1
|
Zhao Y, Huang Y, Jiang L, Zhang Y, Liu F, Yan P, Yu G, Liu J, Jiang X. Impact of different CEBPA mutations on therapeutic outcome in acute myeloid leukemia. Ann Hematol 2024; 103:3595-3604. [PMID: 39020042 DOI: 10.1007/s00277-024-05884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Biallelic mutations of the CEBPA gene (CEBPAbi) are generally associated with favorable prognosis in patients with acute myeloid leukemia (AML). Monoallelic mutations of the CEBPA gene in carboxy-terminal DNA-binding region (CEBPAsmbZIP) and amino-terminal transactivation domains (CEBPAsmTAD) indicate distinct clinical characteristics and therapeutic outcomes. However, further investigation is required to fully understand these differences. In this retrospective study, we enrolled 77 AML patients with CEBPA mutations, including 53 with CEBPAbi, 12 with CEBPAsmbZIP and 12 with CEBPAsmTAD. The clinical characteristics of the three CEBPAmut groups presented significant differences in age, FAB classification, hemoglobin level and platelet count at diagnosis. The CEBPAsmTAD group exhibited shorter 2-year overall survival (OS) and relapse-free survival (RFS) compared to the CEBPAbi group and CEBPAsmbZIP group in AML patients. The most common co-mutations observed in CEBPAmut AML patients were TET2 and GATA2, which had no effect on prognosis. 2-year RFS of 27 CEBPAmut AML patients who underwent allo-HSCT was better than those who did not. MRD3 positive was identified as an influencing factor for 2-year OS and RFS. Allo-HSCT was found to improve the prognosis of CEPBAmut AML patients with positive MRD3 and adverse co-mutations.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Hematology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Yun Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yujiao Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Fang Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ping Yan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiajun Liu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China.
| | - Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
2
|
Georgi JA, Stasik S, Kramer M, Meggendorfer M, Röllig C, Haferlach T, Valk P, Linch D, Herold T, Duployez N, Taube F, Middeke JM, Platzbecker U, Serve H, Baldus CD, Muller-Tidow C, Haferlach C, Koch S, Berdel WE, Woermann BJ, Krug U, Braess J, Hiddemann W, Spiekermann K, Boertjes EL, Hills RK, Burnett A, Ehninger G, Metzeler K, Rothenberg-Thurley M, Dufour A, Dombret H, Pautas C, Preudhomme C, Fenwarth L, Bornhäuser M, Gale R, Thiede C. Prognostic impact of CEBPA mutational subgroups in adult AML. Leukemia 2024; 38:281-290. [PMID: 38228680 PMCID: PMC10844079 DOI: 10.1038/s41375-024-02140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
Despite recent refinements in the diagnostic and prognostic assessment of CEBPA mutations in AML, several questions remain open, i.e. implications of different types of basic region leucin zipper (bZIP) mutations, the role of co-mutations and the allelic state. Using pooled primary data analysis on 1010 CEBPA-mutant adult AML patients, a comparison was performed taking into account the type of mutation (bZIP: either typical in-frame insertion/deletion (InDel) mutations (bZIPInDel), frameshift InDel or nonsense mutations inducing translational stop (bZIPSTOP) or single base-pair missense alterations (bZIPms), and transcription activation domain (TAD) mutations) and the allelic state (single (smCEBPA) vs. double mutant (dmCEBPA)). Only bZIPInDel patients had significantly higher rates of complete remission and longer relapse free and overall survival (OS) compared with all other CEBPA-mutant subgroups. Moreover, co-mutations in bZIPInDel patients (e.g. GATA2, FLT3, WT1 as well as ELN2022 adverse risk aberrations) had no independent impact on OS, whereas in non-bZIPInDel patients, grouping according to ELN2022 recommendations added significant prognostic information. In conclusion, these results demonstrate bZIPInDel mutations to be the major independent determinant of outcome in CEBPA-mutant AML, thereby refining current classifications according to WHO (including all dmCEBPA and smCEBPA bZIP) as well as ELN2022 and ICC recommendations (including CEBPA bZIPms).
