1
|
Della Volpe L, Midena F, Vacca R, Tavella T, Alessandrini L, Farina G, Brandas C, Lo Furno E, Giannetti K, Carsana E, Naldini MM, Barcella M, Ferrari S, Beretta S, Santoro A, Porcellini S, Varesi A, Gilioli D, Conti A, Merelli I, Gentner B, Villa A, Naldini L, Di Micco R. A p38 MAPK-ROS axis fuels proliferation stress and DNA damage during CRISPR-Cas9 gene editing in hematopoietic stem and progenitor cells. Cell Rep Med 2024; 5:101823. [PMID: 39536752 PMCID: PMC11604517 DOI: 10.1016/j.xcrm.2024.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Ex vivo activation is a prerequisite to reaching adequate levels of gene editing by homology-directed repair (HDR) for hematopoietic stem and progenitor cell (HSPC)-based clinical applications. Here, we show that shortening culture time mitigates the p53-mediated DNA damage response to CRISPR-Cas9-induced DNA double-strand breaks, enhancing the reconstitution capacity of edited HSPCs. However, this results in lower HDR efficiency, rendering ex vivo culture necessary yet detrimental. Mechanistically, ex vivo activation triggers a multi-step process initiated by p38 mitogen-activated protein kinase (MAPK) phosphorylation, which generates mitogenic reactive oxygen species (ROS), promoting fast cell-cycle progression and subsequent proliferation-induced DNA damage. Thus, p38 inhibition before gene editing delays G1/S transition and expands transcriptionally defined HSCs, ultimately endowing edited cells with superior multi-lineage differentiation, persistence throughout serial transplantation, enhanced polyclonal repertoire, and better-preserved genome integrity. Our data identify proliferative stress as a driver of HSPC dysfunction with fundamental implications for designing more effective and safer gene correction strategies for clinical applications.
Collapse
Affiliation(s)
- Lucrezia Della Volpe
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federico Midena
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Roberta Vacca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Teresa Tavella
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Alessandrini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giacomo Farina
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; University of Milan-Bicocca, 20126 Milan, Italy
| | - Chiara Brandas
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elena Lo Furno
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Kety Giannetti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Edoardo Carsana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Matteo M Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Matteo Barcella
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonella Santoro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simona Porcellini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Angelica Varesi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Diego Gilioli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan Merelli
- National Research Council, Institute for Biomedical Technologies, 20054 Segrate, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1066 Lausanne, Switzerland
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; National Research Council, Institute for Biomedical Technologies, 20054 Segrate, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; University School of Advanced Studies IUSS, 27100 Pavia, Italy.
| |
Collapse
|
2
|
Pendse S, Chavan S, Kale V, Vaidya A. A comprehensive analysis of cell-autonomous and non-cell-autonomous regulation of myeloid leukemic cells: The prospect of developing novel niche-targeting therapies. Cell Biol Int 2023; 47:1667-1683. [PMID: 37554060 DOI: 10.1002/cbin.12078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
Leukemic cells (LCs) arise from the hematopoietic stem/and progenitor cells (HSCs/HSPCs) and utilize cues from the bone marrow microenvironment (BMM) for their regulation in the same way as their normal HSC counterparts. Mesenchymal stromal cells (MSCs), a vital component of the BMM promote leukemogenesis by creating a protective and immune-tolerant microenvironment that can support the survival of LCs, helping them escape chemotherapy, thereby resulting in the relapse of leukemia. Conversely, MSCs also induce apoptosis in the LCs and inhibit their proliferation by interfering with their self-renewal potential. This review discusses the work done so far on cell-autonomous (intrinsic) and MSCs-mediated non-cell-autonomous (extrinsic) regulation of myeloid leukemia with a special focus on the need to investigate the extrinsic regulation of myeloid leukemia to understand the contrasting role of MSCs in leukemogenesis. These mechanisms could be exploited to formulate novel therapeutic strategies that specifically target the leukemic microenvironment.
Collapse
Affiliation(s)
- Shalmali Pendse
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Sayali Chavan
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Vaijayanti Kale
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Anuradha Vaidya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| |
Collapse
|
3
|
In Vitro Human Haematopoietic Stem Cell Expansion and Differentiation. Cells 2023; 12:cells12060896. [PMID: 36980237 PMCID: PMC10046976 DOI: 10.3390/cells12060896] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
The haematopoietic system plays an essential role in our health and survival. It is comprised of a range of mature blood and immune cell types, including oxygen-carrying erythrocytes, platelet-producing megakaryocytes and infection-fighting myeloid and lymphoid cells. Self-renewing multipotent haematopoietic stem cells (HSCs) and a range of intermediate haematopoietic progenitor cell types differentiate into these mature cell types to continuously support haematopoietic system homeostasis throughout life. This process of haematopoiesis is tightly regulated in vivo and primarily takes place in the bone marrow. Over the years, a range of in vitro culture systems have been developed, either to expand haematopoietic stem and progenitor cells or to differentiate them into the various haematopoietic lineages, based on the use of recombinant cytokines, co-culture systems and/or small molecules. These approaches provide important tractable models to study human haematopoiesis in vitro. Additionally, haematopoietic cell culture systems are being developed and clinical tested as a source of cell products for transplantation and transfusion medicine. This review discusses the in vitro culture protocols for human HSC expansion and differentiation, and summarises the key factors involved in these biological processes.
Collapse
|
4
|
Albayrak E, Kocabaş F. Therapeutic targeting and HSC proliferation by small molecules and biologicals. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:425-496. [PMID: 37061339 DOI: 10.1016/bs.apcsb.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Hematopoietic stem cells (HSCs) have considerably therapeutic value on autologous and allogeneic transplantation for many malignant/non-malignant hematological diseases, especially with improvement of gene therapy. However, acquirement of limited cell dose from HSC sources is the main handicap for successful transplantation. Therefore, many strategies based on the utilization of various cytokines, interaction of stromal cells, modulation of several extrinsic and intrinsic factors have been developed to promote ex vivo functional HSC expansion with high reconstitution ability until today. Besides all these strategies, small molecules become prominent with their ease of use and various advantages when they are translated to the clinic. In the last two decades, several small molecule compounds have been investigated in pre-clinical studies and, some of them were evaluated in different stages of clinical trials for their safety and efficiencies. In this chapter, we will present an overview of HSC biology, function, regulation and also, pharmacological HSC modulation with small molecules from pre-clinical and clinical perspectives.
Collapse
|
5
|
Guo B, Huang X, Chen Y, Broxmeyer HE. Ex Vivo Expansion and Homing of Human Cord Blood Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:85-104. [PMID: 38228960 DOI: 10.1007/978-981-99-7471-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Cord blood (CB) has been proven to be an alternative source of haematopoietic stem cells (HSCs) for clinical transplantation and has multiple advantages, including but not limited to greater HLA compatibility, lower incidence of graft-versus-host disease (GvHD), higher survival rates and lower relapse rates among patients with minimal residual disease. However, the limited number of HSCs in a single CB unit limits the wider use of CB in clinical treatment. Many efforts have been made to enhance the efficacy of CB HSC transplantation, particularly by ex vivo expansion or enhancing the homing efficiency of HSCs. In this chapter, we will document the major advances regarding human HSC ex vivo expansion and homing and will also discuss the possibility of clinical translation of such laboratory work.
Collapse
Affiliation(s)
- Bin Guo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xinxin Huang
- Xuhui Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yandan Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Sun Z, Yao B, Xie H, Su X. Clinical Progress and Preclinical Insights Into Umbilical Cord Blood Transplantation Improvement. Stem Cells Transl Med 2022; 11:912-926. [PMID: 35972332 PMCID: PMC9492243 DOI: 10.1093/stcltm/szac056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/07/2022] [Indexed: 11/14/2022] Open
Abstract
The application of umbilical cord blood (UCB) as an important source of hematopoietic stem and progenitor cells (HSPCs) for hematopoietic reconstitution in the clinical context has steadily grown worldwide in the past 30 years. UCB has advantages that include rapid availability of donors, less strict HLA-matching demands, and low rates of graft-versus-host disease (GVHD) versus bone marrow (BM) and mobilized peripheral blood (PB). However, the limited number of HSPCs within a single UCB unit often leads to delayed hematopoietic engraftment, increased risk of transplant-related infection and mortality, and proneness to graft failure, thus hindering wide clinical application. Many strategies have been developed to improve UCB engraftment, most of which are based on 2 approaches: increasing the HSPC number ex vivo before transplantation and enhancing HSPC homing to the recipient BM niche after transplantation. Recently, several methods have shown promising progress in UCB engraftment improvement. Here, we review the current situations of UCB manipulation in preclinical and clinical settings and discuss challenges and future directions.
Collapse
Affiliation(s)
- Zhongjie Sun
- State Key Laboratory of Elemento-organic chemistry, College of Chemistry, Nankai University, Tianjin, People's Republic of China.,Newish Technology (Beijing) Co., Ltd., Beijing, People's Republic of China
| | - Bing Yao
- Zhejiang Hisoar Pharmaceutical Co., Ltd., Taizhou, Zhejiang Province, People's Republic of China
| | - Huangfan Xie
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, People's Republic of China.,Newish Technology (Beijing) Co., Ltd., Beijing, People's Republic of China
| | - XunCheng Su
- State Key Laboratory of Elemento-organic chemistry, College of Chemistry, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
7
|
Huang X, Guo B. Update on preclinical and clinical efforts on ex-vivo expansion of hematopoietic stem and progenitor cells. Curr Opin Hematol 2022; 29:167-173. [PMID: 35220322 DOI: 10.1097/moh.0000000000000714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Ex-vivo expansion of hematopoietic stem cells (HSCs) is one potential approach to enhance the clinical efficacy of hematopoietic cell transplantation-based therapy for malignant and nonmalignant blood diseases. Here, we discuss the major progress of preclinical and clinical studies on the ex-vivo expansion of human HSCs and progenitor cells (HPCs). RECENT FINDINGS Single-cell RNA sequencing identified ADGRG1 as a reliable marker of functional HSCs upon ex-vivo expansion-induced mitochondrial oxidative stress. Both SR1 and UM171 significantly promote ex-vivo expansion of human cord blood HSCs and HPCs, as determined in preclinical animal models. Encouraged by these findings from the bench, multiple phase I/II and phase II clinical trials have been conducted to evaluate the safety, feasibility and efficacy of SR1-expanded and UM171-expanded cord blood units in patients with hematological malignancy. SUMMARY Preliminary data from multiple phase I/II clinical trials regarding transplants of ex-vivo-expanded HSCs and HPCs have demonstrated that ex-vivo expansion may be used to overcome the limitation of the rarity of HSCs without compromising stemness.
