1
|
Srivastava VM, Nair SC, Joy M, Manipadam MT, Kulkarni UP, Devasia AJ, Fouzia NA, Korula A, Lakshmi KM, Jeyaseelan L, Abraham A, Srivastava A. Higher prevalence of poor prognostic markers at a younger age in adult patients with myelodysplastic syndrome - evaluation of a large cohort in India. Mol Cytogenet 2024; 17:21. [PMID: 39334460 PMCID: PMC11438259 DOI: 10.1186/s13039-024-00687-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/15/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The karyotype is a major determinant of prognosis in myelodysplastic syndrome (MDS). Details of the cytogenetic profile of MDS in South Asia are limited because cytogenetic services are not widely available. METHODS We performed a retrospective analysis of the cytogenetic and clinicopathologic profile of adult primary MDS seen consecutively at a tertiary-care centre in South India between 2003 and 2017. Patients were re-categorised according to the 2022 World Health Organisation (WHO) and the International Consensus classifications (ICC). RESULTS There were 936 patients aged 18-86 years (median age 53, 65% males), with MDS with del 5q, low blasts and increased blasts in 7.5%, 58.4% and 34.1% respectively. Clonal abnormalities were seen in 55% of patients, with solitary abnormalities in 29.8% and complex karyotypes (CK, ≥ 3 abnormalities) in 15%. The most frequent abnormalities were monosomy 7/deletion 7q (16.1%), deletion 5q (14.5%), trisomy 8 (11.5%), and deletion 20q (5.1%). Cytogenetic prognosis groups were distributed as follows: very good, 2%; good, 55.6%; intermediate, 16.2%; poor, 15%; very poor, 11.2%. Clinical (IPSS-R) risk stratification (842 patients) showed: very low-risk, 3.9%; low-risk, 30.9%; intermediate-risk, 24.2%; high-risk, 21%; very high-risk, 20%. Age-adjustment (IPSS-RA) raised the very low-risk group to 12.4%; the other groups decreased by 1-3% each. CONCLUSION The most significant finding of this cytogenetic analysis of MDS in India is that abnormal karyotypes with poor prognosis markers including monosomy 7 and CK were more frequent than in most other reports, among patients who were overall younger. Trisomy 8, deletion 20q, the IPSS-R intermediate-risk and both high-risk groups were more common than in the West. Trisomy 8 was less common than in South-East Asia while CK and deletion 20q were comparable. Evaluation of such large cohorts highlights the unique features of MDS in different parts of the world. These findings suggest that there could be differences in predisposing factors, environmental or genetic, and emphasise the need for further exploration to better understand the varied nature of MDS.
Collapse
Affiliation(s)
- Vivi M Srivastava
- Department of Cytogenetics, Christian Medical College, Vellore, India.
| | - Sukesh Chandran Nair
- Department of Transfusion Medicine and Immunohaematology, Christian Medical College, Vellore, India
| | - Melvin Joy
- Department of Biostatistics, Christian Medical College, Vellore, India
- Leukaemia Research Cytogenetics Group, Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | - Uday P Kulkarni
- Department of Haematology, Christian Medical College, Vellore, India
| | - Anup J Devasia
- Department of Haematology, Christian Medical College, Vellore, India
| | - N A Fouzia
- Department of Haematology, Christian Medical College, Vellore, India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Vellore, India
| | - Kavitha M Lakshmi
- Department of Haematology, Christian Medical College, Vellore, India
| | - L Jeyaseelan
- Department of Biostatistics, Christian Medical College, Vellore, India
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE
| | - Aby Abraham
- Department of Haematology, Christian Medical College, Vellore, India
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| |
Collapse
|
2
|
Aakash F, Gisriel SD, Zeidan AM, Bennett JM, Bejar R, Bewersdorf JP, Borate UM, Boultwood J, Brunner AM, Buckstein R, Carraway HE, Churpek JE, Daver NG, DeZern AE, Efficace F, Fenaux P, Figueroa ME, Garcia-Manero G, Gore SD, Greenberg PL, Griffiths EA, Halene S, Hourigan CS, Kim TK, Kim N, Komrokji RS, Kutchroo VK, List AF, Little RF, Majeti R, Nazha A, Nimer SD, Odenike O, Padron E, Patnaik MM, Platzbecker U, Della Porta MG, Roboz GJ, Sallman DA, Santini V, Sanz G, Savona MR, Sekeres MA, Stahl M, Starczynowski DT, Steensma DP, Taylor J, Abdel-Wahab O, Wei AH, Xie Z, Xu ML, Hasserjian RP, Loghavi S. Contemporary Approach to the Diagnosis and Classification of Myelodysplastic Neoplasms/Syndromes-Recommendations From the International Consortium for Myelodysplastic Neoplasms/Syndromes (MDS [icMDS]). Mod Pathol 2024; 37:100615. [PMID: 39322118 DOI: 10.1016/j.modpat.2024.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
Myelodysplastic neoplasms/syndromes (MDS) are a heterogeneous group of biologically distinct entities characterized by variable degrees of ineffective hematopoiesis. Recently, 2 classification systems (the 5th edition of the World Health Organization Classification of Haematolymphoid tTumours and the International Consensus Classification) further subcharacterized MDS into morphologically and genetically defined groups. Accurate diagnosis and subclassification of MDS require a multistep systemic approach. The International Consortium for MDS (icMDS) summarizes a contemporary, practical, and multimodal approach to MDS diagnosis and classification.
Collapse
Affiliation(s)
- Fnu Aakash
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Savanah D Gisriel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, Yale Cancer Center, New Haven, Connecticut
| | - John M Bennett
- James P. Wilmot Cancer Center, Division of Hematopathology, University of Rochester Medical Center, Rochester, New York
| | - Rafael Bejar
- Division of Hematology and Oncology, Moores Cancer Center, UC San Diego, La Jolla, California
| | - Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Uma M Borate
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jacqueline Boultwood
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew M Brunner
- Division of Hematology, Massachusetts General Hospital Brigham, Boston, Massachusetts
| | - Rena Buckstein
- Division of Medical Oncology/Hematology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Hetty E Carraway
- Leukemia Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jane E Churpek
- Division of Haematology, Oncology, and Palliative Care, Department of Medicine, Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Naval G Daver
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amy E DeZern
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Fabio Efficace
- Health Outcomes Research Unit, Italian Group for Adult Hematologic Diseases (GIMEMA), Rome, Italy
| | - Pierre Fenaux
- Service d'hématologie, Hôpital Saint-Louis (Assistance Publique Hôpitaux de Paris), Université de Paris-Cité, Paris, France
| | - Maria E Figueroa
- Biochemistry & Molecular Biology, Sylvester Comprehensive Cancer Center. University of Miami Miller School of Medicine, Miami, Florida
| | | | - Steven D Gore
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, Maryland
| | - Peter L Greenberg
- Division of Hematology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | | | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, Yale Cancer Center, New Haven, Connecticut
| | - Christopher S Hourigan
- Fralin Biomedical Research Institute, Virginia Tech FBRI Cancer Research Center, Washington, District of Columbia
| | - Tae Kon Kim
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Rami S Komrokji
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Alan F List
- Chief Scientific Officer, Stelexis Therapeutics, New York, New York
| | - Richard F Little
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, Maryland
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Aziz Nazha
- Department of Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Stephen D Nimer
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Olatoyosi Odenike
- Leukemia Program, Section of Hematology/Oncology, University of Chicago Medicine and University of Chicago Comprehensive Cancer Center, Chicago, Illinois
| | - Eric Padron
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Uwe Platzbecker
- Department of Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Matteo G Della Porta
- IRCCS Humanitas Research Hospital, Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Gail J Roboz
- Weill Cornell Medical College and New York Presbyterian Hospital, New York, New York
| | - David A Sallman
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Valeria Santini
- Myelodysplastic Syndromes Unit, Department of Experimental and Clinical Medicine, Hematology, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Guillermo Sanz
- Health Research Institute La Fe, Valencia, Spain; Hospital Universitario y Politécnico La Fe, Valencia, Spain; CIBERONC, IS Carlos III, Madrid, Spain
| | - Michael R Savona
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mikkael A Sekeres
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Maximilian Stahl
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | | | - Justin Taylor
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Omar Abdel-Wahab
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew H Wei
- Department of Haematology, Royal Melbourne Hospital, Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Victoria, Australia
| | - Zhuoer Xie
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mina L Xu
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital Brigham, Boston, Massachusetts
| | - Sanam Loghavi
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
3
|
Vincelette ND, Yu X, Kuykendall AT, Moon J, Su S, Cheng CH, Sammut R, Razabdouski TN, Nguyen HV, Eksioglu EA, Chan O, Al Ali N, Patel PC, Lee DH, Nakanishi S, Ferreira RB, Hyjek E, Mo Q, Cory S, Lawrence HR, Zhang L, Murphy DJ, Komrokji RS, Lee D, Kaufmann SH, Cleveland JL, Yun S. Trisomy 8 Defines a Distinct Subtype of Myeloproliferative Neoplasms Driven by the MYC-Alarmin Axis. Blood Cancer Discov 2024; 5:276-297. [PMID: 38713018 PMCID: PMC11215389 DOI: 10.1158/2643-3230.bcd-23-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/16/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024] Open
Abstract
Despite advances in understanding the genetic abnormalities in myeloproliferative neoplasms (MPN) and the development of JAK2 inhibitors, there is an urgent need to devise new treatment strategies, particularly for patients with triple-negative (TN) myelofibrosis (MF) who lack mutations in the JAK2 kinase pathway and have very poor clinical outcomes. Here we report that MYC copy number gain and increased MYC expression frequently occur in TN-MF and that MYC-directed activation of S100A9, an alarmin protein that plays pivotal roles in inflammation and innate immunity, is necessary and sufficient to drive development and progression of MF. Notably, the MYC-S100A9 circuit provokes a complex network of inflammatory signaling that involves numerous hematopoietic cell types in the bone marrow microenvironment. Accordingly, genetic ablation of S100A9 or treatment with small molecules targeting the MYC-S100A9 pathway effectively ameliorates MF phenotypes, highlighting the MYC-alarmin axis as a novel therapeutic vulnerability for this subgroup of MPNs. Significance: This study establishes that MYC expression is increased in TN-MPNs via trisomy 8, that a MYC-S100A9 circuit manifest in these cases is sufficient to provoke myelofibrosis and inflammation in diverse hematopoietic cell types in the BM niche, and that the MYC-S100A9 circuit is targetable in TN-MPNs.
Collapse
Affiliation(s)
- Nicole D. Vincelette
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Andrew T. Kuykendall
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Jungwon Moon
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Siyuan Su
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois.
| | - Chia-Ho Cheng
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Rinzine Sammut
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
- Département d’Hématologie Clinique, Centre Hospitalier Universitaire de Nice, Nice, France.
| | - Tiffany N. Razabdouski
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Hai V. Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
| | - Erika A. Eksioglu
- Department of Immunology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Onyee Chan
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Najla Al Ali
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Parth C. Patel
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
- Department of Internal Medicine, University of South Florida, Tampa, Florida.
| | - Dae H. Lee
- Division of Cardiovascular Science, Department of Internal Medicine, University of South Florida, Tampa, Florida
| | - Shima Nakanishi
- Department of Tumor Microenvironment & Metastasis, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Renan B. Ferreira
- Department of Drug Discovery, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Elizabeth Hyjek
- Department of Pathology and Laboratory Medicine, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Suzanne Cory
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
| | - Harshani R. Lawrence
- Department of Drug Discovery, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Ling Zhang
- Department of Pathology and Laboratory Medicine, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Daniel J. Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom.
| | - Rami S. Komrokji
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois.
| | - Scott H. Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.
- Department of Oncology, Mayo Clinic, Rochester, Minnesota.
| | - John L. Cleveland
- Department of Tumor Microenvironment & Metastasis, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Seongseok Yun
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| |
Collapse
|
4
|
Park JB, Han SJ, Lee SB, Kim DH, Cheon JH, Hwang SW, Ye BD, Yang SK, Park SJ, Park SH. Optimal Treatment Approaches to Intestinal Behçet's Disease Complicated by Myelodysplastic Syndrome: The KASID and KSBD Multicenter Study. Yonsei Med J 2024; 65:265-275. [PMID: 38653565 PMCID: PMC11045345 DOI: 10.3349/ymj.2023.0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Studies on intestinal Behçet's disease (BD) complicated by myelodysplastic syndrome (MDS) are rare, and no established therapeutic guidelines exist. This study aimed to evaluate the clinical presentation and outcomes of patients with intestinal BD complicated by MDS (intestinal BD-MDS) and suggest a treatment strategy. MATERIALS AND METHODS Data from patients with intestinal BD-MDS from four referral centers in Korea who were diagnosed between December 2000 and December 2022 were retrospectively analyzed. Clinical features and prognosis of intestinal BD-MDS compared with age-, sex-matched intestinal BD without MDS were investigated. RESULTS Thirty-five patients with intestinal BD-MDS were included, and 24 (70.6%) had trisomy 8. Among the 35 patients, 23 (65.7%) were female, and the median age at diagnosis for intestinal BD was 46.0 years (range, 37.0-56.0 years). Medical treatments only benefited eight of the 32 patients, and half of the patients underwent surgery due to complications. Compared to 70 matched patients with intestinal BD alone, patients with intestinal BD-MDS underwent surgery more frequently (51.4% vs. 24.3%; p=0.010), showed a poorer response to medical and/or surgical treatment (75.0% vs. 11.4%; p<0.001), and had a higher mortality (28.6% vs. 0%; p<0.001). Seven out of 35 patients with intestinal BD-MDS underwent hematopoietic stem cell transplantation (HSCT), and four out of the seven patients had a poor response to medical treatment prior to HSCT, resulting in complete remission of both diseases. CONCLUSION Patients with intestinal BD-MDS frequently have refractory diseases with high mortalities. HSCT can be an effective treatment modality for medically refractory patients with intestinal BD-MDS.
