1
|
Malik N, Samples DC, Finneran MM, Graber S, Dorris K, Norris G, Foreman NK, Hankinson TC, Handler MH. Pediatric pineal region masses: a single-center experience over 25 years. Childs Nerv Syst 2023; 39:2307-2316. [PMID: 35831712 DOI: 10.1007/s00381-022-05593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Pineal region tumors (PRT) represent less than 1% of brain neoplasms. The rare and heterogeneous nature of these tumors is reflected in the variety of treatment modalities employed. METHODS A single-center retrospective review of all pediatric patients with pineal region tumors between November 1996 and June 2021 was performed. Fifty-six cases of pineal tumors were reviewed for age and symptoms upon presentation, diagnostic methods, imaging characteristics, histological classification, treatment modalities, recurrence, and mortality rates. RESULTS The average age at diagnosis was 11.3 years. The majority of patients were male (82.1%) and Caucasian (73.2%). The most common presenting symptoms were headache (n = 38, 67.9%) and visual problems (n = 34, 60.7%). Hydrocephalus was present in 49 patients (87.5%). Germinoma (n = 20, 35.7%) and non-germinomatous germ cell tumor (NGGCT) (n = 17, 30.4%) were the most common tumors. Chemotherapy was employed for 54 patients (96.4%), radiation for 49 (87.5%), and surgical resection for 14 (25.0%). The average duration of treatment was 5.9 months. Progression-free survival was 74.4% at 5 years and 72.0% at 10 years. Overall survival was 85.7% at 5 years and 77.1% at 10 years. CONCLUSION Treatment of pineal region tumors must be targeted to each patient based on presentation, subtype, presence of hydrocephalus, and extent of disease. Upfront surgical resection is usually not indicated. As advances in oncological care proceed, treatment modalities may continue to improve in efficacy.
Collapse
Affiliation(s)
- Noor Malik
- Department of Pediatric Neurosurgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Derek C Samples
- Department of Pediatric Neurosurgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Megan M Finneran
- Department of Pediatric Neurosurgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Neurological Surgery, Carle BroMenn Medical Center, Normal, IL, USA
| | - Sarah Graber
- Department of Pediatric Neurosurgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kathleen Dorris
- Department of Pediatrics, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Gregory Norris
- Department of Pediatrics, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nicholas K Foreman
- Department of Pediatrics, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Todd C Hankinson
- Department of Pediatric Neurosurgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael H Handler
- Department of Pediatric Neurosurgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
2
|
Dhawan SS, Yedavalli V, Massoud TF. Atavistic and vestigial anatomical structures in the head, neck, and spine: an overview. Anat Sci Int 2023:10.1007/s12565-022-00701-7. [PMID: 36680662 DOI: 10.1007/s12565-022-00701-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/27/2022] [Indexed: 01/22/2023]
Abstract
Organisms may retain nonfunctional anatomical features as a consequence of evolutionary natural selection. Resultant atavistic and vestigial anatomical structures have long been a source of perplexity. Atavism is when an ancestral trait reappears after loss through an evolutionary change in previous generations, whereas vestigial structures are remnants that are largely or entirely functionless relative to their original roles. While physicians are cognizant of their existence, atavistic and vestigial structures are rarely emphasized in anatomical curricula and can, therefore, be puzzling when discovered incidentally. In addition, the literature is replete with examples of the terms atavistic and vestigial being used interchangeably without careful distinction between them. We provide an overview of important atavistic and vestigial structures in the head, neck, and spine that can serve as a reference for anatomists and clinical neuroscientists. We review the literature on atavistic and vestigial anatomical structures of the head, neck, and spine that may be encountered in clinical practice. We define atavistic and vestigial structures and employ these definitions consistently when classifying anatomical structures. Pertinent anatomical structures are numerous and include human tails, plica semilunaris, the vomeronasal organ, levator claviculae, and external ear muscles, to name a few. Atavistic and vestigial structures are found throughout the head, neck, and spine. Some, such as human tails and branchial cysts may be clinically symptomatic. Literature reports indicate that their prevalence varies across populations. Knowledge of atavistic and vestigial anatomical structures can inform diagnoses, prevent misrecognition of variation for pathology, and guide clinical interventions.
Collapse
Affiliation(s)
- Siddhant Suri Dhawan
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, USA
| | - Vivek Yedavalli
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Tarik F Massoud
- Division of Neuroimaging and Neurointervention, and Stanford Initiative for Multimodality Neuro-Imaging in Translational Anatomy Research (SIMITAR), Department of Radiology, Stanford University School of Medicine, Stanford, USA. .,Center for Academic Medicine, Radiology MC: 5659; 453 Quarry Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
3
|
Nelles DG, Hazrati LN. Ependymal cells and neurodegenerative disease: outcomes of compromised ependymal barrier function. Brain Commun 2022; 4:fcac288. [PMID: 36415662 PMCID: PMC9677497 DOI: 10.1093/braincomms/fcac288] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 11/01/2022] [Indexed: 08/08/2023] Open
Abstract
Within the central nervous system, ependymal cells form critical components of the blood-cerebrospinal fluid barrier and the cerebrospinal fluid-brain barrier. These barriers provide biochemical, immunological and physical protection against the entry of molecules and foreign substances into the cerebrospinal fluid while also regulating cerebrospinal fluid dynamics, such as the composition, flow and removal of waste from the cerebrospinal fluid. Previous research has demonstrated that several neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis, display irregularities in ependymal cell function, morphology, gene expression and metabolism. Despite playing key roles in maintaining overall brain health, ependymal barriers are largely overlooked and understudied in the context of disease, thus limiting the development of novel diagnostic and treatment options. Therefore, this review explores the anatomical properties, functions and structures that define ependymal cells in the healthy brain, as well as the ways in which ependymal cell dysregulation manifests across several neurodegenerative diseases. Specifically, we will address potential mechanisms, causes and consequences of ependymal cell dysfunction and describe how compromising the integrity of ependymal barriers may initiate, contribute to, or drive widespread neurodegeneration in the brain.
Collapse
Affiliation(s)
- Diana G Nelles
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Ave, Canada
| | - Lili-Naz Hazrati
- Correspondence to: Dr. Lili-Naz Hazrati 555 University Ave, Toronto ON M5G 1X8, Canada E-mail:
| |
Collapse
|
4
|
Muñoz EM. Microglia in Circumventricular Organs: The Pineal Gland Example. ASN Neuro 2022; 14:17590914221135697. [PMID: 36317305 PMCID: PMC9629557 DOI: 10.1177/17590914221135697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The circumventricular organs (CVOs) are unique areas within the central nervous system. They serve as a portal for the rest of the body and, as such, lack a blood-brain barrier. Microglia are the primary resident immune cells of the brain parenchyma. Within the CVOs, microglial cells find themselves continuously challenged and stimulated by local and systemic stimuli, even under steady-state conditions. Therefore, CVO microglia in their typical state often resemble the activated microglial forms found elsewhere in the brain as they are responding to pathological conditions or other stressors. In this review, I focus on the dynamics of CVO microglia, using the pineal gland as a specific CVO example. Data related to microglia heterogeneity in both homeostatic and unhealthy environments are presented and discussed, including those recently generated by using advanced single-cell and single-nucleus technology. Finally, perspectives in the CVO microglia field are also included.Summary StatementMicroglia in circumventricular organs (CVOs) continuously adapt to react differentially to the diverse challenges they face. Herein, I discuss microglia heterogeneity in CVOs, including pineal gland. Further studies are needed to better understand microglia dynamics in these unique brain areas. .