Collapse
Affiliation(s)
- Julia-Annabell Georgi
- Medizinische Klinik und Poliklinik 1, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Stasik
- Medizinische Klinik und Poliklinik 1, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | - Christoph Röllig
- Medizinische Klinik und Poliklinik 1, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Peter Valk
- Erasmus University Medical Center, Rotterdam, Netherlands
| | - David Linch
- Department of Haematology, UCL Cancer Institute, London, UK
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Nicolas Duployez
- Institut de Recherche contre le Cancer de Lille, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Franziska Taube
- Medizinische Klinik und Poliklinik 1, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jan Moritz Middeke
- Medizinische Klinik und Poliklinik 1, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Uwe Platzbecker
- Klinik und Poliklinik fur Hämatologie, Zelltherapie und Hämostaseologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Hubert Serve
- Medizinische Klinik 2, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Claudia D Baldus
- Klinik für Innere Medizin II, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Carsten Muller-Tidow
- Klinik für Hämatologie, Onkologie und Rheumatologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | | | - Sarah Koch
- MLL Münchner Leukämielabor GmbH, Munich, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | | | - Utz Krug
- Department of Medicine 3, Klinikum Leverkusen, Leverkusen, Germany
| | - Jan Braess
- Department of Oncology and Hematology, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Wolfgang Hiddemann
- Department of Medicine III, University Hospital LMU Munich, Munich, Germany
| | | | | | - Robert K Hills
- Nuffield Department of Population Health, Oxford University, Oxford, UK
| | - Alan Burnett
- Department of Haematology, Cardiff University, University Hospital of Wales, Cardiff, UK
| | | | - Klaus Metzeler
- Klinik und Poliklinik fur Hämatologie, Zelltherapie und Hämostaseologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | | | - Annika Dufour
- Department of Medicine III, University Hospital LMU Munich, Munich, Germany
| | - Hervé Dombret
- Hôpital Saint-Louis (AP-HP), EA 3518, Université de Paris, Paris, France
| | - Cecile Pautas
- Service d'Hématologie et de thérapie cellulaire, Hôpital Henri Mondor, Créteil, France
| | - Claude Preudhomme
- Institut de Recherche contre le Cancer de Lille, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Laurene Fenwarth
- Institut de Recherche contre le Cancer de Lille, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik 1, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Nationales Zentrum für Tumorerkrankungen (NCT), Dresden, Germany
| | - Rosemary Gale
- Department of Haematology, UCL Cancer Institute, London, UK
| | - Christian Thiede
- Medizinische Klinik und Poliklinik 1, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- AgenDix GmbH, Dresden, Germany.
| |
Collapse
|
3
|
Yuan J, He R, Alkhateeb HB. Sporadic and Familial Acute Myeloid Leukemia with CEBPA Mutations. Curr Hematol Malig Rep 2023; 18:121-129. [PMID: 37261703 PMCID: PMC10484814 DOI: 10.1007/s11899-023-00699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
PURPOSE OF REVIEW CCAAT enhancer binding protein A (CEBPA) gene mutation is one of the common genetic alterations in acute myeloid leukemia (AML), which can be associated with sporadic and familial AML. RECENT FINDINGS Due to the recent advances in molecular testing and the prognostic role of CEBPA mutation in AML, the definition for AML with CEBPA mutation (AML-CEBPA) has significantly changed. This review provides the rationale for the updates on classifications, and the impacts on laboratory evaluation and clinical management for sporadic and familial AML-CEBPA patients. In addition, minimal residual disease assessment post therapy to stratify disease risk and stem cell transplant in selected AML-CEBPA patients are discussed. Taken together, the recent progresses have shifted the definition, identification, and management of patients with AML-CEBPA.
