1
|
M'Rad Y, Charbonnier C, de Oliveira ME, Guillemin PC, Crowe LA, Kössler T, Poletti PA, Boudabbous S, Ricoeur A, Salomir R, Lorton O. Computer-Aided Intra-Operatory Positioning of an MRgHIFU Applicator Dedicated to Abdominal Thermal Therapy Using Particle Swarm Optimization. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:524-533. [PMID: 39050977 PMCID: PMC11268946 DOI: 10.1109/ojemb.2024.3410118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE Transducer positioning for liver ablation by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) is challenging due to the presence of air-filled organs or bones on the beam path. This paper presents a software tool developed to optimize the positioning of a HIFU transducer dedicated to abdominal thermal therapy, to maximize the treatment's efficiency while minimizing the near-field risk. METHODS A software tool was developed to determine the theoretical optimal position (TOP) of the transducer based on the minimization of a cost function using the particle swarm optimization (PSO). After an initialization phase and a manual segmentation of the abdomen of 5 pigs, the program randomly generates particles with 2 degrees of freedom and iteratively minimizes the cost function of the particles considering 3 parameters weighted according to their criticality. New particles are generated around the best position obtained at the previous step and the process is repeated until the optimal position of the transducer is reached. MR imaging data from in vivo HIFU ablation in pig livers was used for ground truth comparison between the TOP and the experimental position (EP). RESULTS As compared to the manual EP, the rotation difference with the TOP was on average -3.1 ± 7.1° and the distance difference was on average -7.1 ± 5.4 mm. The computational time to suggest the TOP was 20s. The software tool is modulable and demonstrated consistency and robustness when repeating the calculation and changing the initial position of the transducer.
Collapse
Affiliation(s)
- Yacine M'Rad
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
| | | | | | - Pauline Coralie Guillemin
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
| | | | - Thibaud Kössler
- University Hopsitals of GenevaOncology Department1205GenevaSwitzerland
| | | | - Sana Boudabbous
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
- University Hospitals of GenevaRadiology Department1205GenevaSwitzerland
| | - Alexis Ricoeur
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
- University Hospitals of GenevaRadiology Department1205GenevaSwitzerland
| | - Rares Salomir
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
- University Hospitals of GenevaRadiology Department1205GenevaSwitzerland
| | - Orane Lorton
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
- University Hospitals of GenevaRadiology Department1205GenevaSwitzerland
| |
Collapse
|
2
|
Lorton O, Guillemin PC, Peloso A, M’Rad Y, Crowe LA, Koessler T, Poletti PA, Boudabbous S, Ricoeur A, Salomir R. In Vivo Thermal Ablation of Deep Intrahepatic Targets Using a Super-Convergent MRgHIFU Applicator and a Pseudo-Tumor Model. Cancers (Basel) 2023; 15:3961. [PMID: 37568777 PMCID: PMC10417404 DOI: 10.3390/cancers15153961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND HIFU ablation of liver malignancies is particularly challenging due to respiratory motion, high tissue perfusion and the presence of the rib cage. Based on our previous development of a super-convergent phased-array transducer, we aimed to further investigate, in vivo, its applicability to deep intrahepatic targets. METHODS In a series of six pigs, a pseudo-tumor model was used as target, visible both on intra-operatory MRI and post-mortem gross pathology. The transcostal MRgHIFU ablation was prescribed coplanar with the pseudo-tumor, either axial or sagittal, but deliberately shifted 7 to 18 mm to the side. No specific means of protection of the ribs were implemented. Post-treatment MRI follow-up was performed at D7, followed by animal necropsy and gross pathology of the liver. RESULTS The pseudo-tumor was clearly identified on T1w MR imaging and subsequently allowed the MRgHIFU planning. The peak temperature at the focal point ranged from 58-87 °C. Gross pathology confirmed the presence of the pseudo-tumor and the well-delineated MRgHIFU ablation at the expected locations. CONCLUSIONS The specific design of the transducer enabled a reliable workflow. It demonstrated a good safety profile for in vivo transcostal MRgHIFU ablation of deep-liver targets, graded as challenging for standard surgery.
Collapse
Affiliation(s)
- Orane Lorton
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Pauline Coralie Guillemin
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Andrea Peloso
- Visceral Surgery Division, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Yacine M’Rad
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | | | - Thibaud Koessler
- Oncology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | | | - Sana Boudabbous
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Alexis Ricoeur
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Rares Salomir
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
3
|
Holman R, Guillemin PC, Lorton O, Desgranges S, Contino-Pépin C, Salomir R. Assessing Enhanced Acoustic Absorption From Sonosensitive Perfluorocarbon Emulsion With Magnetic Resonance-Guided High-Intensity Focused Ultrasound and a Percolated Tissue-Mimicking Flow Phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1510-1517. [PMID: 37117139 DOI: 10.1016/j.ultrasmedbio.2023.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Sonosensitive high-boiling point perfluorocarbon F8TAC18-PFOB emulsions previously exhibited thermal enhancement during focused ultrasound heating in ex vivo pig livers, kidneys and a laminar flow phantom. The main objectives of this study were to evaluate heating under turbulent conditions, observe perfusion effects, quantify heating in terms of acoustic absorption and model the experimental data. METHODS In this study, similar perfluorocarbon emulsions were circulated at incremental concentrations of 0.07, 0.13, 0.19 and 0.25% v:v through a percolated turbulent flow phantom, more representative of the biological tissue than a laminar flow phantom. The concentrations represent the droplet content in only the perfused fluid, rather than the droplet concentration throughout the entire cross-section. The temperature was measured with magnetic resonance thermometry, during focused ultrasound sonications of 67 W, 95% duty cycle and 33 s duration. These were used in Bioheat equation simulations to investigate in silico the thermal phenomena. The temperature change was compared with the control condition by circulating de-gassed and de-ionized water through the flow phantom without droplets. RESULTS With these 1.24 µm diameter droplets at 0.25% v:v, the acoustic absorption coefficient increased from 0.93 ± 0.05 at 0.0% v:v to 1.82 ± 0.22 m-1 at 0.25% v:v using a 0.1 mL s-1 flow rate. Without perfusion at 0.25% v:v, an increase was observed from 1.23 ± 0.07 m-1 at 0.0% v:v to 1.65 ± 0.17 m-1. CONCLUSION The results further support previously reported thermal enhancement with F8TAC18-PFOB emulsion, quantified the increased absorption at small concentration intervals, illustrated that the effects can be observed in a variety of visceral tissue models and provided a method to simulate untested scenarios.
Collapse
Affiliation(s)
- Ryan Holman
- Image Guided Interventions Laboratory, Department of Radiology, University of Geneva, Geneva, Switzerland.
| | - Pauline C Guillemin
- Image Guided Interventions Laboratory, Department of Radiology, University of Geneva, Geneva, Switzerland
| | - Orane Lorton
- Image Guided Interventions Laboratory, Department of Radiology, University of Geneva, Geneva, Switzerland
| | - Stéphane Desgranges
- Equipe Systèmes Amphiphiles bioactifs et Formulations Eco-compatibles, Unité Propre de Recherche et d'Innovation (UPRI), Avignon University, Avignon, France
| | - Christiane Contino-Pépin
- Equipe Systèmes Amphiphiles bioactifs et Formulations Eco-compatibles, Unité Propre de Recherche et d'Innovation (UPRI), Avignon University, Avignon, France
| | - Rares Salomir
- Image Guided Interventions Laboratory, Department of Radiology, University of Geneva, Geneva, Switzerland; Radiology Division, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Sailer A, Ghanouni P, Schade GR, Napoli A, Vidal-Jove J, Raman SS, Mendiratta-Lala M, Ghai S, Abreu A, Sundaram KM, Westphalen A, Arora S. Therapeutic US Applications for the Abdomen and Pelvis. Radiographics 2022; 42:E182-E183. [PMID: 36190852 PMCID: PMC9539095 DOI: 10.1148/rg.220044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 03/25/2023]
Abstract
US and MRI-guided therapeutic US (TUS) can aid in the treatment of prostate, liver, and pancreatic cancer, as well as uterine fibroids and osseous metastases, and understanding the selection and optimization of treatment strategies is essential to furthering TUS advances and innovations.
Collapse
Affiliation(s)
- Anne Sailer
- From the Section of Interventional Radiology, Dept of Radiology and
Biomedical Imaging, Yale School of Medicine, 333 Cedar St, PO Box 208042, Room
TE-2, New Haven, CT 06520 (A.S., S.A.); Dept of Rad/Body MRI, Dept of Radiology,
Stanford Univ, Lucas Ctr, Stanford, Calif (P.G.); Dept of Urology, Univ of
Washington School of Medicine, Seattle, Wash (G.R.S., A.W.); Dept of
Radiological Sciences, MRgFUS and Cardiovascular Imaging Unit, Sapienza Univ of
Rome, School of Medicine, Rome, Italy (A.N.); Institut Khuab for Interventional
Oncology, Comprehensive Tumor Ctr Barcelona, Barcelona, Spain (J.V.J.); Dept of
Interventional and Diagnostic Radiology, Univ of California Los Angeles, Los
Angeles, Calif (S.S.R.); Abdominal and Cross-Sectional Interventional Radiology,
Dept of Radiology, Univ of Michigan School of Medicine, Ann Arbor, Mich
(M.M.L.); Dept of Medical Imaging, Univ Health Network–Mount Sinai
Hosp–Women’s College Hosp, Univ of Toronto, Toronto, Canada
(S.G.); Inst of Urology, Univ of Southern California–USC School of
Medicine, Los Angeles, Calif (A.A.); and Dept of Radiology, Hosp of the Univ of
Pennsylvania, Philadelphia, Pa (K.M.S.)
| | - Pejman Ghanouni
- From the Section of Interventional Radiology, Dept of Radiology and
Biomedical Imaging, Yale School of Medicine, 333 Cedar St, PO Box 208042, Room
TE-2, New Haven, CT 06520 (A.S., S.A.); Dept of Rad/Body MRI, Dept of Radiology,
Stanford Univ, Lucas Ctr, Stanford, Calif (P.G.); Dept of Urology, Univ of
Washington School of Medicine, Seattle, Wash (G.R.S., A.W.); Dept of
Radiological Sciences, MRgFUS and Cardiovascular Imaging Unit, Sapienza Univ of
Rome, School of Medicine, Rome, Italy (A.N.); Institut Khuab for Interventional
Oncology, Comprehensive Tumor Ctr Barcelona, Barcelona, Spain (J.V.J.); Dept of
Interventional and Diagnostic Radiology, Univ of California Los Angeles, Los
Angeles, Calif (S.S.R.); Abdominal and Cross-Sectional Interventional Radiology,
Dept of Radiology, Univ of Michigan School of Medicine, Ann Arbor, Mich
(M.M.L.); Dept of Medical Imaging, Univ Health Network–Mount Sinai
Hosp–Women’s College Hosp, Univ of Toronto, Toronto, Canada
(S.G.); Inst of Urology, Univ of Southern California–USC School of
Medicine, Los Angeles, Calif (A.A.); and Dept of Radiology, Hosp of the Univ of
Pennsylvania, Philadelphia, Pa (K.M.S.)
| | - George R. Schade
- From the Section of Interventional Radiology, Dept of Radiology and
Biomedical Imaging, Yale School of Medicine, 333 Cedar St, PO Box 208042, Room
TE-2, New Haven, CT 06520 (A.S., S.A.); Dept of Rad/Body MRI, Dept of Radiology,
Stanford Univ, Lucas Ctr, Stanford, Calif (P.G.); Dept of Urology, Univ of
Washington School of Medicine, Seattle, Wash (G.R.S., A.W.); Dept of
Radiological Sciences, MRgFUS and Cardiovascular Imaging Unit, Sapienza Univ of
Rome, School of Medicine, Rome, Italy (A.N.); Institut Khuab for Interventional
Oncology, Comprehensive Tumor Ctr Barcelona, Barcelona, Spain (J.V.J.); Dept of
Interventional and Diagnostic Radiology, Univ of California Los Angeles, Los
Angeles, Calif (S.S.R.); Abdominal and Cross-Sectional Interventional Radiology,
Dept of Radiology, Univ of Michigan School of Medicine, Ann Arbor, Mich
(M.M.L.); Dept of Medical Imaging, Univ Health Network–Mount Sinai
Hosp–Women’s College Hosp, Univ of Toronto, Toronto, Canada
(S.G.); Inst of Urology, Univ of Southern California–USC School of
Medicine, Los Angeles, Calif (A.A.); and Dept of Radiology, Hosp of the Univ of
Pennsylvania, Philadelphia, Pa (K.M.S.)