Collapse
Affiliation(s)
- Estela M. Muñoz
- Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos (IHEM), Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina,Estela M. Muñoz, IHEM-UNCuyo-CONICET, Parque General San Martin, Ciudad de Mendoza, M5502JMA, Mendoza, Argentina.
or
| |
Collapse
|
5
|
Morris JA, Gilbert BC, Parker WT, Forseen SE. Anatomy of the Ventricles, Subarachnoid Spaces, and Meninges. Neuroimaging Clin N Am 2022; 32:577-601. [PMID: 35843664 DOI: 10.1016/j.nic.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The ventricular system, subarachnoid spaces, and meninges are structures that lend structure, support, and protection to the brain and spinal cord. This article provides a detailed look at the anatomy of the intracranial portions of these structures with a particular focus on neuroimaging methods.
Collapse
Affiliation(s)
- John A Morris
- Department of Radiology and Imaging, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Bruce C Gilbert
- Neuroradiology, Neuroradiology Section, Department of Radiology and Imaging, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - William T Parker
- Neuroradiology, Neuroradiology Section, Department of Radiology and Imaging, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Scott E Forseen
- Department of Radiology and Imaging, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
6
|
Zaccagna F, Brown FS, Allinson KSJ, Devadass A, Kapadia A, Massoud TF, Matys T. In and around the pineal gland: a neuroimaging review. Clin Radiol 2021; 77:e107-e119. [PMID: 34774298 DOI: 10.1016/j.crad.2021.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/30/2021] [Indexed: 01/16/2023]
Abstract
Lesions arising in or around the pineal gland comprise a heterogeneous group of pathologies ranging from benign non-neoplastic cysts to highly malignant neoplasms. Pineal cysts are frequently encountered as an incidental finding in daily radiology practice but there is no universal agreement on the criteria for, frequency of, and duration of follow-up imaging. Solid pineal neoplasms pose a diagnostic challenge owing to considerable overlap in their imaging characteristics, although a combination of radiological appearances, clinical findings, and tumour markers allows for narrowing of the differential diagnosis. In this review, we describe the radiological anatomy of the pineal region, clinical symptoms, imaging appearances, and differential diagnosis of lesions arising in this area, and highlight the clinical management of these conditions.
Collapse
Affiliation(s)
- F Zaccagna
- Department of Radiology, University of Cambridge, Cambridge, UK; Division of Neuroimaging, Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - F S Brown
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - K S J Allinson
- Department of Pathology, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - A Devadass
- Department of Pathology, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - A Kapadia
- Division of Neuroimaging, Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - T F Massoud
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - T Matys
- Department of Radiology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Fry WM, Ferguson AV. The subfornical organ and organum vasculosum of the lamina terminalis: Critical roles in cardiovascular regulation and the control of fluid balance. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:203-215. [PMID: 34225930 DOI: 10.1016/b978-0-12-820107-7.00013-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this chapter, we review the extensive literature describing the roles of the subfornical organ (SFO), the organum vasculosum of the terminalis (OVLT), and the median preoptic nucleus (MnPO), comprising the lamina terminalis, in cardiovascular regulation and the control of fluid balance. We present this information in the context of both historical and technological developments which can effectively be overlaid upon each other. We describe intrinsic anatomy and connectivity and then discuss early work which described how circulating angiotensin II acts at the SFO to stimulate drinking and increase blood pressure. Extensive studies using direct administration and lesion approaches to highlight the roles of all regions of the lamina terminalis are then discussed. At the cellular level we describe c-Fos and electrophysiological work, which has highlighted an extensive group of circulating hormones which appear to influence the activity of specific neurons in the SFO, OVLT, and MnPO. We highlight optogenetic studies that have begun to unravel the complexities of circuitries underlying physiological outcomes, especially those related to different components of drinking. Finally, we describe the somewhat limited human literature supporting conclusions that these structures play similar and potentially important roles in human physiology.
Collapse
Affiliation(s)
- W Mark Fry
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
8
|
Feletti A, Fiorindi A, Lavecchia V, Boscolo-Berto R, Marton E, Macchi V, De Caro R, Longatti P, Porzionato A, Pavesi G. A light on the dark side: in vivo endoscopic anatomy of the posterior third ventricle and its variations in hydrocephalus. J Neurosurg 2021; 135:309-317. [PMID: 32619975 DOI: 10.3171/2020.4.jns20493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/15/2020] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Despite the technological advancements of neurosurgery, the posterior part of the third ventricle has always been the "dark side" of the ventricle. However, flexible endoscopy offers the opportunity for a direct, in vivo inspection and detailed description of the posterior third ventricle in physiological and pathological conditions. The purposes of this study were to describe the posterior wall of the third ventricle, detailing its normal anatomy and surgical landmarks, and to assess the effect of chronic hydrocephalus on the anatomy of this hidden region. METHODS The authors reviewed the video recordings of 59 in vivo endoscopic explorations of the posterior third ventricle to describe every identifiable anatomical landmark. Patients were divided into 2 groups based on the absence or presence of a chronic dilation of the third ventricle. The first group provided the basis for the description of normal anatomy. RESULTS The following anatomical structures were identified in all cases: adytum of the cerebral aqueduct, posterior commissure, pineal recess, habenular commissure, and suprapineal recess. Comparing the 2 groups of patients, the authors were able to detect significant variations in the shape of the adytum of the cerebral aqueduct and in the thickness of the habenular and posterior commissures. Exploration with sodium fluorescein excluded the presence of any fluorescent area in the posterior third ventricle, other than the subependymal vascular network. CONCLUSIONS The use of a flexible scope allows the complete inspection of the posterior third ventricle. The anatomical variations caused by chronic hydrocephalus might be clinically relevant, in light of the commissure functions.