Collapse
Affiliation(s)
- Xinxin Huang
- Zhongshan-Xuhui Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University
| | - Bin Guo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Atkinson SP. Previews. Stem Cells 2021. [DOI: 10.1002/stem.3460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Li J, Wang X, Ding J, Zhu Y, Min W, Kuang W, Yuan K, Sun C, Yang P. Development and clinical advancement of small molecules for ex vivo expansion of hematopoietic stem cell. Acta Pharm Sin B 2021; 12:2808-2831. [PMID: 35755294 PMCID: PMC9214065 DOI: 10.1016/j.apsb.2021.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023] Open
Abstract
Hematopoietic stem cell (HSC) transplantation is the only curative therapy for many diseases. HSCs from umbilical cord blood (UCB) source have many advantages over from bone marrow. However, limited HSC dose in a single CB unit restrict its widespread use. Over the past two decades, ex vivo HSC expansion with small molecules has been an effective approach for obtaining adequate HSCs. Till now, several small-molecule compounds have entered the phase I/II trials, showing safe and favorable pharmacological profiles. As HSC expansion has become a hot topic over recent years, many newly identified small molecules along with novel biological mechanisms for HSC expansion would help solve this challenging issue. Here, we will give an overview of HSC biology, discovery and medicinal chemistry development of small molecules, natural products targeting for HSC expansion, and their recent clinical progresses, as well as potential protein targets for HSC expansion.
Collapse
|
10
|
Christopher AC, Venkatesan V, Karuppusamy KV, Srinivasan S, Babu P, Azhagiri MKK, C K, Bagchi A, Rajendiran V, Ravi NS, Kumar S, Marepally SK, Mohankumar KM, Srivastava A, Velayudhan SR, Thangavel S. Preferential expansion of human CD34+CD133+CD90+ hematopoietic stem cells enhances gene-modified cell frequency for gene therapy. Hum Gene Ther 2021; 33:188-201. [PMID: 34486377 DOI: 10.1089/hum.2021.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CD34+CD133+CD90+ hematopoietic stem cells (HSCs) are responsible for long-term multi-lineage hematopoiesis and the high frequency of gene-modified HSCs is crucial for the success of hematopoietic stem and progenitor cell (HSPC) gene therapy. However, the ex vivo culture and gene manipulation steps of HSPC graft preparation significantly reduce the frequency of HSCs, thus necessitating large doses of HSPCs and reagents for the manipulation. Here, we identified a combination of small molecules, Resveratrol, UM729, and SR1 that preferentially expands CD34+CD133+CD90+ HSCs over other subpopulations of adult HSPCs in ex vivo culture. The preferential expansion enriches the HSCs in ex vivo culture, enhances the adhesion and results in a 6-fold increase in the long-term engraftment in NSG mice. Further, the culture enriched HSCs are more responsive to gene modification by lentiviral transduction and gene editing, increasing the frequency of gene-modified HSCs up to 10-fold in vivo. The yield of gene-modified HSCs obtained by the culture enrichment is similar to the sort-purification of HSCs and superior to Cyclosporin-H treatment. Our study addresses a critical challenge of low frequency of gene-modified HSCs in HSPC graft by developing and demonstrating a facile HSPC culture condition that increases the frequency of gene-modified cells in vivo. This strategy will improve the outcome of HSPC gene therapy and also simplify the gene manipulation process.
Collapse
Affiliation(s)
| | - Vigneshwaran Venkatesan
- Center for Stem Cell Research, 302927, Vellore, Tamil nadu, India.,Manipal Academy of Higher Education, 76793, Manipal, Karnataka, India;
| | - Karthik V Karuppusamy
- Center for Stem Cell Research, 302927, Vellore, Tamil nadu, India.,Manipal Academy of Higher Education, 76793, Manipal, Karnataka, India;
| | | | - Prathibha Babu
- Center for Stem Cell Research, 302927, Vellore, Tamil nadu, India.,Manipal Academy of Higher Education, 76793, Manipal, Karnataka, India;
| | - Manoj Kumar K Azhagiri
- Center for Stem Cell Research, 302927, Vellore, Tamil nadu, India.,Manipal Academy of Higher Education, 76793, Manipal, Karnataka, India;
| | - Karthik C
- Center for Stem Cell Research, 302927, Vellore, Tamil nadu, India;
| | - Abhirup Bagchi
- Center for Stem Cell Research, 302927, Vellore, Tamil nadu, India;
| | | | - Nithin Sam Ravi
- Center for Stem Cell Research, 302927, Vellore, Tamil Nadu, India;
| | - Sanjay Kumar
- Christian Medical College and Hospital Vellore, 30025, Center for Stem Cell Research, Vellore, Tamil Nadu, India;
| | | | | | - Alok Srivastava
- Christian Medical College, Centre for Stem Cell Research, CMC Campus, Bagayam, Vellore, Tamilnadu, India, 632002.,Christian Medical College, Haematology, Ida Scudder Road, Vellore, Tamil Nadu, India, 632004;
| | | | - Saravanabhavan Thangavel
- Center for Stem Cell Research, 302927, Christian Medical College Campus Bagayam,, Vellore, Tamil nadu, India, 632002;
| |
Collapse
|
11
|
Opportunities and Challenges in Stem Cell Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1341:143-175. [PMID: 33748933 DOI: 10.1007/5584_2021_624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Studying aging, as a physiological process that can cause various pathological phenotypes, has attracted lots of attention due to its increasing burden and prevalence. Therefore, understanding its mechanism to find novel therapeutic alternatives for age-related disorders such as neurodegenerative and cardiovascular diseases is essential. Stem cell senescence plays an important role in aging. In the context of the underlying pathways, mitochondrial dysfunction, epigenetic and genetic alterations, and other mechanisms have been studied and as a consequence, several rejuvenation strategies targeting these mechanisms like pharmaceutical interventions, genetic modification, and cellular reprogramming have been proposed. On the other hand, since stem cells have great potential for disease modeling, they have been useful for representing aging and its associated disorders. Accordingly, the main mechanisms of senescence in stem cells and promising ways of rejuvenation, along with some examples of stem cell models for aging are introduced and discussed. This review aims to prepare a comprehensive summary of the findings by focusing on the most recent ones to shine a light on this area of research.
Collapse
|
12
|
Ghafouri-Fard S, Niazi V, Taheri M, Basiri A. Effect of Small Molecule on ex vivo Expansion of Cord Blood Hematopoietic Stem Cells: A Concise Review. Front Cell Dev Biol 2021; 9:649115. [PMID: 33898442 PMCID: PMC8063724 DOI: 10.3389/fcell.2021.649115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are a group of cells being produced during embryogenesis to preserve the blood system. They might also be differentiated to non-hematopoietic cells, including neural, cardiac and myogenic cells. Therefore, they have vast applications in the treatment of human disorders. Considering the restricted quantities of HSCs in the umbilical cord blood, inadequate mobilization of bone marrow stem cells, and absence of ethnic dissimilarity, ex vivo expansion of these HSCs is an applicable method for obtaining adequate amounts of HSCs. Several molecules such as NR-101, zVADfmk, zLLYfmk, Nicotinamide, Resveratrol, the Copper chelator TEPA, dmPGE2, Garcinol, and serotonin have been used in combination of cytokines to expand HSCs ex vivo. The most promising results have been obtained from cocktails that influence multipotency and self-renewal features from different pathways. In the current manuscript, we provide a concise summary of the effects of diverse small molecules on expansion of cord blood HSCs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Viability and intracellular nitric oxide generation in the umbilical cord blood CD34 +CD133 - and CD34 +CD133 + cell populations exposed to local anaesthetics. Cent Eur J Immunol 2021; 45:369-376. [PMID: 33658886 PMCID: PMC7882401 DOI: 10.5114/ceji.2020.103410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/09/2019] [Indexed: 11/17/2022] Open
Abstract
Local anesthetics (LAs) are capable of influencing cell viability in systemic immunity and may also modify metabolism of those present in umbilical cord blood (UCB) following obstetric neuraxial analgesia and anaesthesia. Data regarding UCB immature cells, important for the neonate and critical for putative UCB transplantations, are lacking. LAs are capable of stimulating intracellular nitric oxide (NO) in human neutrophils; no information is available concerning newly perpetuated cells and its potential association with viability. The study aimed at assessing the LAs influence on the cell viability and intracellular NO production by UCB CD34+CD133– and CD34+ CD133+ cell populations. Mononuclear cells separated from UCB samples (n = 19) were incubated with bupivacaine (0.0005, 0.005, 1 mM), lidocaine (0.002, 0.02, 4 mM), and ropivacaine (0.0007, 0.007, 1.4 mM) for 4 h. Flow cytometry was applied for the assessment of cell viability and intracellular NO generation in CD34+CD133– and CD34+CD133+ cell populations using annexinV/7-AAD and DAF-2DA stainings, respectively. CD34+CD133+ cells showed less pronounced late apoptosis and necrosis as compared to CD34+CD133-population. Intracellular NO generation was comparable between both cell populations studied. LAs neither influenced cell viability nor changed NO production in either population. LAs do not interfere with viability and intracellular NO generation in the UCB CD34+CD133– and CD34+CD133+ cell populations.