| | - Alessandro Napoli
- From the Section of Interventional Radiology, Dept of Radiology and
Biomedical Imaging, Yale School of Medicine, 333 Cedar St, PO Box 208042, Room
TE-2, New Haven, CT 06520 (A.S., S.A.); Dept of Rad/Body MRI, Dept of Radiology,
Stanford Univ, Lucas Ctr, Stanford, Calif (P.G.); Dept of Urology, Univ of
Washington School of Medicine, Seattle, Wash (G.R.S., A.W.); Dept of
Radiological Sciences, MRgFUS and Cardiovascular Imaging Unit, Sapienza Univ of
Rome, School of Medicine, Rome, Italy (A.N.); Institut Khuab for Interventional
Oncology, Comprehensive Tumor Ctr Barcelona, Barcelona, Spain (J.V.J.); Dept of
Interventional and Diagnostic Radiology, Univ of California Los Angeles, Los
Angeles, Calif (S.S.R.); Abdominal and Cross-Sectional Interventional Radiology,
Dept of Radiology, Univ of Michigan School of Medicine, Ann Arbor, Mich
(M.M.L.); Dept of Medical Imaging, Univ Health Network–Mount Sinai
Hosp–Women’s College Hosp, Univ of Toronto, Toronto, Canada
(S.G.); Inst of Urology, Univ of Southern California–USC School of
Medicine, Los Angeles, Calif (A.A.); and Dept of Radiology, Hosp of the Univ of
Pennsylvania, Philadelphia, Pa (K.M.S.)
| | - Joan Vidal-Jove
- From the Section of Interventional Radiology, Dept of Radiology and
Biomedical Imaging, Yale School of Medicine, 333 Cedar St, PO Box 208042, Room
TE-2, New Haven, CT 06520 (A.S., S.A.); Dept of Rad/Body MRI, Dept of Radiology,
Stanford Univ, Lucas Ctr, Stanford, Calif (P.G.); Dept of Urology, Univ of
Washington School of Medicine, Seattle, Wash (G.R.S., A.W.); Dept of
Radiological Sciences, MRgFUS and Cardiovascular Imaging Unit, Sapienza Univ of
Rome, School of Medicine, Rome, Italy (A.N.); Institut Khuab for Interventional
Oncology, Comprehensive Tumor Ctr Barcelona, Barcelona, Spain (J.V.J.); Dept of
Interventional and Diagnostic Radiology, Univ of California Los Angeles, Los
Angeles, Calif (S.S.R.); Abdominal and Cross-Sectional Interventional Radiology,
Dept of Radiology, Univ of Michigan School of Medicine, Ann Arbor, Mich
(M.M.L.); Dept of Medical Imaging, Univ Health Network–Mount Sinai
Hosp–Women’s College Hosp, Univ of Toronto, Toronto, Canada
(S.G.); Inst of Urology, Univ of Southern California–USC School of
Medicine, Los Angeles, Calif (A.A.); and Dept of Radiology, Hosp of the Univ of
Pennsylvania, Philadelphia, Pa (K.M.S.)
| | - Steven S. Raman
- From the Section of Interventional Radiology, Dept of Radiology and
Biomedical Imaging, Yale School of Medicine, 333 Cedar St, PO Box 208042, Room
TE-2, New Haven, CT 06520 (A.S., S.A.); Dept of Rad/Body MRI, Dept of Radiology,
Stanford Univ, Lucas Ctr, Stanford, Calif (P.G.); Dept of Urology, Univ of
Washington School of Medicine, Seattle, Wash (G.R.S., A.W.); Dept of
Radiological Sciences, MRgFUS and Cardiovascular Imaging Unit, Sapienza Univ of
Rome, School of Medicine, Rome, Italy (A.N.); Institut Khuab for Interventional
Oncology, Comprehensive Tumor Ctr Barcelona, Barcelona, Spain (J.V.J.); Dept of
Interventional and Diagnostic Radiology, Univ of California Los Angeles, Los
Angeles, Calif (S.S.R.); Abdominal and Cross-Sectional Interventional Radiology,
Dept of Radiology, Univ of Michigan School of Medicine, Ann Arbor, Mich
(M.M.L.); Dept of Medical Imaging, Univ Health Network–Mount Sinai
Hosp–Women’s College Hosp, Univ of Toronto, Toronto, Canada
(S.G.); Inst of Urology, Univ of Southern California–USC School of
Medicine, Los Angeles, Calif (A.A.); and Dept of Radiology, Hosp of the Univ of
Pennsylvania, Philadelphia, Pa (K.M.S.)
| | - Mishal Mendiratta-Lala
- From the Section of Interventional Radiology, Dept of Radiology and
Biomedical Imaging, Yale School of Medicine, 333 Cedar St, PO Box 208042, Room
TE-2, New Haven, CT 06520 (A.S., S.A.); Dept of Rad/Body MRI, Dept of Radiology,
Stanford Univ, Lucas Ctr, Stanford, Calif (P.G.); Dept of Urology, Univ of
Washington School of Medicine, Seattle, Wash (G.R.S., A.W.); Dept of
Radiological Sciences, MRgFUS and Cardiovascular Imaging Unit, Sapienza Univ of
Rome, School of Medicine, Rome, Italy (A.N.); Institut Khuab for Interventional
Oncology, Comprehensive Tumor Ctr Barcelona, Barcelona, Spain (J.V.J.); Dept of
Interventional and Diagnostic Radiology, Univ of California Los Angeles, Los
Angeles, Calif (S.S.R.); Abdominal and Cross-Sectional Interventional Radiology,
Dept of Radiology, Univ of Michigan School of Medicine, Ann Arbor, Mich
(M.M.L.); Dept of Medical Imaging, Univ Health Network–Mount Sinai
Hosp–Women’s College Hosp, Univ of Toronto, Toronto, Canada
(S.G.); Inst of Urology, Univ of Southern California–USC School of
Medicine, Los Angeles, Calif (A.A.); and Dept of Radiology, Hosp of the Univ of
Pennsylvania, Philadelphia, Pa (K.M.S.)
| | - Sangeet Ghai
- From the Section of Interventional Radiology, Dept of Radiology and
Biomedical Imaging, Yale School of Medicine, 333 Cedar St, PO Box 208042, Room
TE-2, New Haven, CT 06520 (A.S., S.A.); Dept of Rad/Body MRI, Dept of Radiology,
Stanford Univ, Lucas Ctr, Stanford, Calif (P.G.); Dept of Urology, Univ of
Washington School of Medicine, Seattle, Wash (G.R.S., A.W.); Dept of
Radiological Sciences, MRgFUS and Cardiovascular Imaging Unit, Sapienza Univ of
Rome, School of Medicine, Rome, Italy (A.N.); Institut Khuab for Interventional
Oncology, Comprehensive Tumor Ctr Barcelona, Barcelona, Spain (J.V.J.); Dept of
Interventional and Diagnostic Radiology, Univ of California Los Angeles, Los
Angeles, Calif (S.S.R.); Abdominal and Cross-Sectional Interventional Radiology,
Dept of Radiology, Univ of Michigan School of Medicine, Ann Arbor, Mich
(M.M.L.); Dept of Medical Imaging, Univ Health Network–Mount Sinai
Hosp–Women’s College Hosp, Univ of Toronto, Toronto, Canada
(S.G.); Inst of Urology, Univ of Southern California–USC School of
Medicine, Los Angeles, Calif (A.A.); and Dept of Radiology, Hosp of the Univ of
Pennsylvania, Philadelphia, Pa (K.M.S.)
| | - Andre Abreu
- From the Section of Interventional Radiology, Dept of Radiology and
Biomedical Imaging, Yale School of Medicine, 333 Cedar St, PO Box 208042, Room
TE-2, New Haven, CT 06520 (A.S., S.A.); Dept of Rad/Body MRI, Dept of Radiology,
Stanford Univ, Lucas Ctr, Stanford, Calif (P.G.); Dept of Urology, Univ of
Washington School of Medicine, Seattle, Wash (G.R.S., A.W.); Dept of
Radiological Sciences, MRgFUS and Cardiovascular Imaging Unit, Sapienza Univ of
Rome, School of Medicine, Rome, Italy (A.N.); Institut Khuab for Interventional
Oncology, Comprehensive Tumor Ctr Barcelona, Barcelona, Spain (J.V.J.); Dept of
Interventional and Diagnostic Radiology, Univ of California Los Angeles, Los
Angeles, Calif (S.S.R.); Abdominal and Cross-Sectional Interventional Radiology,
Dept of Radiology, Univ of Michigan School of Medicine, Ann Arbor, Mich
(M.M.L.); Dept of Medical Imaging, Univ Health Network–Mount Sinai
Hosp–Women’s College Hosp, Univ of Toronto, Toronto, Canada
(S.G.); Inst of Urology, Univ of Southern California–USC School of
Medicine, Los Angeles, Calif (A.A.); and Dept of Radiology, Hosp of the Univ of
Pennsylvania, Philadelphia, Pa (K.M.S.)
| | - Karthik M. Sundaram
- From the Section of Interventional Radiology, Dept of Radiology and
Biomedical Imaging, Yale School of Medicine, 333 Cedar St, PO Box 208042, Room
TE-2, New Haven, CT 06520 (A.S., S.A.); Dept of Rad/Body MRI, Dept of Radiology,
Stanford Univ, Lucas Ctr, Stanford, Calif (P.G.); Dept of Urology, Univ of
Washington School of Medicine, Seattle, Wash (G.R.S., A.W.); Dept of
Radiological Sciences, MRgFUS and Cardiovascular Imaging Unit, Sapienza Univ of
Rome, School of Medicine, Rome, Italy (A.N.); Institut Khuab for Interventional
Oncology, Comprehensive Tumor Ctr Barcelona, Barcelona, Spain (J.V.J.); Dept of
Interventional and Diagnostic Radiology, Univ of California Los Angeles, Los
Angeles, Calif (S.S.R.); Abdominal and Cross-Sectional Interventional Radiology,
Dept of Radiology, Univ of Michigan School of Medicine, Ann Arbor, Mich
(M.M.L.); Dept of Medical Imaging, Univ Health Network–Mount Sinai
Hosp–Women’s College Hosp, Univ of Toronto, Toronto, Canada
(S.G.); Inst of Urology, Univ of Southern California–USC School of
Medicine, Los Angeles, Calif (A.A.); and Dept of Radiology, Hosp of the Univ of
Pennsylvania, Philadelphia, Pa (K.M.S.)
| | - Antonio Westphalen
- From the Section of Interventional Radiology, Dept of Radiology and
Biomedical Imaging, Yale School of Medicine, 333 Cedar St, PO Box 208042, Room
TE-2, New Haven, CT 06520 (A.S., S.A.); Dept of Rad/Body MRI, Dept of Radiology,
Stanford Univ, Lucas Ctr, Stanford, Calif (P.G.); Dept of Urology, Univ of
Washington School of Medicine, Seattle, Wash (G.R.S., A.W.); Dept of
Radiological Sciences, MRgFUS and Cardiovascular Imaging Unit, Sapienza Univ of
Rome, School of Medicine, Rome, Italy (A.N.); Institut Khuab for Interventional
Oncology, Comprehensive Tumor Ctr Barcelona, Barcelona, Spain (J.V.J.); Dept of
Interventional and Diagnostic Radiology, Univ of California Los Angeles, Los
Angeles, Calif (S.S.R.); Abdominal and Cross-Sectional Interventional Radiology,
Dept of Radiology, Univ of Michigan School of Medicine, Ann Arbor, Mich
(M.M.L.); Dept of Medical Imaging, Univ Health Network–Mount Sinai
Hosp–Women’s College Hosp, Univ of Toronto, Toronto, Canada
(S.G.); Inst of Urology, Univ of Southern California–USC School of
Medicine, Los Angeles, Calif (A.A.); and Dept of Radiology, Hosp of the Univ of
Pennsylvania, Philadelphia, Pa (K.M.S.)