Collapse
Affiliation(s)
- Alberto Feletti
- 1Department of Neurosciences, Biomedicine, and Movement Sciences, Institute of Neurosurgery, University of Verona
- 2Department of Neurosciences, Neurosurgical Unit, University of Modena
| | - Alessandro Fiorindi
- 3Neurosurgical Department, Spedali Civili, University of Brescia
- 4Neurosurgical Department, Treviso Regional Hospital, University of Padova, Treviso; and
| | | | - Rafael Boscolo-Berto
- 5Department of Neuroscience, Institute of Human Anatomy, University of Padova, Italy
| | - Elisabetta Marton
- 4Neurosurgical Department, Treviso Regional Hospital, University of Padova, Treviso; and
| | - Veronica Macchi
- 5Department of Neuroscience, Institute of Human Anatomy, University of Padova, Italy
| | - Raffaele De Caro
- 5Department of Neuroscience, Institute of Human Anatomy, University of Padova, Italy
| | - Pierluigi Longatti
- 4Neurosurgical Department, Treviso Regional Hospital, University of Padova, Treviso; and
| | - Andrea Porzionato
- 5Department of Neuroscience, Institute of Human Anatomy, University of Padova, Italy
| | - Giacomo Pavesi
- 2Department of Neurosciences, Neurosurgical Unit, University of Modena
| |
Collapse
|
9
|
Osawa I, Kozawa E, Yamamoto Y, Tanaka S, Shiratori T, Kaizu A, Inoue K, Niitsu M. Contrast Enhancement of the Normal Infundibular Recess Using Heavily T2-weighted 3D FLAIR. Magn Reson Med Sci 2021; 21:469-476. [PMID: 33980787 PMCID: PMC9316133 DOI: 10.2463/mrms.mp.2021-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Purpose: The purpose of the present study was to evaluate contrast enhancement of the infundibular recess in the normal state using heavily T2-weighted 3D fluid-attenuated inversion recovery (FLAIR) (HT2-FLAIR). Methods: Twenty-six patients were retrospectively recruited. We subjectively assessed overall contrast enhancement of the infundibular recess between postcontrast, 4-hour (4-h) delayed postcontrast, and precontrast HT2-FLAIR images. We also objectively conducted chronological and spatial comparisons by measuring the signal intensity (SI) ratio (SIR). Chronological comparisons were performed by comparing SI of the infundibular recess/SI of the midbrain (SIRIR-MB). Spatial comparisons were conducted by comparing SI on postcontrast HT2-FLAIR/SI on precontrast HT2-FLAIR (SIRPost-Pre) of the infundibular recess with that of other cerebrospinal fluid (CSF) spaces, including the superior part of the third ventricle, lateral ventricles, fourth ventricle, and interpeduncular cistern. Results: In the subjective analysis, all cases showed contrast enhancement of the infundibular recess on both postcontrast and 4-h delayed postcontrast HT2-FLAIR, and showed weaker contrast enhancement of the infundibular recess on 4-h delayed postcontrast HT2-FLAIR than on postcontrast HT2-FLAIR. In the objective analysis, SIRIR-MB was the highest on postcontrast images, followed by 4-h delayed postcontrast images. SIRPost-Pre was significantly higher in the infundibular recess than in the other CSF spaces. Conclusion: The present results demonstrated that the infundibular recess was enhanced on HT2-FLAIR after an intravenous gadolinium injection. The infundibular recess may be a potential source of the leakage of intravenously administered gadolinium into the CSF.
Collapse
Affiliation(s)
- Iichiro Osawa
- Department of Radiology, Saitama Medical University Hospital
| | - Eito Kozawa
- Department of Radiology, Saitama Medical University Hospital
| | - Yuya Yamamoto
- Department of Radiology, Saitama Medical University Hospital
| | - Sayuri Tanaka
- Department of Radiology, Saitama Medical University Hospital
| | - Taira Shiratori
- Department of Radiology, Saitama Medical University Hospital
| | - Akane Kaizu
- Department of Radiology, Saitama Medical University Hospital
| | - Kaiji Inoue
- Department of Radiology, Saitama Medical University Hospital
| | - Mamoru Niitsu
- Department of Radiology, Saitama Medical University Hospital
| |
Collapse
|
10
|
Dumas G, Goubran‐Botros H, Matondo M, Pagan C, Boulègue C, Chaze T, Chamot‐Rooke J, Maronde E, Bourgeron T. Mass-spectrometry analysis of the human pineal proteome during night and day and in autism. J Pineal Res 2021; 70:e12713. [PMID: 33368564 PMCID: PMC8047921 DOI: 10.1111/jpi.12713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
The human pineal gland regulates day-night dynamics of multiple physiological processes, especially through the secretion of melatonin. Using mass-spectrometry-based proteomics and dedicated analysis tools, we identify proteins in the human pineal gland and analyze systematically their variation throughout the day and compare these changes in the pineal proteome between control specimens and donors diagnosed with autism. Results reveal diverse regulated clusters of proteins with, among others, catabolic carbohydrate process and cytoplasmic membrane-bounded vesicle-related proteins differing between day and night and/or control versus autism pineal glands. These data show novel and unexpected processes happening in the human pineal gland during the day/night rhythm as well as specific differences between autism donor pineal glands and those from controls.
Collapse
Affiliation(s)
- Guillaume Dumas
- Human Genetics and Cognitive FunctionsInstitut PasteurUMR 3571 CNRSUniversity Paris DiderotParisFrance
- Precision Psychiatry and Social Physiology laboratoryCHU Ste‐Justine Research CenterDepartment of PsychiatryUniversity of MontrealQuebecQCCanada
| | - Hany Goubran‐Botros
- Human Genetics and Cognitive FunctionsInstitut PasteurUMR 3571 CNRSUniversity Paris DiderotParisFrance
| | - Mariette Matondo
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Cécile Pagan
- Paris Descartes UniversityParisFrance
- Service de Biochimie et Biologie MoléculaireINSERM U942Hôpital LariboisièreAPHPParisFrance
| | - Cyril Boulègue
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Thibault Chaze
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Julia Chamot‐Rooke
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Erik Maronde
- Institute for Anatomy IIFaculty of MedicineGoethe UniversityFrankfurtGermany
| | - Thomas Bourgeron
- Human Genetics and Cognitive FunctionsInstitut PasteurUMR 3571 CNRSUniversity Paris DiderotParisFrance
| |
Collapse
|
11
|
Verheggen ICM, de Jong JJA, van Boxtel MPJ, Postma AA, Verhey FRJ, Jansen JFA, Backes WH. Permeability of the windows of the brain: feasibility of dynamic contrast-enhanced MRI of the circumventricular organs. Fluids Barriers CNS 2020; 17:66. [PMID: 33115484 PMCID: PMC7594295 DOI: 10.1186/s12987-020-00228-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/17/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Circumventricular organs (CVOs) are small structures without a blood-brain barrier surrounding the brain ventricles that serve homeostasic functions and facilitate communication between the blood, cerebrospinal fluid and brain. Secretory CVOs release peptides and sensory CVOs regulate signal transmission. However, pathogens may enter the brain through the CVOs and trigger neuroinflammation and neurodegeneration. We investigated the feasibility of dynamic contrast-enhanced (DCE) MRI to assess the CVO permeability characteristics in vivo, and expected significant contrast uptake in these regions, due to blood-brain barrier absence. METHODS Twenty healthy, middle-aged to older males underwent brain DCE MRI. Pharmacokinetic modeling was applied to contrast concentration time-courses of CVOs, and in reference to white and gray matter. We investigated whether a significant and positive transfer from blood to brain could be measured in the CVOs, and whether this differed between secretory and sensory CVOs or from normal-appearing brain matter. RESULTS In both the secretory and sensory CVOs, the transfer constants were significantly positive, and all secretory CVOs had significantly higher transfer than each sensory CVO. The transfer constants in both the secretory and sensory CVOs were higher than in the white and gray matter. CONCLUSIONS Current measurements confirm the often-held assumption of highly permeable CVOs, of which the secretory types have the strongest blood-to-brain transfer. The current study suggests that DCE MRI could be a promising technique to further assess the function of the CVOs and how pathogens can potentially enter the brain via these structures. TRIAL REGISTRATION Netherlands Trial Register number: NL6358, date of registration: 2017-03-24.