Collapse
Affiliation(s)
- Ji Yuan
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, Mayo Clinic, Rochester, MN USA
| | - Rong He
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, Mayo Clinic, Rochester, MN USA
| | | |
Collapse
|
4
|
Rosli AA, Azlan A, Rajasegaran Y, Mot YY, Heidenreich O, Yusoff NM, Moses EJ. Cytogenetics analysis as the central point of genetic testing in acute myeloid leukemia (AML): a laboratory perspective for clinical applications. Clin Exp Med 2023; 23:1137-1159. [PMID: 36229751 DOI: 10.1007/s10238-022-00913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022]
Abstract
Chromosomal abnormalities in acute myeloid leukemia (AML) have significantly contributed to scientific understanding of its molecular pathogenesis, which has aided in the development of therapeutic strategies and enhanced management of AML patients. The diagnosis, prognosis and treatment of AML have also rapidly transformed in recent years, improving initial response to treatment, remission rates, risk stratification and overall survival. Hundreds of rare chromosomal abnormalities in AML have been discovered thus far using chromosomal analysis and next-generation sequencing. As a result, the World Health Organization (WHO) has categorized AML into subgroups based on genetic, genomic and molecular characteristics, to complement the existing French-American classification which is solely based on morphology. In this review, we aim to highlight the most clinically relevant chromosomal aberrations in AML together with the technologies employed to detect these aberrations in laboratory settings.
Collapse
Affiliation(s)
- Aliaa Arina Rosli
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Adam Azlan
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yaashini Rajasegaran
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yee Yik Mot
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Olaf Heidenreich
- Prinses Máxima Centrum Voor Kinderoncologie, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Emmanuel Jairaj Moses
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
5
|
Wang H, Luo G, Hu X, Xu G, Wang T, Liu M, Qiu X, Li J, Fu J, Feng B, Tu Y, Kan W, Wang C, Xu R, Zhou Y, Yang J, Li J. Targeting C/EBPα overcomes primary resistance and improves the efficacy of FLT3 inhibitors in acute myeloid leukaemia. Nat Commun 2023; 14:1882. [PMID: 37019911 PMCID: PMC10076519 DOI: 10.1038/s41467-023-37381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
The outcomes of FLT3-ITD acute myeloid leukaemia (AML) have been improved since the approval of FLT3 inhibitors (FLT3i). However, approximately 30-50% of patients exhibit primary resistance (PR) to FLT3i with poorly defined mechanisms, posing a pressing clinical unmet need. Here, we identify C/EBPα activation as a top PR feature by analyzing data from primary AML patient samples in Vizome. C/EBPα activation limit FLT3i efficacy, while its inactivation synergistically enhances FLT3i action in cellular and female animal models. We then perform an in silico screen and identify that guanfacine, an antihypertensive medication, mimics C/EBPα inactivation. Furthermore, guanfacine exerts a synergistic effect with FLT3i in vitro and in vivo. Finally, we ascertain the role of C/EBPα activation in PR in an independent cohort of FLT3-ITD patients. These findings highlight C/EBPα activation as a targetable PR mechanism and support clinical studies aimed at testing the combination of guanfacine with FLT3i in overcoming PR and enhancing the efficacy of FLT3i therapy.
