1
|
Evans M, Kang S, Bajaber A, Gordon K, Martin C. Augmented Reality for Surgical Navigation: A Review of Advanced Needle Guidance Systems for Percutaneous Tumor Ablation. Radiol Imaging Cancer 2025; 7:e230154. [PMID: 39750112 PMCID: PMC11791678 DOI: 10.1148/rycan.230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 01/04/2025]
Abstract
Percutaneous tumor ablation has become a widely accepted and used treatment option for both soft and hard tissue malignancies. The current standard-of-care techniques for performing these minimally invasive procedures require providers to navigate a needle to their intended target using two-dimensional (2D) US or CT to obtain complete local response. These traditional image-guidance systems require operators to mentally transpose what is visualized on a 2D screen into the inherent three-dimensional (3D) context of human anatomy. Advanced navigation systems designed specifically for percutaneous needle-based procedures often fuse multiple imaging modalities to provide greater awareness and planned needle trajectories for the avoidance of critical structures. However, even many of these advanced systems still require mental transposition of anatomy from a 2D screen to human anatomy. Augmented reality (AR)-based systems have the potential to provide a 3D view of the patient's anatomy, eliminating the need for mental transposition by the operator. The purpose of this article is to review commercially available advanced percutaneous surgical navigation platforms and discuss the current state of AR-based navigation systems, including their potential benefits, challenges for adoption, and future developments. Keywords: Computer Applications-Virtual Imaging, Technology Assessment, Augmented Reality, Surgical Navigation, Percutaneous Ablation, Interventional Radiology ©RSNA, 2025.
Collapse
Affiliation(s)
- Michael Evans
- From the Department of Clinical Affairs, MediView XR, Cleveland, Ohio
(M.E.); College of Medicine, Alfaisal University, Riyadh, Saudi Arabia (A.B.);
and Department of Diagnostic Radiology, Section of Interventional Radiology,
Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195-5243 (S.K.,
K.G., C.M.)
| | | | - Abubakr Bajaber
- From the Department of Clinical Affairs, MediView XR, Cleveland, Ohio
(M.E.); College of Medicine, Alfaisal University, Riyadh, Saudi Arabia (A.B.);
and Department of Diagnostic Radiology, Section of Interventional Radiology,
Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195-5243 (S.K.,
K.G., C.M.)
| | | | - Charles Martin
- From the Department of Clinical Affairs, MediView XR, Cleveland, Ohio
(M.E.); College of Medicine, Alfaisal University, Riyadh, Saudi Arabia (A.B.);
and Department of Diagnostic Radiology, Section of Interventional Radiology,
Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195-5243 (S.K.,
K.G., C.M.)
| |
Collapse
|
2
|
Kim H, Kim JH, Lee JM. A Comparative Study of SonoVue and Sonazoid for Contrast-Enhanced Ultrasound CT/MRI Fusion Guidance During Radiofrequency Ablation of Poorly Visualized Hepatic Malignancies: A Prospective Intra-Individual Analysis. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1879-1884. [PMID: 39306481 DOI: 10.1016/j.ultrasmedbio.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE This study aimed to evaluate the effectiveness of two contrast agents, SonoVue (SV) and Sonazoid (SZ), by comparing them intra-individually in contrast-enhanced ultrasound (CEUS)-CT/MRI fusion imaging (FI) to improve the visibility of inconspicuous liver malignancies on B-mode sonography for guiding percutaneous radiofrequency ablation (RFA). Additionally, the radiologists' preference between SonoVue- CT/MRI FI (SV-FI) and Sonazoid-CT/MRI FI (SZ-FI) was determined. METHODS This prospective study enrolled 23 patients with inconspicuous hepatic malignancies (≤ 3 cm) on B-mode US who underwent both SV-FI and SZ-FI for RFA guidance. The patients underwent real-time CEUS FI with CT/MRI on the same day, utilizing both SV and SZ with at least 15-min intervals. Tumor visibility and radiologists' preferences were assessed and graded using a 4-point scale during the dynamic phases of both SV-FI and SZ-FI and the Kupffer phase of SZ-FI. RESULTS The tumor visibility scores obtained from CEUS-CT/MRI FI were significantly better than those obtained from US-FI. Indeed, SV-FI and SZ-FI demonstrated comparable visibility scores when corresponding phases were compared (p > 0.05). However, the Kupffer phase images of SZ-FI displayed superior visibility scores (3.70 ± 0.56 vs. 2.96 ± 0.88; p = 0.002) than the late vascular phase images of SV-FI. The radiologists favored SZ-FI in many cases, exhibiting moderate inter-observer agreement (Kappa value = 0.587; 95% CI, 0.403-0.772). CONCLUSION Although CEUS-CT/MRI FI with either SV or SZ substantially improved the visibility of inconspicuous tumors on US-CT/MRI FI, radiologists preferred SZ to SV to guide the RFA procedure.