Collapse
Affiliation(s)
- Inge C M Verheggen
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.
- Alzheimer Center Limburg, Maastricht, The Netherlands.
| | - Joost J A de Jong
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Martin P J van Boxtel
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Alzheimer Center Limburg, Maastricht, The Netherlands
| | - Alida A Postma
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Frans R J Verhey
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Alzheimer Center Limburg, Maastricht, The Netherlands
| | - Jacobus F A Jansen
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Walter H Backes
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
12
|
Korzh V, Kondrychyn I. Origin and development of circumventricular organs in living vertebrate. Semin Cell Dev Biol 2019; 102:13-20. [PMID: 31706729 DOI: 10.1016/j.semcdb.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/17/2019] [Indexed: 01/22/2023]
Abstract
The circumventricular organs (CVOs) function by mediating chemical communication between blood and brain across the blood-brain barrier. Their origin and developmental mechanisms involved are not understood in enough detail due to a lack of molecular markers common for CVOs. These rather small and inconspicuous organs are found in close vicinity to the third and fourth brain ventricles suggestive of ancient evolutionary origin. Recently, an integrated approach based on analysis of CVOs development in the enhancer-trap transgenic zebrafish led to an idea that almost all of CVOs could be highlighted by GFP expression in this transgenic line. This in turn suggested that an enhancer along with a set of genes it regulates may illustrate the first common element of developmental regulation of CVOs. It seems to be related to a mechanism of suppression of the canonical Wnt/ β-catenin signaling that functions in development of fenestrated capillaries typical for CVOs. Based on that observation the common molecular elements of the putative developmental mechanism of CVOs will be discussed in this review.
Collapse
Affiliation(s)
- Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Poland.
| | | |
Collapse
|
13
|
Bonnan M, Mejdoubi M, Cabre P. Fulminant and fatal onset of pan-aquaporinopathy. Mult Scler Relat Disord 2019; 34:116-118. [PMID: 31255987 DOI: 10.1016/j.msard.2019.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/16/2019] [Accepted: 06/24/2019] [Indexed: 11/27/2022]
Abstract
Early administration of high-dose steroids and plasma exchange (PE) offers the best chance of treating neuromyelitis optica spectrum disease (NMOSD) attacks, but up to 20% of patients fail to respond. We report the case of a first devastating NMOSD attack leading to death despite optimal treatment. While receiving steroids during a bilateral blinding optic neuritis, this female patient suffered a severe attack involving the spinal cord and circumventricular organs (CVOs), including the pineal gland. Early adjunctive daily PE failed to prevent sudden death. AQP4-antibodies were strongly positive. To our knowledge, this is the first case of exceptionally severe monophasic NMOSD leading to full-blown lesions in all AQP4-expressing sites. Lesions of the periventricular ependyma and CVOs are highly exceptional and the involvement of the pineal gland, which is also a CVO, is novel. Moreover, the patient's condition continued to worsen until death, without any sign of recovery. We term this unexpected outcome the 'anti-Lazarus effect'. Although the mechanisms of resistance to treatment remain elusive, very early initiation of immunosuppressive drugs or adjunctive salvage therapies could be envisioned to manage these devastating attacks.
Collapse
Affiliation(s)
- Mickael Bonnan
- Service de Neurologie, Centre Hospitalier de Pau, 4 Bd Hauterive, 64000 Pau, France.
| | - Mehdi Mejdoubi
- Service de Radiologie, Hôpital Zobda Quitman, 97261 Fort-de-France, French West Indies
| | - Philippe Cabre
- Service de Neurologie, Hôpital Zobda Quitman, 97261 Fort-de-France, French West Indies
| |
Collapse
|
14
|
Laurens C, Abot A, Delarue A, Knauf C. Central Effects of Beta-Blockers May Be Due to Nitric Oxide and Hydrogen Peroxide Release Independently of Their Ability to Cross the Blood-Brain Barrier. Front Neurosci 2019; 13:33. [PMID: 30766473 PMCID: PMC6365417 DOI: 10.3389/fnins.2019.00033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/15/2019] [Indexed: 01/29/2023] Open
Abstract
Propranolol is the first-line treatment for infants suffering from infantile hemangioma. Recently, some authors raised the question of potential neurologic side effects of propranolol due to its lipophilic nature and thus its ability to passively cross the blood-brain barrier (BBB) and accumulate into the brain. Hydrophilic beta-blockers, such as atenolol and nadolol, where therefore introduced in clinical practice. In addition to their classical mode of action in the brain, circulating factors may modulate the release of reactive oxygen/nitrogen species (ROS/RNS) from endothelial cells that compose the BBB without entering the brain. Due to their high capacity to diffuse across membranes, ROS/RNS can reach neurons and modify their activity. The aim of this study was to investigate other mechanisms of actions in which these molecules may display a central effect without actually crossing the BBB. We first performed an oral treatment in mice to measure the accumulation of propranolol, atenolol and nadolol in different brain regions in vivo. We then evaluated the ability of these molecules to induce the release of nitric oxide (NO) and hydrogen peroxide (H2O2) ex vivo in the hypothalamus. As expected, propranolol is able to cross the BBB and is found in brain tissue in higher amounts than atenolol and nadolol. However, all of these beta-blockers are able to induce the secretion of signaling molecules (i.e., NO and/or H2O2) in the hypothalamus, independently of their ability to cross the BBB, deciphering a new potential deleterious impact of hydrophilic beta-blockers in the brain.