Collapse
|
14
|
Zarrabi M, Afzal E, Asghari MH, Ebrahimi M. Combination of SB431542, Chir9901, and Bpv as a novel supplement in the culture of umbilical cord blood hematopoietic stem cells. Stem Cell Res Ther 2020; 11:474. [PMID: 33168035 PMCID: PMC7650159 DOI: 10.1186/s13287-020-01945-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/20/2020] [Indexed: 01/11/2023] Open
Abstract
Background Small molecule compounds have been well recognized for their promising power in the generation, expansion, and maintenance of embryonic or adult stem cells. The aim of this study was to identify a novel combination of small molecules in order to optimize the ex vivo expansion of umbilical cord blood-derived CD34+ cells. Methods Considering the most important signaling pathways involved in the self-renewal of hematopoietic stem cells, CB-CD34+ cells were expanded with cytokines in the presence of seven small molecules including SB, PD, Chir, Bpv, Pur, Pμ, and NAM. The eliminativism approach was used to find the best combination of selected small molecules for effective ex vivo expansion of CD34+ cell. In each step, proliferation, self-renewal, and clonogenic potential of the expanded cells as well as expression of some hematopoietic stem cell-related genes were studied. Finally, the engraftment potential of expanded cells was also examined by the mouse intra-uterine transplantation model. Results Our data shows that the simultaneous use of SB431542 (TGF-β inhibitor), Chir9901 (GSK3 inhibitor), and Bpv (PTEN inhibitor) resulted in a 50-fold increase in the number of CD34+CD38− cells. This was further reflected in approximately 3 times the increase in the clonogenic potential of the small molecule cocktail-expanded cells. These cells, also, showed a 1.5-fold higher engraftment potential in the peripheral blood of the NMRI model of in utero transplantation. These results are in total conformity with the upregulation of HOXB4, GATA2, and CD34 marker gene as well as the CXCR4 homing gene. Conclusion Taken together, our findings introduce a novel combination of small molecules to improve the yield of existing protocols used in the expansion of hematopoietic stem cells.
Collapse
Affiliation(s)
- Morteza Zarrabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box, Tehran, 19395-4644, Iran.,Royan Stem Cell Technology Company, Cord Blood Bank, Tehran, Iran
| | - Elaheh Afzal
- Royan Stem Cell Technology Company, Cord Blood Bank, Tehran, Iran
| | - Mohammad Hassan Asghari
- Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box, Tehran, 19395-4644, Iran.
| |
Collapse
|
15
|
Competitive sgRNA Screen Identifies p38 MAPK as a Druggable Target to Improve HSPC Engraftment. Cells 2020; 9:cells9102194. [PMID: 33003308 PMCID: PMC7600420 DOI: 10.3390/cells9102194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 12/28/2022] Open
Abstract
Previous gene therapy trials for X-linked chronic granulomatous disease (X-CGD) lacked long-term engraftment of corrected hematopoietic stem and progenitor cells (HSPCs). Chronic inflammation and high levels of interleukin-1 beta (IL1B) might have caused aberrant cell cycling in X-CGD HSPCs with a concurrent loss of their long-term repopulating potential. Thus, we performed a targeted CRISPR-Cas9-based sgRNA screen to identify candidate genes that counteract the decreased repopulating capacity of HSPCs during gene therapy. The candidates were validated in a competitive transplantation assay and tested in a disease context using IL1B-challenged or X-CGD HSPCs. The sgRNA screen identified Mapk14 (p38) as a potential target to increase HSPC engraftment. Knockout of p38 prior to transplantation was sufficient to induce a selective advantage. Inhibition of p38 increased expression of the HSC homing factor CXCR4 and reduced apoptosis and proliferation in HSPCs. For potential clinical translation, treatment of IL1B-challenged or X-CGD HSPCs with a p38 inhibitor led to a 1.5-fold increase of donor cell engraftment. In summary, our findings demonstrate that p38 may serve as a potential druggable target to restore engraftment of HSPCs in the context of X-CGD gene therapy.
Collapse
|
16
|
Li X, Ma X, Chen Y, Peng D, Wang H, Chen S, Xiao Y, Li L, Zhou H, Cheng F, Gao Y, Chang J, Cheng T, Liu L. Coinhibition of activated p38 MAPKα and mTORC1 potentiates stemness maintenance of HSCs from SR1-expanded human cord blood CD34 + cells via inhibition of senescence. Stem Cells Transl Med 2020; 9:1604-1616. [PMID: 32602209 PMCID: PMC7695631 DOI: 10.1002/sctm.20-0129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 01/10/2023] Open
Abstract
The stemness of ex vivo expanded hematopoietic stem cells (HSCs) is usually compromised by current methods. To explore the failure mechanism of stemness maintenance of human HSCs, which were expanded from human umbilical cord blood (hUCB) CD34+ cells, by differentiation inhibitor Stem Regenin 1 (SR1), an antagonist of aryl hydrocarbon receptor, we investigated the activity of p38 mitogen‐activated protein kinase α (p38 MAPKα, p38α) and mammalian target of rapamycin complex 1 (mTORC1), and their effect on SR1‐expanded hUCB CD34+ cells. Our results showed that cellular senescence occurred in the SR1‐expanded hUCB CD34+ cells in which p38α and mTORC1 were successively activated. Furthermore, their coinhibition resulted in a further decrease in hUCB CD34+ cell senescence without an effect on apoptosis, promoted the maintenance of expanded phenotypic HSCs without differentiation inhibition, increased the hematopoietic reconstitution ability of multiple lineages, and potentiated the long‐term self‐renewal capability of HSCs from SR1‐expanded hUCB CD34+ cells in NOD/Shi‐scid/IL‐2Rγnull mice. Our mechanistic study revealed that senescence inhibition by our strategy was mainly attributed to downregulation of the splicesome, proteasome formation, and pyrimidine metabolism signaling pathways. These results suggest that coinhibition of activated p38α and mTORC1 potentiates stemness maintenance of HSCs from SR1‐expanded hUCB CD34+ cells via senescence inhibition. Thus, we established a new strategy to maintain the stemness of ex vivo differentiation inhibitor‐expanded human HSCs via coinhibition of multiple independent senescence initiating signal pathways. This senescence inhibition‐induced stemness maintenance of ex vivo expanded HSCs could also have an important role in other HSC expansion systems.
Collapse
Affiliation(s)
- Xiaoyi Li
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiao Ma
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ying Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Danyue Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Huifang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Suhua Chen
- Department of Gynaecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yin Xiao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lei Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Science, Tianjin, People's Republic of China
| | - Jiwei Chang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, People's Republic of China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Science, Tianjin, People's Republic of China
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
17
|
Blagosklonny MV. From causes of aging to death from COVID-19. Aging (Albany NY) 2020; 12:10004-10021. [PMID: 32534452 PMCID: PMC7346074 DOI: 10.18632/aging.103493] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
COVID-19 is not deadly early in life, but mortality increases exponentially with age, which is the strongest predictor of mortality. Mortality is higher in men than in women, because men age faster, and it is especially high in patients with age-related diseases, such as diabetes and hypertension, because these diseases are manifestations of aging and a measure of biological age. At its deepest level, aging (a program-like continuation of developmental growth) is driven by inappropriately high cellular functioning. The hyperfunction theory of quasi-programmed aging explains why COVID-19 vulnerability (lethality) is an age-dependent syndrome, linking it to other age-related diseases. It also explains inflammaging and immunosenescence, hyperinflammation, hyperthrombosis, and cytokine storms, all of which are associated with COVID-19 vulnerability. Anti-aging interventions, such as rapamycin, may slow aging and age-related diseases, potentially decreasing COVID-19 vulnerability.
Collapse
|
18
|
Henry E, Souissi-Sahraoui I, Deynoux M, Lefèvre A, Barroca V, Campalans A, Ménard V, Calvo J, Pflumio F, Arcangeli ML. Human hematopoietic stem/progenitor cells display reactive oxygen species-dependent long-term hematopoietic defects after exposure to low doses of ionizing radiations. Haematologica 2019; 105:2044-2055. [PMID: 31780635 PMCID: PMC7395291 DOI: 10.3324/haematol.2019.226936] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/27/2019] [Indexed: 01/16/2023] Open
Abstract
Hematopoietic stem cells are responsible for life-long blood cell production and are highly sensitive to exogenous stresses. The effects of low doses of ionizing radiations on radiosensitive tissues such as the hematopoietic tissue are still unknown despite their increasing use in medical imaging. Here, we study the consequences of low doses of ionizing radiations on differentiation and self-renewal capacities of human primary hematopoietic stem/progenitor cells (HSPC). We found that a single 20 mGy dose impairs the hematopoietic reconstitution potential of human HSPC but not their differentiation properties. In contrast to high irradiation doses, low doses of irradiation do not induce DNA double strand breaks in HSPC but, similar to high doses, induce a rapid and transient increase of reactive oxygen species (ROS) that promotes activation of the p38MAPK pathway. HSPC treatment with ROS scavengers or p38MAPK inhibitor prior exposure to 20 mGy irradiation abolishes the 20 mGy-induced defects indicating that ROS and p38MAPK pathways are transducers of low doses of radiation effects. Taken together, these results show that a 20 mGy dose of ionizing radiation reduces the reconstitution potential of HSPC suggesting an effect on the self-renewal potential of human hematopoietic stem cells and pinpointing ROS or the p38MAPK as therapeutic targets. Inhibition of ROS or the p38MAPK pathway protects human primary HSPC from low-dose irradiation toxicity.