Collapse
Affiliation(s)
- HeeSoo Kim
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Jae Hyun Kim
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Jongno-gu, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Zeng Q, Yan R, Zhang L, Yu X, Wu Y, Zheng R, Xu E, Li K. Intelligent automatic registration: is it feasible and efficient for application of ultrasound fusion imaging in liver? Abdom Radiol (NY) 2024:10.1007/s00261-024-04724-8. [PMID: 39613872 DOI: 10.1007/s00261-024-04724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
PURPOSE To evaluate the feasibility and efficiency between the two intelligent auto-registrations (based on hepatic vessels or based on liver surface) and manual registration for US-CT/MR fusion imaging of liver tumours. METHODS From May 2017 to December 2017, 30 patients with 30 liver tumours were enrolled in this prospectively study. Two intelligent auto-registrations (based on hepatic vessels or based on liver surface) and manual registration were randomly performed, the registration success rate and efficiency were compared. RESULTS In terms of success rate, auto-registrations based on the hepatic vessels (80%) was lower than auto-registration base on liver surface and manual registration (96.67%), but with no statistical difference (P = 0.125). In comparison of the registration efficiency, the efficiency of the auto-registration based on the hepatic vessels was superior to auto-registration based on liver surface and manual registration (P < 0.05). The one-step success rate of auto-registration based on the hepatic vessels (53.33%, 16/30) was higher than that of other two registrations (P < 0.05). Stratified analysis showed that, for the lesion with display of hepatic vessels in grade 3, the success rate of auto-registration based on vessels (0%) was lower than that of auto-registration based on liver surface and manual registration (100%) (P = 0.031). CONCLUSION Intelligent auto-registration based on hepatic vessels is a feasible and efficient registration method for US-CT/MR fusion imaging of liver tumours for the patients with clear hepatic vessels. The auto-registration based on liver surface and manual registration can be an effective supplement for cases with poor hepatic vessels display.