Collapse
Affiliation(s)
| | - Anne Abot
- Enterosys SAS, Prologue Biotech, Toulouse, France
| | | | - Claude Knauf
- INSERM U1220 Institut de Recherche en Santé Digestive, CHU Purpan, Université Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
15
|
Beddok A, Faivre JC, Coutte A, Guévelou JL, Welmant J, Clavier JB, Guihard S, Janoray G, Calugaru V, Pointreau Y, Lacout A, Salleron J, Lefranc M, Hasboun D, Duvernoy HM, Thariat J. Practical contouring guidelines with an MR-based atlas of brainstem structures involved in radiation-induced nausea and vomiting. Radiother Oncol 2018; 130:113-120. [PMID: 30172454 DOI: 10.1016/j.radonc.2018.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND PURPOSE The objective of this project was to define consensus guidelines for delineating brainstem substructures (dorsal vagal complex, including the area postrema) involved in radiation-induced nausea and vomiting (RINV). The three parts of the brainstem are rarely delineated, so this study was also an opportunity to find a consensus on this subject. MATERIALS AND METHODS The dorsal vagal complex (DVC) was identified on autopsy sections and endoscopic descriptions. Anatomic landmarks and boundaries were used to establish radio-anatomic correlations on CT and Magnetic Resonance Imaging (MRI). Additionally, delineation of RINV structures was performed on MRI images and reported on CT scans. Next, guidelines were provided to eight radiation oncologists for delineation guidance of these RINV-related structures on DICOM-RT images of two patients being treated for a nasopharyngeal carcinoma. Interobserver variability was computed. RESULTS The DVC and the three parts of the brainstem were defined with a concise description of their main anatomic boundaries. The interobserver analysis showed that the DVC, the midbrain, the pons, and the medulla oblongata delineations were reproducible with KI = 0.72, 0.84, 0.94 and 0.89, respectively. The Supplemental Material section provides an atlas of the consensus guidelines projected on 1-mm MR axial slices. CONCLUSIONS This RINV-atlas was feasible and reproducible for the delineation of RINV structures on planning CT using fused MRI. It may be used to prospectively assess dose-volume relationship for RINV structures and occurrence of nausea vomiting during intracranial or head and neck irradiation.
Collapse
Affiliation(s)
- Arnaud Beddok
- Department of Radiation Oncology, University Hospital of Amiens, France; Department of Radiation Oncology, Curie Institute, Paris, France.
| | - Jean-Christophe Faivre
- Lorraine Institute of Cancerology - Alexis-Vautrin Comprehensive Cancer Center, Academic Radiation Oncology & Brachytherapy Department, Vandœuvre-lès-Nancy, France
| | - Alexandre Coutte
- Department of Radiation Oncology, University Hospital of Amiens, France
| | | | - Julien Welmant
- Department of Radiation Oncology, Montpellier Institute of Cancer, France
| | - Jean-Baptiste Clavier
- Department of Radiation Oncology, Strasbourg Insitute of Cancerology - Paul Strauss Cancer Center, Strasbourg Cedex, France
| | - Sébastien Guihard
- Department of Radiation Oncology, Strasbourg Insitute of Cancerology - Paul Strauss Cancer Center, Strasbourg Cedex, France
| | - Guillaume Janoray
- Department of Radiation Oncology, Tours Regional University Center, France
| | | | - Yoann Pointreau
- Jean Bernard Radiation Oncology Center, Le Mans, France; CORad Department, Henry S Kaplan - Bretonneau Regional University Hospital Center, Tours, France; CNRS, UMR 7292 "Génétique, Immunothérapie, Chimie et Cancer", Tours, France
| | - Alexis Lacout
- Department of Radiology, Centre médico - chirurgical - ELSAN, Aurillac, France
| | - Julia Salleron
- Lorraine Institute of Cancerology - Alexis-Vautrin Comprehensive Cancer Center, Academic Radiation Oncology & Brachytherapy Department, Vandœuvre-lès-Nancy, France
| | - Michel Lefranc
- Department of Neurosurgery, University Hospital of Amiens, France
| | - Dominique Hasboun
- Department of Neuroradiology, Pitié-Salpêtrière University Hospital, Paris, France; Department of Neuroanatomy, Pitié-Salpêtrière University Hospital, Paris, France
| | - Henri M Duvernoy
- Besançon Regional University Hospital Center, laboratoire de pathology, Centre Hospitalier Régional Universitaire de Besançon (Besançon), France
| | - Juliette Thariat
- Department of Radiation Oncology, Centre François Baclesse, Caen, France; Laboratoire de physique corpusculaire IN2P3/ENSICAEN - UMR6534 - Unicaen - Normandie Université Boulevard du Marechal Juin 14050 Caen, France
| |
Collapse
|
16
|
Al-Kaabi M, Hussam F, Al-Marsoummi S, Al-Anbaki A, Al-Salihi A, Al-Aubaidy H. Expression of ZO1, vimentin, pan-cadherin and AGTR1 in tanycyte-like cells of the sulcus medianus organum. Biochem Biophys Res Commun 2018; 502:243-249. [PMID: 29803674 DOI: 10.1016/j.bbrc.2018.05.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 11/19/2022]
Abstract
Tanycytes are a specialized ependymal lining of brain ventricles with exceptional features of having long basal processes and junctional complexes between cell bodies. These tanycytes are present at the regions of circumventricular organs (CVOs) which possess common morphological and functional features enabling them to be described as the brain windows where the barrier systems have special properties. Previous studies detailed seven of these CVOs but little information is available regarding another putative site at the rostral part of the median sulcus of the 4th ventricle, or the sulcus medianus organum (SMO). Here we performed a pilot immunohistochemical study to support earlier observations suggesting the SMO as a novel CVO. We labeled rat brain with ZO1, vimentin, pan-cadherin and angiotensin II type 1 receptors markers which showed a morphologically distinct population of cells at the region of the SMO similar to tanycytes present in the median eminence, a known CVO. These cells had basal processes reaching the deeply seated blood vessels while the caudal part of the median sulcus did not show similar long cellular extensions. We concluded that tanycyte-like cells are present in the SMO in a pattern resembling that of other CVOs where the strategic location of the SMO is probably for signal integration between brainstem nuclei and the rostrally located neuronal centers.