Collapse
Affiliation(s)
- Elia Henry
- INSERM, U1274, Laboratory "Niche, Cancer and Hematopoiesis".,CEA, DRF-JACOB-IRCM-SCSR-LSHL, UMR "Genetic stability, Stem Cells and Radiation".,UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay
| | - Inès Souissi-Sahraoui
- INSERM, U1274, Laboratory "Niche, Cancer and Hematopoiesis".,CEA, DRF-JACOB-IRCM-SCSR-LSHL, UMR "Genetic stability, Stem Cells and Radiation".,UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay
| | - Margaux Deynoux
- INSERM, U1274, Laboratory "Niche, Cancer and Hematopoiesis".,CEA, DRF-JACOB-IRCM-SCSR-LSHL, UMR "Genetic stability, Stem Cells and Radiation".,UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay
| | - Andréas Lefèvre
- INSERM, U1274, Laboratory "Niche, Cancer and Hematopoiesis".,CEA, DRF-JACOB-IRCM-SCSR-LSHL, UMR "Genetic stability, Stem Cells and Radiation".,UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay
| | - Vilma Barroca
- INSERM, U1274, Laboratory "Niche, Cancer and Hematopoiesis".,CEA, DRF-JACOB-IRCM-SCSR-LSHL, UMR "Genetic stability, Stem Cells and Radiation".,UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay
| | - Anna Campalans
- UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay.,CEA, DRF-JACOB-IRCM-SIGRR-LRIG, UMR "Genetic stability, Stem Cells and Radiation"
| | - Véronique Ménard
- UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay.,UMR "Genetic stability, Stem Cells and Radiation", F-92265 Fontenay-aux-Roses, France
| | - Julien Calvo
- INSERM, U1274, Laboratory "Niche, Cancer and Hematopoiesis".,CEA, DRF-JACOB-IRCM-SCSR-LSHL, UMR "Genetic stability, Stem Cells and Radiation".,UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay
| | - Françoise Pflumio
- INSERM, U1274, Laboratory "Niche, Cancer and Hematopoiesis".,CEA, DRF-JACOB-IRCM-SCSR-LSHL, UMR "Genetic stability, Stem Cells and Radiation".,UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay
| | - Marie-Laure Arcangeli
- INSERM, U1274, Laboratory "Niche, Cancer and Hematopoiesis" .,CEA, DRF-JACOB-IRCM-SCSR-LSHL, UMR "Genetic stability, Stem Cells and Radiation".,UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay
| |
Collapse
|
19
|
Li J, Zhang L, Yin L, Ma N, Wang T, Wu Y, Wang M, Yang X, Xu H, Hao C, Li W, Wei W, Xu Y, Zhang F, Breslin P, Zhang J, Zhang J. In Vitro Expansion of Hematopoietic Stem Cells by Inhibition of Both GSK3 and p38 Signaling. Stem Cells Dev 2019; 28:1486-1497. [PMID: 31552804 DOI: 10.1089/scd.2019.0119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplantation therapy is one of the most effective treatments for life-threatening hematopoietic diseases. Bone marrow (BM) and mobilized peripheral blood are the major sources of HSCs, but these resources are limited by a paucity of human leukocyte antigen (HLA)-matched donors. Umbilical cord blood (UCB) is the most promising alternative to obtain HSCs for transplantation therapy. However, UCB transplantation therapy is limited by low numbers of HSCs per unit of UCB. In vitro HSC expansion is believed to be the most effective and applicable strategy to address this issue. Here we report that a moderate concentration of GSK3 inhibitor promotes HSC expansion by inducing moderate levels of β-catenin activity in HSCs. However, such a concentration of GSK3 inhibitor also stimulates myeloid cells to produce inflammatory cytokines, which attenuate HSC expansion by inducing p38 activation. Thus, when unpurified HSCs were used in culture, inhibition of p38-induced inflammatory cytokine signaling was required to ensure HSC expansion induced by the low concentration of GSK3 inhibitor. Our study suggests that the combination of a moderate concentration of p38 inhibitor plus a GSK3 inhibitor synergistically promotes the expansion of both murine BM HSCs and human UCB HSCs.
Collapse
Affiliation(s)
- Jing Li
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lei Zhang
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China.,Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, Illinois
| | - Lizhi Yin
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Na Ma
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Tian Wang
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yuanyuan Wu
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ming Wang
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xingxing Yang
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hui Xu
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Caiqin Hao
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenyan Li
- Department of Gynaecology and Obstetrics, Lanzhou University Second Hospital, Lanzhou, China
| | - Wei Wei
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, Illinois
| | - Yan Xu
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Feng Zhang
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Peter Breslin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, Illinois.,Department of Biology, Loyola University Chicago, Chicago, Illinois.,Department of Molecular/Cellular Physiology, Loyola University Chicago, Chicago, Illinois
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, Illinois.,Department of Pathology, Loyola University Medical Center, Maywood, Illinois
| | - Jun Zhang
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
20
|
Derakhshani M, Abbaszadeh H, Movassaghpour AA, Mehdizadeh A, Ebrahimi-Warkiani M, Yousefi M. Strategies for elevating hematopoietic stem cells expansion and engraftment capacity. Life Sci 2019; 232:116598. [PMID: 31247209 DOI: 10.1016/j.lfs.2019.116598] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 02/07/2023]
Abstract
Hematopoietic stem cells (HSCs) are a rare cell population in adult bone marrow, mobilized peripheral blood, and umbilical cord blood possessing self-renewal and differentiation capability into a full spectrum of blood cells. Bone marrow HSC transplantation has been considered as an ideal option for certain disorders treatment including hematologic diseases, leukemia, immunodeficiency, bone marrow failure syndrome, genetic defects such as thalassemia, sickle cell anemia, autoimmune disease, and certain solid cancers. Ex vivo proliferation of these cells prior to transplantation has been proposed as a potential solution against limited number of stem cells. In such culture process, MSCs have also been shown to exhibit high capacity for secretion of soluble mediators contributing to the principle biological and therapeutic activities of HSCs. In addition, endothelial cells have been introduced to bridge the blood and sub tissues in the bone marrow, as well as, HSCs regeneration induction and survival. Cell culture in the laboratory environment requires cell growth strict control to protect against contamination, symmetrical cell division and optimal conditions for maximum yield. In this regard, microfluidic systems provide culture and analysis capabilities in micro volume scales. Moreover, two-dimensional cultures cannot fully demonstrate extracellular matrix found in different tissues and organs as an abstract representation of three dimensional cell structure. Microfluidic systems can also strongly describe the effects of physical factors such as temperature and pressure on cell behavior.
Collapse
Affiliation(s)
- Mehdi Derakhshani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Abbaszadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ebrahimi-Warkiani
- School of Biomedical Engineering, University Technology of Sydney, Sydney, New South Wales, 2007, Australia
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Hou S, Hao J, Wang YY, Zhao BB, Xiao GW, Li YQ, Liu X, Zou ZL, Yao Y, Xiong H. Retracted: EBF1 gene promotes the proliferation and inhibits the apoptosis of bone marrow CD34+ cells in patients with myelodysplastic syndrome through negative regulation of mitogen-activated protein kinase axis. J Cell Biochem 2019; 120:1407-1419. [PMID: 30335886 DOI: 10.1002/jcb.27177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/24/2018] [Indexed: 02/02/2023]
Abstract
The transcription factor, early B cell factor 1 (EBF1), plays a vital role in the lineage specification involving early B cell development and the onset of myelodysplastic syndrome (MDS). Therefore, to investigate whether or not EBF1 affects MDS as well as the transcription factor's underlying mechanism, we used CD34+ hematopoietic stem cells in bone marrow from patients with MDS. The extracted cells were then transfected with a series of EBF1, short hairpin RNA against EBF1 (shEBF1), and SB203580 (a specific mitogen-activated protein kinase [MAPK] axis inhibitor). The effects EBF1 gene and MAPK axis had on cell proliferation, apoptosis, and migration were determined by in vitro cell culturing. We made observations that involved EBF1 inhibiting the messenger RNA (mRNA) level of p38 MAPK, increasing the mRNA levels of extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), extracellular-signal-regulated kinase 5 (ERK5), decreasing the protein expression of Bcl-2-associated X protein (Bax), and finally elevating the protein levels of B cell lymphoma/leukemia-2 (Bcl-2), stem cell factor (SCF), erythropoietin receptor (EpoR), p-ERK, p-JNK, p-ERK5, cyclin D, cyclin E, cyclin-dependent kinase 2 (CDK2), and CDK6, implying that EBF1 may very well have an inhibitory role in the MAPK axis. Another discovery found that EBF1 had a positive effect on the promotion of bone marrow CD34+ cell proliferation as well as its migration, but inhibited the apoptosis of cells. The results we obtained from this study indicated that the EBF1 gene suppresses the activation of the MAPK axis, thereby promoting both the proliferation and migration of bone marrow CD34+ cells as well as inhibiting the associating apoptosis. The effects of the EBF1 gene are likely to present a new therapeutic target in preventing the progression of MDS.
Collapse
Affiliation(s)
- Shuang Hou
- Department of Hematology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Jie Hao
- Department of Hematology, Shanghai Jingan North Station Hospital, Shanghai, China
| | - Yan-Yu Wang
- Department of Hematology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Bing-Bing Zhao
- Department of Hematology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Gong-Wei Xiao
- Department of Hematology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Yan-Qing Li
- Department of Hematology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Xi Liu
- Department of Hematology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Zhi-Lan Zou
- Department of Hematology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Ye Yao
- Department of Hematology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Hong Xiong
- Department of Hematology, Shanghai Xuhui Central Hospital, Shanghai, China
| |
Collapse
|
22
|
Zarrabi M, Afzal E, Ebrahimi M. Manipulation of Hematopoietic Stem Cell Fate by Small Molecule Compounds. Stem Cells Dev 2018; 27:1175-1190. [DOI: 10.1089/scd.2018.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Morteza Zarrabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Royan Stem Cell Technology Company, Cord Blood Bank, Tehran, Iran
| | - Elaheh Afzal
- Royan Stem Cell Technology Company, Cord Blood Bank, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
23
|
d-galactose induces premature senescence of lens epithelial cells by disturbing autophagy flux and mitochondrial functions. Toxicol Lett 2018; 289:99-106. [PMID: 29426000 DOI: 10.1016/j.toxlet.2018.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 02/05/2023]
Abstract
Cataract is the leading cause of blindness with an estimated 16 million people affected worldwide. d-galactose (d-gal) is a reducing sugar that widely distributed in foodstuffs, and studies show that d-gal could promote cataract formation by damaging nature lens epithelial cells (LECs). However, the underlying mechanism is unclear. In our present study, d-gal resulted in premature senescence of LECs, which was confirmed by determining the β-galactosidase activity, cell proliferative potential and cell cycle distribution, though apoptosis of LECs was not observed. We also verified that d-gal induced the impairment of autophagy flux by measuring the expression of LC3II and P62. Meanwhile, we found that d-gal induced mitochondrial dysfunctions of LECs through increasing reactive oxygen species (ROS), reducing ATP synthesis and mitochondrial potential (MMP), enhancing the concentration of cytoplasm Ca2+ and permeability transition pore (mPTP) opening. Metformin, as a potential anti-aging agent, suppressed the senescence of LECs by restoring autophagy flux and mitochondria functions. Nevertheless, the antioxidant N-acetylcysteine (NAC) scavenged ROS significantly but was not efficient in preventing LECs from premature senescence. Our data suggests that restoring autophagy activity and improving mitochondrial functions may be a potential strategy for the prevention of LECs senescence-related cataract.