| | - Sandeep Arora
- From the Section of Interventional Radiology, Dept of Radiology and
Biomedical Imaging, Yale School of Medicine, 333 Cedar St, PO Box 208042, Room
TE-2, New Haven, CT 06520 (A.S., S.A.); Dept of Rad/Body MRI, Dept of Radiology,
Stanford Univ, Lucas Ctr, Stanford, Calif (P.G.); Dept of Urology, Univ of
Washington School of Medicine, Seattle, Wash (G.R.S., A.W.); Dept of
Radiological Sciences, MRgFUS and Cardiovascular Imaging Unit, Sapienza Univ of
Rome, School of Medicine, Rome, Italy (A.N.); Institut Khuab for Interventional
Oncology, Comprehensive Tumor Ctr Barcelona, Barcelona, Spain (J.V.J.); Dept of
Interventional and Diagnostic Radiology, Univ of California Los Angeles, Los
Angeles, Calif (S.S.R.); Abdominal and Cross-Sectional Interventional Radiology,
Dept of Radiology, Univ of Michigan School of Medicine, Ann Arbor, Mich
(M.M.L.); Dept of Medical Imaging, Univ Health Network–Mount Sinai
Hosp–Women’s College Hosp, Univ of Toronto, Toronto, Canada
(S.G.); Inst of Urology, Univ of Southern California–USC School of
Medicine, Los Angeles, Calif (A.A.); and Dept of Radiology, Hosp of the Univ of
Pennsylvania, Philadelphia, Pa (K.M.S.)
| |
Collapse
|
5
|
Lorton O, Guillemin PC, M’Rad Y, Peloso A, Boudabbous S, Charbonnier C, Holman R, Crowe LA, Gui L, Poletti PA, Ricoeur A, Terraz S, Salomir R. A Novel Concept of a Phased-Array HIFU Transducer Optimized for MR-Guided Hepatic Ablation: Embodiment and First In-Vivo Studies. Front Oncol 2022; 12:899440. [PMID: 35769711 PMCID: PMC9235567 DOI: 10.3389/fonc.2022.899440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose High-intensity focused ultrasound (HIFU) is challenging in the liver due to the respiratory motion and risks of near-/far-field burns, particularly on the ribs. We implemented a novel design of a HIFU phased-array transducer, dedicated to transcostal hepatic thermo-ablation. Due to its large acoustic window and strong focusing, the transducer should perform safely for this application. Material and Methods The new HIFU transducer is composed of 256 elements distributed on 5 concentric segments of a specific radius (either 100, 111, or 125 mm). It has been optimally shaped to fit the abdominal wall. The shape and size of the acoustic elements were optimized for the largest emitting surface and the lowest symmetry. Calibration tests have been conducted on tissue-mimicking gels under 3-T magnetic resonance (MR) guidance. In-vivo MR-guided HIFU treatment was conducted in two pigs, aiming to create thermal ablation deep in the liver without significant side effects. Imaging follow-up was performed at D0 and D7. Sacrifice and post-mortem macroscopic examination occurred at D7, with the ablated tissue being fixed for pathology. Results The device showed −3-dB focusing capacities in a volume of 27 × 46 × 50 mm3 as compared with the numerical simulation volume of 18 × 48 × 60 mm3. The shape of the focal area was in millimeter-range agreement with the numerical simulations. No interference was detected between the HIFU sonication and the MR acquisition. In vivo, the temperature elevation in perivascular liver parenchyma reached 28°C above physiological temperature, within one breath-hold. The lesion was visible on Gd contrast-enhanced MRI sequences and post-mortem examination. The non-perfused volume was found in pig #1 and pig #2 of 8/11, 6/8, and 7/7 mm along the LR, AP, and HF directions, respectively. No rib burns or other near-field side effects were visually observed on post-mortem gross examination. High-resolution contrast-enhanced 3D MRI indicated a minor lesion on the sternum. Conclusion The performance of this new HIFU transducer has been demonstrated in vitro and in vivo. The transducer meets the requirement to perform thermal lesions in deep tissues, without the need for rib-sparing means.
Collapse
Affiliation(s)
- Orane Lorton
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- *Correspondence: Orane Lorton,
| | - Pauline C. Guillemin
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yacine M’Rad
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andrea Peloso
- Visceral Surgery Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Sana Boudabbous
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Caecilia Charbonnier
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Medical Research Department, Artanim Foundation, Geneva, Switzerland
| | - Ryan Holman
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lindsey A. Crowe
- Radiology Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Laura Gui
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Alexis Ricoeur
- Radiology Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Sylvain Terraz
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Rares Salomir
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Tang M, Yamamoto T. Progress in Understanding Radiofrequency Heating and Burn Injuries for Safer MR Imaging. Magn Reson Med Sci 2022; 22:7-25. [PMID: 35228437 PMCID: PMC9849420 DOI: 10.2463/mrms.rev.2021-0047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RF electromagnetic wave exposure during MRI scans induces heat and occasionally causes burn injuries to patients. Among all the types of physical injuries that have occurred during MRI examinations, RF burn injuries are the most common ones. The number of RF burn injuries increases as the static magnetic field of MRI systems increases because higher RFs lead to higher heating. The commonly believed mechanisms of RF burn injuries are the formation of a conductive loop by the patient's posture or cables, such as an electrocardiogram lead; however, the mechanisms of RF burn injuries that occur at the contact points, such as the bore wall and the elbow, remain unclear. A comprehensive understanding of RF heating is needed to address effective countermeasures against all RF burn injuries for safe MRI examinations. In this review, we summarize the occurrence of RF burn injury cases by categorizing RF burn injuries reported worldwide in recent decades. Safety standards and regulations governing RF heating that occurs during MRI examinations are presented, along with their theoretical and physiological backgrounds. The experimental assessment techniques for RF heating are then reviewed, and the development of numerical simulation techniques is explained. In addition, a comprehensive theoretical interpretation of RF burn injuries is presented. By including the results of recent experimental and numerical simulation studies on RF heating, this review describes the progress achieved in understanding RF heating from the standpoint of MRI burn injury prevention.
Collapse
Affiliation(s)
- Minghui Tang
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toru Yamamoto
- Division of Biomedical Engineering and Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan,Corresponding author: Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan. Phone: +81-11-706-3412, Fax: +81-11-706-4916, E-mail:
| |
Collapse
|
7
|
Geoghegan R, Zhang L, Priester A, Wu HH, Marks L, Natarajan S. Interstitial Optical Monitoring of Focal Laser Ablation. IEEE Trans Biomed Eng 2022; 69:2545-2556. [PMID: 35148260 PMCID: PMC9371599 DOI: 10.1109/tbme.2022.3150279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Focal laser ablation is a minimally invasive method of treating cancerous lesions in organs such as prostate, liver and brain. Oncologic control is achieved by inducing hyperthermia throughout the target while minimizing damage to surrounding tissue. Consequently, successful clinical outcomes are contingent upon achieving desired ablation volumes. Magnetic resonance thermometry is frequently used to monitor the formation of the induced thermal damage zone and inform the decision to terminate energy delivery. However, due to the associated cost and complexity there is growing interest in the development of alternative approaches. Here we investigate the utility of real-time interstitial interrogation of laser-tissue interaction as an inexpensive alternative monitoring modality that provides direct assessment of tissue coagulation without the need for organ specific calibration. The optical contrast mechanism was determined using a Monte Carlo model. Subsequently, four interstitial probe designs were manufactured and assessed in a tissue mimicking phantom under simultaneous magnetic resonance imaging. Finally, the optimal probe design was evaluated in ex vivo bovine muscle. It was found to be capable of providing sufficient feedback to achieve pre-defined ablation radii in the range 4-7mm with a mean absolute error of 0.3mm. This approach provides an inexpensive monitoring modality that may facilitate widespread adoption of focal laser ablation.
Collapse
|
8
|
di Biase L, Falato E, Caminiti ML, Pecoraro PM, Narducci F, Di Lazzaro V. Focused Ultrasound (FUS) for Chronic Pain Management: Approved and Potential Applications. Neurol Res Int 2021; 2021:8438498. [PMID: 34258062 PMCID: PMC8261174 DOI: 10.1155/2021/8438498] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/19/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic pain is one of the leading causes of disability and disease burden worldwide, accounting for a prevalence between 6.9% and 10% in the general population. Pharmacotherapy alone results ineffective in about 70-60% of patients in terms of a satisfactory degree of pain relief. Focused ultrasound is a promising tool for chronic pain management, being approved for thalamotomy in chronic neuropathic pain and for bone metastases-related pain treatment. FUS is a noninvasive technique for neuromodulation and for tissue ablation that can be applied to several tissues. Transcranial FUS (tFUS) can lead to opposite biological effects, depending on stimulation parameters: from reversible neural activity facilitation or suppression (low-intensity, low-frequency ultrasound, LILFUS) to irreversible tissue ablation (high-intensity focused ultrasounds, HIFU). HIFU is approved for thalamotomy in neuropathic pain at the central nervous system level and for the treatment of facet joint osteoarthritis at the peripheral level. Potential applications include HIFU at the spinal cord level for selected cases of refractory chronic neuropathic pain, knee osteoarthritis, sacroiliac joint disease, intervertebral disc nucleolysis, phantom limb, and ablation of peripheral nerves. FUS at nonablative dosage, LILFUS, has potential reversible and tissue-selective effects. FUS applications at nonablative doses currently are at a research stage. The main potential applications include targeted drug and gene delivery through the Blood-Brain Barrier, assessment of pain thresholds and study of pain, and reversible peripheral nerve conduction block. The aim of the present review is to describe the approved and potential applications of the focused ultrasound technology in the field of chronic pain management.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Emma Falato
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Maria Letizia Caminiti
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Pasquale Maria Pecoraro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Flavia Narducci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| |
Collapse
|
9
|
Merrill R, Odéen H, Dillon C, Bitton R, Ghanouni P, Payne A. Design and evaluation of an open-source, conformable skin-cooling system for body magnetic resonance guided focused ultrasound treatments. Int J Hyperthermia 2021; 38:679-690. [PMID: 33899653 PMCID: PMC8925859 DOI: 10.1080/02656736.2021.1914872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Magnetic resonance guided focused ultrasound (MRgFUS) treatment of tumors uses inter-sonication delays to allow heat to dissipate from the skin and other near-field tissues. Despite inter-sonication delays, treatment of tumors close to the skin risks skin burns. This work has designed and evaluated an open-source, conformable, skin-cooling system for body MRgFUS treatments to reduce skin burns and enable ablation closer to the skin. METHODS A MR-compatible skin cooling system is described that features a conformable skin-cooling pad assembly with feedback control allowing continuous flow and pressure maintenance during the procedure. System performance was evaluated with hydrophone, phantom and in vivo porcine studies. Sonications were performed 10 and 5 mm from the skin surface under both control and forced convective skin-cooling conditions. 3D MR temperature imaging was acquired in real time and the accumulated thermal dose volume was measured. Gross analysis of the skin post-sonication was further performed. Device conformability was demonstrated at several body locations. RESULTS Hydrophone studies demonstrated no beam aberration, but a 5-12% reduction of the peak pressure due to the presence of the skin-cooling pad assembly in the acoustic near field. Phantom evaluation demonstrated there is no MR temperature imaging precision reduction or any other artifacts present due to the coolant flow during MRgFUS sonication. The porcine studies demonstrated skin burns were reduced in size or eliminated when compared to the control condition. CONCLUSION An open-source design of an MRgFUS active skin cooling system demonstrates device conformability with a reduction of skin burns while ablating superficial tissues.
