK
| | - Isabel M. Smallegange
- Inst. for Biodiversity and Ecosystem Dynamics; Univ. of Amsterdam; Amsterdam the Netherlands
| | - Ulrich K. Steiner
- Max-Planck Odense Centre on the Biodemography of Aging, and Dept of Biology; Odense Denmark
| | - Oscar Vedder
- Inst of Avian Research ‘Vogelwarte Helgoland’; Wilhelmshaven Germany
- Groningen Inst. for Evolutionary Life Sciences; Univ. of Groningen; Groningen the Netherlands
| | | |
Collapse
|
41
|
Goldenberg SZ, Wittemyer G. Orphaned female elephant social bonds reflect lack of access to mature adults. Sci Rep 2017; 7:14408. [PMID: 29089603 PMCID: PMC5663962 DOI: 10.1038/s41598-017-14712-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/13/2017] [Indexed: 11/09/2022] Open
Abstract
Compensatory social behavior in nonhuman animals following maternal loss has been documented, but understanding of how orphans allocate bonding to reconstruct their social networks is limited. Successful social integration may be critical to survival and reproduction for highly social species and, therefore, may be tied to population persistence. We examined the social partners involved in affiliative interactions of female orphans and non-orphans in an elephant population in Samburu, northern Kenya that experienced heightened adult mortality driven by drought and intense ivory poaching. We contrasted partners across different competitive contexts to gain insight to the influence of resource availability on social interactions. Though the number of partners did not differ between orphans and non-orphans, their types of social partners did. Orphans interacted with sisters and matriarchs less while feeding than did non-orphans, but otherwise their affiliates were similar. While resting under spatially concentrated shade, orphans had markedly less access to mature adults but affiliated instead with sisters, bulls, and age mates. Orphan propensity to strengthen bonds with non-dominant animals appears to offer routes to social integration following maternal loss, but lack of interaction with adult females suggests orphans may experience decreased resource access and associated fitness costs in this matriarchal society.
Collapse
Affiliation(s)
- Shifra Z Goldenberg
- Department of Fish, Wildlife, and Conservation Biology, Fort Collins, CO, 80523, USA.
- Save the Elephants, Nairobi, 00200, Kenya.
| | - George Wittemyer
- Department of Fish, Wildlife, and Conservation Biology, Fort Collins, CO, 80523, USA
- Save the Elephants, Nairobi, 00200, Kenya
| |
Collapse
|
42
|
Ferreira SM, Greaver C, Simms C. Elephant population growth in Kruger National Park, South Africa, under a landscape management approach. KOEDOE: AFRICAN PROTECTED AREA CONSERVATION AND SCIENCE 2017. [DOI: 10.4102/koedoe.v59i1.1427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
South African National Parks (SANParks) manage landscapes rather than numbers of elephants (Loxodonta africana) to mitigate the effects that elephants may have on biodiversity, tourism and stakeholder conservation values associated with protected areas. This management philosophy imposes spatial variability of critical resources on elephants. Restoration of such ecological processes through less intensive management predicts a reduction in population growth rates from the eras of intensive management. We collated aerial survey data since 1995 and conducted an aerial total count using a helicopter observation platform during 2015. A minimum of 17 086 elephants were resident in the Kruger National Park (KNP) in 2015, growing at 4.2% per annum over the last generation of elephants (i.e. 12 years), compared to 6.5% annual population growth noted during the intensive management era ending in 1994. This may come from responses of elephants to density and environmental factors manifested through reduced birth rates and increased mortality rates. Authorities should continue to evaluate the demographic responses of elephants to landscape scale interventions directed at restoring the limitation of spatial variance in resource distribution on elephant spatiotemporal dynamics and the consequences that may have for other conservation values.Conservation implications: Conservation managers should continue with surveying elephants in a way that allows the extraction of key variables. Such variables should focus on measures that reflect on how theory predicts elephants should respond to management interventions.