Collapse
|
24
|
Bari S, Zhong Q, Fan X, Poon Z, Lim AST, Lim TH, Dighe N, Li S, Chiu GNC, Chai CLL, Hwang WYK. Ex Vivo Expansion of CD34 + CD90 + CD49f + Hematopoietic Stem and Progenitor Cells from Non-Enriched Umbilical Cord Blood with Azole Compounds. Stem Cells Transl Med 2018; 7:376-393. [PMID: 29392885 PMCID: PMC5905230 DOI: 10.1002/sctm.17-0251] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022] Open
Abstract
Umbilical cord blood (UCB) transplants in adults have slower hematopoietic recovery compared to bone marrow (BM) or peripheral blood (PB) stem cells mainly due to low number of total nucleated cells and hematopoietic stem and progenitor cells (HSPC). As such in this study, we aimed to perform ex vivo expansion of UCB HSPC from non-enriched mononucleated cells (MNC) using novel azole-based small molecules. Freshly-thawed UCB-MNC were cultured in expansion medium supplemented with small molecules and basal cytokine cocktail. The effects of the expansion protocol were measured based on in vitro and in vivo assays. The proprietary library of >50 small molecules were developed using structure-activity-relationship studies of SB203580, a known p38-MAPK inhibitor. A particular analog, C7, resulted in 1,554.1 ± 27.8-fold increase of absolute viable CD45+ CD34+ CD38- CD45RA- progenitors which was at least 3.7-fold higher than control cultures (p < .001). In depth phenotypic analysis revealed >600-fold expansion of CD34+ /CD90+ /CD49f+ rare HSPCs coupled with significant (p < .01) increase of functional colonies from C7 treated cells. Transplantation of C7 expanded UCB grafts to immunodeficient mice resulted in significantly (p < .001) higher engraftment of human CD45+ and CD45+ CD34+ cells in the PB and BM by day 21 compared to non-expanded and cytokine expanded grafts. The C7 expanded grafts maintained long-term human multilineage chimerism in the BM of primary recipients with sustained human CD45 cell engraftment in secondary recipients. In conclusion, a small molecule, C7, could allow for clinical development of expanded UCB grafts without pre-culture stem cell enrichment that maintains in vitro and in vivo functionality. Stem Cells Translational Medicine 2018;7:376-393.
Collapse
Affiliation(s)
- Sudipto Bari
- Department of Hematology, Singapore General Hospital, Singapore, Singapore.,Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Qixing Zhong
- Department of Pharmacy, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science and Technology Research, Singapore, Singapore
| | - Xiubo Fan
- Department of Clinical Research, Singapore General Hospital, Singapore, Singapore
| | - Zhiyong Poon
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
| | | | - Tse Hui Lim
- Molecular Pathology, Singapore General Hospital, Singapore, Singapore
| | - Niraja Dighe
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
| | - Shang Li
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Gigi Ngar Chee Chiu
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | | | - William Ying Khee Hwang
- Department of Hematology, Singapore General Hospital, Singapore, Singapore.,Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.,National Cancer Center Singapore, Singapore, Singapore.,Singapore Cord Blood Bank, Singapore, Singapore
| |
Collapse
|
25
|
Peng D, Wang H, Li L, Ma X, Chen Y, Zhou H, Luo Y, Xiao Y, Liu L. miR-34c-5p promotes eradication of acute myeloid leukemia stem cells by inducing senescence through selective RAB27B targeting to inhibit exosome shedding. Leukemia 2018; 32:1180-1188. [PMID: 29479064 DOI: 10.1038/s41375-018-0015-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/11/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022]
Abstract
Leukemia stem cells (LSCs) are responsible for acute myeloid leukemia (AML) chemotherapy resistance and relapse. Here, we discovered that miR-34c-5p, a microRNA central to the senescence regulation network, was significantly down-regulated in AML (non-acute promyelocytic leukemia, non-APL) stem cells compared to that in normal hematopoietic stem cells (HSCs). The lower expression of miR-34c-5p in LSCs was closely correlated to the adverse prognosis and poor responses to therapy of AML patients. Increased miR-34c-5p expression induced LSCs senescence ex vivo, prevented leukemia development and promoted the eradication of LSCs in immune deficient mice. Mechanistically, forced expression of miR-34-5p induced senescence in LSCs through p53-p21Cip1-Cyclin-dependent kinase (CDK)/Cyclin or p53-independent CDK/Cyclin pathways. Exosome-mediated transfer of miR-34c-5p was one of the reasons for miR-34c-5p deficiency in LSCs. Furthermore, miR-34c-5p could increase its intracellular level by inhibiting exosome-mediated transfer via a positive feedback loop through RAB27B, a molecule that promotes exosome shedding. Overall, this study establishes a new strategy for treatment of AML patients by targeting LSCs to reinitiate senescence via increased miR-34c-5p expression. This miRNA-mediated tumor stem cell senescence could also have important therapeutic value in other malignancies.
Collapse
Affiliation(s)
- Danyue Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huifang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Ma
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ying Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Luo
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Yin Xiao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
26
|
Rahman N, Brauer PM, Ho L, Usenko T, Tewary M, Zúñiga-Pflücker JC, Zandstra PW. Engineering the haemogenic niche mitigates endogenous inhibitory signals and controls pluripotent stem cell-derived blood emergence. Nat Commun 2017; 8:15380. [PMID: 28541275 PMCID: PMC5477512 DOI: 10.1038/ncomms15380] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 03/22/2017] [Indexed: 12/13/2022] Open
Abstract
Efforts to recapitulate haematopoiesis, a process guided by spatial and temporal inductive signals, to generate haematopoietic progenitors from human pluripotent stem cells (hPSCs) have focused primarily on exogenous signalling pathway activation or inhibition. Here we show haemogenic niches can be engineered using microfabrication strategies by micropatterning hPSC-derived haemogenic endothelial (HE) cells into spatially-organized, size-controlled colonies. CD34+VECAD+ HE cells were generated with multi-lineage potential in serum-free conditions and cultured as size-specific haemogenic niches that displayed enhanced blood cell induction over non-micropatterned cultures. Intra-colony analysis revealed radial organization of CD34 and VECAD expression levels, with CD45+ blood cells emerging primarily from the colony centroid area. We identify the induced interferon gamma protein (IP-10)/p-38 MAPK signalling pathway as the mechanism for haematopoietic inhibition in our culture system. Our results highlight the role of spatial organization in hPSC-derived blood generation, and provide a quantitative platform for interrogating molecular pathways that regulate human haematopoiesis.
Collapse
Affiliation(s)
- Nafees Rahman
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3ES
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Patrick M. Brauer
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada M4N 3M5
| | - Lilian Ho
- Life Sciences (Biochemistry), University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Tatiana Usenko
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Mukul Tewary
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Juan Carlos Zúñiga-Pflücker
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada M4N 3M5
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Medicine by Design, a Canada First Research Excellence Program at the University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Peter W. Zandstra
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3ES
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
- Medicine by Design, a Canada First Research Excellence Program at the University of Toronto, Toronto, Ontario, Canada M5S 3G9
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| |
Collapse
|
27
|
Jung H, Kim DO, Byun JE, Kim WS, Kim MJ, Song HY, Kim YK, Kang DK, Park YJ, Kim TD, Yoon SR, Lee HG, Choi EJ, Min SH, Choi I. Thioredoxin-interacting protein regulates haematopoietic stem cell ageing and rejuvenation by inhibiting p38 kinase activity. Nat Commun 2016; 7:13674. [PMID: 27929088 PMCID: PMC5155146 DOI: 10.1038/ncomms13674] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 10/25/2016] [Indexed: 01/11/2023] Open
Abstract
Ageing is a natural process in living organisms throughout their lifetime, and most elderly people suffer from ageing-associated diseases. One suggested way to tackle such diseases is to rejuvenate stem cells, which also undergo ageing. Here we report that the thioredoxin-interacting protein (TXNIP)-p38 mitogen-activated protein kinase (p38) axis regulates the ageing of haematopoietic stem cells (HSCs), by causing a higher frequency of long-term HSCs, lineage skewing, a decrease in engraftment, an increase in reactive oxygen species and loss of Cdc42 polarity. TXNIP inhibits p38 activity via direct interaction in HSCs. Furthermore, cell-penetrating peptide (CPP)-conjugated peptide derived from the TXNIP-p38 interaction motif inhibits p38 activity via this docking interaction. This peptide dramatically rejuvenates aged HSCs in vitro and in vivo. Our findings suggest that the TXNIP-p38 axis acts as a regulatory mechanism in HSC ageing and indicate the potent therapeutic potential of using CPP-conjugated peptide to rejuvenate aged HSCs.
The processes regulating the ageing of stem cells are not clearly defined. Here, the authors report that in haematopoietic stem cells (HSC) thioredoxin-interacting protein, known to regulate the cell cycle, binds to p38 mitogen-activated protein kinase and regulates HSC ageing and rejuvenation.