Collapse
Affiliation(s)
- Qingjing Zeng
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ronghua Yan
- Peking University Shenzhen Hospital, Shenzhen, China
| | - Lanxia Zhang
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xuan Yu
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuxuan Wu
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rongqin Zheng
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Erjiao Xu
- The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
| | - Kai Li
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Hwang S, Chun SJ, Chie EK, Lee JM. Assessment of real-time US-CT/MR-guided percutaneous gold fiducial marker implementation in malignant hepatic tumors for stereotactic body radiation therapy. JOURNAL OF LIVER CANCER 2024; 24:263-273. [PMID: 38853440 PMCID: PMC11449585 DOI: 10.17998/jlc.2024.06.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUNDS/AIMS This study explored the initial institutional experience of using gold fiducial markers for stereotactic body radiotherapy (SBRT) in treating malignant hepatic tumors using real-time ultrasound-computed tomography (CT)/magnetic resonance (MR) imaging fusion-guided percutaneous placement. METHODS From May 2021 to August 2023, 19 patients with 25 liver tumors that were invisible on pre-contrast CT received fiducial markers following these guidelines. Postprocedural scans were used to confirm their placement. We assessed technical and clinical success rates and monitored complications. The implantation of fiducial markers facilitating adequate treatment prior to SBRT, which was achieved in 96% of the cases (24 of 25 tumors), was considered technical success. Clinical success was the successful completion of SBRT without evidence of marker displacement and was achieved in 88% of cases (22 of 25 tumors). Complications included one major subcapsular hematoma and marker migration into the right atrium in two cases, which prevented SBRT. RESULTS Among the treated tumors, 20 of 24 (83.3%) showed a complete response, three of 24 (12.5%) remained stable, and one of 24 (4.2%) progressed during an average 11.7-month follow-up (range, 2-32 months). CONCLUSIONS This study confirms that percutaneous gold fiducial marker placement using real-time CT/MR guidance is effective and safe for SBRT in hepatic tumors, but warns of marker migration risks, especially near the hepatic veins and in subcapsular locations. Using fewer markers than traditionally recommended-typically two per patient, the outcomes were still satisfactory, particularly given the increased risk of migration when markers were placed near major hepatic veins.
Collapse
Affiliation(s)
- Sungjun Hwang
- Department of Radiology, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Seok-Joo Chun
- Department of Radiation Oncology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Eui Kyu Chie
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Jeong Min Lee
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
5
|
Lee Y, Yoon JH, Han S, Joo I, Lee JM. Contrast-enhanced ultrasonography-CT/MRI fusion guidance for percutaneous ablation of inconspicuous, small liver tumors: improving feasibility and therapeutic outcome. Cancer Imaging 2024; 24:4. [PMID: 38172949 PMCID: PMC10762814 DOI: 10.1186/s40644-023-00650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Percutaneous radiofrequency ablation (RFA) is pivotal for treating small malignant liver tumors, but tumors often remain inconspicuous on B-mode ultrasound (US). This study evaluates the potential of CEUS-CT/MRI fusion imaging (FI) to improve tumor visibility and the associated RFA outcomes for small (≤ 3 cm) malignant liver tumors that were inconspicuous on US. METHODS Between January 2019 and April 2021, a prospective study enrolled 248 patients with liver malignancies (≤ 3 cm) that were poorly visible on B-mode US. Tumor visibility and ablation feasibility were assessed using B-mode US, US-CT/MRI FI, and CEUS-CT/MRI FI, and graded on a 4-point scale. CEUS was employed post-registration of US and CT/MRI images, utilizing either SonoVue or Sonazoid. Comparisons between US-based and CEUS-based fusion visibility and feasibility scores were undertaken using the Friedman test. Moreover, rates of technical success, technique efficacy, local tumor progression (LTP), and major complications were assessed. RESULTS The cohort included 223 hepatocellular carcinomas (HCCs) (89.9%) and 23 metastases (9.3%), with an average tumor size of 1.6 cm. CEUS-CT/MRI FI demonstrated a significant advantage in tumor visibility (3.4 ± 0.7 vs. 1.9 ± 0.6, P < 0.001) and technical feasibility (3.6 ± 0.6 vs. 2.9 ± 0.8, P < 0.001) compared to US-FI. In 85.5% of patients, CEUS addition to US-FI ameliorated tumor visibility. Technical success was achieved in 99.6% of cases. No severe complications were reported. One and two-year post CEUS-CT/MRI FI-guided RFA estimates for LTP were 9.3% and 10.9%, respectively. CONCLUSIONS CEUS-CT/MRI FI significantly improves the visualization of tumors not discernible on B-mode US, thus augmenting percutaneous RFA success and delivering improved therapeutic outcomes. TRIAL REGISTRATION ClinicalTrials.gov, NCT05445973. Registered 17 June 2022 - Retrospectively registered, http://clinicaltrials.gov/study/NCT05445973?id=NCT05445973&rank=1 .