Collapse
Affiliation(s)
- Jung-Bin Park
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - So Jung Han
- Department of Internal Medicine and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Division of Gastroenterology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Seung Bum Lee
- Department of Gastroenterology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Dong Hyun Kim
- Division of Gastroenterology, Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Wook Hwang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Byong Duk Ye
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Jung Park
- Department of Internal Medicine and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Sang Hyoung Park
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Soltani M, Sharifi MJ, Khalilian P, Sharifi M, Nematollahi P, Shapourian H, Ganjalikhani Hakemi M. Potential Diagnostic Value of Abnormal Pyroptosis Genes Expression in Myelodysplastic Syndromes (MDS): A Primary Observational Cohort Study. Int J Hematol Oncol Stem Cell Res 2024; 18:156-164. [PMID: 38868810 PMCID: PMC11166493 DOI: 10.18502/ijhoscr.v18i2.15371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/06/2023] [Indexed: 06/14/2024] Open
Abstract
Background: Myelodysplastic syndromes (MDS) are determined by ineffective hematopoiesis and bone marrow cytological dysplasia with somatic gene mutations and chromosomal abnormalities. Accumulating evidence has revealed the pivotal role of NLRP3 inflammasome activation and pyroptotic cell death in the pathogenesis of MDS. Although MDS can be diagnosed with a variety of morphologic and cytogenetic tests, most of these tests have limitations or problems in practice. Materials and Methods: In the present study, we evaluated the expression of genes that form the inflammasome (NLRP3, ASC, and CASP1) in bone marrow specimens of MDS patients and compared the results with those of other leukemias to evaluate their diagnostic value for MDS. Primary samples of this observational cohort study were collected from aspiration samples of patients with myelodysplastic syndromes (27 cases) and patients with non-myelodysplastic syndrome hematological cancers (45 cases). After RNA extraction and c.DNA synthesis, candidate transcripts and housekeeping transcripts were measured by real-time PCR method (SYBER Green assay). Using Kruskal-Wallis the relative gene expressions were compared and differences with p value less than 0.05 were considered as significant. Discrimination capability, cut-off, and area under curve (AUC) of all markers were analyzed with recessive operation curve (ROC) analysis. Results: We found that Caspase-1 and ASC genes expressed at more levels in MDS specimens compared to non-MDS hematological malignancies. A relative average expression of 10.22 with a p-value of 0.001 and 1.86 with p=0.019 was detected for Caspase-1 and ASC, respectively. ROC curve analysis shows an AUC of 0.739 with p=0.0001 for Caspase-1 and an AUC of 0.665 with p=0.0139 for ASC to MDS discrimination. Conclusion: Our results show that Caspase-1 and ASC gene expression levels can be used as potential biomarkers for MDS diagnosis. Prospective studies with large sample numbers are suggested.
Collapse
Affiliation(s)
- Mohammad Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Jafar Sharifi
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parvin Khalilian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pardis Nematollahi
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mazdak Ganjalikhani Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute of Health sciences and Technology (SABITA), Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
6
|
Adamska M, Kowal-Wiśniewska E, Czerwińska-Rybak J, Kiwerska K, Barańska M, Gronowska W, Loba J, Brzeźniakiewicz-Janus K, Wasilewska E, Łanocha A, Jarmuż-Szymczak M, Gil L. Defining the mutational profile of lower-risk myelodysplastic neoplasm patients with respect to disease progression using next-generation sequencing and pyrosequencing. Contemp Oncol (Pozn) 2024; 27:269-279. [PMID: 38405213 PMCID: PMC10883195 DOI: 10.5114/wo.2023.135365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Lower-risk myelodysplastic neoplasms (LR-MDS) comprise the majority of MDS. Despite favourable prognoses, some patients remain at risk of rapid progression. We aimed to define the mutational profile of LR-MDS using next-generation sequencing (NGS), Sanger Sequencing (SSeq), and pyrosequencing. Material and methods Samples from 5 primary LR-MDS (67 exons of SF3B1, U2AF1, SRSF2, ZRSR2, TET2, ASXL1, DNMT3A, TP53, and RUNX1 genes) were subjected to NGS. Next, a genomic study was performed to test for the presence of identified DNA sequence variants on a larger group of LR-MDS patients (25 bone marrow [BM], 3 saliva [SAL], and one peripheral blood [PB] sample/s). Both SSeq (all selected DNA sequence variants) and pyrosequencing (9 selected DNA sequence variants) were performed. Results Next-generation sequencing results identified 13 DNA sequence variants in 7 genes, comprising 8 mutations in 6 genes (ASXL1, DNMT3A, RUNX1, SF3B1, TET2, ZRSR2) in LR-MDS. The presence of 8 DNA variants was detected in the expanded LR-MDS group using SSeq and pyrosequencing. Mutation acquisition was observed during LR-MDS progression. Four LR-MDS and one acute myeloid leukaemia myelodysplasia-related patient exhibited the presence of at least one mutation. ASXL1 and SF3B1 alterations were most commonly observed (2 patients). Five DNA sequence variants detected in BM (patients: 9, 13) were also present in SAL. Conclusions We suggest using NGS to determine the LR-MDS mutational profile at diagnosis and suspicion of disease progression. Moreover, PB and SAL molecular testing represent useful tools for monitoring LR-MDS at higher risk of progression. However, the results need to be confirmed in a larger group.
Collapse
Affiliation(s)
- Monika Adamska
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
- Doctoral School, Poznań University of Medical Sciences, Poznań, Poland
| | - Ewelina Kowal-Wiśniewska
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Joanna Czerwińska-Rybak
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | | | - Marta Barańska
- Doctoral School, Poznań University of Medical Sciences, Poznań, Poland
| | - Weronika Gronowska
- Student Scientific Society, Poznań University of Medical Sciences, Poznań, Poland
| | - Jagoda Loba
- Student Scientific Society, Poznań University of Medical Sciences, Poznań, Poland
| | - Katarzyna Brzeźniakiewicz-Janus
- Department of Haematology, Oncology, and Radiotherapy, University of Zielona Góra, Multi-specialist Hospital Gorzów Wielkopolski, Poland
| | - Ewa Wasilewska
- Department of Haematology, Medical University of Białystok, Białystok, Poland
| | - Aleksandra Łanocha
- Department of Haematology with Bone Marrow Transplantation Unit, University Hospital No. 1 of Pomeranian Medical University, Szczecin, Poland
| | - Małgorzata Jarmuż-Szymczak
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Lidia Gil
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
7
|
Auger N, Douet-Guilbert N, Quessada J, Theisen O, Lafage-Pochitaloff M, Troadec MB. Cytogenetics in the management of myelodysplastic neoplasms (myelodysplastic syndromes, MDS): Guidelines from the groupe francophone de cytogénétique hématologique (GFCH). Curr Res Transl Med 2023; 71:103409. [PMID: 38091642 DOI: 10.1016/j.retram.2023.103409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 12/26/2023]
Abstract
Myelodysplastic neoplasms (MDS) are clonal hematopoietic neoplasms. Chromosomal abnormalities (CAs) are detected in 40-45% of de novo MDS and up to 80% of post-cytotoxic therapy MDS (MDS-pCT). Lately, several changes appeared in World Health Organization (WHO) classification and International Consensus Classification (ICC). The novel 'biallelic TP53 inactivation' (also called 'multi-hit TP53') MDS entity requires systematic investigation of TP53 locus (17p13.1). The ICC maintains CA allowing the diagnosis of MDS without dysplasia (del(5q), del(7q), -7 and complex karyotype). Deletion 5q is the only CA, still representing a low blast class of its own, if isolated or associated with one additional CA other than -7 or del(7q) and without multi-hit TP53. It represents one of the most frequent aberrations in adults' MDS, with chromosome 7 aberrations, and trisomy 8. Conversely, translocations are rarer in MDS. In children, del(5q) is very rare while -7 and del(7q) are predominant. Identification of a germline predisposition is key in childhood MDS. Aberrations of chromosomes 5, 7 and 17 are the most frequent in MDS-pCT, grouped in complex karyotypes. Despite the ever-increasing importance of molecular features, cytogenetics remains a major part of diagnosis and prognosis. In 2022, a molecular international prognostic score (IPSS-M) was proposed, combining the prognostic value of mutated genes to the previous scoring parameters (IPSS-R) including cytogenetics, still essential. A karyotype on bone marrow remains mandatory at diagnosis of MDS with complementary molecular analyses now required. Analyses with FISH or other technologies providing similar information can be necessary to complete and help in case of karyotype failure, for doubtful CA, for clonality assessment, and for detection of TP53 deletion to assess TP53 biallelic alterations.
Collapse
Affiliation(s)
- Nathalie Auger
- Gustave Roussy, Génétique des tumeurs, 144 rue Edouard Vaillant, Villejuif 94805, France
| | - Nathalie Douet-Guilbert
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest F-29200, France; CHRU Brest, Laboratoire de Génétique Chromosomique, Service de génétique, Brest, France
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, CHU Timone Aix Marseille University, Marseille, France
| | - Olivier Theisen
- Hematology Biology, Nantes University Hospital, Nantes, France
| | | | - Marie-Bérengère Troadec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest F-29200, France; CHRU Brest, Laboratoire de Génétique Chromosomique, Service de génétique, Brest, France.
| |
Collapse
|
8
|
Muto T, Walker CS, Agarwal P, Vick E, Sampson A, Choi K, Niederkorn M, Ishikawa C, Hueneman K, Varney M, Starczynowski DT. Inactivation of p53 provides a competitive advantage to del(5q) myelodysplastic syndrome hematopoietic stem cells during inflammation. Haematologica 2023; 108:2715-2729. [PMID: 37102608 PMCID: PMC10542836 DOI: 10.3324/haematol.2022.282349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Inflammation is associated with the pathogenesis of myelodysplastic syndromes (MDS) and emerging evidence suggests that MDS hematopoietic stem and progenitor cells (HSPC) exhibit an altered response to inflammation. Deletion of chromosome 5 (del(5q)) is the most common chromosomal abnormality in MDS. Although this MDS subtype contains several haploinsufficient genes that impact innate immune signaling, the effects of inflammation on del(5q) MDS HSPC remains undefined. Utilizing a model of del(5q)-like MDS, inhibiting the IRAK1/4-TRAF6 axis improved cytopenias, suggesting that activation of innate immune pathways contributes to certain clinical features underlying the pathogenesis of low-risk MDS. However, low-grade inflammation in the del(5q)-like MDS model did not contribute to more severe disease but instead impaired the del(5q)-like HSPC as indicated by their diminished numbers, premature attrition and increased p53 expression. Del(5q)-like HSPC exposed to inflammation became less quiescent, but without affecting cell viability. Unexpectedly, the reduced cellular quiescence of del(5q) HSPC exposed to inflammation was restored by p53 deletion. These findings uncovered that inflammation confers a competitive advantage of functionally defective del(5q) HSPC upon loss of p53. Since TP53 mutations are enriched in del(5q) AML following an MDS diagnosis, increased p53 activation in del(5q) MDS HSPC due to inflammation may create a selective pressure for genetic inactivation of p53 or expansion of a pre-existing TP53-mutant clone.
Collapse
Affiliation(s)
- Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Hematology, Chiba University Hospital, Chiba.
| | - Callum S Walker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Puneet Agarwal
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Eric Vick
- Division of Hematology and Oncology, University of Cincinnati, Cincinnati, OH
| | - Avery Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Madeline Niederkorn
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Melinda Varney
- Department of Pharmaceutical Science and Research, Marshall University, Huntington, WV
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; UC Cancer Center, Cincinnati, OH.
| |
Collapse
|
9
|
Cusan M, Shen H, Zhang B, Liao A, Yang L, Jin M, Fernandez M, Iyer P, Wu Y, Hart K, Gutierrez C, Nik S, Pruett-Miller SM, Stark J, Obeng EA, Bowman TV, Wu CJ, Lin RJ, Wang L. SF3B1 mutation and ATM deletion codrive leukemogenesis via centromeric R-loop dysregulation. J Clin Invest 2023; 133:e163325. [PMID: 37463047 PMCID: PMC10471171 DOI: 10.1172/jci163325] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/12/2023] [Indexed: 09/02/2023] Open
Abstract
RNA splicing factor SF3B1 is recurrently mutated in various cancers, particularly in hematologic malignancies. We previously reported that coexpression of Sf3b1 mutation and Atm deletion in B cells, but not either lesion alone, leads to the onset of chronic lymphocytic leukemia (CLL) with CLL cells harboring chromosome amplification. However, the exact role of Sf3b1 mutation and Atm deletion in chromosomal instability (CIN) remains unclear. Here, we demonstrated that SF3B1 mutation promotes centromeric R-loop (cen-R-loop) accumulation, leading to increased chromosome oscillation, impaired chromosome segregation, altered spindle architecture, and aneuploidy, which could be alleviated by removal of cen-R-loop and exaggerated by deletion of ATM. Aberrant splicing of key genes involved in R-loop processing underlay augmentation of cen-R-loop, as overexpression of the normal isoform, but not the altered form, mitigated mitotic stress in SF3B1-mutant cells. Our study identifies a critical role of splice variants in linking RNA splicing dysregulation and CIN and highlights cen-R-loop augmentation as a key mechanism for leukemogenesis.