Collapse
|
43
|
Croft DP, Johnstone RA, Ellis S, Nattrass S, Franks DW, Brent LJN, Mazzi S, Balcomb KC, Ford JKB, Cant MA. Reproductive Conflict and the Evolution of Menopause in Killer Whales. Curr Biol 2017; 27:298-304. [PMID: 28089514 DOI: 10.1016/j.cub.2016.12.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/11/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
Abstract
Why females of some species cease ovulation prior to the end of their natural lifespan is a long-standing evolutionary puzzle [1-4]. The fitness benefits of post-reproductive helping could in principle select for menopause [1, 2, 5], but the magnitude of these benefits appears insufficient to explain the timing of menopause [6-8]. Recent theory suggests that the cost of inter-generational reproductive conflict between younger and older females of the same social unit is a critical missing term in classical inclusive fitness calculations (the "reproductive conflict hypothesis" [6, 9]). Using a unique long-term dataset on wild resident killer whales, where females can live decades after their final parturition, we provide the first test of this hypothesis in a non-human animal. First, we confirm previous theoretical predictions that local relatedness increases with female age up to the end of reproduction. Second, we construct a new evolutionary model and show that given these kinship dynamics, selection will favor younger females that invest more in competition, and thus have greater reproductive success, than older females (their mothers) when breeding at the same time. Third, we test this prediction using 43 years of individual-based demographic data in resident killer whales and show that when mothers and daughters co-breed, the mortality hazard of calves from older-generation females is 1.7 times that of calves from younger-generation females. Intergenerational conflict combined with the known benefits conveyed to kin by post-reproductive females can explain why killer whales have evolved the longest post-reproductive lifespan of all non-human animals.
Collapse
Affiliation(s)
- Darren P Croft
- Centre for Research in Animal Behaviour, University of Exeter, Exeter EX4 4QG, UK.
| | - Rufus A Johnstone
- Behaviour and Evolution Group, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Samuel Ellis
- Centre for Research in Animal Behaviour, University of Exeter, Exeter EX4 4QG, UK
| | - Stuart Nattrass
- York Centre for Complex Systems Analysis, University of York, York YO10 5GE, UK
| | - Daniel W Franks
- York Centre for Complex Systems Analysis, University of York, York YO10 5GE, UK
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter EX4 4QG, UK
| | - Sonia Mazzi
- Department of Mathematics, University of York, York YO10 5DD, UK
| | - Kenneth C Balcomb
- Center for Whale Research, 355 Smugglers Cove Road, Friday Harbor, WA 98250, USA
| | - John K B Ford
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Michael A Cant
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
44
|
Mizuno K, Sharma N, Idani G, Sukumar R. Collective behaviour of wild Asian elephants in risky situations: how do social groups cross roads? BEHAVIOUR 2017. [DOI: 10.1163/1568539x-00003465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Among group-living animals, some members may derive benefit by following the decisions of other members. Free-ranging wild Asian elephants in Mudumalai National Park, southern India, must often cross roads and can be disturbed by vehicles. We assessed if measures of road and traffic characteristics serve as indicators of risk, and compared behaviours of different age classes during road-crossing events. More individuals displayed excitable behaviour on wider roads. A larger number of adults entered the road first, which is considered the most dangerous position, compared with immature elephants. Immature individuals tended to move ahead of others on the road, suggesting that it is more important for immature individuals to follow adults at the beginning of a crossing than to follow along for the entire crossing. These findings may suggest that less experienced group members derive benefit by following the decisions of experienced ones under risky situations.