Collapse
Affiliation(s)
- Yuna Lee
- Department of Radiology, Seoul National University Hospital, #101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, #101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Seungchul Han
- Department of Radiology, Seoul National University Hospital, #101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, #101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, #101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
6
|
Kim YY, Cho SB, Lee JS, Lee HW, Choi JY, Kim SU. Utility of fusion imaging for the evaluation of ultrasound quality in hepatocellular carcinoma surveillance. Ultrasonography 2023; 42:580-588. [PMID: 37722723 PMCID: PMC10555691 DOI: 10.14366/usg.23106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/20/2023] Open
Abstract
PURPOSE This study evaluated the quality of surveillance ultrasound (US) for hepatocellular carcinoma (HCC) utilizing fusion imaging. METHODS This research involved a secondary analysis of a prospectively recruited cohort. Under institutional review board approval, participants referred for surveillance US who had undergone liver computed tomography (CT) or magnetic resonance imaging (MRI) within the past year were screened between August 2022 and January 2023. After patient consent was obtained, the US visualization score in the Liver Imaging Reporting and Data System was assessed with fusion imaging at the time of examination. This score was compared to that of conventional US using the extended McNemar test. Multivariable logistic regression analysis was used to identify factors independently associated with a US visualization score of B or C. Factors limiting visualization of focal lesions were recorded during fusion imaging. RESULTS Among the 105 participants (mean age, 59±11 years; 66 men), US visualization scores of B and C were assigned to 57 (54.3%) and 17 (16.2%) participants, respectively, by conventional US and 54 (51.4%) and 32 (30.5%) participants, respectively, by fusion imaging. The score distribution differed significantly between methods (P=0.010). Male sex was independently associated with US visualization scores of B or C (adjusted odds ratio, 3.73 [95% confidence interval, 1.30 to 10.76]; P=0.015). The most common reason (64.5%) for lesion nondetection was a limited sonic window. CONCLUSION Conventional US may underestimate the limitations of the sonic window relative to real-time fusion imaging with pre-acquired CT or MRI in the surveillance of HCC.
Collapse
Affiliation(s)
- Yeun-Yoon Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seo-Bum Cho
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Seung Lee
- Department of Internal Medicine and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Won Lee
- Department of Internal Medicine and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Young Choi
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Choi Y, Jeong YS, Hwang JS, Kim HC, Chung JW, Choi JW. C-Arm Computed Tomographic Image Fusion for Repetitive Transarterial Chemoembolization of Hepatocellular Carcinoma. J Comput Assist Tomogr 2023; 47:682-688. [PMID: 37707396 DOI: 10.1097/rct.0000000000001494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the potential implications of fusion imaging with C-arm computed tomography (CACT) scans for repetitive conventional transarterial chemoembolization (cTACE) for hepatocellular carcinoma. MATERIALS AND METHODS Fifty-six cTACE sessions were performed using fusion CACT images from September 2020 to June 2021 in a tertiary referral center, and the data were retrospectively analyzed. Fusion of unenhanced and enhanced CACT images was considered when previously accumulated iodized oil hampered the identification of local tumor progression or intrahepatic distant metastasis (indication A), when a tumor was supplied by multiple arteries with different origins from the aorta and missing tumor enhancement was suspected (indication B), or when iodized oil distribution on immediate post-cTACE CACT images needed to be precisely compared with the pre-cTACE images (indication C). Fusion image quality, initial tumor response, time to local progression (TTLP) of index tumors, and time to progression (TTP) were evaluated. RESULTS The fusion quality was satisfactory with a mean misregistration distance of 1.4 mm. For the 40 patients with indication A, the initial tumor responses at 3 months were nonviable, equivocal, and viable in 27 (67.5%), 4 (10.0%), and 9 (22.5%) index tumors, respectively. The median TTLP and TTP were 14.8 months and 4.5 months, respectively. For 10 patients with indication B, the median TTLP and TTP were 8.3 months and 2.6 months, respectively. Among the 6 patients with indication C, 2 patients were additionally treated at the same cTACE session after confirming incomplete iodized oil uptake on fusion imaging. CONCLUSIONS Fusion CACT images are useful in patients with hepatocellular carcinoma undergoing repetitive cTACE.