Collapse
Affiliation(s)
- Haiyoung Jung
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Dong Oh Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jae-Eun Byun
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Won Sam Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Mi Jeong Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hae Young Song
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Young Kwan Kim
- Scripps Korea Antibody Institute, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Du-Kyeong Kang
- Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Young-Jun Park
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Biomolecular Science, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Eun-Ji Choi
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Sang-Hyun Min
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Chumbokro Dong-gu 41061, Daegu, Republic of Korea
| | - Inpyo Choi
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
28
|
The Opposite Expected Effect of p38 Inhibitors on Fat Graft Survival. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2016; 4:e806. [PMID: 27536485 PMCID: PMC4977134 DOI: 10.1097/gox.0000000000000821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/20/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND Fat grafting is an increasingly popular method of augmentation/reconstruction of soft tissue defects. However, the clinical unpredictability and high resorption rates of the grafts remain problematic. Cellular stress from the harvest and the ensuing ischemic episode may be the cause of this. Cellular stress activates the p38 mitogen-activated protein kinase (MAPK) signaling pathway. In response to cellular stress, the p38 pathway can lead to apoptosis and can negatively regulate cell proliferation. Inhibition of p38 in ex vivo experiments has been shown to promote the expansion of human cord blood hematopoietic stem cell and improve the adipogenesis process through its upstream regulator, Shp2. Because of its wide-ranging cell regulation and antiinflammatory properties, large-scale clinical trials using p38 inhibitors are also currently being performed, especially for therapeutic effect in chronic obstructive pulmonary disease and asthma. The rationale for our study was that the treatment of fat grafts with p38 inhibitor would (a) prevent apoptosis of adipose-derived stem cells in the fat grafts, (b) increase adipose-derived stem cells proliferation, and (c) stimulate the release of several angiogenic factors and promote revascularization. METHODS Clinical and histological testing was performed on 5 fat-transplanted (1 mL) CD-1 nude mice compared with the test group of 5 mice, which were injected with a p38 MAPK inhibitor at 1, 3, 6, and 9 days after the fat transplantation. RESULTS The weights and volumes of the control group grafts were significantly higher than those of the p38 MAPK inhibitor-treated grafts. Average volume resorption was 36% in the control group and 92% in the test group. Histological evaluation of the grafts revealed significantly improved integration, with a significant reduction of fibrosis and inflammation in the control group versus the treated group. CONCLUSIONS This preliminary study suggests that as opposed to our hypothesis, inhibition of p38 significantly increases fat graft resorption. The dramatic effects observed in our study may suggest that p38 may act differently on the numerous cell types that constitute the fat graft, and further investigation is necessary.
Collapse
|
29
|
Karigane D, Kobayashi H, Morikawa T, Ootomo Y, Sakai M, Nagamatsu G, Kubota Y, Goda N, Matsumoto M, Nishimura EK, Soga T, Otsu K, Suematsu M, Okamoto S, Suda T, Takubo K. p38α Activates Purine Metabolism to Initiate Hematopoietic Stem/Progenitor Cell Cycling in Response to Stress. Cell Stem Cell 2016; 19:192-204. [PMID: 27345838 DOI: 10.1016/j.stem.2016.05.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 03/18/2016] [Accepted: 05/13/2016] [Indexed: 02/07/2023]
Abstract
Hematopoietic stem cells (HSCs) maintain quiescence by activating specific metabolic pathways, including glycolysis. We do not yet have a clear understanding of how this metabolic activity changes during stress hematopoiesis, such as bone marrow transplantation. Here, we report a critical role for the p38MAPK family isoform p38α in initiating hematopoietic stem and progenitor cell (HSPC) proliferation during stress hematopoiesis in mice. We found that p38MAPK is immediately phosphorylated in HSPCs after a hematological stress, preceding increased HSPC cycling. Conditional deletion of p38α led to defective recovery from hematological stress and a delay in initiation of HSPC proliferation. Mechanistically, p38α signaling increases expression of inosine-5'-monophosphate dehydrogenase 2 in HSPCs, leading to altered levels of amino acids and purine-related metabolites and changes in cell-cycle progression in vitro and in vivo. Our studies have therefore uncovered a p38α-mediated pathway that alters HSPC metabolism to respond to stress and promote recovery.
Collapse
Affiliation(s)
- Daiki Karigane
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Takayuki Morikawa
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yukako Ootomo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo 162-8480, Japan
| | - Mashito Sakai
- Department of Molecular Metabolic Regulation, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Go Nagamatsu
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshiaki Kubota
- Department of Vascular Biology, The Sakaguchi Laboratory, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Nobuhito Goda
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo 162-8480, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Emi K Nishimura
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2, Mizukami, Kakuganji, Tsuruoka City, Yamagata 997-0052, Japan
| | - Kinya Otsu
- Cardiovascular Division, King's College London, London SE5 9NU, UK
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan.
| |
Collapse
|
30
|
Li J, Zhang J, Tang M, Xin J, Xu Y, Volk A, Hao C, Hu C, Sun J, Wei W, Cao Q, Breslin P, Zhang J. Hematopoietic Stem Cell Activity Is Regulated by Pten Phosphorylation Through a Niche-Dependent Mechanism. Stem Cells 2016; 34:2130-44. [PMID: 27096933 DOI: 10.1002/stem.2382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/19/2016] [Accepted: 03/26/2016] [Indexed: 12/21/2022]
Abstract
The phosphorylated form of Pten (p-Pten) is highly expressed in >70% of acute myeloid leukemia samples. However, the role of p-Pten in normal and abnormal hematopoiesis has not been studied. We found that Pten protein levels are comparable among long-term (LT) hematopoietic stem cells (HSCs), short-term (ST) HSCs, and multipotent progenitors (MPPs); however, the levels of p-Pten are elevated during the HSC-to-MPP transition. To study whether p-Pten is involved in regulating self-renewal and differentiation in HSCs, we compared the effects of overexpression of p-Pten and nonphosphorylated Pten (non-p-Pten) on the hematopoietic reconstitutive capacity (HRC) of HSCs. We found that overexpression of non-p-Pten enhances the LT-HRC of HSCs, whereas overexpression of p-Pten promotes myeloid differentiation and compromises the LT-HRC of HSCs. Such phosphorylation-regulated Pten functioning is mediated by repressing the cell:cell contact-induced activation of Fak/p38 signaling independent of Pten's lipid phosphatase activity because both p-Pten and non-p-Pten have comparable activity in repressing PI3K/Akt signaling. Our studies suggest that, in addition to repressing PI3K/Akt/mTor signaling, non-p-Pten maintains HSCs in bone marrow niches via a cell-contact inhibitory mechanism by inhibiting Fak/p38 signaling-mediated proliferation and differentiation. In contrast, p-Pten promotes the proliferation and differentiation of HSCs by enhancing the cell contact-dependent activation of Src/Fak/p38 signaling. Stem Cells 2016;34:2130-2144.
Collapse
Affiliation(s)
- Jing Li
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China.,Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Jun Zhang
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China.,Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Minghui Tang
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Junping Xin
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Yan Xu
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Andrew Volk
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Caiqin Hao
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Chenglong Hu
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Jiewen Sun
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Wei Wei
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Quichan Cao
- Department of Public Health Sciences, Loyola University Chicago, Chicago, Illinois, USA
| | - Peter Breslin
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA.,Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA.,Department of Molecular and Cellular Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA.,Department of Pathology, Loyola University Medical Center, Maywood, Illinois, USA
| |
Collapse
|
31
|
Cyclic AMP Signaling through Epac Axis Modulates Human Hemogenic Endothelium and Enhances Hematopoietic Cell Generation. Stem Cell Reports 2016; 6:692-703. [PMID: 27117782 PMCID: PMC4939749 DOI: 10.1016/j.stemcr.2016.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/24/2023] Open
Abstract
Hematopoietic cells emerge from hemogenic endothelium in the developing embryo. Mechanisms behind human hematopoietic stem and progenitor cell development remain unclear. Using a human pluripotent stem cell differentiation model, we report that cyclic AMP (cAMP) induction dramatically increases HSC-like cell frequencies. We show that hematopoietic cell generation requires cAMP signaling through the Exchange proteins activated by cAMP (cAMP-Epac) axis; Epac signaling inhibition decreased both hemogenic and non-hemogenic endothelium, and abrogated hematopoietic cell generation. Furthermore, in hematopoietic progenitor and stem-like cells, cAMP induction mitigated oxidative stress, created a redox-state balance, and enhanced C-X-C chemokine receptor type 4 (CXCR4) expression, benefiting the maintenance of these primitive cells. Collectively, our study provides insights and mechanistic details on the previously unrecognized role of cAMP signaling in regulating human hematopoietic development. These findings advance the mechanistic understanding of hematopoietic development toward the development of transplantable human hematopoietic cells for therapeutic needs. cAMP induction increases HSC-like cell generation from human pluripotent stem cells cAMP signaling through Epac axis modulates hemogenic endothelium cAMP upregulates anti-oxidative mechanisms and creates redox-state balance cAMP induction enhances CXCR4 expression in hematopoietic progenitors
Collapse
|
32
|
Saleh M, Shamsasanjan K, Movassaghpourakbari A, Akbarzadehlaleh P, Molaeipour Z. The Impact of Mesenchymal Stem Cells on Differentiation of Hematopoietic Stem Cells. Adv Pharm Bull 2015; 5:299-304. [PMID: 26504750 DOI: 10.15171/apb.2015.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 04/15/2015] [Accepted: 04/18/2015] [Indexed: 12/30/2022] Open
Abstract
Bone marrow microenvironment contains cellular and acellular compartments. The cellular compartment includes hematopoietic stem cells, mesenchymal stem cells and some other stromal cell types, while the acellular compartment is composed of scaffold proteins known as the extra cellular matrix. Direct cell-cell contact as well as cytokines secreted by mesenchymal stem cells during coculture of hematopoietic stem cells and mesenchymal stem cells play a critical role in hematopoiesis, and determines the fate of hematopoietic stem cells. Several studies have demonstrated the impact of mesenchymal stem cells on self-renewal, expansion, proliferation and differentiation of hematopoietic stem cells in vitro, which have shown different and contradictory results. In this paper, we will investigate the effect of mesenchymal stem cells on differentiation of hematopoietic stem cells in vitro.