Collapse
Affiliation(s)
- Martina Cusan
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, California, USA
| | - Haifeng Shen
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, California, USA
| | - Bo Zhang
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, California, USA
- Department of Hematology, Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aijun Liao
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, California, USA
- Department of Hematology, Affiliated Shengjing Hospital of China Medical University, Shenyang, China
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, California, USA
| | - Meiling Jin
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, California, USA
| | - Mike Fernandez
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, California, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Prajish Iyer
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, California, USA
| | - Yiming Wu
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, California, USA
| | - Kevyn Hart
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, California, USA
| | - Catherine Gutierrez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sara Nik
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine and
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jeremy Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Esther A. Obeng
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Teresa V. Bowman
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine and
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ren-Jang Lin
- Center for RNA Biology and Therapeutics, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, California, USA
| |
Collapse
|
10
|
Zheng G, Li P, Zhang X, Pan Z. The fifth edition of the World Health Organization Classification and the International Consensus Classification of myeloid neoplasms: evolving guidelines in the molecular era with practical implications. Curr Opin Hematol 2023; 30:53-63. [PMID: 36728868 DOI: 10.1097/moh.0000000000000748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW There have been major advances in our understanding of molecular pathogenesis of myeloid neoplasms, which prompt the updates in the classification of myeloid neoplasms in the fifth edition of World Health Organization Classification (WHO-5) and the new International Consensus Classification (ICC). The purpose of this review is to provide an overview of these two classification systems for myeloid neoplasms. RECENT FINDINGS The definition, classification, and diagnostic criteria in many myeloid entities have been refined in WHO-5 and ICC with improved understanding of morphology and integration of new genetic findings. Particularly, molecular and cytogenetic studies have been increasingly incorporated into the classification, risk stratification, and selection of therapy of myeloid neoplasms. Overall, despite some revisions and discrepancies between WHO-5 and ICC, the major categories of myeloid neoplasms remain the same. Further validation studies are warranted to fine-tune and, ideally, integrate these two classifications. SUMMARY Integration of clinical information, laboratory parameters, morphologic features, and cytogenetic and molecular studies is essential for the classification of myeloid neoplasms, as recommended by both WHO-5 and ICC.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Peng Li
- Department of Pathology, University of Utah School of Medicine, ARUP Laboratories, Salt Lake City, Utah
| | - Xiaohui Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Zenggang Pan
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
11
|
Rodriguez-Sevilla JJ, Adema V, Garcia-Manero G, Colla S. Emerging treatments for myelodysplastic syndromes: Biological rationales and clinical translation. Cell Rep Med 2023; 4:100940. [PMID: 36787738 PMCID: PMC9975331 DOI: 10.1016/j.xcrm.2023.100940] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
Myelodysplastic syndromes (MDSs) are a heterogeneous group of clonal hematopoietic stem cell disorders characterized by myeloid dysplasia, peripheral blood cytopenias, and increased risk of progression to acute myeloid leukemia (AML). The standard of care for patients with MDS is hypomethylating agent (HMA)-based therapy; however, nearly 50% of patients have no response to the treatment. Patients with MDS in whom HMA therapy has failed have a dismal prognosis and no approved second-line therapy options, so enrollment in clinical trials of experimental agents represents these patients' only chance for improved outcomes. A better understanding of the molecular and biological mechanisms underpinning MDS pathogenesis has enabled the development of new agents that target molecular alterations, cell death regulators, signaling pathways, and immune regulatory proteins in MDS. Here, we review novel therapies for patients with MDS in whom HMA therapy has failed, with an emphasis on the biological rationale for these therapies' development.
Collapse
Affiliation(s)
| | - Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Braulke F, Schweighöfer A, Schanz J, Shirneshan K, Ganster C, Pollock-Kopp B, Leha A, Haase D. Cytogenetic peripheral blood monitoring in azacitidine treated patients with high-risk MDS/sAML: A monocentric real-world experience. Leuk Res 2023; 124:106996. [PMID: 36538857 DOI: 10.1016/j.leukres.2022.106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/09/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
In this single center retrospective analysis 76 patients with high-risk (HR) myelodysplastic syndrome (MDS) treated with azacitidine (AZA) were reviewed for response, especially cytogenetic response (cyR) using repeated chromosome banding analyses (CBA) of bone marrow (bm) metaphases and frequent sequential Fluorescence-in-situ Hybridization (FISH) analyses of immunomagnetically enriched CD34 + circulating peripheral blood cells (CD34 +pb-FISH). In total, 526 CD34 +pb-FISH analyses and 236 CBA were examined. Median observation time was 8.45 months, median number of AZA cycles applied was 8, median overall survival (OS) was 14.9 months, 42.1 % of patients responded to therapy according to IWG criteria: 5 complete response (CR), 0 partial response (PR), 12 bmCR, 15 stable disease with hematologic improvement (HI). HI was reached in 36.8 % of patients, 31.5 % became transfusion-independent. By CBA or CD34 +pb-FISH 20.4 % and 31.6 % of patients showed cyR, respectively. HI rate was significantly higher in cytogenetic responders than in non-responders, but there was no impact on OS or leukemia-free-survival. Cytogenetic responders showed significantly better OS than non-responders. Patients with ≥ 6 AZA cycles had significantly better OS than patients with < 6 cycles applied. Karyotype evolution (KE) as a manifestation of cytogenetic progression was diagnosed in 29.5 % and 17.1 % of patients by CBA and CD34 +pb-FISH, respectively. KE was associated with significantly poorer OS and leukemia-free-survival.
Collapse
Affiliation(s)
- Friederike Braulke
- Clinic of Hematology and Medical Oncology, University Medical Center Göttingen, Georg August University Göttingen, Germany; Comprehensive Cancer Center Göttingen G-CCC, University Medical Center Göttingen, Georg August University, Göttingen, Germany.
| | - Adrian Schweighöfer
- Clinic of Hematology and Medical Oncology, University Medical Center Göttingen, Georg August University Göttingen, Germany; Praxis Scholz, Harsum, Germany
| | - Julie Schanz
- Clinic of Hematology and Medical Oncology, University Medical Center Göttingen, Georg August University Göttingen, Germany; INDIGHO-Laboratories, University Medical Center Göttingen, Georg August University Göttingen, Germany
| | - Katayoon Shirneshan
- Clinic of Hematology and Medical Oncology, University Medical Center Göttingen, Georg August University Göttingen, Germany; INDIGHO-Laboratories, University Medical Center Göttingen, Georg August University Göttingen, Germany
| | - Christina Ganster
- Clinic of Hematology and Medical Oncology, University Medical Center Göttingen, Georg August University Göttingen, Germany; INDIGHO-Laboratories, University Medical Center Göttingen, Georg August University Göttingen, Germany
| | - Beatrix Pollock-Kopp
- Department of Transfusion Medicine, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Andreas Leha
- Department of Medical Statistics, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Detlef Haase
- Clinic of Hematology and Medical Oncology, University Medical Center Göttingen, Georg August University Göttingen, Germany; INDIGHO-Laboratories, University Medical Center Göttingen, Georg August University Göttingen, Germany
| |
Collapse
|
13
|
Qi S, Wang F, Liu Y, Zhao J, Wang Y, Huang S, Yang W, Li Y, Shen Y, Zhang C, Zhao J, Yang X, Gao R, Chen Y, Zhao P, Zhang F, Huang Y, Zhao M, Wang P, Zhang Y, Dou H, Wang J, Li Y. TKIs combined with chemotherapy followed by allo-HSCT in Philadelphia chromosome-positive myelodysplastic syndrome: A case report and literature review. Medicine (Baltimore) 2022; 101:e31874. [PMID: 36401464 PMCID: PMC9678630 DOI: 10.1097/md.0000000000031874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Philadelphia chromosome (Ph) positive myelodysplastic syndrome (MDS) is a very rare disease. At present, the specific role of Ph in MDS is not clear, but such patients seem to have a poor prognosis, so the disease deserves attention. Here, we describe the history of a woman with Ph-positive MDS and perform a systematic review of related literature. PATIENT CONCERNS AND DIAGNOSIS We report a 38-year-old woman with Ph-positive MDS. INTERVENTIONS AND OUTCOMES She received chemotherapy with decitabine, cytarabine, aclarubicin, and granulocyte colony-stimulating factor (DCAG) combined with imatinib mesylate and achieved a bone marrow remission. She then underwent an allogeneic hematopoietic stem cell transplant. The condition is good and no recurrence of the disease has been observed. CONCLUSION Ph-positive MDS is a very rare disease. Ph may aid in the malignant progression of MDS leaving such patients with a very poor prognosis. Tyrosine kinase inhibitors (TKIs) plus chemotherapy followed by allogeneic hematopoietic stem cell transplantation has provided these patients with satisfactory outcomes.
Collapse
Affiliation(s)
- Shasha Qi
- Guizhou Medical University, Guiyang, China
| | - Feiqing Wang
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yang Liu
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiangyuan Zhao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Songsong Huang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenxiu Yang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yanling Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong Shen
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | | | - Jianing Zhao
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xu Yang
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Rui Gao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Chen
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Peng Zhao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fengqi Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yi Huang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Mei Zhao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ping Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yan Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hanbo Dou
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jishi Wang
- Guizhou Medical University, Guiyang, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yanju Li
- Guizhou Medical University, Guiyang, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- * Correspondence: Yanju Li, Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China (e-mail: )
| |
Collapse
|
14
|
Abstract
Myelodysplastic syndromes (MDS) are a family of myeloid cancers with diverse genotypes and phenotypes characterized by ineffective haematopoiesis and risk of transformation to acute myeloid leukaemia (AML). Some epidemiological data indicate that MDS incidence is increasing in resource-rich regions but this is controversial. Most MDS cases are caused by randomly acquired somatic mutations. In some patients, the phenotype and/or genotype of MDS overlaps with that of bone marrow failure disorders such as aplastic anaemia, paroxysmal nocturnal haemoglobinuria (PNH) and AML. Prognostic systems, such as the revised International Prognostic Scoring System (IPSS-R), provide reasonably accurate predictions of survival at the population level. Therapeutic goals in individuals with lower-risk MDS include improving quality of life and minimizing erythrocyte and platelet transfusions. Therapeutic goals in people with higher-risk MDS include decreasing the risk of AML transformation and prolonging survival. Haematopoietic cell transplantation (HCT) can cure MDS, yet fewer than 10% of affected individuals receive this treatment. However, how, when and in which patients with HCT for MDS should be performed remains controversial, with some studies suggesting HCT is preferred in some individuals with higher-risk MDS. Advances in the understanding of MDS biology offer the prospect of new therapeutic approaches.
Collapse
|
15
|
Acha P, Mallo M, Solé F. Myelodysplastic Syndromes with Isolated del(5q): Value of Molecular Alterations for Diagnostic and Prognostic Assessment. Cancers (Basel) 2022; 14:5531. [PMID: 36428627 PMCID: PMC9688702 DOI: 10.3390/cancers14225531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of clonal hematological neoplasms characterized by ineffective hematopoiesis in one or more bone marrow cell lineages. Consequently, patients present with variable degrees of cytopenia and dysplasia. These characteristics constitute the basis for the World Health Organization (WHO) classification criteria of MDS, among other parameters, for the current prognostic scoring system. Although nearly half of newly diagnosed patients present a cytogenetic alteration, and almost 90% of them harbor at least one somatic mutation, MDS with isolated del(5q) constitutes the only subtype clearly defined by a cytogenetic alteration. The results of several clinical studies and the advances of new technologies have allowed a better understanding of the biological basis of this disease. Therefore, since the first report of the "5q- syndrome" in 1974, changes and refinements have been made in the definition and the characteristics of the patients with MDS and del(5q). Moreover, specific genetic alterations have been found to be associated with the prognosis and response to treatments. The aim of this review is to summarize the current knowledge of the molecular background of MDS with isolated del(5q), focusing on the clinical and prognostic relevance of cytogenetic alterations and somatic mutations.
Collapse
Affiliation(s)
- Pamela Acha
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Mar Mallo
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Francesc Solé
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
16
|
Ambinder AJ, DeZern AE. Navigating the contested borders between myelodysplastic syndrome and acute myeloid leukemia. Front Oncol 2022; 12:1033534. [PMID: 36387170 PMCID: PMC9650616 DOI: 10.3389/fonc.2022.1033534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/11/2022] [Indexed: 10/23/2023] Open
Abstract
Myelodysplastic syndrome and acute myeloid leukemia are heterogeneous myeloid neoplasms which arise from the accumulation of mutations in a myeloid stem cell or progenitor that confer survival or growth advantages. These disease processes are formally differentiated by clinical, laboratory, and morphological presentations, especially with regard to the preponderance of blasts in the peripheral blood or bone marrow (AML); however, they are closely associated through their shared lineage as well as their existence on a spectrum with some cases of MDS displaying increased blasts, a feature that reflects more AML-like behavior, and the propensity for MDS to transform into AML. It is increasingly recognized that the distinctions between these two entities result from the divergent patterns of genetic alterations that drive each of them. Mutations in genes related to chromatin-remodeling and the spliceosome are seen in both MDS and AML arising out of antecedent MDS, while mutations in genes related to signaling pathways such as RAS or FLT3 are more typically seen in AML or otherwise are a harbinger of transformation. In this review, we focus on the insights into the biological and genetic distinctions and similarities between MDS and AML that are now used to refine clinical prognostication, guide disease management, and to inform development of novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Amy E. DeZern
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Kontandreopoulou CN, Kalopisis K, Viniou NA, Diamantopoulos P. The genetics of myelodysplastic syndromes and the opportunities for tailored treatments. Front Oncol 2022; 12:989483. [PMID: 36338673 PMCID: PMC9630842 DOI: 10.3389/fonc.2022.989483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Genomic instability, microenvironmental aberrations, and somatic mutations contribute to the phenotype of myelodysplastic syndrome and the risk for transformation to AML. Genes involved in RNA splicing, DNA methylation, histone modification, the cohesin complex, transcription, DNA damage response pathway, signal transduction and other pathways constitute recurrent mutational targets in MDS. RNA-splicing and DNA methylation mutations seem to occur early and are reported as driver mutations in over 50% of MDS patients. The improved understanding of the molecular landscape of MDS has led to better disease and risk classification, leading to novel therapeutic opportunities. Based on these findings, novel agents are currently under preclinical and clinical development and expected to improve the clinical outcome of patients with MDS in the upcoming years. This review provides a comprehensive update of the normal gene function as well as the impact of mutations in the pathogenesis, deregulation, diagnosis, and prognosis of MDS, focuses on the most recent advances of the genetic basis of myelodysplastic syndromes and their clinical relevance, and the latest targeted therapeutic approaches including investigational and approved agents for MDS.
