1
|
Song WJ, Liu PP, Meng ZQ, Jie Ding S, Xia Li H. N-acetylcysteine promotes the proliferation of porcine adipose-derived stem cells during in vitro long-term expansion for cultured meat production. Food Res Int 2023; 166:112606. [PMID: 36914351 DOI: 10.1016/j.foodres.2023.112606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Cultured meat is an efficient, safe and sustainable meat production technology. Adipose-derived stem cell (ADSC) is a promising cell type for cultured meat. In vitro, obtaining numerous of ADSCs is a pivotal step for cultured meat. In this research, we demonstrated that the proliferation and adipogenic differentiation of ADSCs significantly decreased during serial passage. Then, senescence β-galactosidase (SA-β-gal) staining showed that the positive rate of P9 ADSCs was 7.74-fold than P3 ADSCs. Subsequently, RNA sequencing (RNA-seq) was performed for P3 and P9 ADSCs and found that PI3K-AKT pathway was up-regulated, but cell cycle and DNA repair pathway were down-regulated in P9 ADSCs. Then, N-Acetylcysteine (NAC) was added during long-term expansion and showed that NAC enhanced the ADSCs proliferation and maintained adipogenic differentiation. Finally, RNA-seq was performed for P9 ADSCs cultured with or without NAC and showed that NAC restored the cell cycle and DNA repair pathway in P9 ADSCs. These results highlighted that NAC was an excellent supplement for large-scale expansion of porcine ADSCs for cultured meat.
Collapse
Affiliation(s)
- Wen-Juan Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Pei-Pei Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zi-Qing Meng
- College of Food Science and Technology, Nanjing Agricultural University National Center of Meat Quality and Safety Nanjing, MOST Key Laboratory of Meat Processing and Quality Control, MOE Key Laboratory of Meat Processing, MOA Nanjing 210095, China
| | - Shi- Jie Ding
- College of Food Science and Technology, Nanjing Agricultural University National Center of Meat Quality and Safety Nanjing, MOST Key Laboratory of Meat Processing and Quality Control, MOE Key Laboratory of Meat Processing, MOA Nanjing 210095, China
| | - Hui- Xia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Nascimento DR, Azevedo VAN, Barroso PAA, Barrozo LG, Silva BR, Silva AWB, Donato MAM, Peixoto CA, Silva JRV. Effects of N-acetylcysteine on Growth, Viability, and Ultrastructure of In Vitro Cultured Bovine Secondary Follicles. Animals (Basel) 2022; 12:ani12223190. [PMID: 36428416 PMCID: PMC9687016 DOI: 10.3390/ani12223190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the effects of different concentrations of N-acetylcysteine (NAC) on the growth, antrum formation, viability, and ultrastructure of bovine secondary follicles cultured in vitro for 18 days. To this end, the follicles were cultured in TCM-199+ medium alone or supplemented with 1.0, 5.0, or 25.0 mM NAC. Follicular growth, antrum formation, viability (calcein-AM and ethidium homodimer-1) and ultrastructure were evaluated at the end of culture period. The results showed that 1.0 mM NAC increased the percentage of growing follicles and the fluorescence intensity for calcein-AM when compared to other treatments (p < 0.05). On the other hand, follicles cultured with 25.0 mM NAC had higher fluorescence intensity for ethidium homodimer-1, which is a sign of degeneration. Ultrastructural analysis showed that oocytes from follicles cultured in control medium alone or with 1 mM NAC had intact zonae pellucidae in close association with oolemmae, but the ooplasm showed mitochondria with a reduced number of cristae. On the other hand, oocytes from follicles cultured with 5 or 25 mM NAC had extremely vacuolated cytoplasm and no recognizable organelles. In conclusion, 1 mM NAC increases cytoplasmic calcein staining and the growth rate in bovine secondary follicles cultured in vitro, but the presence of 5 or 25 mM NAC causes damage in cellular membranes and organelles, as well as reducing the percentages of growing follicles.