Collapse
Affiliation(s)
- Muthanna Al-Kaabi
- Al-Nahrain University, College of Medicine, Department of Human Anatomy, Baghdad, Iraq; University of Tasmania, Faculty of Health, School of Medicine, Medical Science Precinct, Hobart, Tasmania, Australia
| | - Fadhil Hussam
- Al-Nahrain University, College of Medicine, Department of Human Anatomy, Baghdad, Iraq
| | - Sarmad Al-Marsoummi
- Al-Nahrain University, College of Medicine, Department of Human Anatomy, Baghdad, Iraq; University of North Dakota, School of Medicine and Health Sciences, Department of Biomedical Sciences, North Dakota, USA
| | - Ali Al-Anbaki
- University of Manchester, Faculty of Biology, Medicine and Health, Manchester, UK
| | - Anam Al-Salihi
- Al-Nahrain University, College of Medicine, Department of Human Anatomy, Baghdad, Iraq
| | - Hayder Al-Aubaidy
- La Trobe University, School of Life Sciences, Department of Physiology, Anatomy & Microbiology, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
17
|
Azuma M, Hirai T, Kadota Y, Khant ZA, Hattori Y, Kitajima M, Uetani H, Yamashita Y. Circumventricular organs of human brain visualized on post-contrast 3D fluid-attenuated inversion recovery imaging. Neuroradiology 2018; 60:583-590. [PMID: 29721578 DOI: 10.1007/s00234-018-2023-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Although contrast-enhanced three-dimensional T2 fluid-attenuated inversion recovery (3D T2-FLAIR) images are useful for assessing various neuronal diseases, physiological enhancement of the circumventricular organs on the images have not been investigated. We aimed to assess the physiological appearance of the circumventricular organs on contrast-enhanced 3D T2-FLAIR images. METHODS We studied 3-T MR images of the brain of 30 individuals with no apparent brain abnormalities. In ten areas of the brain, the degree of contrast enhancement on 3D T2-FLAIR and magnetization-prepared rapid gradient-echo (MPRAGE) images was evaluated using a 4-point grading system. The pre- and post-contrast mean contrast ratios (CRs) of the anterior pituitary gland, median eminence, and pineal gland were compared. RESULTS On post-contrast 3D T2-FLAIR images, marked enhancement was most frequently scored in the median eminence, followed by the choroid plexus, posterior pituitary gland, and pineal gland. In 10 of the 30 cases, the vascular organ of the lamina terminalis and the area postrema were enhanced but the subcommissural organ was not. The difference in the mean pre- and post-contrast CRs of the median eminence and pineal gland was statistically significant, while that of the anterior pituitary gland was not. CONCLUSION On contrast-enhanced 3D T2-FLAIR images, the circumventricular organs show variable enhancement. Our findings help to recognize physiological and abnormal enhancement of brain structures on contrast-enhanced 3D T2-FLAIR images.
Collapse
Affiliation(s)
- Minako Azuma
- Department of Radiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| | - Toshinori Hirai
- Department of Radiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yoshihito Kadota
- Department of Radiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Zaw Aung Khant
- Department of Radiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yohei Hattori
- Department of Radiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Mika Kitajima
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Uetani
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuyuki Yamashita
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
18
|
Naganawa S, Taoka T, Kawai H, Yamazaki M, Suzuki K. Appearance of the Organum Vasculosum of the Lamina Terminalis on Contrast-enhanced MR Imaging. Magn Reson Med Sci 2017; 17:132-137. [PMID: 28966303 PMCID: PMC5891338 DOI: 10.2463/mrms.mp.2017-0088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose: Circumventricular organs (CVOs) lack a blood brain barrier and are also called “brain windows”. Among CVOs, the organum vasculosum of the lamina terminalis (OVLT) is an osmotic regulator involved in the release of vasopressin. In a previous study of healthy subjects, it was reported that contrast enhancement in the OVLT can be recognized in only 34% of 3 Tesla thin slice contrast-enhanced T1-weighted images. The purpose of this study was to evaluate the leakage of gadolinium contrast from the OVLT in healthy subjects using heavily T2-weighted three dimensional-fluid attenuated inversion recovery (3D-FLAIR) (HF) imaging. Methods: Eight healthy male subjects were included in this study. A standard dose (0.1 mmol/kg) of gadoteridol was intravenously administered. Magnetic resonance cisternography (MRC) and HF were obtained before and 0.5, 1.5, 3, 4.5 and 6 h after the injection. Enhancement of the OVLT including the surrounding cerebral spinal fluid (CSF) was measured by manually drawing a rectangular ROI centered on the OVLT. The ROI was copied to the HF image and the signal intensity was measured. The signal intensity ratio (SIR) was obtained by dividing the signal intensity value of the OVLT ROI by that of the midbrain. Results: The differences between the mean SIR at pre-contrast and those at 0.5, 1.5, 3, 4.5, and 6 h were significant (P < 0.05). The mean SIR at 0.5 h was higher than those at all other time points (P < 0.05). Conclusion: Using HF imaging, enhancement around the OVLT was observed in all subjects at 0.5 h after intravenous administration of single dose gadoteridol.
Collapse
Affiliation(s)
- Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Hisashi Kawai
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Masahiro Yamazaki
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Kojiro Suzuki
- Department of Radiology, Nagoya University Graduate School of Medicine.,Department of Radiology, Aichi Medical University, Aichi, Japan
| |
Collapse
|
19
|
Osacka J, Horvathova L, Majercikova Z, Kiss A. Eff ect of a single asenapine treatment on Fos expression in the brain catecholamine-synthesizing neurons: impact of a chronic mild stress preconditioning. Endocr Regul 2017; 51:73-83. [PMID: 28609288 DOI: 10.1515/enr-2017-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Fos protein expression in catecholamine-synthesizing neurons of the substantia nigra (SN) pars compacta (SNC, A8), pars reticulata (SNR, A9), and pars lateralis (SNL), the ventral tegmental area (VTA, A10), the locus coeruleus (LC, A6) and subcoeruleus (sLC), the ventrolateral pons (PON-A5), the nucleus of the solitary tract (NTS-A2), the area postrema (AP), and the ventrolateral medulla (VLM-A1) was quantitatively evaluated aft er a single administration of asenapine (ASE) (designated for schizophrenia treatment) in male Wistar rats preconditioned with a chronic unpredictable variable mild stress (CMS) for 21 days. Th e aim of the present study was to reveal whether a single ASE treatment may 1) activate Fos expression in the brain areas selected; 2) activate tyrosine hydroxylase (TH)-synthesizing cells displaying Fos presence; and 3) be modulated by CMS preconditioning. METHODS Control (CON), ASE, CMS, and CMS+ASE groups were used. CMS included restraint, social isolation, crowding, swimming, and cold. Th e ASE and CMS+ASE groups received a single dose of ASE (0.3 mg/kg, s.c.) and CON and CMS saline (300 μl/rat, s.c.). The animals were sacrificed 90 min aft er the treatments. Fos protein and TH-labeled immunoreactive perikarya were analyzed on double labeled histological sections and enumerated on captured pictures using combined light and fluorescence microscope illumination. RESULTS Saline or CMS alone did not promote Fos expression in any of the structures investigated. ASE alone or in combination with CMS elicited Fos expression in two parts of the SN (SNC, SNR) and the VTA. Aside from some cells in the central gray tegmental nuclei adjacent to LC, where a small number of Fos profiles occurred, none or negligible Fos occurrence was detected in the other structures investigated including the LC and sLC, PON-A5, NTS-A2, AP, and VLM-A1. CMS preconditioning did not infl uence the level of Fos induction in the SN and VTA elicited by ASE administration. Similarly, the ratio between the amount of free Fos and Fos colocalized with TH was not aff ected by stress preconditioning in the SNC, SNR, and the VTA. CONCLUSIONS Th e present study provides an anatomical/functional knowledge about the nature of the acute ASE treatment on the catecholamine-synthesizing neurons activity in certain brain structures and their missing interplay with the CMS preconditioning.