Collapse
|
18
|
Myeloid-Derived Suppressor Cells: New Insights into the Pathogenesis and Therapy of MDS. J Clin Med 2022; 11:jcm11164908. [PMID: 36013147 PMCID: PMC9410159 DOI: 10.3390/jcm11164908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic malignancies characterized by the clonal expansion of hematopoietic stem cells, bone marrow failure manifested by cytopenias, and increased risk for evolving to acute myeloid leukemia. Despite the fact that the acquisition of somatic mutations is considered key for the initiation of the disease, the bone marrow microenvironment also plays significant roles in MDS by providing the right niche and even shaping the malignant clone. Aberrant immune responses are frequent in MDS and are implicated in many aspects of MDS pathogenesis. Recently, myeloid-derived suppressor cells (MDSCs) have gained attention for their possible implication in the immune dysregulation associated with MDS. Here, we summarize the key findings regarding the expansion of MDSCs in MDS, their role in MDS pathogenesis and immune dysregulation, as well their potential as a new therapeutic target for MDS.
Collapse
|
19
|
Tria FP, Ang DC, Fan G. Myelodysplastic Syndrome: Diagnosis and Screening. Diagnostics (Basel) 2022; 12:1581. [PMID: 35885487 PMCID: PMC9319204 DOI: 10.3390/diagnostics12071581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are heterogeneous groups of clonal myeloid disorders characterized by unexplained persistent peripheral blood (PB) cytopenia(s) of one or more of the hematopoietic lineages, or bone marrow (BM) morphologic dysplasia in hematopoietic cells, recurrent genetic abnormalities, and an increased risk of progression to acute myeloid leukemia (AML). In the past several years, diagnostic, prognostic, and therapeutic approaches have substantially improved with the development of Next Generation Sequencing (NGS) diagnostic testing and new medications. However, there is no single diagnostic parameter specific for MDS, and correlations with clinical information, and laboratory test findings are needed to reach the diagnosis.
Collapse
Affiliation(s)
- Francisco P. Tria
- Section of Cellular Immunology and Molecular Pathology, Institute of Pathology, St. Luke’s Medical Center—Global City, Taguig 1634, Metro Manila, Philippines; (F.P.T.IV); (D.C.A.)
| | - Daphne C. Ang
- Section of Cellular Immunology and Molecular Pathology, Institute of Pathology, St. Luke’s Medical Center—Global City, Taguig 1634, Metro Manila, Philippines; (F.P.T.IV); (D.C.A.)
| | - Guang Fan
- Department of Hematopathology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Loss of chromosome 7 has long been associated with adverse-risk myeloid malignancy. In the last decade, CUX1 has been identified as a critical tumor suppressor gene (TSG) located within a commonly deleted segment of chromosome arm 7q. Additional genes encoded on 7q have also been identified as bona fide myeloid tumor suppressors, further implicating chromosome 7 deletions in disease pathogenesis. This review will discuss the clinical implications of del(7q) and CUX1 mutations, both in disease and clonal hematopoiesis, and synthesize recent literature on CUX1 and other chromosome 7 TSGs. RECENT FINDINGS Two major studies, including a new mouse model, have been published that support a role for CUX1 inactivation in the development of myeloid neoplasms. Additional recent studies describe the cellular and hematopoietic effects from loss of the 7q genes LUC7L2 and KMT2C/MLL3, and the implications of chromosome 7 deletions in clonal hematopoiesis. SUMMARY Mounting evidence supports CUX1 as being a key chromosome 7 TSG. As 7q encodes additional myeloid regulators and tumor suppressors, improved models of chromosome loss are needed to interrogate combinatorial loss of these critical 7q genes.
Collapse
Affiliation(s)
| | - Megan E McNerney
- Department of Pathology
- Department of Pediatrics, Section of Hematology/Oncology
- The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Nagarjun BR, Kalaharaghini R, Sawhney J, Trivedi PJ, Dhandapani K, Parikh B. Should We Look beyond Revised International Prognostic Scoring System: A Retrospective Observational Study of Progression of Myelodysplastic Syndrome to Acute Leukemia. Indian J Med Paediatr Oncol 2021. [DOI: 10.1055/s-0041-1736175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Abstract
Introduction Myelodysplastic syndrome (MDS) is a clonal stem cell disorder and heterogeneous condition resulting in peripheral cytopenias with marrow dysplasia due to ineffective hematopoiesis. The revised International Prognostic Scoring System (IPSS-R) predicts the risk of progression to acute leukemia (AL). Indian data on MDS and its progression to AL are limited. Additionally, the cytogenetic findings are dictated by patients' racial background. Study intended to analyze the cytogenetic profile of the patients with MDS.
Objectives This study aimed to (1) evaluate the clinicohematologic and morphologic spectrum of newly diagnosed MDS cases, (2) evaluate the cytogenetic profile of these cases, and (3) study the cases progressed to AL.
Materials and Methods MDS cases diagnosed and followed-up during a 5-year study period, from January 2015 to December 2019, were included in the study and the study was conducted at regional cancer center in Western India. De novo diagnosed MDS cases with complete workup were considered and MDS due to secondary causes were excluded. Baseline clinical, hematologic findings were tabulated along with cytogenetics and risk stratified as per IPSS-R, and their progression was studied.
Results A total of 63 cases of de novo MDS were diagnosed over a period of 5 years with 45 cases on follow-up and 15 cases (33.3%) progressed to AL. Maximum number of cases belonged to MDS-excess blast (EB) category accounting to 48 cases (76.1%). Apparently normal karyotyping was the commonest cytogenetic finding in 33 MDS cases (61.2%) and in 8 cases that progressed to AL (53.4%).
Conclusion MDS cases diagnosed at relatively early age were at higher risk of progression to AL. Majority of the cases that progressed to AL were risk stratified in high and very high risk groups and 10 cases which progressed to AL belonged to good category, interestingly apparent normal karyotyping was the commonest cytogenetic finding in more than 50% of the cases progressed to AL. Molecular mutations could only explain this progression and studies integrating molecular mutations with present IPSS-R scoring system should be conducted, as it could translate into better risk stratification and help in early identification and better management of cases at risk in progression to AL.
Collapse
Affiliation(s)
| | | | - Jyoti Sawhney
- Department of OncoPathology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Pina J. Trivedi
- Department of OncoPathology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Karthik Dhandapani
- Department of OncoPathology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Biren Parikh
- Department of OncoPathology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
22
|
Ma J, Ai X, Wang J, Xing L, Tian C, Yang H, Yu Y, Zhao H, Wang X, Zhao Z, Wang Y, Cao Z. Multiplex ligation-dependent probe amplification identifies copy number changes in normal and undetectable karyotype MDS patients. Ann Hematol 2021; 100:2207-2214. [PMID: 33990890 PMCID: PMC8357724 DOI: 10.1007/s00277-021-04550-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/01/2021] [Indexed: 10/31/2022]
Abstract
Chromosomal abnormalities play an important role in classification and prognostication of myelodysplastic syndrome (MDS) patients. However, more than 50% of low-risk MDS patients harbor a normal karyotype. Recently, multiplex ligation-dependent probe amplification (MLPA) has emerged as an effective and robust method for the detection of cytogenetic aberrations in MDS patients. To characterize the subset of MDS with normal karyotype or failed chromosome banding analysis, we analyzed 144 patient samples with normal karyotype or undetectable through regular chromosome banding analysis, which were subjected to parallel comparison via fluorescence in situ hybridization (FISH) and MLPA. MLPA identifies copy number changes in 16.7% of 144 MDS patients, and we observed a significant difference in overall survival (OS) (median OS: undefined vs 27 months, p=0.0071) in patients with normal karyotype proved by MLPA versus aberrant karyotype cohort as determined by MLPA. Interestingly, patients with undetectable karyotype via regular chromosome banding indicated inferior outcome. Collectively, MDS patients with normal or undetectable karyotype via chromosome banding analysis can be further clarified by MLPA, providing more prognostic information that benefit for individualized therapy.
Collapse
Affiliation(s)
- Jing Ma
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, China
| | - Xiaofei Ai
- Department of Pathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jinhuan Wang
- Department of Oncology, The Second Hospital of Tianjin Medical University, No.23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Limin Xing
- Hematology Department of General Hospital, Tianjin Medical University, No.154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Chen Tian
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, China
| | - Hongliang Yang
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, China
| | - Yong Yu
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, China
| | - Haifeng Zhao
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, China
| | - Xiaofang Wang
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, China
| | - Zhigang Zhao
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, China.
| | - Yafei Wang
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, China.
| | - Zeng Cao
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, China.
| |
Collapse
|
23
|
Ibrar W, Zhang W, Cox JL, Cushman-Vokoun A, Fu K, Greiner TC, Yuan J. The utility of a myeloid mutation panel for the diagnosis of myelodysplastic syndrome and myelodysplastic/myeloproliferative neoplasm. Int J Lab Hematol 2021; 43:1501-1509. [PMID: 34270867 DOI: 10.1111/ijlh.13659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The diagnosis of myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) is based on morphology and cytogenetics/FISH findings per 2017 WHO classification. With rare exceptions, somatic mutations have not been incorporated as the diagnostic criteria. METHODS We analyzed the utility of mutational analysis with a targeted 54-gene or 40-gene next-generation sequencing (NGS) panel in the diagnosis of MDS and MDS/MPN. RESULTS We retrospectively collected 92 patients who presented with unexplained cytopenia with or without cytosis, including 32 low-grade MDS (MDS-L), 18 high-grade MDS (MDS-H), 5 therapy-related MDS (MDS-TR), 19 MDS/MPN, and 18 negative cases. Of 92 patients, 197 somatic mutations involving 38 genes were detected and had variant allele frequency (VAF) ranging from 3% to 99%. The most common mutated genes were TET2, ASXL1, RUNX1, TP53, SRSF2, and SF3B1. MDS-L, MDS-H, MDS-TR, and MDS/MPN showed an average number of somatic mutations with a mean VAF of 1.9/33%, 2.6/30%, 2/36%, and 4/41%, respectively. SF3B1 mutations were exclusively observed in MDS-L and MDS/MPN. TP53 gene mutations were more frequently seen in MDS-H and MDS-TR. Among 34 patients with a diagnosis of MDS or MDS/MPN with normal cytogenetics, 31 patients (91%) had at least 1 mutation and 24 patients (71%) had ≥2 mutations with ≥10% VAF. CONCLUSION A myeloid mutational panel provides additional evidence of clonality besides cytogenetics/FISH studies in the diagnosis of cytopenia with or without cytosis. Two or more mutations with ≥10% VAF highly predicts MDS and MDS/MPN with a positive predictive value of 100%.
Collapse
Affiliation(s)
- Warda Ibrar
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Weiwei Zhang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jesse Lee Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Allison Cushman-Vokoun
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kai Fu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ji Yuan
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
24
|
Hong J, Lee YJ, Bae SH, Yi JH, Park S, Chang MH, Park YH, Hyun SY, Chung JS, Jang JE, Jung JY, Jeon SY, Song SY, Kim H, Kim DS, Kim SH, Kim MK, Han SH, Park S, Kim YJ, Lee JH. Lenalidomide for anemia correction in lower-risk del(5q) myelodysplastic syndrome patients of Asian ethnicity. Blood Res 2021; 56:102-108. [PMID: 34187943 PMCID: PMC8246035 DOI: 10.5045/br.2021.2021086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Background To estimate real-world outcomes in East Asian populations, we conducted a nationwide retrospective analysis of the efficacy and safety of lenalidomide for del(5q) myelodysplastic syndrome (MDS) patients with transfusion-dependent anemia in Korea. Methods Patients aged ≥19 years who had received lenalidomide for the treatment of lower-risk, red blood cell (RBC) transfusion-dependent del(5q) MDS were selected. A filled case report form (CRF) with information from electronic medical records was requested from members of the acute myeloid leukemia (AML)/MDS Working Party of the Korean Society of Hematology. All the CRFs were gathered and analyzed. Results A total of 31 patients were included in this study. Of 28 evaluable patients, 19 (67.9%) achieved RBC transfusion independence (RBC-TI). Female sex and the development of thrombocytopenia during treatment were associated with achieving RBC-TI. The most common non-hematologic toxicities were pruritus, fatigue, and rashes. All non-hematologic toxicities of grades ≥3 were limited to rash (12.9%) and pruritus (6.5%). Dose reduction was required in 15 of the 19 responders (78.9%). The most common final stable dosing schedule for the responders was 5 mg once every other day (31.6%). Conclusion Lenalidomide efficacy and tolerability were similar in the Asian del(5q) MDS patients and western patients. Dose reduction during treatment was common, but it was not associated with inferior outcomes.