Collapse
Affiliation(s)
- Kaori Mizuno
- Wildlife Research Center of Kyoto University, Kyoto, Japan
| | - Nachiketha Sharma
- Wildlife Research Center of Kyoto University, Kyoto, Japan
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Gen’ichi Idani
- Wildlife Research Center of Kyoto University, Kyoto, Japan
| | - Raman Sukumar
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
45
|
Andersson M. Helping Relatives Survive and Reproduce: Inclusive Fitness and Reproductive Value in Brood Parasitism. Am Nat 2016; 189:138-152. [PMID: 28107054 DOI: 10.1086/689991] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Costly help can raise a relative's reproduction, survival, and reproductive value and increase the inclusive fitness of the donor of help. Donor fitness is explored here in conspecific brood parasitism. In this alternative reproductive tactic, some females, "parasites," lay eggs in nests of other females of the same species, "hosts," suppliers of help that alone take care of the offspring. Modeling shows that hosts can gain inclusive fitness if parasitized by relatives whose reproduction or survival is thereby increased. These predictions are explored in waterfowl with frequent brood parasitism, female-biased philopatry, and neighbor relatedness. Approximate estimates based on waterfowl reproductive and life-history data show that host inclusive-fitness gain is often possible with related parasites. The largest gains can be achieved through increased reproduction, but gain is also possible through higher survival of parasites that avoid increased predation and other risks of nesting. Inclusive fitness depends on parasite reproductive value and can be highest for a host parasitized by her mother and for old, senescent hosts with low fecundity, helping young related parasites. These results and observed levels of host-parasite relatedness suggest that being "parasitized" in waterfowl is sometimes neutral or even advantageous because of inclusive-fitness benefits, contributing to evolution of frequent conspecific brood parasitism in this group.
Collapse
|
46
|
Lusseau D, Lee P. Can We Sustainably Harvest Ivory? Curr Biol 2016; 26:2951-2956. [DOI: 10.1016/j.cub.2016.08.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 11/26/2022]
|
47
|
Saberski ET, Diamond JD, Henneman NF, Levitis DA. Post-reproductive parthenogenetic pea aphids ( Acyrthosiphon pisum) are visually identifiable and disproportionately positioned distally to clonal colonies. PeerJ 2016; 4:e2631. [PMID: 27812427 PMCID: PMC5088610 DOI: 10.7717/peerj.2631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/29/2016] [Indexed: 11/20/2022] Open
Abstract
The role of kin-selection in the evolution of post-reproductive life is controversial. While anthropological and demographic studies strongly suggest that humans and a few other species experience kin selection for significant post-reproductive survival, these results are necessarily correlational. Understanding could therefore be advanced by the development of a globally available, field and laboratory tractable experimental model of kin-selected post-reproductive survival. In only one invertebrate (Quadrartus yoshinomiyai, a gall-forming aphid endemic to Japan) have individuals too old to reproduce been shown to be both numerous in natural habitats and able to help close relatives survive or reproduce. Pea aphids, (Acyrthosiphon pisum), common, tractable organisms, frequently outlive their reproductive ages in laboratories, live in tight interacting groups that are often clonal, and therefore should be evaluated as potential model organisms for the study of adaptive post-reproductive life. The first major step in this process is to identify an optimal method for assessing if a parthenogenetic adult is post-reproductive. We evaluated three methods, relying respectively on isolation in clip cages, visual examination for embryonic eyespots, and dissection. In every case each method identified the same individuals as reproductive versus post-reproductive. While the clip-cage method requires a multi-day wait to produce data, and dissection is inevitably fatal, the eyespot method is quick (under one minute per individual) easy, and non-invasive. This method makes it possible to accurately assess the post-reproductive status of a large number of parthenogenetic pea aphids. We demonstrate the usefulness of the eyespot method in showing that while reproductively valuable adults tend to place themselves near the centers of clonal colonies, less valuable post-reproductive adults are more often at or beyond the edges of colonies. These encouraging early results provide both impetuous and aid for further investigations into the post-reproductive lives of pea aphids.