Collapse
Affiliation(s)
- Robb Merrill
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | | | - Rachelle Bitton
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Mihcin S, Gagliardo C, Toia P, Dennison A, Strehlow J, Melzer A. MR-guided focused ultrasound application for moving target tumor ablation in abdominal area: coil selection. Acta Radiol 2021; 62:3-11. [PMID: 32276552 DOI: 10.1177/0284185120914059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Magnetic Resonance Imaging (MRI)-guided Focused Ultrasound Surgery (MRgFUS) is a non-invasive thermal ablation method utilizing high-intensity focused ultrasound (HI-FU) energy for tissue ablation under MRI with real-time thermal mapping. Ablating to a dynamic target as in the liver is very challenging, requiring approval. A novel quality-assured liver tumor ablation system has been proposed for clinics. The paper reports the evaluation of conventional and new MR-receiving coils. PURPOSE To evaluate the suitability of MR coils as part of the MRgFUS treatment system for liver, while simulating breathing motion in pre-clinical settings. MATERIAL AND METHODS The novel software communicates with the MR scanner and the transducer. To monitor the temperature via proton resonance frequency (PRF) methodology echo planar imaging (EPI) sequence was used while the algorithms of static, static and dynamic tracking were tested with sonications of 100 W for 30 s on tissue-mimicking phantoms. Different coil sets were used to assess the performance of the system for fitness for dynamic thermometry. Finally, in vivo experiments were performed over a porcine model. RESULTS Single-loop four-channel Duoflex and Gem coils provided adequate signal-to-noise ratio and contrast with consistent thermal readings. Body array coils showed severe loss of signal in dynamic cases since the integration of tracking algorithm causes low efficiency. CONCLUSION Body array coils are unsuitable for MRgFUS of the liver due to signal loss. The dedicated coil set with a single loop around the FUS transducer combined with four-channel arrays might be the best option for liver treatment using dynamic MRgFUS applications.
Collapse
Affiliation(s)
- Senay Mihcin
- IMSaT, Division of Imaging and Technology School of Medicine. University of Dundee, Dundee, UK
| | - Cesare Gagliardo
- Section of Radiological Sciences, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Patrizia Toia
- Section of Radiological Sciences, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Andrew Dennison
- IMSaT, Division of Imaging and Technology School of Medicine. University of Dundee, Dundee, UK
| | - Jan Strehlow
- Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany
| | - Andreas Melzer
- IMSaT, Division of Imaging and Technology School of Medicine. University of Dundee, Dundee, UK
| |
Collapse
|
11
|
Affiliation(s)
- Xiahui Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health (NIH) Bethesda Maryland 20892 USA
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
12
|
Lin X, Song J, Chen X, Yang H. Ultrasound-Activated Sensitizers and Applications. Angew Chem Int Ed Engl 2020; 59:14212-14233. [PMID: 31267634 DOI: 10.1002/anie.201906823] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Indexed: 12/11/2022]
Abstract
Modalities for photo-triggered anticancer therapy are usually limited by their low penetrative depth. Sonotheranostics especially sonodynamic therapy (SDT), which is different from photodynamic therapy (PDT) by the use of highly penetrating acoustic waves to activate a class of sound-responsive materials called sonosensitizers, has gained significant interest in recent years. The effect of SDT is closely related to the structural and physicochemical properties of the sonosensitizers, which has led to the development of new sound-activated materials as sonosensitizers for various biomedical applications. This Review provides a summary and discussion of the types of novel sonosensitizers developed in the last few years and outlines their specific designs and the potential challenges. The applications of sonosensitizers with various functions such as for imaging and drug delivery as well as in combination with other treatment modalities would provide new strategies for disease therapy.
Collapse
Affiliation(s)
- Xiahui Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
13
|
Lee JY, Minami Y, Choi BI, Lee WJ, Chou YH, Jeong WK, Park MS, Kudo N, Lee MW, Kamata K, Iijima H, Kim SY, Numata K, Sugimoto K, Maruyama H, Sumino Y, Ogawa C, Kitano M, Joo I, Arita J, Liang JD, Lin HM, Nolsoe C, Gilja OH, Kudo M. The AFSUMB Consensus Statements and Recommendations for the Clinical Practice of Contrast-Enhanced Ultrasound using Sonazoid. Ultrasonography 2020; 39:191-220. [PMID: 32447876 PMCID: PMC7315291 DOI: 10.14366/usg.20057] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
The first edition of the guidelines for the use of ultrasound contrast agents was published in 2004, dealing with liver applications. The second edition of the guidelines in 2008 reflected changes in the available contrast agents and updated the guidelines for the liver, as well as implementing some nonliver applications. The third edition of the contrast-enhanced ultrasound (CEUS) guidelines was the joint World Federation for Ultrasound in Medicine and Biology-European Federation of Societies for Ultrasound in Medicine and Biology (WFUMB-EFSUMB) venture in conjunction with other regional US societies such as Asian Federation of Societies for Ultrasound in Medicine and Biology, resulting in a simultaneous duplicate on liver CEUS in the official journals of both WFUMB and EFSUMB in 2013. However, no guidelines were described mainly for Sonazoid due to limited clinical experience only in Japan and Korea. The new proposed consensus statements and recommendations provide general advice on the use of Sonazoid and are intended to create standard protocols for the use and administration of Sonazoid in hepatic and pancreatobiliary applications in Asian patients and to improve patient management.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Higashi-Osaka, Japan
| | - Byung Ihn Choi
- Department of Radiology, Chung Ang University Hospital, Seoul, Korea
| | - Won Jae Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yi-Hong Chou
- Department of Medical Imaging and Radiological Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.,Department of Radiology, National Yang Ming University, Taipei, Taiwan
| | - Woo Kyoung Jeong
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mi-Suk Park
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Nobuki Kudo
- Laboratory of Biomedical Engineering, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Min Woo Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Higashi-Osaka, Japan
| | - Hiroko Iijima
- Department of Ultrasound, Hepatobiliary and Pancreatic Disease, Hyogo College of Medicine, Nishinomiya, Japan
| | - So Yeon Kim
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Kazushi Numata
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Hitoshi Maruyama
- Department of Gastroenterology, Juntendo University, Tokyo, Japan
| | - Yasukiyo Sumino
- Department of Gastroenterology and Hepatology, Toho University Medical Center, Tokyo, Japan
| | - Chikara Ogawa
- Department of Gastroenterology and Hepatology, Takamatsu Red Cross Hospital, Takamatsu, Japan
| | - Masayuki Kitano
- Department of Gastroenterology and Hepatology, Wakayama Medical University Hospital, Wakayama, Japan
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Junichi Arita
- Hepato-Biliary-Pancreatic Surgery Division and Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ja-Der Liang
- Department of Gastroenterology and Hepatology, National Taiwan University, Taipei, Taiwan
| | - Hsi-Ming Lin
- Department of Gastroenterology and Hepatology, Chang Gung University, Taipei, Taiwan
| | - Christian Nolsoe
- Ultrasound Section, Division of Surgery, Department of Gastroenterology, Herlev Hospital, Copenhagen Academy for Medical Education and Simulation, University of Copenhagen, Copenhagen, Denmark
| | - Odd Helge Gilja
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Higashi-Osaka, Japan
| |
Collapse
|
14
|
Lee JY, Minami Y, Choi BI, Lee WJ, Chou YH, Jeong WK, Park MS, Kudo N, Lee MW, Kamata K, Iijima H, Kim SY, Numata K, Sugimoto K, Maruyama H, Sumino Y, Ogawa C, Kitano M, Joo I, Arita J, Liang JD, Lin HM, Nolsoe C, Gilja OH, Kudo M. The AFSUMB Consensus Statements and Recommendations for the Clinical Practice of Contrast-Enhanced Ultrasound using Sonazoid. J Med Ultrasound 2020; 28:59-82. [PMID: 32874864 PMCID: PMC7446696 DOI: 10.4103/jmu.jmu_124_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
The first edition of the guidelines for the use of ultrasound contrast agents was published in 2004, dealing with liver applications. The second edition of the guidelines in 2008 reflected changes in the available contrast agents and updated the guidelines for the liver, as well as implementing some nonliver applications. The third edition of the contrast-enhanced ultrasound (CEUS) guidelines was the joint World Federation for Ultrasound in Medicine and Biology-European Federation of Societies for Ultrasound in Medicine and Biology (WFUMB-EFSUMB) venture in conjunction with other regional US societies such as Asian Federation of Societies for Ultrasound in Medicine and Biology, resulting in a simultaneous duplicate on liver CEUS in the official journals of both WFUMB and EFSUMB in 2013. However, no guidelines were described mainly for Sonazoid due to limited clinical experience only in Japan and Korea. The new proposed consensus statements and recommendations provide general advice on the use of Sonazoid and are intended to create standard protocols for the use and administration of Sonazoid in hepatic and pancreatobiliary applications in Asian patients and to improve patient management.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Higashi-Osaka, Japan
| | - Byung Ihn Choi
- Department of Radiology, Chung Ang University Hospital, Seoul, Korea
| | - Won Jae Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yi-Hong Chou
- Department of Medical Imaging and Radiological Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
- Department of Radiology, National Yang Ming University, Taipei, Taiwan
| | - Woo Kyoung Jeong
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mi-Suk Park
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Nobuki Kudo
- Laboratory of Biomedical Engineering, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Min Woo Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Higashi-Osaka, Japan
| | - Hiroko Iijima
- Department of Ultrasound, Hepatobiliary and Pancreatic Disease, Hyogo College of Medicine, Nishinomiya, Japan
| | - So Yeon Kim
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Kazushi Numata
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Hitoshi Maruyama
- Department of Gastroenterology, Juntendo University, Tokyo, Japan
| | - Yasukiyo Sumino
- Department of Gastroenterology and Hepatology, Toho University Medical Center, Tokyo, Japan
| | - Chikara Ogawa
- Department of Gastroenterology and Hepatology, Takamatsu Red Cross Hospital, Takamatsu, Japan
| | - Masayuki Kitano
- Department of Gastroenterology and Hepatology, Wakayama Medical University Hospital, Wakayama, Japan
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Junichi Arita
- Hepato-Biliary-Pancreatic Surgery Division and Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ja-Der Liang
- Department of Gastroenterology and Hepatology, National Taiwan University, Taipei, Taiwan
| | - Hsi-Ming Lin
- Department of Gastroenterology and Hepatology, Chang Gung University, Taipei, Taiwan
| | - Christian Nolsoe
- Ultrasound Section, Division of Surgery, Department of Gastroenterology, Herlev Hospital, Copenhagen Academy for Medical Education and Simulation, University of Copenhagen, Copenhagen, Denmark
| | - Odd Helge Gilja
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Higashi-Osaka, Japan
| |
Collapse
|
15
|
Kokuryo D, Kumamoto E, Kuroda K. Recent technological advancements in thermometry. Adv Drug Deliv Rev 2020; 163-164:19-39. [PMID: 33217482 DOI: 10.1016/j.addr.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/25/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Thermometry is the key factor for achieving successful thermal therapy. Although invasive thermometry with a probe has been used for more than four decades, this method can only detect the local temperature within the probing volume. Noninvasive temperature imaging using a tomographic technique is ideal for monitoring hot-spot formation in the human body. Among various techniques, such as X-ray computed tomography, microwave tomography, echo sonography, and magnetic resonance (MR) imaging, the proton resonance frequency shift method of MR thermometry is the only method currently available for clinical practice because its temperature sensitivity is consistent in most aqueous tissues and can be easily observed using common clinical scanners. New techniques are being proposed to improve the robustness of this method against tissue motion. MR techniques for fat thermometry were also developed based on relaxation times. One of the latest non-MR techniques to attract attention is photoacoustic imaging.