Collapse
Affiliation(s)
- Junshik Hong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yoo Jin Lee
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Sung Hwa Bae
- Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu Catholic University Hospital, Daegu, Korea
| | - Jun Ho Yi
- Division of Hematology-Oncology, Chung-Ang University Hospital, Seoul, Department of Internal Medicine, Jinju, Korea
| | - Sungwoo Park
- Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Myung Hee Chang
- National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Young Hoon Park
- Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Korea
| | | | - Joo-Seop Chung
- Pusan National University College of Medicine, Pusan National University Hospital, Busan, Korea
| | - Ji Eun Jang
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Young Jung
- Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - So-Yeon Jeon
- Division of Oncology and Hematology, Department of Internal Medicine, Jeonbuk National University Hospital-Jeonbuk National University Medical School, Jeonju, Korea
| | - Seo-Young Song
- Department of Internal Medicine, Kangwon National University College of Medicine, Kangwon National University Hospital, Chuncheon, Korea
| | - Hawk Kim
- Division of Hematology, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Division of Hematology-Oncology, Department of Internal Medicine, Seoul, Korea
| | - Dae Sik Kim
- Korea University Guro Hospital, Seoul, Korea
| | - Sung-Hyun Kim
- Dong-A University College of Medicine, Dong-A University Hospital, Busan, Korea
| | - Min Kyoung Kim
- Yeungnam University College of Medicine, Daegu, Department of Internal Medicine, Jeju, Korea
| | - Sang Hoon Han
- Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Seonyang Park
- Inje University Haeundae Paik Hospital, Busan, Korea
| | - Yoo-Jin Kim
- Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Je-Hwan Lee
- University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | | |
Collapse
|
25
|
Chauhan R, Singh J, Sharma C, Dange P, Chopra A, Mahapatra M, Pati H. The utility of a single tube 10-color flow cytometry for quantitative and qualitative analysis in myelodysplastic syndrome- a pilot study. Leuk Res 2021; 107:106651. [PMID: 34218155 DOI: 10.1016/j.leukres.2021.106651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Assessment of myelodysplasia (MDS) by flow cytometry (FCM) includes elaborate panels, and interpretation is observer-dependent. This study evaluates single tube 10-color FCM in a test cohort of clinically suspected MDS patients. METHODS We analyzed fifty-six bone marrow (BM) samples from clinically suspected MDS patients in a morphology-blinded manner along with controls using a 10-color single tube flow cytometry. We analyzed the reproducibility of Ogata score and modified FCM scores, additionally incorporating the proportion of CD15, CD11b, CD56, and CD38MFI on CD34+CD19-cluster for each patient. Patients were grouped as proven-MDS, suspected-MDS, and non-MDS groups based on morphology and cytogenetics. Optimized multi-axial radar-plots were also used to analyze maturation patterns in the granulocytic, monocytic, and blast progenitor compartments of proven-MDS cases and controls. RESULTS Flow cytometric abnormalities ≥3 were present in proven-MDS (n = 23) with a sensitivity and specificity of 78 % and 94 %, respectively, as per Ogata score. The addition of CD38 MFI to the score yielded sensitivity and specificity of 82 % and 88 %, respectively. Additional analysis of aberrant expression of CD15, CD11b, and CD56 increased the diagnostic power of the FCM score. A qualitative analysis of data also showed differences in maturation patterns in proven-MDS compared to the control group. CONCLUSION Single tube 10-color FCM scoring, including Ogata score, modified-FCM scores, and radar plots pattern analysis, showed significant abnormalities in proven-MDS cases in this pilot study. Large databases, including FCM-scoring and pattern-based analysis for normal BM maturation, could be further validated and standardized for screening MDS.
Collapse
Affiliation(s)
- Richa Chauhan
- Department of Hematology, Sir Ganga Ram Hospital, New Delhi, India
| | - Jay Singh
- Department of Laboratory Oncology, B.R.A.I.R.C.H., AIIMS, New Delhi, India
| | - Charu Sharma
- Department of Mathematics, Shiv Nadar University, Noida, U.P, India
| | - Prasad Dange
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Anita Chopra
- Department of Laboratory Oncology, B.R.A.I.R.C.H., AIIMS, New Delhi, India.
| | - Manoranjan Mahapatra
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Haraparasad Pati
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
26
|
Duetz C, Van Gassen S, Westers TM, van Spronsen MF, Bachas C, Saeys Y, van de Loosdrecht AA. Computational flow cytometry as a diagnostic tool in suspected-myelodysplastic syndromes. Cytometry A 2021; 99:814-824. [PMID: 33942494 PMCID: PMC8453916 DOI: 10.1002/cyto.a.24360] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/03/2022]
Abstract
The diagnostic work‐up of patients suspected for myelodysplastic syndromes is challenging and mainly relies on bone marrow morphology and cytogenetics. In this study, we developed and prospectively validated a fully computational tool for flow cytometry diagnostics in suspected‐MDS. The computational diagnostic workflow consists of methods for pre‐processing flow cytometry data, followed by a cell population detection method (FlowSOM) and a machine learning classifier (Random Forest). Based on a six tubes FC panel, the workflow obtained a 90% sensitivity and 93% specificity in an independent validation cohort. For practical advantages (e.g., reduced processing time and costs), a second computational diagnostic workflow was trained, solely based on the best performing single tube of the training cohort. This workflow obtained 97% sensitivity and 95% specificity in the prospective validation cohort. Both workflows outperformed the conventional, expert analyzed flow cytometry scores for diagnosis with respect to accuracy, objectivity and time investment (less than 2 min per patient).
Collapse
Affiliation(s)
- Carolien Duetz
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sofie Van Gassen
- VIB Inflammation Research Center, Ghent University, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Theresia M Westers
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Margot F van Spronsen
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Costa Bachas
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Yvan Saeys
- VIB Inflammation Research Center, Ghent University, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
27
|
Chang YH. Myelodysplastic syndromes and overlap syndromes. Blood Res 2021; 56:S51-S64. [PMID: 33935036 PMCID: PMC8094000 DOI: 10.5045/br.2021.2021010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematological neoplasms characterized by ineffective hematopoiesis, morphologic dysplasia, and cytopenia. MDS overlap syndromes include various disorders, such as myelodysplastic/myeloproliferative neoplasms and hypoplastic MDS with aplastic anemia characteristics. MDS overlap syndromes share the characteristics of other diseases, which make differential diagnoses challenging. Advances in genomic studies have led to the discovery of frequent mutations in MDS and overlap syndromes; however, most of the mutations are not specific for the diagnosis of these diseases. The molecular characteristics of the overlap syndromes usually do not show a just "in-between" form but rather heterogeneous features. Established diagnostic criteria for these diseases based on clinical, morphologic, and laboratory features are still useful when combined with genomic data. It is expected that further studies for MDS and overlap syndromes will place emphasis on the roles of mutations as therapeutic targets and prognostic indicators.
Collapse
Affiliation(s)
- Yoon Hwan Chang
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
28
|
Iriani A, Setiabudy RD, Kresno SB, Sudoyo AW, Bardosono S, Rachman A, Harahap AR, Arief M. Expression of mRNA TNFα and level of protein TNFα after exposure sCD40L in bone marrow mononuclear cells of myelodysplastic syndromes. Stem Cell Investig 2021; 8:6. [PMID: 33829058 DOI: 10.21037/sci-2020-025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 03/10/2021] [Indexed: 11/06/2022]
Abstract
Background Cytopenia is the primary phenomenon in myelodysplastic syndrome (MDS) amidst hypercellular bone marrow. The soluble CD40 ligand (sCD40L) is considered as a cytokine that can trigger synthesis of tumor necrosis factor α (TNFα) that promotes apoptosis. The objective of this study is to prove that recombinant human sCD40L (rh-sCD40L) exposure on bone marrow mononuclear cells (BMMC) MDS increases TNFα expression at mRNA level and at protein level. Methods BMMC from MDS patients whom diagnosed and classified using the WHO 2008 criteria, were exposed to rh-sCD40L and antiCD40L. The expressions of TNFα mRNAs were quantified by qRT-PCR, level of TNFα were measured using the ELISA method. Results Exposure of rh-sCD40L significantly increased the expression of TNFα mRNA. The similar exposure also significantly increased the level of TNFα compared to controls. TNFα mRNA expression on BMMC in MDS samples exposed to rh-sCD40L is 3.32 times compared to TNFα mRNA expression without exposure. level of TNFα in supernatant media exposed to rh-sCD40L in MDS samples was higher than that of control samples which were 44.44 and 4.85 pg/mL, P=0.018. Conclusions The sCD40L plays a role in increasing the synthesis of TNFα in mRNA level and protein level in BMMC MDS.
Collapse
Affiliation(s)
- Anggraini Iriani
- Department of Clinical Pathology, Yarsi University, Jakarta, Indonesia
| | | | - Siti B Kresno
- Department of Clinical Pathology, University of Indonesia, Jakarta, Indonesia
| | - Aru W Sudoyo
- Department of Hematology and Medical Oncology, University of Indonesia, Jakarta, Indonesia
| | - Saptawati Bardosono
- Department of Hematology and Medical Oncology, University of Indonesia, Jakarta, Indonesia
| | - Andhika Rachman
- Department of Hematology and Medical Oncology, University of Indonesia, Jakarta, Indonesia
| | - Alida R Harahap
- Department of Clinical Pathology, University of Indonesia, Jakarta, Indonesia
| | - Mansyur Arief
- Department of Clinical Pathology, Hasanudin University, Makasar, Indonesia
| |
Collapse
|
29
|
Abstract
Myelodysplastic syndromes (MDS) are clonal hematological disorders arising from hematopoietic stem cells that have accumulated various genetic abnormalities. MDS are heterogeneous in nature but uniformly characterized by chronic and progressive cytopenia from ineffective hematopoiesis, dysplasia in single or multiple lineages, and transformation to acute leukemia in a subset of patients. The genomic landscape revealed by next-generation sequencing has provided a comprehensive picture of the molecular pathways involved in MDS pathogenesis. Recurrent mutational targets in MDS are the genes involved in RNA splicing, DNA methylation, histone modification, transcription, signal transduction, cohesin complex and DNA repair. Sequential acquisition of mutations in these sets of genes serves as a driver for the initiation, clonal evolution and progression of MDS. Based on these findings, novel agents targeting driver mutations of MDS are currently under development and expected to improve the clinical outcome of MDS in the coming decades.
Collapse
Affiliation(s)
- Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Japan
| |
Collapse
|
30
|
Azizi A, Ediriwickrema A, Dutta R, Patel SA, Shomali W, Medeiros B, Iberri D, Gotlib J, Mannis G, Greenberg P, Majeti R, Zhang T. Venetoclax and hypomethylating agent therapy in high risk myelodysplastic syndromes: a retrospective evaluation of a real-world experience. Leuk Lymphoma 2020; 61:2700-2707. [PMID: 32543932 DOI: 10.1080/10428194.2020.1775214] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Treatment with hypomethylating agents (HMAs) azacitidine or decitabine is the current standard of care for high risk myelodysplastic syndromes (MDSs) but is associated with low rates of response. The limited number of treatment options for patients with high risk MDS highlights a need for new therapeutic options. Venetoclax is an inhibitor of the BCL-2 protein which, when combined with an HMA, has shown high response rates in unfit and previously untreated acute myeloid leukemia. We performed a retrospective study of high risk MDS patients receiving combination HMA plus venetoclax in order to determine their effectiveness in this context. We show that in our cohort, the combination results in high response rates but is associated with a high frequency of myelosuppression. These data highlight the efficacy of combination HMA plus venetoclax in high risk MDS, warranting further prospective evaluation in clinical trials.
Collapse
Affiliation(s)
- Armon Azizi
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
| | - Asiri Ediriwickrema
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
| | - Ritika Dutta
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
| | - Shyam A Patel
- Department of Medicine, Division of Hematology-Oncology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - William Shomali
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
| | - Bruno Medeiros
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
| | - David Iberri
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
| | - Jason Gotlib
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
| | - Gabriel Mannis
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
| | - Peter Greenberg
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
| | - Tian Zhang
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
31
|
Unravelling the Epigenome of Myelodysplastic Syndrome: Diagnosis, Prognosis, and Response to Therapy. Cancers (Basel) 2020; 12:cancers12113128. [PMID: 33114584 PMCID: PMC7692163 DOI: 10.3390/cancers12113128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Myelodysplastic syndrome (MDS) is a type of blood cancer that mostly affects older individuals. Invasive tests to obtain bone samples are used to diagnose MDS and many patients do not respond to therapy or stop responding to therapy in the short-term. Less invasive tests to help diagnose, prognosticate, and predict response of patients is a felt need. Factors that influence gene expression without changing the DNA sequence (epigenetic modifiers) such as DNA methylation, micro-RNAs and long-coding RNAs play an important role in MDS, are potential biomarkers and may also serve as targets for therapy. Abstract Myelodysplastic syndrome (MDS) is a malignancy that disrupts normal blood cell production and commonly affects our ageing population. MDS patients are diagnosed using an invasive bone marrow biopsy and high-risk MDS patients are treated with hypomethylating agents (HMAs) such as decitabine and azacytidine. However, these therapies are only effective in 50% of patients, and many develop resistance to therapy, often resulting in bone marrow failure or leukemic transformation. Therefore, there is a strong need for less invasive, diagnostic tests for MDS, novel markers that can predict response to therapy and/or patient prognosis to aid treatment stratification, as well as new and effective therapeutics to enhance patient quality of life and survival. Epigenetic modifiers such as DNA methylation, long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs) are perturbed in MDS blasts and the bone marrow micro-environment, influencing disease progression and response to therapy. This review focusses on the potential utility of epigenetic modifiers in aiding diagnosis, prognosis, and predicting treatment response in MDS, and touches on the need for extensive and collaborative research using single-cell technologies and multi-omics to test the clinical utility of epigenetic markers for MDS patients in the future.