Collapse
Affiliation(s)
- Danisvânia R. Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
| | - Venância A. N. Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
| | - Pedro A. A. Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
| | - Laryssa G. Barrozo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
| | - Bianca R. Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
| | - Anderson W. B. Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
| | - Mariana A. M. Donato
- Laboratory of Ultrastructure, CPqAM/FIOCRUZ, Federal University of Pernambuco, Recife CEP 50670-901, PE, Brazil
| | - Christina A. Peixoto
- Laboratory of Ultrastructure, CPqAM/FIOCRUZ, Federal University of Pernambuco, Recife CEP 50670-901, PE, Brazil
| | - José R. V. Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
- Correspondence: ; Tel.: +55-(88)-3611-8000
| |
Collapse
|
3
|
Hamel KM, Liimatta KQ, Belgodere JA, Bunnell BA, Gimble JM, Martin EC. Adipose-Derived Stromal/Stem Cell Response to Tumors and Wounds: Evaluation of Patient Age. Stem Cells Dev 2022; 31:579-592. [PMID: 35262397 PMCID: PMC9836707 DOI: 10.1089/scd.2021.0280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/05/2022] [Indexed: 01/22/2023] Open
Abstract
Tumors were characterized as nonhealing wounds by Virchow in 1858 and Dvorak in 1986. Since then, researchers have analyzed tumors from a new perspective. The parallels between tumorigenesis and physiological wound healing can provide a new framework for developing antitumor therapeutics. One commonality between tumors and wounds is the involvement of the stromal environment, particularly adipose stromal/stem cells (ASCs). ASCs exhibit dual functions, in which they stimulate tumor progression and assist in tissue repair and regeneration. Numerous studies have focused on the role of ASCs in cancer and wound healing, but none to date has linked age, cancer, and wound healing. Furthermore, very few studies have focused on the role of donor-specific characteristics of ASCs, such as age and their role in facilitating ASC behavior in cancer and wound healing. This review article is designed to provide important insights into the impact of donor age on ASC tumor and wound response and their role in facilitating ASC behavior in cancer and wound healing.
Collapse
Affiliation(s)
- Katie M. Hamel
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kara Q. Liimatta
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jorge A. Belgodere
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bruce A. Bunnell
- University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | | | - Elizabeth C. Martin
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
4
|
Orozco E, Birnbrich A, Liberman SR. The Role of N-acetylcysteine in the Treatment of Accidental Submersion of the Hands in Liquid Nitrogen. Cureus 2021; 13:e18129. [PMID: 34589369 PMCID: PMC8460553 DOI: 10.7759/cureus.18129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/28/2022] Open
Abstract
N-acetylcysteine (NAC) is a compound with numerous uses, especially in cases which require prevention of cellular damage. To the authors’ knowledge, no reports of NAC as treatment for liquid nitrogen (LN2) injuries currently exist. We present a case in which a 40-year-old woman accidentally submerged her hands in LN2 while working in a lab. The patient was treated with NAC, antibiotics, and wound care. Six months post-injury, the patient had full range of motion, full sensation, full function, and no pain. Therefore, NAC, in combination with dressing changes and antibiotics, can be used to successfully treat patients with LN2 burns.
Collapse
Affiliation(s)
- Erin Orozco
- Orthopedic Surgery, University of Texas Health Science Center at Houston, Houston, USA
| | - Alysa Birnbrich
- Orthopedic Surgery, Houston Methodist Hospital, Houston, USA
| | - Shari R Liberman
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, USA
| |
Collapse
|
5
|
Jariyamana N, Chuveera P, Dewi A, Leelapornpisid W, Ittichaicharoen J, Chattipakorn S, Srisuwan T. Effects of N-acetyl cysteine on mitochondrial ROS, mitochondrial dynamics, and inflammation on lipopolysaccharide-treated human apical papilla cells. Clin Oral Investig 2021; 25:3919-3928. [PMID: 33404763 DOI: 10.1007/s00784-020-03721-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES N-Acetyl cysteine (NAC), a well-known antioxidant molecule, has been used to modulate oxidative stress and inflammation. However, no studies have examined the effect of NAC in regenerative endodontic procedures (REPs). Therefore, the aim of this study was to investigate the effects of NAC on cell survival, mitochondrial reactive oxygen species (mtROS) production, and inflammatory and mitochondria-related gene expression on lipopolysaccharide (LPS)-treated apical papilla cells (APCs). MATERIALS AND METHODS To assess the NAC concentration, 5 and 10 mM NAC were administered to LPS-treated APCs. Cell proliferation was measured at 24, 48, and 72 h by using AlamarBlue® assay. The 5-mM concentration was further analyzed using different treatment durations: 10 min, 24 h, and the entire study period. The mtROS production was quantified using MitoSOX™ Red and MitoTracker™ Green. RT-PCR was used to detect the expression of IL-6 and TNF-α inflammatory genes and mitochondrial morphology-related genes (Mfn-2/Drp-1 and Bcl-2/Bax) at 6 and 24 h. The statistical significance level was set at 0.05. RESULTS Five-millimolar NAC promoted the highest LPS-treated APC proliferation. The use of 24-h NAC stimulated cell proliferation, whereas the entire-period NAC application (> 48 h) significantly reduced the cell number. The mtROS levels were slightly altered after NAC induction. Ten-minute NAC treatment downregulated the IL-6 and TNF-α expression, whereas the expression of Bcl-2/Bax and Mfn-2/Drp-1 ratios was upregulated at 6 h. CONCLUSIONS Under the LPS-induced inflammatory condition, NAC stimulated APC survival and decreased inflammation. Ten-minute NAC treatment was sufficient to reduce the level of inflammation and maintain the mitochondrial dynamics. CLINICAL RELEVANCE Ten-minute NAC application is sufficient to reduce the level of inflammation and maintain the mitochondrial dynamics. Therefore, NAC may be considered as a potential adjunctive irrigation solution in REPs.