Collapse
Affiliation(s)
- Daisuke Kokuryo
- Graduate School of System Informatics, Kobe University, Japan
| | - Etsuko Kumamoto
- Information Science and Technology Center, Kobe University, Japan
| | - Kagayaki Kuroda
- School of Information Science and Technology, Tokai University, Japan; Center for Frontier Medical Engineering, Chiba University, Japan.
| |
Collapse
|
16
|
Beserra A, Pichardo S, Kisselgoff D, Peeva V, Curiel L. Targeting feasibility evaluation of magnetic resonance-guided focused ultrasound in the management of osteomyelitis: a virtual treatment planning study in 75 patients. Int J Hyperthermia 2019; 36:1012-1023. [DOI: 10.1080/02656736.2019.1663944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
| | - Samuel Pichardo
- University of Calgary, Calgary, AB, Canada
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON, Canada
| | - David Kisselgoff
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON, Canada
| | - Valentina Peeva
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON, Canada
| | - Laura Curiel
- University of Calgary, Calgary, AB, Canada
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON, Canada
| |
Collapse
|
17
|
Bing C, Cheng B, Staruch RM, Nofiele J, Staruch MW, Szczepanski D, Farrow-Gillespie A, Yang A, Laetsch TW, Chopra R. Breath-hold MR-HIFU hyperthermia: phantom and in vivo feasibility. Int J Hyperthermia 2019; 36:1084-1097. [PMID: 31707872 PMCID: PMC6873809 DOI: 10.1080/02656736.2019.1679893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/04/2019] [Accepted: 10/06/2019] [Indexed: 01/01/2023] Open
Abstract
Background: The use of magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) to deliver mild hyperthermia requires stable temperature mapping for long durations. This study evaluates the effects of respiratory motion on MR thermometry precision in pediatric subjects and determines the in vivo feasibility of circumventing breathing-related motion artifacts by delivering MR thermometry-controlled HIFU mild hyperthermia during repeated forced breath holds.Materials and methods: Clinical and preclinical studies were conducted. Clinical studies were conducted without breath-holds. In phantoms, breathing motion was simulated by moving an aluminum block towards the phantom along a sinusoidal trajectory using an MR-compatible motion platform. In vivo experiments were performed in ventilated pigs. MR thermometry accuracy and stability were evaluated.Results: Clinical data confirmed acceptable MR thermometry accuracy (0.12-0.44 °C) in extremity tumors, but not in the tumors in the chest/spine and pelvis. In phantom studies, MR thermometry accuracy and stability improved to 0.37 ± 0.08 and 0.55 ± 0.18 °C during simulated breath-holds. In vivo MR thermometry accuracy and stability in porcine back muscle improved to 0.64 ± 0.22 and 0.71 ± 0.25 °C during breath-holds. MR-HIFU hyperthermia delivered during intermittent forced breath holds over 10 min duration heated an 18-mm diameter target region above 41 °C for 10.0 ± 1.0 min, without significant overheating. For a 10-min mild hyperthermia treatment, an optimal treatment effect (TIR > 9 min) could be achieved when combining 36-60 s periods of forced apnea with 60-155.5 s free-breathing.Conclusion: MR-HIFU delivery during forced breath holds enables stable control of mild hyperthermia in targets adjacent to moving anatomical structures.
Collapse
Affiliation(s)
- Chenchen Bing
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bingbing Cheng
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Robert M. Staruch
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
- Clinical Sites Research Program, Philips Research North America, Cambridge, MA
| | - Joris Nofiele
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Debra Szczepanski
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Alan Farrow-Gillespie
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX
| | - Adeline Yang
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Theodore W. Laetsch
- Department of Pediatrics and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
- Pauline Allen Gill Center for Cancer and Blood Disorders, Children’s Health, Dallas, TX
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
18
|
Lee MW, Lim HK. Management of sub-centimeter recurrent hepatocellular carcinoma after curative treatment: Current status and future. World J Gastroenterol 2018; 24:5215-5222. [PMID: 30581270 PMCID: PMC6295838 DOI: 10.3748/wjg.v24.i46.5215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinomas (HCCs) frequently recur despite initial successful surgical resection or local ablation therapy. Diagnostic methods for small HCCs have improved with the introduction of gadoxetic acid-enhanced liver magnetic resonance imaging and diffusion-weighted imaging (DWI). Currently, sub-centimeter recurrent nodules showing typical hallmark imaging findings of HCC are frequently detected in patients with a treatment history for HCC. With five typical magnetic resonance findings, including arterial enhancement, washout on portal or transitional phase, high signal intensity on both T2-weighted image and DWI, and low signal intensity on hepatobiliary phase, sub-centimeter recurrent HCC can be diagnosed with high accuracy. Although more information is needed to determine the treatment of choice, local ablation therapy under fusion imaging and/or contrast-enhanced ultrasound guidance or cone-beam computed tomography-guided chemoembolization seem to be promising as they are effective and safe for the management of sub-centimeter recurrent HCCs.
Collapse
Affiliation(s)
- Min Woo Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, South Korea
| | - Hyo Keun Lim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, South Korea
| |
Collapse
|
19
|
Lorton O, Guillemin PC, Mori N, Crowe LA, Boudabbous S, Terraz S, Becker CD, Cattin P, Salomir R, Gui L. Self-Scanned HIFU Ablation of Moving Tissue Using Real-Time Hybrid US-MR Imaging. IEEE Trans Biomed Eng 2018; 66:2182-2191. [PMID: 30530308 DOI: 10.1109/tbme.2018.2885233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE High intensity focused ultrasound (HIFU) treatment in the abdominal cavity is challenging due to the respiratory motion. In the self-scanning HIFU ablation method, the focal spot is kept static and the heating pattern is obtained through natural tissue motion. This paper describes a novel approach for modulating the HIFU power during self-scanning in order to compensate for the effect of tissue motion on thermal buildup. METHODS The therapy, using hybrid ultrasound (US)/magnetic resonance (MR) imaging, consists of detecting and tracking speckle on US images in order to predict the next tissue position, and modulating the HIFU power according to the tissue speed in order to obtain a rectilinear pattern of uniform temperature elevation. Experiments were conducted on ex vivo tissue subjected to a breathing-like motion generated by an MR-compatible robot and sonicated by a phased array HIFU transducer. RESULTS US and MR data were free from interferences. For both periodic and non-periodic motion, MR temperature maps showed a substantial improvement in the uniformity of the temperature elevation by using acoustic power modulation. CONCLUSION The presented method does not require a learning stage and enables a duty cycle close to 100%, higher average acoustic intensity and avoidance of side lobe effects versus performing HIFU beam steering to compensate tissue motion. SIGNIFICANCE To our knowledge, the proposed method provides the first experimental validation of the self-scanning HIFU ablation paradigm via a real-time hybrid MRI/US imaging, opening the path toward self-scanning in vivo therapies.
Collapse
|
20
|
Saccomandi P, Lapergola A, Longo F, Schena E, Quero G. Thermal ablation of pancreatic cancer: A systematic literature review of clinical practice and pre-clinical studies. Int J Hyperthermia 2018; 35:398-418. [PMID: 30428728 DOI: 10.1080/02656736.2018.1506165] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Pancreatic cancer is a challenging malignancy with low treatment option and poor life expectancy. Thermal ablation techniques were proposed as alternative treatment options, especially in advanced stages and for unfit-for-surgery patients. This systematic review describes the thermal ablative techniques -i.e., Laser (LA), Radiofrequency (RFA), Microwave (MWA) Ablation, High-Intensity Focused Ultrasound (HIFU) and cryoablation- available for pancreatic cancer treatment. Additionally, an analysis of the efficacy, complication rate and overall survival for each technique is conducted. MATERIAL AND METHODS This review collects the ex vivo, preclinical and clinical studies presenting the use of thermal techniques in the pancreatic cancer treatment, searched up to March 2018 in PubMed and Medline. Abstracts, letters-to-the-editor, expert opinions, reviews and non-English language manuscripts were excluded. RESULTS Sixty-five papers were included. For the ex vivo and preclinical studies, there are: 12 records for LA, 8 for RFA, 0 for MWA, 6 for HIFU, 1 for cryoablation and 3 for hybrid techniques. For clinical studies, 1 paper for LA, 14 for RFA, 1 for MWA, 17 for HIFU, 1 for cryoablation and 1 for hybrid techniques. CONCLUSIONS Important technological advances are presented in ex vivo and preclinical studies, as the real-time thermometry, nanotechnology and hybrid techniques to enhance the thermal outcome. Conversely, a lack of standardization in the clinical employment of the procedures emerged, leading to contrasting results on the safety and feasibility of some analyzed techniques. Uniform conclusions on the safety and feasibility of these techniques for pancreatic cancer will require further structured investigation.
Collapse
Affiliation(s)
- Paola Saccomandi
- a IHU-Strasbourg Institute of Image-Guided Surgery , Strasbourg , France.,b Departement of Mechanical Engineering, Politecnico di Milano , Milan , Italy
| | - Alfonso Lapergola
- a IHU-Strasbourg Institute of Image-Guided Surgery , Strasbourg , France.,c Università G. D'Annunzio , Chieti , Italy
| | - Fabio Longo
- a IHU-Strasbourg Institute of Image-Guided Surgery , Strasbourg , France.,d Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Rome , Italy
| | | | - Giuseppe Quero
- d Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Rome , Italy
| |
Collapse
|
21
|
Scipione R, Anzidei M, Bazzocchi A, Gagliardo C, Catalano C, Napoli A. HIFU for Bone Metastases and other Musculoskeletal Applications. Semin Intervent Radiol 2018; 35:261-267. [PMID: 30402009 DOI: 10.1055/s-0038-1673363] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
High-intensity focused ultrasound (HIFU) is a totally noninvasive procedure that has shown promising results in the management of numerous malignant and nonmalignant conditions. Under magnetic resonance or ultrasound guidance, high-intensity ultrasound waves are focused on a small, well-defined target region, inducing biologic tissue heating and coagulative necrosis, thus resulting in a precise and localized ablation. This treatment has shown both great safety and efficacy profiles, and may offer a multimodal approach to different diseases, providing pain palliation, potential local tumor control, and, in some cases, remineralization of trabecular bone. In musculoskeletal field, HIFU received FDA approval for treating bone metastasis, but its application has also been extended to other conditions, such as osteoid osteoma, desmoid tumor, low-flow vascular malformation, and facet joint osteoarthritis. This article illustrates the basic principles of HIFU and its main effects on biologic tissues with particular attention on bone, provides a step-by-step description of the HIFU procedure, and discusses the commonly treated conditions, in particular bone metastases.
Collapse
Affiliation(s)
- Roberto Scipione
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Michele Anzidei
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Alberto Bazzocchi
- Department of Radiology, Rizzoli Orthopedic Institute, University of Bologna, Bologna, Italy
| | - Cesare Gagliardo
- Section of Radiological Sciences, Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Alessandro Napoli
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
D’Souza AL, Chevillet JR, Ghanouni P, Yan X, Tewari M, Gambhir SS. Tumor characterization by ultrasound-release of multiple protein and microRNA biomarkers, preclinical and clinical evidence. PLoS One 2018; 13:e0194268. [PMID: 29547636 PMCID: PMC5856340 DOI: 10.1371/journal.pone.0194268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/28/2018] [Indexed: 12/28/2022] Open
Abstract
We have previously shown that low frequency ultrasound can release biomarkers from cells into the murine circulation enabling an amplification and localization of the released biomarker that could be used as a blood-based method to detect cancer earlier and monitor therapy. In this study, we further demonstrate that this technique could be used for characterization of tumors and/or identification of cellular masses of unknown origin due to the release of multiple protein and nucleic acid biomarkers in cells in culture, mice and patients. We sonicated colon (LS174T) and prostate (LNCaP) cancer cell lines in culture at a low frequency of 1 MHz and show that there were several-fold changes in multiple protein and microRNA (miRNA) abundance with treatment at various intensities and time. This release was dependent on the duration and intensity of the sonication for both cell lines. Significant increased release in biomarkers was also observed following tumor sonication in living mice bearing subcutaneous LS174T cell line xenografts (for proteins and nucleic acids) and in an experimental LS174T liver tumor model (for proteins only). Finally, we demonstrated this methodology of multiple biomarker release in patients undergoing ablation of uterine fibroids using MR guided high intensity focused ultrasound. Two protein biomarkers significantly increased in the plasma after the ultrasound treatment in 21 samples tested. This proof that ultrasound-amplification method works in soft tissue tumor models together with biomarker multiplexing, could allow for an effective non-invasive method for identification, characterization and localization of incidental lesions, cancer and other disease. Pre-treatment quantification of the biomarkers, allows for individualization of quantitative comparisons. This individualization of normal marker levels in this method allows for specificity of the biomarker-increase to each patient, tumor or organ being studied.