Collapse
|
32
|
Schwabkey ZI, Al Ali N, Chan O, Sallman DA, Padron E, Kuykendall AT, Talati C, Sweet K, Lancet JE, Komrokji RS. Fluorescence in Situ Hybridization (FISH) Utility for Risk Score Assessment in Patients With MDS With Normal Metaphase Karyotype. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 21:e52-e56. [PMID: 33093008 DOI: 10.1016/j.clml.2020.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cytogenetic profile is an essential parameter in myelodysplastic syndromes (MDS) risk stratification by both International Prognostic Symptom Score (IPSS) and Revised (R)-IPSS. Almost one-half of patients with MDS have normal cytogenetics by metaphase karyotype. Here we report the yield of MDS fluorescence in situ hybridization (FISH) panel detecting cytogenetic abnormalities in these patients and its impact on risk stratification. PATIENTS AND METHODS Among patients with normal metaphase karyotype, we assessed those patients who had cytogenetic abnormalities detected by an MDS FISH panel, which included probes for del (5), del (7), del (20), trisomy 8, and del (17p). Risk stratification was calculated by both IPSS and R-IPSS. RESULTS Of 1600 patients with MDS with normal metaphase karyotype, 53 (3%) patients had cytogenetic abnormality detected by MDS FISH panel. Integrating the MDS FISH panel cytogenetics (IPSS + FISH restaging) resulted in upstaging the score, where 53% of low-risk IPSS were upstaged to intermediate (int)-1, 56% of int-1 were upstaged to int-2, and 78% of int-2 were upstaged to high risk. Based on the R-IPSS, 61% of very low-risk patients, all low-risk patients, 92% of intermediate-risk patients, and 50% of high-risk patients with FISH abnormalities were upstaged, respectively. CONCLUSION The yield of MDS FISH panel detecting cytogenetic abnormalities in patients with normal karyotype by G-banding is low and may not warrant ordering the panel in all patients. Among the 3% of patients with normal karyotype who had cytogenetic abnormality detected by FISH, the risk score assignment by IPSS and R-IPSS was upstaged.
Collapse
Affiliation(s)
- Zaker I Schwabkey
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Najla Al Ali
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Onyee Chan
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | | | - Chetasi Talati
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Kendra Sweet
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Jeffrey E Lancet
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Rami S Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL.
| |
Collapse
|
33
|
Bauer M, Vaxevanis C, Heimer N, Al-Ali HK, Jaekel N, Bachmann M, Wickenhauser C, Seliger B. Expression, Regulation and Function of microRNA as Important Players in the Transition of MDS to Secondary AML and Their Cross Talk to RNA-Binding Proteins. Int J Mol Sci 2020; 21:ijms21197140. [PMID: 32992663 PMCID: PMC7582632 DOI: 10.3390/ijms21197140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Myelodysplastic syndromes (MDS), heterogeneous diseases of hematopoietic stem cells, exhibit a significant risk of progression to secondary acute myeloid leukemia (sAML) that are typically accompanied by MDS-related changes and therefore significantly differ to de novo acute myeloid leukemia (AML). Within these disorders, the spectrum of cytogenetic alterations and oncogenic mutations, the extent of a predisposing defective osteohematopoietic niche, and the irregularity of the tumor microenvironment is highly diverse. However, the exact underlying pathophysiological mechanisms resulting in hematopoietic failure in patients with MDS and sAML remain elusive. There is recent evidence that the post-transcriptional control of gene expression mediated by microRNAs (miRNAs), long noncoding RNAs, and/or RNA-binding proteins (RBPs) are key components in the pathogenic events of both diseases. In addition, an interplay between RBPs and miRNAs has been postulated in MDS and sAML. Although a plethora of miRNAs is aberrantly expressed in MDS and sAML, their expression pattern significantly depends on the cell type and on the molecular make-up of the sample, including chromosomal alterations and single nucleotide polymorphisms, which also reflects their role in disease progression and prediction. Decreased expression levels of miRNAs or RBPs preventing the maturation or inhibiting translation of genes involved in pathogenesis of both diseases were found. Therefore, this review will summarize the current knowledge regarding the heterogeneity of expression, function, and clinical relevance of miRNAs, its link to molecular abnormalities in MDS and sAML with specific focus on the interplay with RBPs, and the current treatment options. This information might improve the use of miRNAs and/or RBPs as prognostic markers and therapeutic targets for both malignancies.
Collapse
Affiliation(s)
- Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (M.B.); (C.W.)
| | - Christoforos Vaxevanis
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle 06112, Germany; (C.V.); (N.H.)
| | - Nadine Heimer
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle 06112, Germany; (C.V.); (N.H.)
| | - Haifa Kathrin Al-Ali
- Department of Hematology/Oncology, University Hospital Halle, 06112 Halle, Germany; (H.K.A.-A.); (N.J.)
| | - Nadja Jaekel
- Department of Hematology/Oncology, University Hospital Halle, 06112 Halle, Germany; (H.K.A.-A.); (N.J.)
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany;
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (M.B.); (C.W.)
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle 06112, Germany; (C.V.); (N.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-345-557-4054
| |
Collapse
|
34
|
Kaniyattu SM, Meenakshi A, Kumar MB, Kumar KR, Rao S, Shetty PD, Shetty V, Shetty JK, Shetty PK. Cytogenetic and cytokine profile in elderly patients with cytopenia. Exp Hematol 2020; 89:80-86. [PMID: 32739457 DOI: 10.1016/j.exphem.2020.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/06/2020] [Accepted: 07/26/2020] [Indexed: 10/23/2022]
Abstract
In the elderly with cytopenia, the diagnosis of myelodysplastic syndrome (MDS) may be missed. Cytokine levels contribute to the pathology of MDS. Hence, the objectives were to evaluate cytogenetic profile as a prognostic indicator in risk stratification and cytokine levels as a screening tool in patients with cytopenia for diagnosis. Over 2 years (2016-2018), 150 elderly patients were screened. MDS diagnosis was confirmed by morphology. Interleukin-2 (IL-2) and IL-6 levels were assessed in 50 patients, and karyotyping was performed in 20 confirmed cases of MDS. Age-matched healthy controls were used for comparison of cytokine levels. Among 150 patients, 88.6% had anemia, including nutritional anemia (51.2%). MDS diagnosis was confirmed in 35 patients. In 15 patients, unexplained cytopenia (UC) was present. Karyotyping in 20 MDS patients was normal in 15 (75%) patients and revealed a complex karyotype in four (20%) patients and double chromosomal abnormality in one (5%) patient. The Revised International Prognostic Scoring System (IPSS-R) scored 91% in the low-risk group and 9% (n = 3) in the high-risk group; the latter three developed acute myeloid leukemia (AML) and two of them had a 7q deletion. Among the 15 cases of UC, one patient died from refractory anemia. No significant difference in levels of IL-2 and IL-6 were found between MDS and UC patients when compared with healthy controls, as well as between different risk groups and karyotypes. A significant difference in IL-2 levels was found in MDS patients with disease progression and with stable disease. On the basis of the findings, it is suggested that IL-2 levels will help in predicting disease progression.
Collapse
Affiliation(s)
| | - Arumugam Meenakshi
- K. S. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte, Mangaluru, India
| | - Mohana B Kumar
- K. S. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte, Mangaluru, India
| | | | - Shama Rao
- K. S. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte, Mangaluru, India
| | - Prashanth D Shetty
- K. S. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte, Mangaluru, India
| | - Vijith Shetty
- K. S. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte, Mangaluru, India
| | - Jayaprakash K Shetty
- K. S. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte, Mangaluru, India
| | - Padma K Shetty
- K. S. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte, Mangaluru, India.
| |
Collapse
|
35
|
Menssen AJ, Walter MJ. Genetics of progression from MDS to secondary leukemia. Blood 2020; 136:50-60. [PMID: 32430504 PMCID: PMC7332895 DOI: 10.1182/blood.2019000942] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the genetics of acute myeloid leukemia (AML) development from myelodysplastic syndrome (MDS) has advanced significantly as a result of next-generation sequencing technology. Although differences in cell biology and maturation exist between MDS and AML secondary to MDS, these 2 diseases are genetically related. MDS and secondary AML cells harbor mutations in many of the same genes and functional categories, including chromatin modification, DNA methylation, RNA splicing, cohesin complex, transcription factors, cell signaling, and DNA damage, confirming that they are a disease continuum. Differences in the frequency of mutated genes in MDS and secondary AML indicate that the order of mutation acquisition is not random during progression. In almost every case, disease progression is associated with clonal evolution, typically defined by the expansion or emergence of a subclone with a unique set of mutations. Monitoring tumor burden and clonal evolution using sequencing provides advantages over using the blast count, which underestimates tumor burden, and could allow for early detection of disease progression prior to clinical deterioration. In this review, we outline advances in the study of MDS to secondary AML progression, with a focus on the genetics of progression, and discuss the advantages of incorporating molecular genetic data in the diagnosis, classification, and monitoring of MDS to secondary AML progression. Because sequencing is becoming routine in the clinic, ongoing research is needed to define the optimal assay to use in different clinical situations and how the data can be used to improve outcomes for patients with MDS and secondary AML.
Collapse
Affiliation(s)
- Andrew J Menssen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO; and
| | - Matthew J Walter
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO; and
- Siteman Cancer Center, Washington University, St. Louis, MO
| |
Collapse
|
36
|
How to treat myelodysplastic syndrome with clinical features resembling Behçet syndrome: a case-based systematic review. Ann Hematol 2020; 99:1193-1203. [DOI: 10.1007/s00277-020-03951-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/03/2020] [Indexed: 01/30/2023]
|
37
|
Phrommin S, Tantiworawit A, Rattanathammethee T, Puaninta C, Pangjaidee N, Aungsuchawan S, Bumroongkit K. Chromosomal Abnormalities in Myelodysplastic Syndrome Patients in Upper Northern Thailand. Asian Pac J Cancer Prev 2020; 21:639-645. [PMID: 32212788 PMCID: PMC7437337 DOI: 10.31557/apjcp.2020.21.3.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 12/01/2022] Open
Abstract
Objective: Chromosome detection is important in the diagnosis and prognosis of Myelodysplastic syndrome (MDS) patients. About 50% of MDS patients have chromosomal abnormalities. Moreover, chromosome 5 and 7 are common genetic abnormalities in MDS patients and use to identify prognosis risk group and the proper treatment in MDS patients. The objective of this study was to evaluate chromosomal abnormalities and clinical features of MDS patients in upper northern Thailand. Methods: Fifty bone marrow (BM) specimens were examined by conventional cytogenetic (CC) technique and fluorescence in situ hybridization (FISH) technique for detected chromosome 5 and 7 abnormalities. The clinical features were comparison between MDS patients with chromosomal abnormalities and those with normal karyotype. Results: Chromosomal abnormalities were detected in 8/50 MDS patients by CC and 17/50 cases by FISH technique. When the CC and FISH techniques were combined, chromosomal abnormalities increased to 21/50 cases. Abnormalities of isolated chromosome 5 were found in 13 cases and were associated with lower level of percentage blast of BM (p = 0.003) and higher level of hemoglobin (p = 0.019). Moreover, abnormalities of chromosome 7 were found in 3 cases, 1 case of isolated del(7q) and 2 cases of -7 and del(7q) with complex abnormalities. These three cases were associated with higher level of percentage blast of BM (p = 0.010). Conclusion: This study showed the frequency and pattern of chromosomal abnormalities of MDS patients in upper northern Thailand were different from other populations. MDS with isolated chromosome 5 abnormalities had clinical characteristics corresponding with patients in good prognosis risk group. However, MDS patients with chromosome 7 and complex abnormalities showed higher percentage blast of BM which high risk to progression to acute myeloid leukemia (AML). Combined CC and FISH techniques detect chromosomal abnormalities with greater frequency than when either technique is used alone.