Collapse
Affiliation(s)
- Nutcha Jariyamana
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Patchanee Chuveera
- Department of Family and Community Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Anat Dewi
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Warat Leelapornpisid
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jitjiroj Ittichaicharoen
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Chattipakorn
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Tanida Srisuwan
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
6
|
Panahi M, Rahimi B, Rahimi G, Yew Low T, Saraygord-Afshari N, Alizadeh E. Cytoprotective effects of antioxidant supplementation on mesenchymal stem cell therapy. J Cell Physiol 2020; 235:6462-6495. [PMID: 32239727 DOI: 10.1002/jcp.29660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are earmarked as perfect candidates for cell therapy and tissue engineering due to their capacity to differentiate into different cell types. However, their potential for application in regenerative medicine declines when the levels of the reactive oxygen and nitrogen species (RONS) increase from the physiological levels, a phenomenon which is at least inevitable in ex vivo cultures and air-exposed damaged tissues. Increased levels of RONS can alter the patterns of osteogenic and adipogenic differentiation and inhibit proliferation, as well. Besides, oxidative stress enhances senescence and cell death, thus lowering the success rates of the MSC engraftment. Hence, in this review, we have selected some representatives of antioxidants and newly emerged nano antioxidants in three main categories, including chemical compounds, biometabolites, and protein precursors/proteins, which are proved to be effective in the treatment of MSCs. We will focus on how antioxidants can be applied to optimize the clinical usage of the MSCs and their associated signaling pathways. We have also reviewed several paralleled properties of some antioxidants and nano antioxidants which can be simultaneously used in real-time imaging, scaffolding techniques, and other applications in addition to their primary antioxidative function.
Collapse
Affiliation(s)
- Mohammad Panahi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Golbarg Rahimi
- Department of Cellular and Molecular Biology, University of Esfahan, Esfahan, Iran
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Dludla PV, Mazibuko-Mbeje SE, Nyambuya TM, Mxinwa V, Tiano L, Marcheggiani F, Cirilli I, Louw J, Nkambule BB. The beneficial effects of N-acetyl cysteine (NAC) against obesity associated complications: A systematic review of pre-clinical studies. Pharmacol Res 2019; 146:104332. [DOI: 10.1016/j.phrs.2019.104332] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022]
|
8
|
Buranasin P, Mizutani K, Iwasaki K, Pawaputanon Na Mahasarakham C, Kido D, Takeda K, Izumi Y. High glucose-induced oxidative stress impairs proliferation and migration of human gingival fibroblasts. PLoS One 2018; 13:e0201855. [PMID: 30092096 PMCID: PMC6084939 DOI: 10.1371/journal.pone.0201855] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/23/2018] [Indexed: 12/18/2022] Open
Abstract
Delayed gingival wound healing is widely observed in periodontal patients with diabetes. However, the molecular mechanisms of the impaired function of gingival fibroblasts in diabetes remain unclear. The purpose of this study was to investigate changes in the properties of human gingival fibroblasts (HGFs) under high-glucose conditions. Primary HGFs were isolated from healthy gingiva and cultured with 5.5, 25, 50, and 75 mM glucose for 72 h. In vitro wound healing, 5-ethynyl-2′-deoxyuridine (EdU), and water-soluble tetrazolium salt (WST-8) assays were performed to examine cell migration and proliferation. Lactase dehydrogenase (LDH) levels were measured to determine cytotoxicity. The mRNA expression levels of oxidative stress markers were quantified by real-time PCR. Intracellular reactive oxygen species (ROS) were also measured in live cells. The antioxidant N-acetyl-l-cysteine (NAC, 1 mM) was added to evaluate the involvement of ROS in the glucose effect on HGFs. As a result, the in vitro wound healing assay showed that high glucose levels significantly reduced fibroblast migration and proliferation at 6, 12, 24, 36, and 48 h. The numbers of cells positive for EdU staining were decreased, as was cell viability, at 50 and 75 mM glucose. A significant increase in LDH was proportional to the glucose concentration. The mRNA levels of heme oxygenase-1 and superoxide dismutase-1 and ROS levels were significantly increased in HGFs after 72 h of exposure to 50 mM glucose concentration. The addition of NAC diminished the inhibitory effect of high glucose in the in vitro wound healing assay. The results of the present study show that high glucose impairs the proliferation and migration of HGFs. Fibroblast dysfunction may therefore be caused by high glucose-induced oxidative stress and may explain the delayed gingival wound healing in diabetic patients.