Collapse
Affiliation(s)
- Erik T. Saberski
- Department of Biology, Bates College, Lewiston, Maine, United States
| | | | | | - Daniel A. Levitis
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
48
|
Prado-Oviedo NA, Bonaparte-Saller MK, Malloy EJ, Meehan CL, Mench JA, Carlstead K, Brown JL. Evaluation of Demographics and Social Life Events of Asian (Elephas maximus) and African Elephants (Loxodonta africana) in North American Zoos. PLoS One 2016; 11:e0154750. [PMID: 27415437 PMCID: PMC4945030 DOI: 10.1371/journal.pone.0154750] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 04/16/2016] [Indexed: 11/19/2022] Open
Abstract
This study quantified social life events hypothesized to affect the welfare of zoo African and Asian elephants, focusing on animals that were part of a large multi-disciplinary, multi-institutional elephant welfare study in North America. Age was calculated based on recorded birth dates and an age-based account of life event data for each elephant was compiled. These event histories included facility transfers, births and deaths of offspring, and births and deaths of non-offspring herd mates. Each event was evaluated as a total number of events per elephant, lifetime rate of event exposure, and age at first event exposure. These were then compared across three categories: species (African vs. Asian); sex (male vs. female); and origin (imported vs. captive-born). Mean age distributions differed (p<0.05) between the categories: African elephants were 6 years younger than Asian elephants, males were 12 years younger than females, and captive-born elephants were 20 years younger than imported elephants. Overall, the number of transfers ranged from 0 to 10, with a 33% higher age-adjusted transfer rate for imported African than imported Asian elephants, and 37% lower rate for imported females than males (p<0.05). Other differences (p<0.05) included a 96% higher rate of offspring births for captive-born females than those imported from range countries, a 159% higher rate of birthing event exposures for captive-born males than for their imported counterparts, and Asian elephant females being 4 years younger than African females when they produced their first calf. In summarizing demographic and social life events of elephants in North American zoos, we found both qualitative and quantitative differences in the early lives of imported versus captive-born elephants that could have long-term welfare implications.
Collapse
Affiliation(s)
- Natalia A. Prado-Oviedo
- Center for Species Survival, Smithsonian Conservation Biology Institute, Smithsonian National Zoological Park, Front Royal, Virginia, United States of America
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, United States of America
| | - Mary K. Bonaparte-Saller
- Department of Animal Science and Center for Animal Welfare, University of California Davis, Davis, California, United States of America
| | - Elizabeth J. Malloy
- Department of Mathematics and Statistics, American University, 4400 Massachusetts Ave. NW, Washington, District of Columbia, United States of America
| | | | - Joy A. Mench
- Department of Animal Science and Center for Animal Welfare, University of California Davis, Davis, California, United States of America
| | - Kathy Carlstead
- Independent Researcher, Portland, Oregon, United States of America
| | - Janine L. Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, Smithsonian National Zoological Park, Front Royal, Virginia, United States of America
| |
Collapse
|
49
|
Lahdenperä M, Mar KU, Lummaa V. Nearby grandmother enhances calf survival and reproduction in Asian elephants. Sci Rep 2016; 6:27213. [PMID: 27282468 PMCID: PMC4901297 DOI: 10.1038/srep27213] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/17/2016] [Indexed: 11/09/2022] Open
Abstract
Usually animals reproduce into old age, but a few species such as humans and killer whales can live decades after their last reproduction. The grandmother hypothesis proposes that such life-history evolved through older females switching to invest in their existing (grand)offspring, thereby increasing their inclusive fitness and selection for post-reproductive lifespan. However, positive grandmother effects are also found in non-menopausal taxa, but evidence of their associated fitness effects is rare and only a few tests of the hypothesis in such species exist. Here we investigate the grandmother effects in Asian elephants. Using a multigenerational demographic dataset on semi-captive elephants in Myanmar, we found that grandcalves from young mothers (<20 years) had 8 times lower mortality risk if the grandmother resided with her grandcalf compared to grandmothers residing elsewhere. Resident grandmothers also decreased their daughters’ inter-birth intervals by one year. In contrast to the hypothesis predictions, the grandmother’s own reproductive status did not modify such grandmother benefits. That elephant grandmothers increased their inclusive fitness by enhancing their daughter’s reproductive rate and success irrespective of their own reproductive status suggests that fitness-enhancing grandmaternal effects are widespread, and challenge the view that grandmother effects alone select for menopause coupled with long post-reproductive lifespan.
Collapse
Affiliation(s)
- Mirkka Lahdenperä
- Section of Ecology, Department of Biology, University of Turku, FIN-20014 Turku, Finland
| | - Khyne U Mar
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Virpi Lummaa
- Section of Ecology, Department of Biology, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|