Collapse
Affiliation(s)
- Aloma L. D’Souza
- Departments of Radiology, Stanford University, Stanford, California, United States of America
- Molecular Imaging Program, Stanford University, Stanford, California, United States of America
| | - John R. Chevillet
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Pejman Ghanouni
- Departments of Radiology, Stanford University, Stanford, California, United States of America
| | - Xinrui Yan
- Departments of Radiology, Stanford University, Stanford, California, United States of America
- Molecular Imaging Program, Stanford University, Stanford, California, United States of America
| | - Muneesh Tewari
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sanjiv S. Gambhir
- Departments of Radiology, Stanford University, Stanford, California, United States of America
- Molecular Imaging Program, Stanford University, Stanford, California, United States of America
- Bioengineering, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
|
24
|
Abstract
Focused ultrasound (FUS/HIFU) relies on ablation of pathological tissues by delivering a sufficiently high level of acoustic energy in situ of the human body. Magnetic Resonance guided FUS (MRgFUS/HIFU) and Ultrasound guided (USgFUS/HIFU) are image guided techniques combined with therapeutic FUS for monitoring purposes. The principles and technologies of FUS/HiFU are described in this paper including the basics of MR guidance techniques and MR temperature mapping. Clinical applications of FUS/HIFU gained CE and FDA approvals for the treatment of various benign and few malignant lesions in the last two decades. Current technical limitations of ultrasound guided and MRI guided Focused Ultrasound, as well as adverse effects for the application of this technique are outlined including challenges of ablating moving organs (liver and kidney). An outlook to possible applications is provided; exampling clinical trials discussing future options.
Collapse
Affiliation(s)
- Senay Mihcin
- a Institute for Medical Science and Technology , Universities Dundee & St. Andrews Ninewells Hospital and Medical School , Dundee , UK
| | - Andreas Melzer
- b Division Medical Technology, Institute for Medical Science and Technology , Universities Dundee & St. Andrews Ninewells Hospital and Medical School , Dundee , UK
| |
Collapse
|
25
|
Schwenke M, Strehlow J, Demedts D, Haase S, Barrios Romero D, Rothlübbers S, von Dresky C, Zidowitz S, Georgii J, Mihcin S, Bezzi M, Tanner C, Sat G, Levy Y, Jenne J, Günther M, Melzer A, Preusser T. A focused ultrasound treatment system for moving targets (part I): generic system design and in-silico first-stage evaluation. J Ther Ultrasound 2017; 5:20. [PMID: 28748092 PMCID: PMC5523151 DOI: 10.1186/s40349-017-0098-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/11/2017] [Indexed: 12/25/2022] Open
Abstract
Background Focused ultrasound (FUS) is entering clinical routine as a treatment option. Currently, no clinically available FUS treatment system features automated respiratory motion compensation. The required quality standards make developing such a system challenging. Methods A novel FUS treatment system with motion compensation is described, developed with the goal of clinical use. The system comprises a clinically available MR device and FUS transducer system. The controller is very generic and could use any suitable MR or FUS device. MR image sequences (echo planar imaging) are acquired for both motion observation and thermometry. Based on anatomical feature tracking, motion predictions are estimated to compensate for processing delays. FUS control parameters are computed repeatedly and sent to the hardware to steer the focus to the (estimated) target position. All involved calculations produce individually known errors, yet their impact on therapy outcome is unclear. This is solved by defining an intuitive quality measure that compares the achieved temperature to the static scenario, resulting in an overall efficiency with respect to temperature rise. To allow for extensive testing of the system over wide ranges of parameters and algorithmic choices, we replace the actual MR and FUS devices by a virtual system. It emulates the hardware and, using numerical simulations of FUS during motion, predicts the local temperature rise in the tissue resulting from the controls it receives. Results With a clinically available monitoring image rate of 6.67 Hz and 20 FUS control updates per second, normal respiratory motion is estimated to be compensable with an estimated efficiency of 80%. This reduces to about 70% for motion scaled by 1.5. Extensive testing (6347 simulated sonications) over wide ranges of parameters shows that the main source of error is the temporal motion prediction. A history-based motion prediction method performs better than a simple linear extrapolator. Conclusions The estimated efficiency of the new treatment system is already suited for clinical applications. The simulation-based in-silico testing as a first-stage validation reduces the efforts of real-world testing. Due to the extensible modular design, the described approach might lead to faster translations from research to clinical practice.
Collapse
Affiliation(s)
- Michael Schwenke
- Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, Bremen, 28359 Germany
| | - Jan Strehlow
- Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, Bremen, 28359 Germany
| | - Daniel Demedts
- Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, Bremen, 28359 Germany
| | - Sabrina Haase
- Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, Bremen, 28359 Germany
| | - Diego Barrios Romero
- Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, Bremen, 28359 Germany
| | - Sven Rothlübbers
- Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, Bremen, 28359 Germany.,Mediri, Heidelberg, Germany
| | - Caroline von Dresky
- Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, Bremen, 28359 Germany
| | - Stephan Zidowitz
- Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, Bremen, 28359 Germany
| | - Joachim Georgii
- Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, Bremen, 28359 Germany
| | - Senay Mihcin
- Institute for Medical Science and Technology, Dundee, Scotland
| | - Mario Bezzi
- Universita Degli Studi Di Roma La Sapienza, Rome, Italy
| | - Christine Tanner
- Computer Vision Laboratory, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Giora Sat
- GE Medical Systems Israel, Haifa, Israel
| | | | - Jürgen Jenne
- Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, Bremen, 28359 Germany.,Mediri, Heidelberg, Germany
| | - Matthias Günther
- Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, Bremen, 28359 Germany.,Mediri, Heidelberg, Germany
| | - Andreas Melzer
- Institute for Medical Science and Technology, Dundee, Scotland.,Innovation Center Computer Assisted Surgery, Leipzig, Germany
| | - Tobias Preusser
- Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, Bremen, 28359 Germany.,Jacobs University, Bremen, Germany
| |
Collapse
|
26
|
Wang R, Guo Q, Chen Y, Gao Y, Wu L, Hu B, Jiang L. Efficacy of sub-threshold focused ultrasound irradiation against pancreatic cancer xenografts evaluated using magnetic resonance imaging. Oncotarget 2017; 8:80453-80460. [PMID: 29113316 PMCID: PMC5655211 DOI: 10.18632/oncotarget.19241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/11/2017] [Indexed: 01/28/2023] Open
Abstract
We investigated the efficacy and optimal period for using magnetic resonance imaging (MRI) to detect effects of sub-threshold focused ultrasound (FUS) irradiation. Nude mice bearing pancreatic cancer xenografts were subjected to MRI and pathology examnation before, and 24 h, 48 h, 2 weeks after irradiation, which were used to evaluate therapeutic effects of FUS. Tumor volumes were lower post-treatment than control group (P < 0.05). The T1WI turbo spin echo (T1WI-TSE) sequence was similar signal before and after treatment. On T1 enhanced scanning sequence (T1WI-SPIR) imaging, ablation lesions appeared as patchy areas of low signal after 24 h and 48 h. After 2 weeks, the ablation lesions contained low signal areas with clear borders. Hematoxylin and eosin (HE) staining revealed small vessels at ablation lesions with no obvious boundary between cell injury areas and normal tumor cells areas in early-stage, while revealed obvious boundaries 2 weeks post-treatment. Terminal deoxynucleotidyl transferase-modified, dUTP nick-end labeling (TUNEL) staining showed cell apoptosis in early-stage, and revealed reduced apoptotic cells and increased necrotic cell areas 2 weeks later. These findings indicate sub-threshold FUS induces pancreatic cancer cell apoptosis and inhibits tumor growth. Contrast-enhanced MRI delineated the ablation lesions better 2 weeks post-treatment than early stage.
Collapse
Affiliation(s)
- Rui Wang
- Department of Ultrasonography, Shanghai Jiaotong University Affiliated No. 6 Hospital, Shanghai 200233, PR China.,Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, PR China
| | - Qian Guo
- Department of Ultrasonography, Shanghai Jiaotong University Affiliated No. 6 Hospital, Shanghai 200233, PR China.,Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, PR China
| | - Yini Chen
- Department of Ultrasonography, Shanghai Jiaotong University Affiliated No. 6 Hospital, Shanghai 200233, PR China.,Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, PR China
| | - Yihui Gao
- Department of Ultrasonography, Shanghai Jiaotong University Affiliated No. 6 Hospital, Shanghai 200233, PR China.,Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, PR China
| | - Lei Wu
- Department of Ultrasonography, Shanghai Jiaotong University Affiliated No. 6 Hospital, Shanghai 200233, PR China.,Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, PR China
| | - Bing Hu
- Department of Ultrasonography, Shanghai Jiaotong University Affiliated No. 6 Hospital, Shanghai 200233, PR China.,Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, PR China
| | - Lixin Jiang
- Department of Ultrasonography, Shanghai Jiaotong University Affiliated No. 6 Hospital, Shanghai 200233, PR China.,Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, PR China
| |
Collapse
|
27
|
Kuroda K. MR techniques for guiding high-intensity focused ultrasound (HIFU) treatments. J Magn Reson Imaging 2017; 47:316-331. [PMID: 28580706 DOI: 10.1002/jmri.25770] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/02/2017] [Indexed: 12/17/2022] Open
Abstract
To make full use of the ability of magnetic resonance (MR) to guide high-intensity focused ultrasound (HIFU) treatment, effort has been made to improve techniques for thermometry, motion tracking, and sound beam visualization. For monitoring rapid temperature elevation with proton resonance frequency (PRF) shift, data acquisition and processing can be accelerated with parallel imaging and/or sparse sampling in conjunction with appropriate signal processing methods. Thermometry should be robust against tissue motion, motion-induced magnetic field variation, and susceptibility change. Thus, multibaseline, referenceless, or hybrid techniques have become important. In cases with adipose or bony tissues, for which PRF shift cannot be used, thermometry with relaxation times or signal intensity may be utilized. Motion tracking is crucial not only for thermometry but also for targeting the focus of an ultrasound in moving organs such as the liver, kidney, or heart. Various techniques for motion tracking, such as those based on an anatomical image atlas with optical-flow displacement detection, a navigator echo to seize the diaphragm position, and/or rapid imaging to track vessel positions, have been proposed. Techniques for avoiding the ribcage and near-field heating have also been examined. MR acoustic radiation force imaging (MR-ARFI) is an alternative to thermometry that can identify the location and shape of the focal spot and sound beam path. This technique could be useful for treating heterogeneous tissue regions or performing transcranial therapy. All of these developments, which will be discussed further in this review, expand the applicability of HIFU treatments to a variety of clinical targets while maintaining safety and precision. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018;47:316-331.
Collapse
Affiliation(s)
- Kagayaki Kuroda
- Department of Human and Information Science, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan.,Center for Frontier Medical Engineering, Chiba University, Inage, Chiba, Japan
| |
Collapse
|
28
|
Magnetic Resonance Imaging-Guided Focused Ultrasound Surgery for the Treatment of Symptomatic Uterine Fibroids. Case Rep Radiol 2017; 2017:2520989. [PMID: 28553555 PMCID: PMC5434313 DOI: 10.1155/2017/2520989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/10/2017] [Accepted: 04/02/2017] [Indexed: 01/24/2023] Open
Abstract
Uterine fibroids, the most common benign tumor in women of childbearing age, may cause symptoms including pelvic pain, menorrhagia, dysmenorrhea, pressure, urinary symptoms, and infertility. Various approaches are available to treat symptomatic uterine fibroids. Magnetic Resonance-guided Focused Ultrasound Surgery (MRgFUS) represents a recently introduced noninvasive safe and effective technique that can be performed without general anesthesia, in an outpatient setting. We review the principles of MRgFUS, describing patient selection criteria for the treatments performed at our center and we present a series of five selected patients with symptomatic uterine fibroids treated with this not yet widely known technique, showing its efficacy in symptom improvement and fibroid volume reduction.