Collapse
Affiliation(s)
- Prima Buranasin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- * E-mail:
| | - Kengo Iwasaki
- Department of Nanomedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Daisuke Kido
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohei Takeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
9
|
Baaße A, Machoy F, Juerß D, Baake J, Stang F, Reimer T, Krapohl BD, Hildebrandt G. Radiation Sensitivity of Adipose-Derived Stem Cells Isolated from Breast Tissue. Int J Mol Sci 2018; 19:ijms19071988. [PMID: 29986519 PMCID: PMC6073524 DOI: 10.3390/ijms19071988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022] Open
Abstract
Within their niche, adipose-derived stem cells (ADSCs) are essential for homeostasis as well as for regeneration. Therefore, the interest of physicians is to use ADSCs as a tool for radiation oncology and regenerative medicine. To investigate related risks, this study analyses the radiation response of adult stem cells isolated from the adipose tissue of the female breast. To avoid donor-specific effects, ADSCs isolated from breast reduction mammoplasties of 10 donors were pooled and used for the radiobiological analysis. The clonogenic survival fraction assay was used to classify the radiation sensitivity in comparison to a more radiation-sensitive (ZR-75-1), moderately sensitive (MCF-7), and resistant (MCF10A) cell lines. Afterwards, cytotoxicity and genotoxicity of irradiation on ADSCs were investigated. On the basis of clonogenic cell survival rates of ADSCs after irradiation, we assign ADSCs an intermediate radiation sensitivity. Furthermore, a high repair capacity of double-strand breaks is related to an altered cell cycle arrest and increased expression of cyclin-dependent kinase (CDK) inhibitor p21. ADSCs isolated from breast tissue exhibit intermediate radiation sensitivity, caused by functional repair mechanisms. Therefore, we propose ADSCs to be a promising tool in radiation oncology.
Collapse
Affiliation(s)
- Annemarie Baaße
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059 Rostock, Germany.
| | - Friederike Machoy
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059 Rostock, Germany.
| | - Dajana Juerß
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059 Rostock, Germany.
| | - Jana Baake
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059 Rostock, Germany.
| | - Felix Stang
- Clinic for Plastic, Hand and Reconstructive Surgery, University Hospital Schleswig-Holstein, Campus Luebeck. Ratzeburger Allee 160, 23538 Luebeck, Germany.
| | - Toralf Reimer
- Department of Obstetrics and Gynecology, University of Rostock, Women's Hospital, Suedring 81, 18059 Rostock, Germany.
| | - Björn Dirk Krapohl
- Berliner Centrum für Musikermedizin, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059 Rostock, Germany.
| |
Collapse
|
10
|
Echeverri-Ruiz N, Haynes T, Landers J, Woods J, Gemma MJ, Hughes M, Del Rio-Tsonis K. A biochemical basis for induction of retina regeneration by antioxidants. Dev Biol 2017; 433:394-403. [PMID: 29291983 PMCID: PMC5753421 DOI: 10.1016/j.ydbio.2017.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
Abstract
The use of antioxidants in tissue regeneration has been studied, but their mechanism of action is not well understood. Here, we analyze the role of the antioxidant N-acetylcysteine (NAC) in retina regeneration. Embryonic chicks are able to regenerate their retina after its complete removal from retinal stem/progenitor cells present in the ciliary margin (CM) of the eye only if a source of exogenous factors, such as FGF2, is present. This study shows that NAC modifies the redox status of the CM, initiates self-renewal of the stem/progenitor cells, and induces regeneration in the absence of FGF2. NAC works as an antioxidant by scavenging free radicals either independently or through the synthesis of glutathione (GSH), and/or by reducing oxidized proteins through a thiol disulfide exchange activity. We dissected the mechanism used by NAC to induce regeneration through the use of inhibitors of GSH synthesis and the use of other antioxidants with different biochemical structures and modes of action, and found that NAC induces regeneration through its thiol disulfide exchange activity. Thus, our results provide, for the first time, a biochemical basis for induction of retina regeneration. Furthermore, NAC induction was independent of FGF receptor signaling, but dependent on the MAPK (pErk1/2) pathway.