Collapse
|
20
|
The tuber cinereum as a circumventricular organ: an anatomical study using magnetic resonance imaging. Surg Radiol Anat 2017; 39:747-751. [DOI: 10.1007/s00276-016-1806-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
|
21
|
Tsutsumi S, Ono H, Yasumoto Y. The suprapineal recess of the third ventricle: an anatomic study with magnetic resonance imaging. Surg Radiol Anat 2016; 39:725-730. [PMID: 27942944 DOI: 10.1007/s00276-016-1794-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/04/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE The suprapineal recess (SPR) is a small, backward extension of the third ventricle. Few radiological studies have investigated the morphology of the SPR. Here, we explore the SPR with magnetic resonance (MR) imaging. METHODS A total of 124 patients underwent thin-slice MR imaging examinations with T2-weighted imaging and the constructive interference steady-state (CISS) sequence. Imaging data were transferred to a workstation for analysis. RESULTS The pineal gland (P) was delineated in 99% of the patients on T2-weighted imaging and 100% of the patients on the CISS sequence. In contrast, the SPR was identified in 27% of the patients on T2-weighted imaging and 82% of the patients on the CISS sequence. The location of the P relative to the lowest point of the splenium was roughly classified into two types. Of them, the anterior P location was the more frequent type and observed in 73% of the patients. The angle formed by the roof and floor of the SPR showed remarkable interindividual diversity. A membranous posterior extension with variable length, spanning between the posterosuperior margin of the P and Galenic complex was found in 55% of the identified SPRs on T2-weighted imaging and 45% on the CISS sequence. CONCLUSIONS The SPR is a distinct structure with diversity in appearance among individuals but commonly extends posterior to the P. High-resolution MR imaging is useful for delineating the SPR in vivo.
Collapse
Affiliation(s)
- Satoshi Tsutsumi
- Department of Neurological Surgery, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan.
| | - Hideo Ono
- Division of Radiological Technology, Medical Satellite Yaesu Clinic, Tokyo, Japan
| | - Yukimasa Yasumoto
- Department of Neurological Surgery, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan
| |
Collapse
|
22
|
Dréan A, Goldwirt L, Verreault M, Canney M, Schmitt C, Guehennec J, Delattre JY, Carpentier A, Idbaih A. Blood-brain barrier, cytotoxic chemotherapies and glioblastoma. Expert Rev Neurother 2016; 16:1285-1300. [PMID: 27310463 DOI: 10.1080/14737175.2016.1202761] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Glioblastomas (GBM) are the most common and aggressive primary malignant brain tumors in adults. The blood brain barrier (BBB) is a major limitation reducing efficacy of anti-cancer drugs in the treatment of GBM patients. Areas covered: Virtually all GBM recur after the first-line treatment, at least partly, due to invasive tumor cells protected from chemotherapeutic agents by the intact BBB in the brain adjacent to tumor. The passage through the BBB, taken by antitumor drugs, is poorly and heterogeneously documented in the literature. In this review, we have focused our attention on: (i) the BBB, (ii) the passage of chemotherapeutic agents across the BBB and (iii) the strategies investigated to overcome this barrier. Expert commentary: A better preclinical knowledge of the crossing of the BBB by antitumor drugs will allow optimizing their clinical development, alone or combined with BBB bypassing strategies, towards an increased success rate of clinical trials.
Collapse
Affiliation(s)
- Antonin Dréan
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France.,b Carthera SAS , Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Lauriane Goldwirt
- c AP-HP , Hôpital Universitaire Saint Louis, Service de Pharmacologie , Paris , France
| | - Maïté Verreault
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Michael Canney
- b Carthera SAS , Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Charlotte Schmitt
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Jeremy Guehennec
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Jean-Yves Delattre
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France.,d AP-HP , Hôpital Universitaire La Pitié Salpêtrière, Service de Neurologie 2-Mazarin , Paris , France
| | - Alexandre Carpentier
- b Carthera SAS , Institut du Cerveau et de la Moelle épinière, ICM , Paris , France.,e AP-HP , Hôpital Universitaire La Pitié Salpêtrière, Service de Neurochirurgie , Paris , France
| | - Ahmed Idbaih
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France.,d AP-HP , Hôpital Universitaire La Pitié Salpêtrière, Service de Neurologie 2-Mazarin , Paris , France
| |
Collapse
|
23
|
Eftekhari S, Gaspar RC, Roberts R, Chen TB, Zeng Z, Villarreal S, Edvinsson L, Salvatore CA. Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem: A detailed study using in situ hybridization, immunofluorescence, and autoradiography. J Comp Neurol 2015; 524:90-118. [PMID: 26105175 DOI: 10.1002/cne.23828] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 03/11/2015] [Accepted: 06/04/2015] [Indexed: 11/05/2022]
Abstract
Functional imaging studies have revealed that certain brainstem areas are activated during migraine attacks. The neuropeptide calcitonin gene-related peptide (CGRP) is associated with activation of the trigeminovascular system and transmission of nociceptive information and plays a key role in migraine pathophysiology. Therefore, to elucidate the role of CGRP, it is critical to identify the regions within the brainstem that process CGRP signaling. In situ hybridization and immunofluorescence were performed to detect mRNA expression and define cellular localization of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1), respectively. To define CGRP receptor binding sites, in vitro autoradiography was performed with [(3)H]MK-3207 (a CGRP receptor antagonist). CLR and RAMP1 mRNA and protein expression were detected in the pineal gland, medial mammillary nucleus, median eminence, infundibular stem, periaqueductal gray, area postrema, pontine raphe nucleus, gracile nucleus, spinal trigeminal nucleus, and spinal cord. RAMP1 mRNA expression was also detected in the posterior hypothalamic area, trochlear nucleus, dorsal raphe nucleus, medial lemniscus, pontine nuclei, vagus nerve, inferior olive, abducens nucleus, and motor trigeminal nucleus; protein coexpression of CLR and RAMP1 was observed in these areas via immunofluorescence. [(3)H]MK-3207 showed high binding densities concordant with mRNA and protein expression. The present study suggests that several regions in the brainstem may be involved in CGRP signaling. Interestingly, we found receptor expression and antagonist binding in some areas that are not protected by the blood-brain barrier, which suggests that drugs inhibiting CGRP signaling may not be able to penetrate the central nervous system to antagonize receptors in these brain regions.