Collapse
|
29
|
Dababou S, Marrocchio C, Rosenberg J, Bitton R, Pauly KB, Napoli A, Hwang JH, Ghanouni P. A meta-analysis of palliative treatment of pancreatic cancer with high intensity focused ultrasound. J Ther Ultrasound 2017; 5:9. [PMID: 28373906 PMCID: PMC5376281 DOI: 10.1186/s40349-017-0080-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma is currently the fourth-leading cause of cancer-related death. Up to 60-90% of patients with advanced disease suffer cancer-related pain, severely impacting their quality of life. Current management involves primarily pharmacotherapy with opioid narcotics and celiac plexus neurolysis; unfortunately, both approaches offer transient relief and cause undesired side-effects. High intensity focused ultrasound (HIFU) is a non-invasive thermal ablation technique that has been used to treat pancreatic cancer. This meta-analysis aims to evaluate the role of HIFU in pain palliation of advanced unresectable pancreatic adenocarcinoma. METHODS An electronic search was performed in PubMed Medline database up to the end of July 2016, for unresectable pancreatic cancer pain palliation with HIFU. Pertinent studies were identified through the PubMed search engine using the following keywords: HIFU, pancreas, pancreatic cancer, pain and palliation. Additional studies were included after manual search of the selected bibliographies. Pain palliation results reported in each study were analyzed using a logit-transformed random-effects model using the inverse variance method, with the DerSimonian-Laird estimator for τ2, and Cochran's Q test for heterogeneity among studies. The I2 was calculated to assess the percentage of the total variability in the different effect size estimates that can be attributed to heterogeneity among the true effects. A rank correlation test of funnel plot asymmetry was done to assess possible publication bias. RESULTS The meta-analysis includes a total number of 23 studies with 865 patients, 729 with pancreatic cancer. The population enrolled ranges from 3 patients in the smallest series, up to 61 in the largest study. τ2 (variance among studies) was 0.195, and I2 (percentage of variation among studies) was 40% (95% CI: 1-64%); the Q test p-value was 0.026, indicating significant heterogeneity among studies. Among 639 patients treated with HIFU, 567 complained of pancreatic pain before the treatment and 459 patients experienced partial or complete pain relief after treatment. The random effects estimate of the proportion of patients with pain reduction was 0.81 (95% CI: 0.76-86). CONCLUSIONS HIFU appears to be an effective tool for pain palliation in advanced pancreatic cancer. Studies assessing treatment in patients with pancreatic adenocarcinoma are limited by factors such as small sample sizes and heterogeneity in clinical definitions and assessments. Prospective randomized and standardized studies are necessary to confirm the effectiveness of HIFU in relieving pain, and to evaluate for any potential impact on tumor control and patient survival.
Collapse
Affiliation(s)
- Susan Dababou
- Medical Student, Sapienza University of Rome, School of Medicine, V.le Regina Elena, 324, 00180 Rome, Italy
| | - Cristina Marrocchio
- Medical Student, Sapienza University of Rome, School of Medicine, V.le Regina Elena, 324, 00180 Rome, Italy
| | - Jarrett Rosenberg
- Department of Radiology, Lucas Center for Imaging, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305 USA
| | - Rachelle Bitton
- Department of Radiology, Lucas Center for Imaging, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305 USA
| | - Kim Butts Pauly
- Department of Radiology, Lucas Center for Imaging, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305 USA
| | - Alessandro Napoli
- Department of Radiological Sciences, MRgFUS & Cardiovascular Imaging Unit, Sapienza University of Rome, School of Medicine, V.le Regina Elena, 324, 00180 Rome, Italy
| | - Joo Ha Hwang
- Gastroenterology Section, Harborview Medical Center, Bioengineering and Radiology, University of Washington, Box 359773, 325 Ninth Avenue, Seattle, WA 98104 USA
| | - Pejman Ghanouni
- Department of Radiology, Lucas Center for Imaging, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305 USA
| |
Collapse
|
30
|
Ramaekers P, Ries M, Moonen CT, de Greef M. Improved intercostal HIFU ablation using a phased array transducer based on Fermat's spiral and Voronoi tessellation: A numerical evaluation. Med Phys 2017; 44:1071-1088. [DOI: 10.1002/mp.12082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 11/22/2016] [Accepted: 12/25/2016] [Indexed: 01/25/2023] Open
Affiliation(s)
- Pascal Ramaekers
- Imaging Division; University Medical Center Utrecht; 3508 GA Utrecht The Netherlands
| | - Mario Ries
- Imaging Division; University Medical Center Utrecht; 3508 GA Utrecht The Netherlands
| | - Chrit T.W. Moonen
- Imaging Division; University Medical Center Utrecht; 3508 GA Utrecht The Netherlands
| | - Martijn de Greef
- Imaging Division; University Medical Center Utrecht; 3508 GA Utrecht The Netherlands
| |
Collapse
|
31
|
Shim J, Staruch R, Koral K, Xie XJ, Chopra R, Laetsch TW. Pediatric Sarcomas Are Targetable by MR-Guided High Intensity Focused Ultrasound (MR-HIFU): Anatomical Distribution and Radiological Characteristics. Pediatr Blood Cancer 2016; 63:1753-60. [PMID: 27199087 PMCID: PMC6016837 DOI: 10.1002/pbc.26079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Despite intensive therapy, children with metastatic and recurrent sarcoma or neuroblastoma have a poor prognosis. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is a noninvasive technique allowing the delivery of targeted ultrasound energy under MR imaging guidance. MR-HIFU may be used to ablate tumors without ionizing radiation or target chemotherapy using hyperthermia. Here, we evaluated the anatomic locations of tumors to assess the technical feasibility of MR-HIFU therapy for children with solid tumors. PROCEDURE Patients with sarcoma or neuroblastoma with available cross-sectional imaging were studied. Tumors were classified based on the location and surrounding structures within the ultrasound beam path as (i) not targetable, (ii) completely or partially targetable with the currently available MR-HIFU system, and (iii) potentially targetable if a respiratory motion compensation technique was used. RESULTS Of the 121 patients with sarcoma and 61 patients with neuroblastoma, 64% and 25% of primary tumors were targetable at diagnosis, respectively. Less than 20% of metastases at diagnosis or relapse were targetable for both sarcoma and neuroblastoma. Most targetable lesions were located in extremities or in the pelvis. Respiratory motion compensation may increase the percentage of targetable tumors by 4% for sarcomas and 10% for neuroblastoma. CONCLUSIONS Many pediatric sarcomas are localized at diagnosis and are targetable by current MR-HIFU technology. Some children with neuroblastoma have bony tumors targetable by MR-HIFU at relapse, but few newly diagnosed children with neuroblastoma have tumors amenable to MR-HIFU therapy. Clinical trials of MR-HIFU should focus on patients with anatomically targetable tumors.
Collapse
Affiliation(s)
- Jenny Shim
- Department of Pediatrics, Children’s Health, Dallas, Texas, USA
| | - Robert Staruch
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Philips Research North America, Cambridge, Massachusetts, USA
| | - Korgun Koral
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xian-Jin Xie
- Department of Clinical Sciences, Simmons Comprehensive Cancer Center, Dallas, Texas, USA
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Texas, USA
| | - Theodore W. Laetsch
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Pauline Allen Gill Center for Cancer and Blood Disorders, Children’s Health, Dallas, Texas, USA
| |
Collapse
|
32
|
Hoffmann R, Rempp H, Keßler DE, Weiß J, Pereira PL, Nikolaou K, Clasen S. MR-guided microwave ablation in hepatic tumours: initial results in clinical routine. Eur Radiol 2016; 27:1467-1476. [PMID: 27553935 DOI: 10.1007/s00330-016-4517-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/11/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Evaluation of the technical success, patient safety and technical effectiveness of magnetic resonance (MR)-guided microwave ablation of hepatic malignancies. METHODS Institutional review board approval and informed patient consent were obtained. Fifteen patients (59.8 years ± 9.5) with 18 hepatic malignancies (7 hepatocellular carcinomas, 11 metastases) underwent MR-guided microwave ablation using a 1.5-T MR system. Mean tumour size was 15.4 mm ± 7.7 (7-37 mm). Technical success and ablation zone diameters were assessed by post-ablative MR imaging. Technique effectiveness was assessed after 1 month. Complications were classified according to the Common Terminology Criteria for Adverse Events (CTCAE). Mean follow-up was 5.8 months ± 2.6 (1-10 months). RESULTS Technical success and technique effectiveness were achieved in all lesions. Lesions were treated using 2.5 ± 1.2 applicator positions. Mean energy and ablation duration per tumour were 37.6 kJ ± 21.7 (9-87 kJ) and 24.7 min ± 11.1 (7-49 min), respectively. Coagulation zone short- and long-axis diameters were 31.5 mm ± 10.5 (16-65 mm) and 52.7 mm ± 15.4 (27-94 mm), respectively. Two CTCAE-2-complications occurred (pneumothorax, pleural effusion). Seven patients developed new tumour manifestations in the untreated liver. Local tumour progression was not observed. CONCLUSIONS Microwave ablation is feasible under near real-time MR guidance and provides effective treatment of hepatic malignancies in one session. KEY POINTS • Planning, applicator placement and therapy monitoring are possible without using contrast enhancement • Energy transmission from the generator to the scanner room is safely possible • MR-guided microwave ablation provides effective treatment of hepatic malignancies in one session • Therapy monitoring is possible without applicator retraction from the ablation site.
Collapse
Affiliation(s)
- Rüdiger Hoffmann
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Strasse 3, 72076, Tübingen, Germany.
| | - Hansjörg Rempp
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Strasse 3, 72076, Tübingen, Germany
| | - David-Emanuel Keßler
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Strasse 3, 72076, Tübingen, Germany
| | - Jakob Weiß
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Strasse 3, 72076, Tübingen, Germany
| | - Philippe L Pereira
- Department of Radiology, Minimally Invasive Therapies and Nuclear Medicine, SLK-Kliniken Heilbronn GmbH, Am Gesundbrunnen 20-26, 74078, Heilbronn, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Strasse 3, 72076, Tübingen, Germany
| | - Stephan Clasen
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Strasse 3, 72076, Tübingen, Germany
| |
Collapse
|
33
|
van Breugel JMM, Wijlemans JW, Vaessen HHB, de Greef M, Moonen CTW, van den Bosch MAAJ, Ries MG. Procedural sedation and analgesia for respiratory-gated MR-HIFU in the liver: a feasibility study. J Ther Ultrasound 2016; 4:19. [PMID: 27478615 PMCID: PMC4966712 DOI: 10.1186/s40349-016-0063-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 07/08/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Previous studies demonstrated both pre-clinically and clinically the feasibility of magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablations in the liver. To overcome the associated problem of respiratory motion of the ablation area, general anesthesia (GA) and mechanical ventilation was used in conjunction with either respiratory-gated energy delivery or energy delivery during induced apnea. However, clinical procedures requiring GA are generally associated with increased mortality, morbidity, and complication rate compared to procedural sedation and analgesia (PSA). Furthermore, PSA is associated with faster recovery and an increased eligibility for non- and mini-invasive interventions. METHODS In this study, we investigate both in an animal model and on a small patient group the kinetics of the diaphragm during free-breathing, when a tailored remifentanil/propofol-based PSA protocol inducing partial respiratory depression is used. Subsequently, we demonstrate in an animal study the compatibility of the resulting respiratory pattern of the PSA protocol with a gated HIFU ablation in the liver by direct comparison with gated ablations conducted under GA. Wilcoxon signed-rank tests were performed for statistical analysis of non-perfused and necrosed tissue volumes. Duty cycles (ratio or percentage of the breathing cycle with the diaphragm in its resting position, such that acoustic energy delivery with MR-HIFU was allowed) were statistically compared for both GA and PSA using student's t tests. RESULTS In both animal and human experiments, the breathing frequency was decreased below 9/min, while maintaining stable vital functions. Furthermore an end-exhalation resting phase was induced by this PSA protocol during which the diaphragm is virtually immobile. Median non-perfused volumes, non-viable volumes based on NADH staining, and duty cycles were larger under PSA than under GA or equal. CONCLUSIONS We conclude that MR-HIFU ablations of the liver under PSA are feasible and potentially increase the non-invasive nature of this type of intervention.