Collapse
Affiliation(s)
- Nancy Echeverri-Ruiz
- Department of Biology and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA
| | - Tracy Haynes
- Department of Biology and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA
| | - Joseph Landers
- Department of Biology and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA
| | - Justin Woods
- Department of Biology and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA
| | - Michael J Gemma
- Department of Biology and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA
| | - Michael Hughes
- Department of Statistics and Statistical Consulting Center, Miami University, Oxford, OH 45056, USA
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| |
Collapse
|
11
|
Baaße A, Juerß D, Reape E, Manda K, Hildebrandt G. Promoting effects of adipose-derived stem cells on breast cancer cells are reversed by radiation therapy. Cytotechnology 2017; 70:701-711. [PMID: 29188405 DOI: 10.1007/s10616-017-0172-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
Partial breast irradiation of early breast cancer patients after lumpectomy and the use of endogenous adipose tissue (AT) for breast reconstruction are promising applications to reduce the side effects of breast cancer therapy. This study tries to investigate the possible risks associated with these therapeutic approaches. It also examines the influence of adipose derived stem cells (ADSCs) as part of the breast cancer microenvironment, and endogenous AT on breast cancer cells following radiation therapy. ADSCs, isolated from human reduction mammoplasties of healthy female donors, exhibited multilineage capacity and specific surface markers. The promoting effects of ADSCs on the growth and survival fraction of breast cancer cells were reversed by treatment with high (8 Gy) or medium (2 Gy) radiation doses. In addition, a suppressing influence on breast cancer growth could be detected by co-culturing with irradiated ADSCs (8 Gy). Furthermore the clonogenic survival of unirradiated tumor cells was reduced by medium of irradiated ADSCs. In conclusion, radiation therapy changed the interactions of ADSCs and breast cancer cells. On the basis of our work, the importance of further studies to exclude potential risks of ADSCs in regenerative applications and radiotherapy has been emphasized.
Collapse
Affiliation(s)
- Annemarie Baaße
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059, Rostock, Germany.
| | - Dajana Juerß
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059, Rostock, Germany
| | - Elaine Reape
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059, Rostock, Germany
| | - Katrin Manda
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059, Rostock, Germany
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059, Rostock, Germany
| |
Collapse
|
12
|
Yoo K, Suh KY, Choi GH, Kwak IS, Seo DK, Kym D, Yoon H, Cho YS, Kim HO. Serial Changes of Heat Shock Protein 70 and Interleukin-8 in Burn Blister Fluid. Ann Dermatol 2017; 29:194-199. [PMID: 28392647 PMCID: PMC5383745 DOI: 10.5021/ad.2017.29.2.194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 12/22/2022] Open
Abstract
Background It has been reported that heat shock protein 70 (HSP70) and interleukin-8 (IL-8) play an important role in cells during the wound healing process. However, there has been no report on the effect of HSP70 and IL-8 on the blisters of burn patients. Objective This study aimed to evaluate the serial quantitative changes of HSP70 and IL-8 in burn blisters. Methods Twenty-five burn patients were included, for a total of 36 cases: twenty cases on the first day, six cases on the second, five cases on the third, three cases on the fourth, and two cases on the fifth. A correlation analysis was performed to determine the relationship between the concentration of HSP70 and IL-8 and the length of the treatment period. Results The HSP70 concentration was the highest on the first day, after which it decreased down to near zero. Most HSP70 was generated during the first 12 hours after the burn accident. There was no correlation between the concentration of HSP70 on the first day and the length of the treatment period. No measurable concentration of IL-8 was detected before 5 hours, but the concentration started to increase after 11 hours. The peak value was measured on the fourth day. Conclusion While HSP70 increased in the first few hours and decreased afterwards, IL-8 was produced after 11 hours and increased afterward in burn blister fluid. These findings provide new evidence on serial changes of inflammatory mediators in burn blister fluid.