Collapse
Affiliation(s)
- Yelim Choi
- From the Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
8
|
Kudo M. Drug-Off Criteria in Patients with Hepatocellular Carcinoma Who Achieved Clinical Complete Response after Combination Immunotherapy Combined with Locoregional Therapy. Liver Cancer 2023; 12:289-296. [PMID: 37901198 PMCID: PMC10601881 DOI: 10.1159/000532023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 10/31/2023] Open
Affiliation(s)
- Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
9
|
Han S, Lee MW, Lee YJ, Hong HP, Lee DH, Lee JM. No-Touch Radiofrequency Ablation for Early Hepatocellular Carcinoma: 2023 Korean Society of Image-Guided Tumor Ablation Guidelines. Korean J Radiol 2023; 24:719-728. [PMID: 37500573 PMCID: PMC10400366 DOI: 10.3348/kjr.2023.0423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 07/29/2023] Open
Abstract
Radiofrequency ablation (RFA) has been widely used to manage hepatocellular carcinomas (HCCs) equal to or smaller than 3 cm. No-touch RFA has gained attention and has recently been implemented in local ablation therapy for HCCs, despite its technical complexity, as it provides improved local tumor control compared to conventional tumor-puncturing RFA. This article presents the practice guidelines for performing no-touch RFA for HCCs, which have been endorsed by the Korean Society of Image-Guided Tumor Ablation (KSITA). The guidelines are primarily designed to assist interventional oncologists and address the limitations of conventional tumor-puncturing RFA with describing the fundamental principles, various energy delivery methods, and clinical outcomes of no-touch RFA. The clinical outcomes include technical feasibility, local tumor progression rates, survival outcomes, and potential complications.
Collapse
Affiliation(s)
- Seungchul Han
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min Woo Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Young Joon Lee
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Pyo Hong
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Ho Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
10
|
Sakakibara J, Nagashima T, Fujimoto H, Takada M, Ohtsuka M. A review of MRI (CT)/US fusion imaging in treatment of breast cancer. J Med Ultrason (2001) 2023; 50:367-373. [PMID: 37231224 PMCID: PMC10354153 DOI: 10.1007/s10396-023-01316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/15/2023] [Indexed: 05/27/2023]
Abstract
The ultrasound fusion imaging system is a diagnostic device developed in Japan that utilizes ultrasound and magnetic positioning/navigation. A position sensor with a probe reads spatial location information from a magnetic field generator and by synchronously displaying ultrasound images and magnetic resonance (MR)/computed tomography (CT) images in real time. Lesions that are difficult to observe via ultrasonography alone, such as non-mass enhancement, can be identified. Furthermore, lesions that are difficult to identify with ultrasound alone indicated for MRI-guided biopsy under the National Health Insurance Scheme can be identified using ultrasound fusion technology, thereby enabling tissue biopsy to be performed under ultrasound guidance. Using this ultrasound fusion technology, not only non-mass enhancement but also small lesions that are difficult to identify using ultrasound alone can be detected, thus ensuring that a more accurate preoperative imaging diagnosis is established, and leading to safer, more reassuring examinations and surgical procedures. In this paper, we outline the use of this ultrasound fusion technology and fusion techniques in the treatment of breast cancer.
Collapse
Affiliation(s)
- Junta Sakakibara
- Department of General Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8677, Japan.
| | - Takeshi Nagashima
- Department of General Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8677, Japan
| | - Hiroshi Fujimoto
- Department of General Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8677, Japan
| | - Mamoru Takada
- Department of General Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8677, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8677, Japan
| |
Collapse
|