Collapse
Affiliation(s)
- Mahshid Saleh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasanjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | | | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Tabriz University of Medical Science, Tabriz, Iran
| | - Zahra Molaeipour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Xie J, Zhang C. Ex vivo expansion of hematopoietic stem cells. SCIENCE CHINA-LIFE SCIENCES 2015; 58:839-53. [PMID: 26246379 DOI: 10.1007/s11427-015-4895-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 06/03/2015] [Indexed: 02/03/2023]
Abstract
Ex vivo expansion of hematopoietic stem cells (HSCs) would benefit clinical applications in several aspects, to improve patient survival, utilize cord blood stem cells for adult applications, and selectively propagate stem cell populations after genetic manipulation. In this review we summarize and discuss recent advances in the culture systems of mouse and human HSCs, which include stroma/HSC co-culture, continuous perfusion and fed-batch cultures, and those supplemented with extrinsic ligands, membrane transportable transcription factors, complement components, protein modification enzymes, metabolites, or small molecule chemicals. Some of the expansion systems have been tested in clinical trials. The optimal condition for ex vivo expansion of the primitive and functional human HSCs is still under development. An improved understanding of the mechanisms for HSC cell fate determination and the HSC culture characteristics will guide development of new strategies to overcome difficulties. In the future, development of a combination treatment regimen with agents that enhance self-renewal, block differentiation, and improve homing will be critical. Methods to enhance yields and lower cost during collection and processing should be employed. The employment of an efficient system for ex vivo expansion of HSCs will facilitate the further development of novel strategies for cell and gene therapies including genome editing.
Collapse
Affiliation(s)
- JingJing Xie
- Taishan Scholar Immunology Program, Binzhou Medical University, Yantai, 264003, China
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | - ChengCheng Zhang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA.
| |
Collapse
|
34
|
Peng DY, Song H, Liu LB. Resveratrol-downregulated phosphorylated liver kinase B1 is involved in senescence of acute myeloid leukemia stem cells. ACTA ACUST UNITED AC 2015. [PMID: 26223914 DOI: 10.1007/s11596-015-1457-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Senescence is an important obstacle to cancer development. Engaging a senescent response may be an effective way to cure acute myeloid leukemia (AML). The aim of this study was to examine the effect of resveratrol-downregulated phosphorylated liver kinase B1 (pLKB1) on the senescence of acute myeloid leukemia (AML) stem cells. The protein expressions of pLKB1 and Sirtuin 1 (SIRT1), a regulator of pLKB1, were measured in CD34(+)CD38(-) KG1a cells treated with resveratrol (40 μmol/L) or not by Western blotting. Senescence-related factors were examined, including p21 mRNA tested by real-time PCR, cell morphology by senescence-associated β-galactosidase (SA-β-gal) staining, cell proliferation by MTT assay and cell cycle by flow cytometry. Besides, apoptosis was flow cytometrically determined. The results showed that pLKB1 was highly expressed in CD34(+)CD38(-) KG1a cells, and resveratrol, which could downregulate pLKB1 through activation of SIRT1, induced senescence and apoptosis of CD34(+)CD38(-) KG1a cells. It was concluded that resveratrol-downregulated pLKB1 is involved in the senescence of AML stem cells.
Collapse
Affiliation(s)
- Dan-Yue Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Song
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling-Bo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
35
|
Amirizadeh N, Oodi A, Mehrasa R, Nikougoftar M. Apoptosis, DAP-Kinase1 Expression and the Influences of Cytokine Milieu and Mesenchymal Stromal Cells on Ex Vivo Expansion of Umbilical Cord Blood-Derived Hematopoietic Stem Cells. Indian J Hematol Blood Transfus 2015; 32:67-77. [PMID: 26855509 DOI: 10.1007/s12288-015-0545-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 02/05/2014] [Indexed: 10/23/2022] Open
Abstract
Expansion of umbilical cord blood-derived CD34(+) cells can potentially provide them in numbers sufficient for clinical applications in adult humans. In this study apoptosis rate of expanded cells, mRNA expression and promoter methylation status of DAPK1 were evaluated during cord blood hematopoietic stem cell (CB-HSC) ex vivo expansion using cytokines and a co-culture system with mesenchymal stromal cells (MSCs). Ex vivo cultures of CB-HSCs were performed in three culture conditions for 14 days: cytokines with MSCs feeder layer, cytokines without MSCs feeder layer and co-culture with MSCs feeder layer without cytokine. Total number of cells, CD34(+) cells and colony forming unit assay were performed during expansion. Flow cytometric analysis by propidium iodide was performed to detection of apoptosis rate in expanded cells. Methylation status of the DAPK1 gene promoter was analyzed using methylation specific PCR, and DAPK1 mRNA expression was evaluated by real time-PCR. Maximum CB-CD34(+) cells expansion was observed in day 10 of expansion. The highest apoptosis rate was observed in cytokine culture without feeder layer that showed significant difference with co-culture condition. The data showed that ex vivo expansion of CD34(+) cells in all three culture conditions after 10 days resulted in, significant increased expression of DAPK1, also a significant difference between co-culture without cytokine and two other cytokine culture was observed (p < 0.01). DAPK1gene promoter of expanded CD34(+) cells at days 5, 10 and 14 of culture remained in unmethylated form similar to fresh CD34(+) cells. Expression of DAPK1 in hematopoietic cells was increased during 10 days expansion of CD34(+) cells. Also no methylation of DAPK1 promoter was observed; otherwise it would be capable of initiating some leukemic cell progression or disruption in hematopoietic regeneration.
Collapse
Affiliation(s)
- Naser Amirizadeh
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, IBTO Bldg. Hemmat Exp Way, Next to the Milad Tower, P.O. Box 14665-1157, Tehran, Iran
| | - Arezoo Oodi
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, IBTO Bldg. Hemmat Exp Way, Next to the Milad Tower, P.O. Box 14665-1157, Tehran, Iran
| | - Roya Mehrasa
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, IBTO Bldg. Hemmat Exp Way, Next to the Milad Tower, P.O. Box 14665-1157, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, IBTO Bldg. Hemmat Exp Way, Next to the Milad Tower, P.O. Box 14665-1157, Tehran, Iran
| |
Collapse
|
36
|
Tetraspanin Family Member, CD82, Regulates Expression of EZH2 via Inactivation of p38 MAPK Signaling in Leukemia Cells. PLoS One 2015; 10:e0125017. [PMID: 25955299 PMCID: PMC4425466 DOI: 10.1371/journal.pone.0125017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 03/08/2015] [Indexed: 12/31/2022] Open
Abstract
PURPOSE We recently found that the tetraspanin family member, CD82, which is aberrantly expressed in chemotherapy-resistant CD34(+)/CD38- acute myelogenous leukemia (AML) cells, negatively regulates matrix metalloproteinase 9, and plays an important role in enabling CD34(+)/CD38(-) AML cells to adhere to the bone marrow microenvironment. This study explored novel functions of CD82 that contribute to AML progression. MATERIALS AND METHODS We employed microarray analysis comparing the gene expression profiles between CD34(+)/CD38(-) AML cells transduced with CD82 shRNA and CD34(+)/CD38(-) AML cells transduced with control shRNA. Real-time RT-PCR and western blot analysis were performed to examine the effect of CD82 knockdown on the expression of the polycomb group member, enhancer of zeste homolog 2 (EZH2), in leukemia cells. A chromatin immunoprecipitation assay was performed to examine the effect of CD82 expression on the amount of EZH2 bound to the promoter regions of tumor suppressor genes in leukemia cells. We also utilized methylation-specific PCR to examine whether CD82 expression influences the methylation status of the tumor suppressor gene promoter regions in leukemia cells. RESULTS Microarray analysis revealed that levels of EZH2 decreased after shRNA-mediated depletion of CD82 in CD34(+)/CD38(-) AML cells. Moreover, the antibody-mediated blockade of CD82 in leukemia cells lowered EZH2 expression via activation of p38 MAPK signaling, decreased the amount of EZH2 bound to the promoter regions of the tumor suppressor genes, and inhibited histone H3 lysine 27 trimethylation in these promoter regions, resulting in upregulation of the tumor suppressors at both the mRNA and protein levels.
Collapse
|
37
|
Thalheimer F, Wingert S, De Giacomo P, Haetscher N, Rehage M, Brill B, Theis F, Hennighausen L, Schroeder T, Rieger M. Cytokine-regulated GADD45G induces differentiation and lineage selection in hematopoietic stem cells. Stem Cell Reports 2014; 3:34-43. [PMID: 25068120 PMCID: PMC4110750 DOI: 10.1016/j.stemcr.2014.05.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 02/06/2023] Open
Abstract
The balance of self-renewal and differentiation in long-term repopulating hematopoietic stem cells (LT-HSC) must be strictly controlled to maintain blood homeostasis and to prevent leukemogenesis. Hematopoietic cytokines can induce differentiation in LT-HSCs; however, the molecular mechanism orchestrating this delicate balance requires further elucidation. We identified the tumor suppressor GADD45G as an instructor of LT-HSC differentiation under the control of differentiation-promoting cytokine receptor signaling. GADD45G immediately induces and accelerates differentiation in LT-HSCs and overrides the self-renewal program by specifically activating MAP3K4-mediated MAPK p38. Conversely, the absence of GADD45G enhances the self-renewal potential of LT-HSCs. Videomicroscopy-based tracking of single LT-HSCs revealed that, once GADD45G is expressed, the development of LT-HSCs into lineage-committed progeny occurred within 36 hr and uncovered a selective lineage choice with a severe reduction in megakaryocytic-erythroid cells. Here, we report an unrecognized role of GADD45G as a central molecular linker of extrinsic cytokine differentiation and lineage choice control in hematopoiesis.