Collapse
Affiliation(s)
- Kicheol Yoo
- Department of Emergency Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Kang Yeol Suh
- Department of Emergency Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Gi Hun Choi
- Department of Emergency Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - In-Suk Kwak
- Department of Anesthesiology and Pain Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Dong Kook Seo
- Department of Plasticsurgery, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Dohern Kym
- Department of Surgery, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Hyeon Yoon
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Yong Se Cho
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Hye One Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Mao G, Goswami M, Kalen AL, Goswami PC, Sarsour EH. N-acetyl-L-cysteine increases MnSOD activity and enhances the recruitment of quiescent human fibroblasts to the proliferation cycle during wound healing. Mol Biol Rep 2015; 43:31-9. [PMID: 26671656 DOI: 10.1007/s11033-015-3935-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/08/2015] [Indexed: 01/30/2023]
Abstract
The rebuilding of the connective tissue during wound healing requires the recruitment of fibroblasts to the wound area as well as reentry of quiescent fibroblasts to the proliferative cycle. Whether this process can be modulated by a small molecular weight thiol antioxidant N-acetyl-L-cysteine (NAC) was tested in normal human skin fibroblasts (NHFs) using a uni-directional wound healing assay. NAC treated cells demonstrated a decreased migration rate but increased number of proliferating cells recruited into the wound area post wounding. Fifteen day quiescent control and NAC treated NHFs were re-plated at a lower density and cell numbers counted at different days post-plating. Interestingly, NAC treated cells exhibited increased cellular proliferation indicated by both decreased cell population doubling time and increased S phase cells. NAC treated cells demonstrated decreased steady state levels of reactive oxygen species as well as increased protein and activity levels of manganese superoxide dismutase (MnSOD). NAC treatment failed to induce proliferation in quiescent cells lacking MnSOD expression. These results demonstrate that NAC enhanced the recruitment of quiescent NHFs into proliferation cycle during wound healing. Our results also suggest that the wound healing properties of NAC might be due to its ability to induce and enhance MnSOD expression and activity. Altogether, these findings suggest NAC might be potentially developed as a dietary intervention to improve tissue injury in animals and humans.
Collapse
Affiliation(s)
- Gaowei Mao
- B180 Med Labs, Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Monali Goswami
- B180 Med Labs, Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Amanda L Kalen
- B180 Med Labs, Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Prabhat C Goswami
- B180 Med Labs, Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Ehab H Sarsour
- B180 Med Labs, Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
14
|
Ozkaya H, Bahat G, Tufan A, Doğan H, Bilicen Z, Karan M. Successful treatment of non-healing pressure ulcers with topical n-acetyl cysteine. J Wound Care 2015; 24:606, 608-11. [DOI: 10.12968/jowc.2015.24.12.606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- H. Ozkaya
- Istanbul Metropolitan Municipality, Department of Health and Social Services, Kayışdağı Darulaceze Ministry, Kayışdağı, Ataşehir, Istanbul, 34755, Turkey
| | - G. Bahat
- Istanbul Medical School, Department of Internal Medicine, Division of Geriatrics, Capa, Fatih, Istanbul, 34390, Turkey
| | - A. Tufan
- Istanbul Medical School, Department of Internal Medicine, Division of Geriatrics, Capa, Fatih, Istanbul, 34390, Turkey
| | - H. Doğan
- Istanbul Metropolitan Municipality, Department of Health and Social Services, Kayışdağı Darulaceze Ministry, Kayışdağı, Ataşehir, Istanbul, 34755, Turkey
| | - Z. Bilicen
- Istanbul Metropolitan Municipality, Department of Health and Social Services, Kayışdağı Darulaceze Ministry, Kayışdağı, Ataşehir, Istanbul, 34755, Turkey
| | - M.A. Karan
- Istanbul Medical School, Department of Internal Medicine, Division of Geriatrics, Capa, Fatih, Istanbul, 34390, Turkey
| |
Collapse
|
15
|
Yang J, Xiong L, Wang R, Yuan Q, Xia Y, Sun J, Horch RE. In vitro expression of cytokeratin 18, 19 and tube formation of adipose-derived stem cells induced by the breast epithelial cell line HBL-100. J Cell Mol Med 2015; 19:2827-31. [PMID: 26416346 PMCID: PMC4687699 DOI: 10.1111/jcmm.12673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 08/03/2015] [Indexed: 12/12/2022] Open
Abstract
Fat transplantation is increasingly used in breast augmentation; and recently, the issue of safety concerns from a cellular and molecular point of view has been raised. In this study, attentions were paid to the interaction between adipose-derived stem cells (ADSC) and mammary epithelial cells: human breast cancer cell line - 100 (HBL - 100) cells were used to simulate the normal microenvironment in breast tissue, ADSCs were harvest from human and co-cultured with HBL-100 cells. It was found that ADSCs formed tube-like structures in the co-culture with HBL-100 cells in contrast to the normal morphology of ADSCs in the control group. In addition, the immunofluorescence imaging showed that cytokeratin 18 and 19 (CK18 and 19) were significantly expressed in ADSCs after the co-culture with HBL-100 cells. The ultrastructure of those ADSCs also showed epithelial changes. In conclusion, ADSCs are not biological stable when co-cultured with HBL-100 cells. They differentiate into epithelial-like cells with the expression of epithelial surface marks (CK 18, 19) and form tube-like structures. This may offer an important evidence for the further study of clinical application of transplanting ADSCs rich adipose tissue into the breast in the future.