Collapse
Affiliation(s)
- Sajedeh Eftekhari
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, SE-22184, Lund, Sweden
| | - Renee C Gaspar
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Rhonda Roberts
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Tsing-Bau Chen
- Department of Imaging, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Zhizhen Zeng
- Department of Imaging, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Stephanie Villarreal
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Lars Edvinsson
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, SE-22184, Lund, Sweden
| | - Christopher A Salvatore
- Department of Pain and Migraine Research, Merck Research Laboratories, West Point, Pennsylvania, 19486
| |
Collapse
|
24
|
Longatti P, Porzionato A, Basaldella L, Fiorindi A, De Caro P, Feletti A. The human area postrema: clear-cut silhouette and variations shown in vivo. J Neurosurg 2015; 122:989-95. [PMID: 25594320 DOI: 10.3171/2014.11.jns14482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECT The human area postrema (AP) is a circumventricular organ that has only been described in cadaveric specimens and animals. Because of its position in the calamus scriptorius and the absence of surface markers on the floor of the fourth ventricle, the AP cannot be clearly localized during surgical procedures. METHODS The authors intravenously administered 500 mg fluorescein sodium to 25 patients during neuroendoscopic procedures; in 12 of these patients they explored the fourth ventricle. A flexible endoscope equipped with dual observation modes for both white light and fluorescence was used. The intraoperative fluorescent images were reviewed and compared with anatomical specimens and 3D reconstructions. RESULTS Because the blood-brain barrier does not cover the AP, it was visualized in all cases after fluorescein sodium injection. The AP is seen as 2 coupled leaves on the floor of the fourth ventricle, diverging from the canalis centralis medullaris upward. Although the leaves normally appear short and thick, there can be different morphological patterns. Exploration using the endoscope's fluorescent mode allowed precise localization of the AP in all cases. CONCLUSIONS Fluorescence-enhanced inspection of the fourth ventricle accurately identifies the position of the AP, which is an important landmark during surgical procedures on the brainstem. A better understanding of the AP can also be valuable for neurologists, considering its functional role in the regulation of homeostasis, emesis, and cardiovascular and electrolyte balance. Despite the limited number of cases in this report, evidence indicates that the normal anatomical appearance of the AP is that of 2 short and thick leaves that are joined at the midline. However, there can be great variability in terms of the structure's shape and size.
Collapse
|
25
|
Shattuck EC, Muehlenbein MP. Human sickness behavior: Ultimate and proximate explanations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 157:1-18. [DOI: 10.1002/ajpa.22698] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/27/2014] [Accepted: 12/28/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Eric C. Shattuck
- Evolutionary Physiology and Ecology Laboratory; Department of Anthropology; Indiana University; Bloomington IN
| | - Michael P. Muehlenbein
- Evolutionary Physiology and Ecology Laboratory; Department of Anthropology; Indiana University; Bloomington IN
| |
Collapse
|
26
|
Anatomical, molecular and pathological consideration of the circumventricular organs. Neurochirurgie 2014; 61:90-100. [PMID: 24974365 DOI: 10.1016/j.neuchi.2013.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/15/2013] [Accepted: 04/23/2013] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE Circumventricular organs (CVOs) are a diverse group of specialised structures characterized by peculiar vascular and position around the third and fourth ventricles of the brain. In humans, these organs are present during the fetal period and some become vestigial after birth. Some, such as the pineal gland (PG), subcommissural organ (SCO) and organum vasculosum of the lamina terminalis (OVLT), which are located around the third ventricle, might be the site of origin of periventricular tumours. In contrast to humans, CVOs are present in the adult rat and can be dissected by laser capture microdissection (LCM). METHODS In this study, we used LCM and microarrays to analyse the transcriptomes of three CVOs, the SCO, the subfornical organ (SFO) and the PG and the third ventricle ependyma of the adult rat, in order to better characterise these organs at the molecular level. Furthermore, an immunohistochemical study of Claudin-3 (CLDN3), a membrane protein involved in forming cellular tight junctions, was performed at the level of the SCO. RESULTS This study highlighted some potentially new or already described specific markers of these structures as Erbb2 and Col11a1 in ependyma, Epcam and CLDN3 in the SCO, Ren1 and Slc22a3 in the SFO and Tph, Anat and Asmt in the PG. Moreover, we found that CLDN3 expression was restricted to the apical pole of ependymocytes in the SCO.
Collapse
|
27
|
Cerase A, Vallone IM, Rufa A, Leonini S. Pseudo-intraventricular hemorrhage from a deep calcarine fissure. Surg Radiol Anat 2013; 36:601-3. [PMID: 24173013 DOI: 10.1007/s00276-013-1226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 10/19/2013] [Indexed: 11/24/2022]
Abstract
Evidence of areas of increased attenuation density within lateral ventricles at computed tomography (CT) of the brain is a finding of acute or subacute intraventricular hemorrhage. The purpose of this case report is to describe a 14-year-old female who presented with an episode of complicated migraine. Brain CT showed an area of high attenuation density (35 Hounsfield Units) in the trigone and occipital horn of the right lateral ventricle, mimicking a blood-fluid level from subacute intraventricular hemorrhage. Magnetic resonance imaging (MRI) of the brain showed that this resulted from gray matter lining a deep calcarine fissure. A deep calcarine fissure may mimic intraventricular hemorrhage at CT. Correct CT and MRI interpretation allows to avoid invasive diagnostic tests including lumbar puncture or intra-arterial catheter angiography.
Collapse
Affiliation(s)
- Alfonso Cerase
- Unit NINT Neuroimaging and Neurointervention, Department of Neurological and Sensorineural Sciences, Azienda Ospedaliera Universitaria Senese, Policlinico "Santa Maria alle Scotte", Viale Mario Bracci, 16, 53100, Siena, Italy,
| | | | | | | |
Collapse
|
28
|
Veening JG, Olivier B. Intranasal administration of oxytocin: behavioral and clinical effects, a review. Neurosci Biobehav Rev 2013; 37:1445-65. [PMID: 23648680 PMCID: PMC7112651 DOI: 10.1016/j.neubiorev.2013.04.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 12/11/2022]
Abstract
The mechanisms behind the effects of IN-applied substances need more attention. The mechanisms involved in the brain-distribution of IN-OT are completely unexplored. The possibly cascading effects of IN-OT on the intrinsic OT-system require serious investigation. IN-OT induces clear and specific changes in neural activation. IN-OT is a promising approach to treat certain clinical symptoms.
The intranasal (IN-) administration of substances is attracting attention from scientists as well as pharmaceutical companies. The effects are surprisingly fast and specific. The present review explores our current knowledge about the routes of access to the cranial cavity. ‘Direct-access-pathways’ from the nasal cavity have been described but many additional experiments are needed to answer a variety of open questions regarding anatomy and physiology. Among the IN-applied substances oxytocin (OT) has an extensive history. Originally applied in women for its physiological effects related to lactation and parturition, over the last decade most studies focused on their behavioral ‘prosocial’ effects: from social relations and ‘trust’ to treatment of ‘autism’. Only very recently in a microdialysis study in rats and mice, the ‘direct-nose-brain-pathways’ of IN-OT have been investigated directly, implying that we are strongly dependent on results obtained from other IN-applied substances. Especially the possibility that IN-OT activates the ‘intrinsic’ OT-system in the hypothalamus as well needs further clarification. We conclude that IN-OT administration may be a promising approach to influence human communication but that the existing lack of information about the neural and physiological mechanisms involved is a serious problem for the proper understanding and interpretation of the observed effects.
Collapse
Affiliation(s)
- Jan G Veening
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands; Department of Anatomy (109), Radboud University of Medical Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | | |
Collapse
|