Collapse
Affiliation(s)
- Frederic B. Thalheimer
- LOEWE Center for Cell and Gene Therapy and Department for Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt am Main, Germany
| | - Susanne Wingert
- LOEWE Center for Cell and Gene Therapy and Department for Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt am Main, Germany
| | | | - Nadine Haetscher
- LOEWE Center for Cell and Gene Therapy and Department for Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt am Main, Germany
| | - Maike Rehage
- LOEWE Center for Cell and Gene Therapy and Department for Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt am Main, Germany
| | - Boris Brill
- Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt am Main, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Zentrum Munich, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Mathematics, TU Munich, Boltzmannstrasse 3, 85747 Garching, Germany
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Timm Schroeder
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michael A. Rieger
- LOEWE Center for Cell and Gene Therapy and Department for Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
38
|
Cosgrove BD, Gilbert PM, Porpiglia E, Mourkioti F, Lee SP, Corbel SY, Llewellyn ME, Delp SL, Blau HM. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med 2014; 20:255-64. [PMID: 24531378 PMCID: PMC3949152 DOI: 10.1038/nm.3464] [Citation(s) in RCA: 464] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 01/11/2014] [Indexed: 02/08/2023]
Abstract
The elderly often suffer from progressive muscle weakness and regenerative failure. We demonstrate that muscle regeneration is impaired with aging owing in part to a cell-autonomous functional decline in skeletal muscle stem cells (MuSCs). Two-thirds of MuSCs from aged mice are intrinsically defective relative to MuSCs from young mice, with reduced capacity to repair myofibers and repopulate the stem cell reservoir in vivo following transplantation. This deficiency is correlated with a higher incidence of cells that express senescence markers and is due to elevated activity of the p38α and p38β mitogen-activated kinase pathway. We show that these limitations cannot be overcome by transplantation into the microenvironment of young recipient muscles. In contrast, subjecting the MuSC population from aged mice to transient inhibition of p38α and p38β in conjunction with culture on soft hydrogel substrates rapidly expands the residual functional MuSC population from aged mice, rejuvenating its potential for regeneration and serial transplantation as well as strengthening of damaged muscles of aged mice. These findings reveal a synergy between biophysical and biochemical cues that provides a paradigm for a localized autologous muscle stem cell therapy for the elderly.
Collapse
Affiliation(s)
- Benjamin D. Cosgrove
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Penney M. Gilbert
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute of Biomaterials and Biomedical Engineering and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Ermelinda Porpiglia
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Foteini Mourkioti
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven P. Lee
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University School of Medicine, CA, USA
| | - Stephane Y. Corbel
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Scott L. Delp
- Department of Bioengineering, Stanford University School of Medicine, CA, USA
- Department of Mechanical Engineering, Stanford University School of Medicine, CA, USA
| | - Helen M. Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
39
|
Rapamycin enhances long-term hematopoietic reconstitution of ex vivo expanded mouse hematopoietic stem cells by inhibiting senescence. Transplantation 2014; 97:20-9. [PMID: 24092377 DOI: 10.1097/tp.0b013e3182a7fcf8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR) is an important regulator of hematopoietic stem cell (HSC) self-renewal and its overactivation contributes to HSC premature exhaustion in part via induction of HSC senescence. Inhibition of mTOR with rapamycin has the potential to promote long-term hematopoiesis of ex vivo expanded HSCs to facilitate the clinical application of HSC transplantation for various hematologic diseases. METHODS A well-established ex vivo expansion system for mouse bone marrow HSCs was used to investigate whether inhibition of overactivated mTOR with rapamycin can promote long-term hematopoiesis of ex vivo expanded HSCs and to elucidate the mechanisms of action of rapamycin. RESULTS HSC-enriched mouse bone marrow LSK cells exhibited a time-dependent activation of mTOR after ex vivo expansion in a serum-free medium supplemented with stem cell factor, thrombopoietin, and Flt3 ligand. The overactivation of mTOR was associated with induction of senescence but not apoptosis in LSK cells and a significant reduction in the ability of HSCs to produce long-term hematopoietic reconstitution. Inhibition of overactivated mTOR with rapamycin promoted ex vivo expansion and long-term hematopoietic reconstitution of HSCs. The increase in long-term hematopoiesis of expanded HSCs is likely attributable in part to rapamycin-mediated up-regulation of Bmi1 and down-regulation of p16, which prevent HSCs from undergoing senescence during ex vivo expansion. CONCLUSIONS These findings suggest that mTOR plays an important role in the regulation of HSC self-renewal in vitro and inhibition of mTOR hyperactivation with rapamycin may represent a novel approach to promote ex vivo expansion and their long-term hematopoietic reconstitution of HSCs.
Collapse
|
40
|
Mehrasa R, Vaziri H, Oodi A, Khorshidfar M, Nikogoftar M, Golpour M, Amirizadeh N. Mesenchymal stem cells as a feeder layer can prevent apoptosis of expanded hematopoietic stem cells derived from cord blood. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2014; 3:1-10. [PMID: 24551815 PMCID: PMC3927388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 09/21/2013] [Indexed: 11/25/2022]
Abstract
Umbilical cord blood (UCB) has been used for transplantation in the treatment of hematologic disorders as a source of hematopoietic stem cells (HSCs). Because of insufficient number of cord blood CD34(+) cells, the expansion of these cells seems to be important for clinical application. Mesenchymal stromal cells (MSCs), playing an important role in HSCs maintenance, were used as feeder layer. Apoptosis and cell cycle distribution of expanded cells were analyzed in MSCs co-culture and cytokine conditions and results were compared. Three culture conditions of cord blood HSCs were prepared ex-vivo for 14 days: cytokines (SCF, TPO and Flt3L) with MSCs feeder layer, cytokines without MSCs feeder layer and co-culture with MSCs without cytokines. Expansion was followed by measuring the total nucleated cells (TNCs), CD34(+) () cells and colony-forming unit (CFU) output. Flow cytometry analysis of stained cells by annexin V and propidium iodide was performed for detection of apoptosis rate and cell cycle distribution in expanded cells. Maximum cord blood CD34(+) cells expansion was observed in day 10. The mean fold change of TNCs and CD34+ cells at day 10 in the co-culture system with cytokines was significantly higher than the cytokine culture without MSCs feeder layer and co-culture system without cytokines (n=6, p=0.023). The highest apoptosis rate and the least number of cells in Go/G1 phase were observed in cytokine culture without feeder layer (p=0.041). The expansion of cord blood HSCs on MSCs as a feeder layer resulted in higher proliferation and reduction in apoptosis rate.
Collapse
Affiliation(s)
| | | | - Arezoo Oodi
- Blood Transfusion Research center, High institute for Research and Education in Transfusion Medicine,Tehran, Iran.
| | - Mona Khorshidfar
- Blood Transfusion Research center, High institute for Research and Education in Transfusion Medicine,Tehran, Iran.
| | - Mahin Nikogoftar
- Blood Transfusion Research center, High institute for Research and Education in Transfusion Medicine,Tehran, Iran.
| | - Monireh Golpour
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Naser Amirizadeh
- Blood Transfusion Research center, High institute for Research and Education in Transfusion Medicine,Tehran, Iran.,Corresponding author: Assistant professor of high institute for research and education in transfusion medicine
| |
Collapse
|
41
|
Nishioka C, Ikezoe T, Yang J, Nobumoto A, Kataoka S, Tsuda M, Udaka K, Yokoyama A. CD82 regulates STAT5/IL-10 and supports survival of acute myelogenous leukemia cells. Int J Cancer 2013; 134:55-64. [PMID: 23797738 DOI: 10.1002/ijc.28348] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 05/13/2013] [Accepted: 06/07/2013] [Indexed: 11/08/2022]
Abstract
We recently reported that adhesion molecule CD82 is aberrantly expressed in CD34(+) /CD38(-) leukemia stem cells (LSCs). Here, we report the results of a functional analysis of CD82 in CD34(+) /CD38(-) acute myelogenous leukemia (AML) cells. Short hairpin (sh)RNA-mediated downregulation of CD82 resulted in a decrease in the level of IL-10. In contrast, forced expression of CD82 in CD34(+)/CD38(+) AML cells by transduction with CD82-expressing lentiviral particles resulted in an increase in the levels of IL-10. Notably, exposure of CD34(+)/CD38(-) AML cells to IL-10 stimulated clonogenic growth of these cells. Moreover, downregulation of CD82 by a shRNA dephosphorylated STAT5 in CD34(+)/CD38(-) AML cells. On the other hand, forced expression of CD82 resulted in increase in the levels of p-STAT5 in CD34(+)/CD38(+) AML cells. Chromatin immunoprecipitation (ChIP) assay results indicated that STAT5A binds to the promoter region of the IL-10 gene, while reporter gene assay results indicated stimulation of IL-10 expression at the transcriptional level. These results suggest that CD82 positively regulates the STAT5/IL-10 signaling pathway. Moreover, shRNA-mediated downregulation of CD82 expression in CD34(+)/CD38(-) AML cells dephosphorylated STAT5 in immunodeficient mice. Taken together, our data suggest that the CD82/STAT5/IL-10 signaling pathway is involved in the survival of CD34(+)/CD38(-) AML cells and may thus be a promising therapeutic target for eradication of AML LSCs.
Collapse
Affiliation(s)
- Chie Nishioka
- Department of Immunology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan; Research Fellow of the Japanese Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, 102-8472, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Increasing hematopoietic stem cell yield to develop mice with human immune systems. BIOMED RESEARCH INTERNATIONAL 2013; 2013:740892. [PMID: 23509770 PMCID: PMC3586441 DOI: 10.1155/2013/740892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/17/2012] [Accepted: 12/27/2012] [Indexed: 01/14/2023]
Abstract
Hematopoietic stem cells (HSCs) are unique in their capacity to give rise to all mature cells of the immune system. For years, HSC transplantation has been used for treatment of genetic and neoplastic diseases of the hematopoietic and immune systems. The sourcing of HSCs from human umbilical cord blood has salient advantages over isolation from mobilized peripheral blood. However, poor sample yield has prompted development of methodologies to expand HSCs ex vivo. Cytokines, trophic factors, and small molecules have been variously used to promote survival and proliferation of HSCs in culture, whilst strategies to lower the concentration of inhibitors in the culture media have recently been applied to promote HSC expansion. In this paper, we outline strategies to expand HSCs in vitro, and to improve engraftment and reconstitution of human immune systems in immunocompromised mice. To the extent that these “humanized” mice are representative of the endogenous human immune system, they will be invaluable tools for both basic science and translational medicine.
Collapse
|