Collapse
Affiliation(s)
- Suphitcha Phrommin
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Adisak Tantiworawit
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thanawat Rattanathammethee
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chaniporn Puaninta
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nathaporn Pangjaidee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sirinda Aungsuchawan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokkan Bumroongkit
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
38
|
Senturk Yikilmaz A, Akinci S, Bakanay ŞM, Dilek I. In myelodysplastic syndrome cases, what should be the level of ferritin which has prognostic value? Transfus Clin Biol 2019; 26:217-223. [PMID: 31420221 DOI: 10.1016/j.tracli.2019.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/23/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Myelodysplastic syndrome (MDS) is a highly mortal disease in which anemia is unresponsive to treatment. In this study, the effect of basal ferritin values on prognosis and survival was investigated in MDS patients without history of transfusion. METHODS Data were retrospectively analyzed for 62 MDS cases. The cases were divided into two groups according to ferritin values. RESULTS The mean survival time was 61.1±4.8 months. During the follow-up period, 34 (54.8%) patients deceased. Median ferritin level was 358ng/mL. The serum ferritin (SF) level associated with mortality was determined as 400ng/mL (ROC area for SF was 0.731 with a cutoff value of 400; sensitivity and specificity were 70.7% and 68.2%, respectively) (P=0.002). There were 29 (46.8%) patients with serum ferritin levels of ≥400ng/mL. Patients with serum ferritin levels≥400ng/mL had low survival rates. Ferritin≥400ng/mL was associated with six times increased mortality (P=0.001). CONCLUSION Although the acceptable ferritin level at the start of chelation therapy is 1000ng/mL, the fact that 400ng/mL value is associated with survival in our study suggests that it may be useful to start chelation therapy in the early period. Further case studies on the subject are required.
Collapse
Affiliation(s)
- A Senturk Yikilmaz
- Department of Hematology, Yildirım Beyazit University, 06010 Ankara, Turkey.
| | - S Akinci
- Department of Hematology, Ataturk Training and Research Hospital, 06010 Ankara, Turkey
| | - Ş M Bakanay
- Department of Hematology, Yildirım Beyazit University, 06010 Ankara, Turkey
| | - I Dilek
- Department of Hematology, Yildirım Beyazit University, 06010 Ankara, Turkey
| |
Collapse
|
39
|
Hsu J, Reilly A, Hayes BJ, Clough CA, Konnick EQ, Torok-Storb B, Gulsuner S, Wu D, Becker PS, Keel SB, Abkowitz JL, Doulatov S. Reprogramming identifies functionally distinct stages of clonal evolution in myelodysplastic syndromes. Blood 2019; 134:186-198. [PMID: 31010849 PMCID: PMC6624967 DOI: 10.1182/blood.2018884338] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/01/2019] [Indexed: 12/16/2022] Open
Abstract
Myeloid neoplasms, including myelodysplastic syndromes (MDS), are genetically heterogeneous disorders driven by clonal acquisition of somatic mutations in hematopoietic stem and progenitor cells (HPCs). The order of premalignant mutations and their impact on HPC self-renewal and differentiation remain poorly understood. We show that episomal reprogramming of MDS patient samples generates induced pluripotent stem cells from single premalignant cells with a partial complement of mutations, directly informing the temporal order of mutations in the individual patient. Reprogramming preferentially captured early subclones with fewer mutations, which were rare among single patient cells. To evaluate the functional impact of clonal evolution in individual patients, we differentiated isogenic MDS induced pluripotent stem cells harboring up to 4 successive clonal abnormalities recapitulating a progressive decrease in hematopoietic differentiation potential. SF3B1, in concert with epigenetic mutations, perturbed mitochondrial function leading to accumulation of damaged mitochondria during disease progression, resulting in apoptosis and ineffective erythropoiesis. Reprogramming also informed the order of premalignant mutations in patients with complex karyotype and identified 5q deletion as an early cytogenetic anomaly. The loss of chromosome 5q cooperated with TP53 mutations to perturb genome stability, promoting acquisition of structural and karyotypic abnormalities. Reprogramming thus enables molecular and functional interrogation of preleukemic clonal evolution, identifying mitochondrial function and chromosome stability as key pathways affected by acquisition of somatic mutations in MDS.
Collapse
Affiliation(s)
- Jasper Hsu
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | - Andreea Reilly
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | - Brian J Hayes
- Fred Hutchinson Cancer Research Center, Seattle, WA; and
| | - Courtnee A Clough
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | | | | | | | - David Wu
- Department of Laboratory Medicine
| | - Pamela S Becker
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
- Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Institute for Stem Cell and Regenerative Medicine, and
| | - Siobán B Keel
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | - Janis L Abkowitz
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, and
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Sergei Doulatov
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, and
- Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
40
|
Zhou LW, Shi J, Huang ZD, Nie N, Shao YQ, Li XX, Ge ML, Zhang J, Jin P, Huang JB, Zheng YZ. [Clonal evolution and clinical significance of trisomy 8 in acquired bone marrow failure]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:507-511. [PMID: 31340625 PMCID: PMC7342404 DOI: 10.3760/cma.j.issn.0253-2727.2019.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Indexed: 11/25/2022]
Abstract
Objective: To analyze clonal evolution and clinical significance of trisomy 8 in patients with acquired bone marrow failure. Methods: The clinical data of 63 patients with acquired bone marrow failure accompanied with isolated trisomy 8 (+8) from June 2011 to September 2018 were analyzed retrospectively, the clonal evolution patterns and relationship with immmunosuppressive therapy were summarized. Results: Totally 24 male and 39 female patients were enrolled, including 39 patients with aplastic anemia (AA) and 24 patients with relatively low-risk myelodysplastic syndrome (MDS) . Mean size of+8 clone in MDS patients[65% (15%-100%) ]was higher than that of AA patients[25% (4.8%-100%) , z=3.48, P=0.001]. The patients were was divided into three groups (<30%, 30%-<50%,and ≥50%) according to the proportion of+8 clone. There was significant difference among the three groups between AA[<30%:55.6% (20/36) ; 30-50%: 22.2% (8/36) ; ≥50%22.2% (8/36) ]and MDS patients[<30%:19.0% (4/21) ; 30%-<50%:19.0% (4/21) ; ≥50%61.9% (13/21) ] (P=0.007) . The proportion of AA patients with+8 clone <30% was significantly higher than that of MDS patients (P=0.002) ; and the proportion of AA patients with+8 clone ≥50%was significantly lower than that of MDS patients (P=0.002) . The median age of AA and MDS patients was respectively 28 (7-61) years old and 48.5 (16-72) years old. Moreover, there was no correlation between age and+8 clone size in AA or MDS (r(s)=0.109, P=0.125; r(s)=-0.022, P=0.924, respectively) . There was statistical difference in total iron binding capacity, transferrin and erythropoietin between high and low clone group of AA patients (P=0.016, P=0.046, P=0.012, respectively) , but no significant difference in MDS patients. The immunosuppressive therapy (IST) efficacy of AA and MDS patients was respectively 66.7% and 43.8% (P=0.125) . Comparing with initial clone size (27.3%) , the +8 clone size (45%) of AA patients was increased 1-2 year after IST, but no statistical difference (z=0.83, P=0.272) . Consistently, there was no significant change between initial clone size (72.5%) and 1-2 year clone size (70.5%) after IST in MDS patients. There was no significant difference in IST efficient rate between +8 clone size expansion and decline group of in AA patients at 0.5-<1, 1-2 and>2 years after IST. We found four dynamic evolution patterns of +8 clone, which were clone persistence (45%) , clone disappearance (30%) , clone emergence (10%) and clone recurrence (15%) . Conclusions: AA patients had a low clone burden, while MDS patients had a high burden of +8 clone. The +8 clone of AA patients didn't significantly expanded after IST, and the changes of +8 clone also had no effect on IST response.
Collapse
Affiliation(s)
- L W Zhou
- Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China; State Key Laboratory of Experimental Hematology, Tianjin 300020, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zakhia DA, Voronel O, Zaiem F, Raval K, Yang J, Schloff D, Mohamed AN, Gabali AM. Comparative assessment of conventional chromosomal analysis and fluorescence in situ hybridization in the evaluation of suspected myelodysplastic syndromes: A single institution experience. Avicenna J Med 2019; 9:55-60. [PMID: 31143698 PMCID: PMC6530274 DOI: 10.4103/ajm.ajm_183_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background: Myelodysplastic syndromes (MDSs) are a heterogeneous group of clonal hematopoietic neoplasms, roughly half of which harbor cytogenetic abnormalities with diagnostic, prognostic, and therapeutic significance. Fluorescence in situ hybridization (FISH) for the most commonly seen abnormalities (5/5q, –7/7q, +8, and –20/20q–) is routinely performed alongside conventional cytogenetics (CC) in the evaluation of suspected MDS despite conflicting reports of its relative contribution compared to CC alone. Objectives: To assess the additional diagnostic and prognostic value of performing concurrent FISH versus CC alone in cases of suspected MDS. Materials and Methods: A total of 127 bone marrow samples submitted to our cytogenetic laboratory with a presumptive diagnosis of MDS were evaluated by concurrent CC and an MDS FISH panel. Results: CC was used as the gold standard method with 100% sensitivity in detecting suspected MDS-associated cytogenetic abnormalities. FISH alone had a sensitivity of 76%, whereas CC alone achieved a sensitivity of 97%. The addition of FISH did not change the diagnosis nor change the Revised International Prognostic Scoring System score in any patient. Moreover, in 12 cases identified as positive by both CC and FISH, CC identified multiple chromosomal aberrations of clinical significance not interrogated by the FISH probe panel. Conclusion: CC alone is sufficiently sensitive in detecting suspected MDS-associated cytogenetic abnormalities that influence clinical decision-making. Routine FISH testing does not provide a significant increase in test sensitivity when an adequate karyotype is obtained. Therefore, FISH testing is best reserved for suspected MDS cases lacking sufficient metaphases.
Collapse
Affiliation(s)
- Denyo Adjoa Zakhia
- Division of Hematopathology, Barbara Ann Karmanos Center and Wayne State University School of Medicine, Detroit, MI, USA
| | - Olga Voronel
- Division of Hematopathology, Barbara Ann Karmanos Center and Wayne State University School of Medicine, Detroit, MI, USA
| | - Feras Zaiem
- Division of Hematopathology, Barbara Ann Karmanos Center and Wayne State University School of Medicine, Detroit, MI, USA
| | - Kunil Raval
- Division of Hematopathology, Barbara Ann Karmanos Center and Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Yang
- Division of Hematology/Oncology, Barbara Ann Karmanos Center and Wayne State University School of Medicine, Detroit, MI, USA
| | - Deborah Schloff
- Division of Cytogenetics, Wayne State University, Detroit, Michigan, USA
| | - Anwar N Mohamed
- Division of Cytogenetics, Wayne State University, Detroit, Michigan, USA
| | - Ali M Gabali
- Division of Hematopathology, Barbara Ann Karmanos Center and Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
42
|
Behrens YL, Thomay K, Hagedorn M, Ebersold J, Schmidt G, Lentes J, Davenport C, Schlegelberger B, Göhring G. Jumping translocations: Short telomeres or pathogenic TP53 variants as underlying mechanism in acute myeloid leukemia and myelodysplastic syndrome? Genes Chromosomes Cancer 2019; 58:139-148. [PMID: 30614587 DOI: 10.1002/gcc.22665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 11/08/2022] Open
Abstract
Chromosomal rearrangements involving one donor chromosome and two or more recipient chromosomes are called jumping translocations. To date only few cases of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) with jumping translocations have been described and the underlying mechanisms remain unclear. Here, we analyzed 11 AML and 5 MDS cases with jumping translocations. The cases were analyzed by karyotyping, FISH, telomere length measurement, and next-generation sequencing with an AML/MDS gene panel. Cases with jumping translocations showed significantly (P < .01) shorter telomeres in comparison to healthy age-matched controls. Additional neo-telomeres were found in two cases. In total, eight cases showed recipient chromosomes with a breakpoint in the centromeric region all of them harboring a pathogenic variant in the TP53 gene (n = 6) and/or a loss of TP53 (n = 5). By contrast, no pathogenic variant or loss of TP53 was identified in the six cases showing recipient chromosomes with a breakpoint in the telomeric region. In conclusion, our results divide the cohort of AML and MDS cases with jumping translocations into two groups: the first group with a telomeric breakpoint of the recipient chromosome is characterized by short telomeres and a possibly telomere-based mechanism of chromosomal instability formation. The second group with a centromeric breakpoint of the recipient chromosome is defined by mutation and/or loss of TP53. We, therefore, assume that both critically short telomeres as well as pathogenic variants of TP53 influence jumping translocation formation.
Collapse
Affiliation(s)
| | - Kathrin Thomay
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Maike Hagedorn
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Juliane Ebersold
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jana Lentes
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Claudia Davenport
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
43
|
Abstract
Our knowledge about the genetics of myelodysplastic syndromes (MDS) and related myeloid disorders has been dramatically improved during the past decade, in which revolutionized sequencing technologies have played a major role. Through intensive efforts of sequencing of a large number of MDS genomes, a comprehensive registry of driver mutations recurrently found in a recognizable fraction of MDS patients has been revealed, and ongoing efforts are being made to clarify their impacts on clinical phenotype and prognosis, as well as their role in the pathogenesis of MDS. Among major mutational targets in MDS are the molecules involved in DNA methylations, chromatin modification, RNA splicing, transcription, signal transduction, cohesin regulation, and DNA repair. Showing substantial overlaps with driver mutations seen in acute myeloid leukemia (AML), as well as age-related clonal hematopoiesis in healthy individuals, these mutations are presumed to have a common clonal origin. Mutations are thought to be acquired and positively selected in a well-organized manner to allow for expansion of the initiating clone to compromise normal hematopoiesis, ultimately giving rise to MDS and subsequent transformation to AML in many patients. Significant correlations between mutations suggest the presence of functional interactions between mutations, which dictate disease progression. Mutations are frequently associated with specific disease phenotype, drug response, and clinical outcomes, and thus, it is essential to be familiar with MDS genetics for better management of patients. This review aims to provide a brief overview of the recent progresses in MDS genetics.