Collapse
Affiliation(s)
- Johanna M. M. van Breugel
- Division of Imaging, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Radiology, University Medical Center Utrecht, Postbox: 85500, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Joost W. Wijlemans
- Division of Imaging, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Martijn de Greef
- Division of Imaging, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chrit T. W. Moonen
- Division of Imaging, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Mario G. Ries
- Division of Imaging, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
34
|
Noorda YH, Bartels LW, Viergever MA, Pluim JPW. Subject-specific four-dimensional liver motion modeling based on registration of dynamic MRI. J Med Imaging (Bellingham) 2016; 3:015002. [PMID: 27493981 DOI: 10.1117/1.jmi.3.1.015002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/25/2016] [Indexed: 11/14/2022] Open
Abstract
Magnetic resonance-guided high intensity focused ultrasound treatment of the liver is a promising noninvasive technique for ablation of liver lesions. For the technique to be used in clinical practice, however, the issue of liver motion needs to be addressed. A subject-specific four-dimensional liver motion model is presented that is created based on registration of dynamically acquired magnetic resonance data. This model can be used for predicting the tumor motion trajectory for treatment planning and to indicate the tumor position for treatment guidance. The performance of the model was evaluated on a dynamic scan series that was not used to build the model. The method achieved an average Dice coefficient of 0.93 between the predicted and actual liver profiles and an average vessel misalignment of 3.0 mm. The model performed robustly, with a small variation in the results per subject. The results demonstrate the potential of the model to be used for MRI-guided treatment of liver lesions. Furthermore, the model can possibly be applied in other image-guided therapies, for instance radiotherapy of the liver.
Collapse
Affiliation(s)
- Yolanda H Noorda
- University Medical Center Utrecht , Image Sciences Institute, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Lambertus W Bartels
- University Medical Center Utrecht , Image Sciences Institute, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Max A Viergever
- University Medical Center Utrecht , Image Sciences Institute, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Josien P W Pluim
- University Medical Center Utrecht , Image Sciences Institute, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
35
|
Khokhlova TD, Hwang JH. HIFU for Palliative Treatment of Pancreatic Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:83-95. [PMID: 26486333 DOI: 10.1007/978-3-319-22536-4_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pancreatic cancer is one of the deadliest malignancies, with only a 6 % 5-year survival rate and over 50 % of patients being diagnosed at the advanced stage. Current therapies are ineffective, and the treatment of patients with advanced disease is palliative. In the past decade, HIFU ablation has emerged as a modality for palliative treatment of pancreatic tumors. Multiple preclinical and non-randomized clinical trials have been performed to evaluate the safety and efficacy of this procedure. Substantial tumor-related pain reduction was achieved in most cases after HIFU treatment and few significant side effects were observed. In addition, some studies indicate that combination of HIFU ablation with chemotherapy may provide a survival benefit. This chapter summarizes the pre-clinical and clinical experience obtained to date in HIFU treatment of pancreatic tumors and discusses the challenges, limitations and new approaches in this modality.
Collapse
Affiliation(s)
- Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, 98195, USA.
| | - Joo Ha Hwang
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
36
|
Sagias G, Yiallouras C, Ioannides K, Damianou C. An MRI-conditional motion phantom for the evaluation of high-intensity focused ultrasound protocols. Int J Med Robot 2015; 12:431-41. [PMID: 27593511 DOI: 10.1002/rcs.1709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2015] [Indexed: 11/11/2022]
Abstract
BACKGROUND The respiratory motion of abdominal organs is a serious obstacle in high-intensity focused ultrasound (HIFU) treatment with magnetic resonance imaging (MRI) guidance. In this study, a two-dimensional (2D) MRI-conditional motion phantom device was developed in order to evaluate HIFU protocols in synchronized and non-synchronized ablation of moving targets. MATERIALS AND METHODS The 2D phantom device simulates the respiratory motion of moving organs in both the left-right and craniocaudal directions. The device consists of MR-conditional materials which have been produced by a three-dimensional (3D) printer. RESULTS The MRI compatibility of the motion phantom was tested successfully in an MRI scanner. In vitro experiments were carried out to evaluate HIFU ablation protocols that are minimally affected by target motion. CONCLUSION It was shown that only in synchronized mode does HIFU produce thermal lesions, as tested on a gel phantom mimicking the moving target. The MRI-conditional phantom device was shown to be functional for its purpose and can be used as an evaluation tool for testing HIFU protocols for moving targets in an MRI environment. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
|
37
|
Lam MK, de Greef M, Bouwman JG, Moonen CTW, Viergever MA, Bartels LW. Multi-gradient echo MR thermometry for monitoring of the near-field area during MR-guided high intensity focused ultrasound heating. Phys Med Biol 2015; 60:7729-45. [DOI: 10.1088/0031-9155/60/19/7729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
Chen H, Hou GY, Han Y, Payen T, Palermo CF, Olive KP, Konofagou EE. Harmonic motion imaging for abdominal tumor detection and high-intensity focused ultrasound ablation monitoring: an in vivo feasibility study in a transgenic mouse model of pancreatic cancer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:1662-73. [PMID: 26415128 PMCID: PMC4755287 DOI: 10.1109/tuffc.2015.007113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Harmonic motion imaging (HMI) is a radiationforce- based elasticity imaging technique that tracks oscillatory tissue displacements induced by sinusoidal ultrasonic radiation force to assess the resulting oscillatory displacement denoting the underlying tissue stiffness. The objective of this study was to evaluate the feasibility of HMI in pancreatic tumor detection and high-intensity focused ultrasound (HIFU) treatment monitoring. The HMI system consisted of a focused ultrasound transducer, which generated sinusoidal radiation force to induce oscillatory tissue motion at 50 Hz, and a diagnostic ultrasound transducer, which detected the axial tissue displacements based on acquired radio-frequency signals using a 1-D cross-correlation algorithm. For pancreatic tumor detection, HMI images were generated for pancreatic tumors in transgenic mice and normal pancreases in wild-type mice. The obtained HMI images showed a high contrast between normal and malignant pancreases with an average peak-to-peak HMI displacement ratio of 3.2. Histological analysis showed that no tissue damage was associated with HMI when it was used for the sole purpose of elasticity imaging. For pancreatic tumor ablation monitoring, the focused ultrasound transducer was operated at a higher acoustic power and longer pulse length than that used in tumor detection to simultaneously induce HIFU thermal ablation and oscillatory tissue displacements, allowing HMI monitoring without interrupting tumor ablation. HMI monitoring of HIFU ablation found significant decreases in the peak-to-peak HMI displacements before and after HIFU ablation with a reduction rate ranging from 15.8% to 57.0%. The formation of thermal lesions after HIFU exposure was confirmed by histological analysis. This study demonstrated the feasibility of HMI in abdominal tumor detection and HIFU ablation monitoring.
Collapse
|
39
|
Li T, Khokhlova T, Wang YN, Maloney E, D'Andrea S, Starr F, Farr N, Morrison K, Keilman G, Hwang JH. Endoscopic high-intensity focused US: technical aspects and studies in an in vivo porcine model (with video). Gastrointest Endosc 2015; 81:1243-50. [PMID: 25759124 PMCID: PMC4452137 DOI: 10.1016/j.gie.2014.12.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/04/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND High-intensity focused US (HIFU) is becoming more widely used for noninvasive and minimally invasive ablation of benign and malignant tumors. Recent studies suggest that HIFU can also enhance targeted drug delivery and stimulate an antitumor immune response in many tumors. However, targeting pancreatic and liver tumors by using an extracorporeal source is challenging due to the lack of an adequate acoustic window. The development of an EUS-guided HIFU transducer has many potential benefits including improved targeting, decreased energy requirements, and decreased potential for injury to intervening structures. OBJECTIVE To design, develop, and test an EUS-guided HIFU transducer for endoscopic applications. DESIGN A preclinical, pilot characterization and feasibility study. SETTING Academic research center. PATIENTS Studies were performed in an in vivo porcine model. INTERVENTION Thermal ablation of in vivo porcine pancreas and liver was performed with EUS-guided focused US through the gastric tract. RESULTS The transducer successfully created lesions in gel phantoms and ex vivo bovine livers. In vivo studies demonstrated that targeting and creating lesions in the porcine pancreas and liver are feasible. LIMITATIONS This was a preclinical, single-center feasibility study with a limited number of subjects. CONCLUSION An EUS-guided HIFU transducer was successfully designed and developed with dimensions that are appropriate for endoscopic use. The feasibility of performing EUS-guided HIFU ablation in vivo was demonstrated in an in vivo porcine model. Further development of this technology will allow endoscopists to perform precise therapeutic ablation of periluminal lesions without breaching the wall of the gastric tract.
Collapse
Affiliation(s)
- Tong Li
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle WA 98105
| | - Tatiana Khokhlova
- Division of Gastroenterology, Department of Medicine, Applied Physics Laboratory, University of Washington, Seattle WA
| | - Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle WA
| | - Ezekiel Maloney
- Department of Radiology, University of Washington, Seattle WA
| | - Samantha D'Andrea
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle WA
| | - Frank Starr
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle WA
| | - Navid Farr
- Department of Bioengineering, University of Washington, Seattle WA
| | | | | | - Joo Ha Hwang
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle WA
| |
Collapse
|
40
|
Schwenke M, Strehlow J, Haase S, Jenne J, Tanner C, Langø T, Loeve AJ, Karakitsios I, Xiao X, Levy Y, Sat G, Bezzi M, Braunewell S, Guenther M, Melzer A, Preusser T. An integrated model-based software for FUS in moving abdominal organs. Int J Hyperthermia 2015; 31:240-50. [DOI: 10.3109/02656736.2014.1002817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
41
|
Petrusca L, Salomir R, Manasseh G, Becker CD, Terraz S. Spatio-temporal quantitative thermography of pre-focal interactions between high intensity focused ultrasound and the rib cage. Int J Hyperthermia 2015; 31:421-32. [PMID: 25753370 DOI: 10.3109/02656736.2015.1009501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The aim of this paper is to quantitatively investigate the thermal effects generated by the pre-focal interactions of a HIFU beam with a rib cage, in the context of minimally invasive transcostal therapy of liver malignancies. MATERIALS AND METHODS HIFU sonications were produced by a phased-array MR-compatible transducer on Turkey muscle placed on a sheep thoracic cage specimen. The thoracic wall was positioned in the pre-focal zone 3.5 to 6.5 cm below the focus. Thermal monitoring was simultaneously performed using fluoroptic sensors inserted into the medullar cavity of the ribs and high resolution MR-thermometry (voxel: 1 × 1 × 5 mm3, four multi-planar slices). RESULTS MR-thermometry data indicated nearly isotropic distribution of the thermal energy at the ribs' surface. The temperature elevation at the focus was comparable with the pericostal temperature elevation around unprotected ribs, while being systematically inferior, by more than a factor of four on average, to the intra-medullar values. The spatial profiles of the pericostal and intra-medullar thermal build-up measurements could be smoothly connected using a Gaussian function. The dynamics of the post-sonication thermal relaxation as determined by fluoroptic measurements was demonstrated to be theoretically coherent with the experimental observations. CONCLUSION The experimental findings motivate further efforts for the transfer towards clinical routine of effective rib-sparing strategies for hepatic HIFU.
Collapse
Affiliation(s)
- Lorena Petrusca
- Hepatobiliary Interventional Radiology, Faculty of Medicine, University of Geneva , Geneva, Switzerland
| | | | | | | | | |
Collapse
|