Collapse
Affiliation(s)
- Jie Yang
- Department of Plastic and Reconstructive Surgery, Union Hospital, Huazhong Science & Technology University, Wuhan, Hubei, China
| | - Lingyun Xiong
- Department of Plastic and Reconstructive Surgery, Union Hospital, Huazhong Science & Technology University, Wuhan, Hubei, China
| | - Rongrong Wang
- Department of Plastic and Reconstructive Surgery, Union Hospital, Huazhong Science & Technology University, Wuhan, Hubei, China
| | - Quan Yuan
- Department of Plastic and Reconstructive Surgery, Union Hospital, Huazhong Science & Technology University, Wuhan, Hubei, China
| | - Yun Xia
- Department of Plastic and Reconstructive Surgery, Union Hospital, Huazhong Science & Technology University, Wuhan, Hubei, China
| | - Jiaming Sun
- Department of Plastic and Reconstructive Surgery, Union Hospital, Huazhong Science & Technology University, Wuhan, Hubei, China
| | - Raymund E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University, Erlangen-Nuernberg, FAU, Germany
| |
Collapse
|
16
|
Freese KE, Kokai L, Edwards RP, Philips BJ, Sheikh MA, Kelley J, Comerci J, Marra KG, Rubin JP, Linkov F. Adipose-derived stems cells and their role in human cancer development, growth, progression, and metastasis: a systematic review. Cancer Res 2015; 75:1161-8. [PMID: 25736688 DOI: 10.1158/0008-5472.can-14-2744] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022]
Abstract
Obesity is a well recognized risk factor for several types of cancers, many of which occur solely or disproportionately in women. Adipose tissue is a rich source of adipose-derived stem cells (ASC), which have received attention for their role in cancer behavior. The purpose of this systematic review is to present the existing literature on the role of ASCs in the growth, development, progression, and metastasis of cancer, with an emphasis on malignancies that primarily affect women. To accomplish this goal, the bibliographic database PubMed was systematically searched for articles published between 2001 and 2014 that address ASCs' relationship to human cancer. Thirty-seven articles on ASCs' role in human cancer were reviewed. Literature suggests that ASCs exhibit cancer-promoting properties, influence/are influenced by the tumor microenvironment, promote angiogenesis, and may be associated with pathogenic processes through a variety of mechanisms, such as playing a role in hypoxic tumor microenvironment. ASCs appear to be important contributors to tumor behavior, but research in areas specific to women's cancers, specifically endometrial cancer, is scarce. Also, because obesity continues to be a major health concern, it is important to continue research in this area to improve understanding of the impact adiposity has on cancer incidence.
Collapse
Affiliation(s)
- Kyle E Freese
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Women's Research Institute, Pittsburgh, Pennsylvania. Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania.
| | - Lauren Kokai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania. McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania. Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert P Edwards
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Women's Research Institute, Pittsburgh, Pennsylvania
| | - Brian J Philips
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Women's Research Institute, Pittsburgh, Pennsylvania
| | - M Aamir Sheikh
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Women's Research Institute, Pittsburgh, Pennsylvania
| | - Joseph Kelley
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Women's Research Institute, Pittsburgh, Pennsylvania
| | - John Comerci
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Women's Research Institute, Pittsburgh, Pennsylvania
| | - Kacey G Marra
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania. McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania. Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - J Peter Rubin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania. McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania. Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Faina Linkov
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Women's Research Institute, Pittsburgh, Pennsylvania. Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Cremers NAJ, Lundvig DMS, van Dalen SCM, Schelbergen RF, van Lent PLEM, Szarek WA, Regan RF, Carels CE, Wagener FADTG. Curcumin-induced heme oxygenase-1 expression prevents H2O2-induced cell death in wild type and heme oxygenase-2 knockout adipose-derived mesenchymal stem cells. Int J Mol Sci 2014; 15:17974-99. [PMID: 25299695 PMCID: PMC4227200 DOI: 10.3390/ijms151017974] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/11/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) administration is a promising adjuvant therapy to treat tissue injury. However, MSC survival after administration is often hampered by oxidative stress at the site of injury. Heme oxygenase (HO) generates the cytoprotective effector molecules biliverdin/bilirubin, carbon monoxide (CO) and iron/ferritin by breaking down heme. Since HO-activity mediates anti-apoptotic, anti-inflammatory, and anti-oxidative effects, we hypothesized that modulation of the HO-system affects MSC survival. Adipose-derived MSCs (ASCs) from wild type (WT) and HO-2 knockout (KO) mice were isolated and characterized with respect to ASC marker expression. In order to analyze potential modulatory effects of the HO-system on ASC survival, WT and HO-2 KO ASCs were pre-treated with HO-activity modulators, or downstream effector molecules biliverdin, bilirubin, and CO before co-exposure of ASCs to a toxic dose of H2O2. Surprisingly, sensitivity to H2O2-mediated cell death was similar in WT and HO-2 KO ASCs. However, pre-induction of HO-1 expression using curcumin increased ASC survival after H2O2 exposure in both WT and HO-2 KO ASCs. Simultaneous inhibition of HO-activity resulted in loss of curcumin-mediated protection. Co-treatment with glutathione precursor N-Acetylcysteine promoted ASC survival. However, co-incubation with HO-effector molecules bilirubin and biliverdin did not rescue from H2O2-mediated cell death, whereas co-exposure to CO-releasing molecules-2 (CORM-2) significantly increased cell survival, independently from HO-2 expression. Summarizing, our results show that curcumin protects via an HO-1 dependent mechanism against H2O2-mediated apoptosis, and likely through the generation of CO. HO-1 pre-induction or administration of CORMs may thus form an attractive strategy to improve MSC therapy.
Collapse
Affiliation(s)
- Niels A J Cremers
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Ditte M S Lundvig
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Stephanie C M van Dalen
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Rik F Schelbergen
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Peter L E M van Lent
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Walter A Szarek
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Carine E Carels
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Horch RE, Boos AM, Quan Y, Bleiziffer O, Detsch R, Boccaccini AR, Alexiou C, Sun J, Beier JP, Arkudas A. Cancer research by means of tissue engineering--is there a rationale? J Cell Mol Med 2013; 17:1197-206. [PMID: 24118692 PMCID: PMC4159017 DOI: 10.1111/jcmm.12130] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/14/2013] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering (TE) has evoked new hopes for the cure of organ failure and tissue loss by creating functional substitutes in the laboratory. Besides various innovations in the context of Regenerative Medicine (RM), TE also provided new technology platforms to study mechanisms of angiogenesis and tumour cell growth as well as potentially tumour cell spreading in cancer research. Recent advances in stem cell technology--including embryonic and adult stem cells and induced pluripotent stem cells--clearly show the need to better understand all relevant mechanisms to control cell growth when such techniques will be administered to patients. Such TE-Cancer research models allow us to investigate the interactions that occur when replicating physiological and pathological conditions during the initial phases of replication, morphogenesis, differentiation and growth under variable given conditions. Tissue microenvironment has been extensively studied in many areas of TE and it plays a crucial role in cell signalling and regulation of normal and malignant cell functions. This article is intended to give an overview on some of the most recent developments and possible applications of TE and RM methods with regard to the improvement of cancer research with TE platforms. The synthesis of TE with innovative methods of molecular biology and stem-cell technology may help investigate and potentially modulate principal phenomena of tumour growth and spreading, as well as tumour-related angiogenesis. In the future, these models have the potential to investigate the optimal materials, culture conditions and material structure to propagate tumour growth.
Collapse
Affiliation(s)
- Raymund E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany; Emerging Fields Initiative, FAU Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wu AY, Morrow DM. Autologous fat transfer with in-situ mediation (AIM): a novel and compliant method of adult mesenchymal stem cell therapy. J Transl Med 2013; 11:136. [PMID: 23725573 PMCID: PMC3679930 DOI: 10.1186/1479-5876-11-136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/20/2013] [Indexed: 02/06/2023] Open
Abstract
Background In an attempt to engineer a regulatory compliant form of cell assisted lipotransfer in the U.S., the authors developed Autologous Fat Transfer with In-situ Mediation (AIM) for reconstruction of a refractory surgical scar. Methods This method incorporates use of accepted standard procedures like autologous fat grafting and intradermal injection of NB6 collagenase to release adipose stem cells from a naturally occurring high concentration stromal vascular fraction (SVF) fat graft. To prevent off-target effects of collagenase, a hyaluronic acid and serum deactivation barrier is placed circumferentially around the operative site. Findings This novel protocol was well tolerated by the patient and improved scar appearance, mobility and texture. Deepest scar contour defect correction was 80% and 77% at 4 and 12 weeks respectively. Conclusion AIM appears to be a practical and viable option for scar reconstruction requiring small to moderate volume correction.
Collapse
|