Collapse
|
44
|
Gadji M, Pozzo AR. From cellular morphology to molecular and epigenetic anomalies of myelodysplastic syndromes. Genes Chromosomes Cancer 2018; 58:474-483. [PMID: 30303583 DOI: 10.1002/gcc.22689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndromes (MDSs) are a myeloid neoplasm with a propensity for natural evolution or transformation to acute leukemias (AL) over time. Mechanisms for MDS transformation to AL remain poorly understood but are related to genomic instability, which affects the production of the different cell lineages. Genomic instability is also generated by dysfunctional telomeres. Indeed telomeres, the protective ends of chromosomes are the backbone of genome stability. Nuclear telomere remodeling is an early indicator of nuclear remodeling preceding the onset of genomic instability and MDS. This review aims to revisit the pathogenesis and pathophysiology of MDS from morphology and cytogenetics to molecular and epigenetic mechanisms. Furthermore, this review will highlight and discuss recent breakthroughs in dysfunctional telomeres and nuclear telomere architecture roles in the pathogenesis and physiopathology of MDS in the global context of genomic instability.
Collapse
Affiliation(s)
- Macoura Gadji
- Department of Physiology and Pathophysiology, University of Manitoba (UfM), Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba (CCMB), Winnipeg, Manitoba, Canada.,Faculty of Medicine, Pharmacy, and Odontology (FMPO), Service of Hematology, National Centre of Blood Transfusion (CNTS), University Cheikh Anta Diop of Dakar (UCAD), Dakar, Senegal
| | - Aline Rangel Pozzo
- Department of Physiology and Pathophysiology, University of Manitoba (UfM), Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba (CCMB), Winnipeg, Manitoba, Canada
| |
Collapse
|
45
|
Iqbal SM, Aslam HM, Faizee F, Qadir S, Waheed S. Pseudogout: An Autoimmune Paraneoplastic Manifestation of Myelodysplastic Syndrome. Cureus 2018; 10:e3372. [PMID: 30498647 PMCID: PMC6260197 DOI: 10.7759/cureus.3372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is often associated with autoimmune paraneoplastic manifestations. Seronegative arthritis is among one of them. Very rarely, pseudogout demonstrated as paraneoplastic autoimmune manifestations of MDS has been adumbrated so far. Our case would be the another addition in the series. Our patient is an 83-year-old male lately diagnosed with MDS. After six months of initial diagnosis, he had a sudden onset episode of pain and swelling involving left wrist. Synovial fluid analysis from respective radiocarpal joint confirmed the presence of intracellular positively birefringent rhomboid shaped crystals of calcium pyrophosphate dihydrate (CPPD). This was followed by another two flares of pseudogout involving right knee and lumbar spine at separate time intervals. Each of the episodes mentioned above responded well to intravenous and oral steroids. After the third bout, he was started treatment with azacitidine which showed effective abatement of further episodes of pseudogout up until now.
Collapse
Affiliation(s)
- Shumaila M Iqbal
- Internal Medicine, University at Buffalo / Sisters of Charity Hospital, Buffalo, USA
| | - Hafiz M Aslam
- Internal Medicine, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, USA
| | - Faizan Faizee
- Internal Medicine, Dow University of Health Sciences (DUHS), Karachi, PAK
| | - Sana Qadir
- Internal Medicine, S & A Pediatrics, Parsippany, USA
| | - Saadia Waheed
- Internal Medicine, University at Buffalo / Sisters of Charity Hospital, Buffalo, USA
| |
Collapse
|
46
|
Contejean A, Resche-Rigon M, Tamburini J, Alcantara M, Jardin F, Lengliné E, Adès L, Bouscary D, Marçais A, Lebon D, Chabrot C, Terriou L, Barraco F, Banos A, Bussot L, Cahn JY, Hirsch P, Maillard N, Simon L, Fornecker LM, Socié G, de Latour RP, de Fontbrune FS. Aplastic anemia in the elderly: a nationwide survey on behalf of the French Reference Center for Aplastic Anemia. Haematologica 2018; 104:256-262. [PMID: 30262561 PMCID: PMC6355477 DOI: 10.3324/haematol.2018.198440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/24/2018] [Indexed: 11/09/2022] Open
Abstract
Aplastic anemia is a rare but potentially life-threatening disease that may affect older patients. Data regarding the treatment of aplastic anemia in this ageing population remains scarce. We conducted a retrospective nationwide multicenter study in France to examine current treatments for aplastic anemia patients over 60 years old. Our aims were to evaluate efficacy and tolerance, and to analyze predictive factors for response and survival. Over the course of a decade, 88 patients (median age 68.5 years) were identified in 19 centers, with a median follow up of 2.7 years; 21% had very severe and 36% severe aplastic anemia. We analyzed 184 treatment lines, mostly involving the standard combination of anti-thymocyte globulin and cyclosporine-A (33%), which was also the most frequent first-line treatment (50%). After first-line therapy, 32% of patients achieved a complete response, and 15% a partial response. Responses were significantly better in first line and in patients with good performance status, as well as in those that had followed an anti-thymocyte globulin and cyclosporine-A regimen (overall response rate of 70% after first-line treatment). All treatments were well tolerated by patients, including over the age of 70. Three-year survival was 74.7% (median 7.36 years). Age, Charlson comorbidity index and very severe aplastic anemia were independently associated with mortality. Age, per se, is not a limiting factor to aplastic anemia treatment with anti-thymocyte globulin and cyclosporine-A; this regimen should be used as a first-line treatment in elderly patients if they have a good performance status and low comorbidity index score.
Collapse
Affiliation(s)
- Adrien Contejean
- French Reference Center for Aplastic Anemia, CHU Saint Louis, Paris.,Hematology department, CHU Cochin, Paris.,Paris Descartes University, Sorbonne Paris Cité
| | | | - Jérôme Tamburini
- Hematology department, CHU Cochin, Paris.,Paris Descartes University, Sorbonne Paris Cité
| | - Marion Alcantara
- Paris Descartes University, Sorbonne Paris Cité.,Department of biological hematology, CHU Necker, Paris.,Hematology department, Centre Henri Becquerel, Rouen
| | | | - Etienne Lengliné
- French Reference Center for Aplastic Anemia, CHU Saint Louis, Paris.,Hematology department, CHU Saint-Louis, Paris.,Paris Diderot University
| | - Lionel Adès
- Paris Diderot University.,Senior hematology department, CHU Saint-Louis, Paris
| | - Didier Bouscary
- Hematology department, CHU Cochin, Paris.,Paris Descartes University, Sorbonne Paris Cité
| | - Ambroise Marçais
- Paris Descartes University, Sorbonne Paris Cité.,Hematology department, CHU Necker, Paris
| | | | | | | | | | - Anne Banos
- Hematology department, CH Côte Basque, Bayonne
| | | | | | | | | | | | | | - Gerard Socié
- French Reference Center for Aplastic Anemia, CHU Saint Louis, Paris.,Paris Diderot University.,Bone-marrow transplantation department, CHU Saint-Louis, Paris.,Inserm UMR 1160, CHU Saint Louis, Paris, France
| | - Regis Peffault de Latour
- French Reference Center for Aplastic Anemia, CHU Saint Louis, Paris .,Paris Diderot University.,Bone-marrow transplantation department, CHU Saint-Louis, Paris
| | - Flore Sicre de Fontbrune
- French Reference Center for Aplastic Anemia, CHU Saint Louis, Paris.,Bone-marrow transplantation department, CHU Saint-Louis, Paris
| |
Collapse
|
47
|
Duetz C, Westers TM, van de Loosdrecht AA. Clinical Implication of Multi-Parameter Flow Cytometry in Myelodysplastic Syndromes. Pathobiology 2018; 86:14-23. [PMID: 30227408 PMCID: PMC6482988 DOI: 10.1159/000490727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a challenging group of diseases for clinicians and researchers, as both disease course and pathobiology are highly heterogeneous. In (suspected) MDS patients, multi-parameter flow cytometry can aid in establishing diagnosis, risk stratification and choice of therapy. This review addresses the developments and future directions of multi-parameter flow cytometry scores in MDS. Additionally, we propose an integrated diagnostic algorithm for suspected MDS.
Collapse
Affiliation(s)
- Carolien Duetz
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
48
|
Diagnostic algorithm for lower-risk myelodysplastic syndromes. Leukemia 2018; 32:1679-1696. [PMID: 29946191 DOI: 10.1038/s41375-018-0173-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/20/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023]
Abstract
Rapid advances over the past decade have uncovered the heterogeneous genomic and immunologic landscape of myelodysplastic syndromes (MDS). This has led to notable improvements in the accuracy and timing of diagnosis and prognostication of MDS, as well as the identification of possible novel targets for therapeutic intervention. For the practicing clinician, however, this increase in genomic, epigenomic, and immunologic knowledge needs consideration in a "real-world" context to aid diagnostic specificity. Although the 2016 revision to the World Health Organization classification for MDS is comprehensive and timely, certain limitations still exist for day-to-day clinical practice. In this review, we describe an up-to-date diagnostic approach to patients with suspected lower-risk MDS, including hypoplastic MDS, and demonstrate the requirement for an "integrated" diagnostic approach. Moreover, in the era of rapid access to massive parallel sequencing platforms for mutational screening, we suggest which patients should undergo such analyses, when such screening should be performed, and how those data should be interpreted. This is particularly relevant given the recent findings describing age-related clonal hematopoiesis.
Collapse
|
49
|
Davidsson J, Puschmann A, Tedgård U, Bryder D, Nilsson L, Cammenga J. SAMD9 and SAMD9L in inherited predisposition to ataxia, pancytopenia, and myeloid malignancies. Leukemia 2018. [PMID: 29535429 PMCID: PMC5940635 DOI: 10.1038/s41375-018-0074-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Germline mutations in the SAMD9 and SAMD9L genes, located in tandem on chromosome 7, are associated with a clinical spectrum of disorders including the MIRAGE syndrome, ataxia-pancytopenia syndrome and myelodysplasia and leukemia syndrome with monosomy 7 syndrome. Germline gain-of-function mutations increase SAMD9 or SAMD9L's normal antiproliferative effect. This causes pancytopenia and generally restricted growth and/or specific organ hypoplasia in non-hematopoietic tissues. In blood cells, additional somatic aberrations that reverse the germline mutation's effect, and give rise to the clonal expansion of cells with reduced or no antiproliferative effect of SAMD9 or SAMD9L include complete or partial chromosome 7 loss or loss-of-function mutations in SAMD9 or SAMD9L. Furthermore, the complete or partial loss of chromosome 7q may cause myelodysplastic syndrome in these patients. SAMD9 mutations appear to associate with a more severe disease phenotype, including intrauterine growth restriction, developmental delay and hypoplasia of adrenal glands, testes, ovaries or thymus, and most reported patients died in infancy or early childhood due to infections, anemia and/or hemorrhages. SAMD9L mutations have been reported in a few families with balance problems and nystagmus due to cerebellar atrophy, and may lead to similar hematological disease as seen in SAMD9 mutation carriers, from early childhood to adult years. We review the clinical features of these syndromes, discuss the underlying biology, and interpret the genetic findings in some of the affected family members. We provide expert-based recommendations regarding diagnosis, follow-up, and treatment of mutation carriers.
Collapse
Affiliation(s)
- Josef Davidsson
- Department of Pediatric Hematology and Oncology, Skåne University Hospital, Lund, Sweden. .,Department of Molecular Hematology, Lund University, Lund, Sweden.
| | - Andreas Puschmann
- Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
| | - Ulf Tedgård
- Department of Pediatric Hematology and Oncology, Skåne University Hospital, Lund, Sweden
| | - David Bryder
- Department of Molecular Hematology, Lund University, Lund, Sweden
| | - Lars Nilsson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Jörg Cammenga
- Department of Hematology, University Hospital Linköping, Linköping, Sweden. .,Institution for Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
50
|
Ullman D, Baumgartner E, Wnukowski N, Koenig G, Mikhail FM, Pavlidakey P, Peker D. Therapy-associated myelodysplastic syndrome with monosomy 7 arising in a Muir-Torre Syndrome patient carrying SETBP1 mutation. Mol Clin Oncol 2018; 8:306-309. [PMID: 29435294 DOI: 10.3892/mco.2017.1532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/30/2017] [Indexed: 11/06/2022] Open
Abstract
Muir-Torre Syndrome (MTS) is a rare hereditary autosomal dominant cancer syndrome and is linked to hereditary non-polyposis colorectal carcinoma (Lynch Syndrome). Individuals develop various skin neoplasms in addition to colorectal, endometrial and upper gastrointestinal malignancies. Therapy-associated myelodysplastic syndrome (T-MDS) is an aggressive hematologic malignancy and is considered a pre-leukemic phase. T-MDS is associated with prior exposure to chemo- and radiotherapy that potentially results in DNA damage. The current case report presents a 74-year-old male MTS patient with prior history of solid tumors and radiation therapy with new onset cytopenia. A subsequent bone marrow biopsy revealed multilineage dysplasia with a high blast count and a diagnosis of high grade T-MDS was rendered. FISH and G-banded karyotype analyses revealed 5q deletion and monosomy 7. This is a unique case of T-MDS arising in the setting of MTS. Secondary malignancies including MDS and acute leukemia may occur in cancer survivors and are often associated with an unfavorable prognosis. This case demonstrates the need to be aware of the risk of secondary hematologic malignancies in cancer patients and a thorough clinical and lab work-up are warranted in patients with persistent or transfusion requiring cytopenia(s).
Collapse
Affiliation(s)
- David Ullman
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Erin Baumgartner
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Nicholas Wnukowski
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Gabe Koenig
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Peter Pavlidakey
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Deniz Peker
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|