Collapse
Affiliation(s)
- Hanlin Wang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- College of Pharmacy, Fudan University, Shanghai, 210023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghao Luo
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Xiaobei Hu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China
| | - Gaoya Xu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Wang
- Department of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Minmin Liu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Xiaohui Qiu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China
| | - Jianan Li
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingfeng Fu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Feng
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China
| | - Yutong Tu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weijuan Kan
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chang Wang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ran Xu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yubo Zhou
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jianmin Yang
- Department of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Jia Li
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- College of Pharmacy, Fudan University, Shanghai, 210023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Wang B, Yang B, Wu W, Liu X, Li H. The correlation of next-generation sequencing-based genotypic profiles with clinicopathologic characteristics in NPM1-mutated acute myeloid leukemia. BMC Cancer 2021; 21:788. [PMID: 34238278 PMCID: PMC8268444 DOI: 10.1186/s12885-021-08455-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to analyze the association between next-generation sequencing (NGS) genotypic profiles and conventional clinicopathologic characteristics in patients with acute myeloid leukemia (AML) with NPM1 mutation (NPM1mut). We selected 238 NPM1mut patients with available NGS information on 112 genes related to blood diseases using the χ2 and Mann-Whitney U tests and a multivariable logistic model to analyze the correlation between genomic alterations and clinicopathologic parameters. Compared with the NPM1mut/FLT3-ITD(−) group, the NPM1mut/FLT3-ITD(+) group presented borderline frequent M5 morphology [78/143 (54.5%) vs. 64/95 (67.4%); P = 0.048], higher CD34- and CD7-positive rates (CD34: 20.6% vs. 47.9%, P < 0.001; CD7: 29.9% vs. 61.5%, P < 0.001) and a lack of favorable−/adverse-risk karyotypes (6.4% vs. 0%; P = 0.031). In the entire NPM1mut cohort, 240 NPM1 mutants were identified, of which 10 (10/240, 4.2%) were missense types. When confining the analysis to the 205 cases with NPM1mut insertions/deletions-type and normal karyotype, multivariable logistic analysis showed that FLT3-ITD was positively correlated with CD34 and CD7 expressions (OR = 5.29 [95% CI 2.64–10.60], P < 0.001; OR = 3.47 [95% CI 1.79–6.73], P < 0.001, respectively). Ras-pathway mutations were positively correlated with HLA-DR expression (OR = 4.05 [95% CI 1.70–9.63], P = 0.002), and KRAS mutations were negatively correlated with MPO expression (OR = 0.18 [95% CI 0.05–0.62], P = 0.007). DNMT3A-R882 was positively correlated with CD7 and HLA-DR expressions (OR = 3.59 [95% CI 1.80–7.16], P < 0.001; OR = 13.41 [95% CI 4.56–39.45], P < 0.001, respectively). DNMT3A mutation was negatively correlated with MPO expression (OR = 0.35 [95% CI 1.48–8.38], P = 0.004). TET2/IDH1 mutations were negatively correlated with CD34 and CD7 expressions (OR = 0.26 [95% CI 0.11–0.62], P = 0.002; OR = 0.30 [95% CI 0.14–0.62], P = 0.001, respectively) and positively correlated with MPO expression (OR = 3.52 [95% CI 1.48–8.38], P = 0.004). In conclusion, NPM1mut coexisting mutations in signaling pathways (FLT3-ITD and Ras-signaling pathways) and methylation modifiers (DNMT3A and TET2/IDH1) are linked with the expressions of CD34, CD7, HLA-DR and MPO, thereby providing a mechanistic explanation for the immunophenotypic heterogeneity of this AML entity.
Collapse
Affiliation(s)
- Biao Wang
- Department of Hematology, Changzhou First People's Hospital (The Third Affiliated Hospital of Soochow University), Changzhou, China
| | - Bin Yang
- Department of Hematology, Changzhou First People's Hospital (The Third Affiliated Hospital of Soochow University), Changzhou, China
| | - Wei Wu
- Department of Hematology, Changzhou First People's Hospital (The Third Affiliated Hospital of Soochow University), Changzhou, China
| | - Xuan Liu
- Blood Research Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haiqian Li
- Department of Hematology, Changzhou First People's Hospital (The Third Affiliated Hospital of Soochow University), Changzhou, China.
| |
Collapse
|
7
|
Kang Y, Chen X, Fang F, Zhang L, Wang J, Tian C, Guo W, Xu J, Ren H, Muyey DM, Tan Y, Xu Z, Wang H. The clinical characteristics and prognosis of cytogenetically normal AML with single mutations of CEBPA. Int J Lab Hematol 2021; 43:1424-1431. [PMID: 34216417 DOI: 10.1111/ijlh.13612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION CEBPA mutation is a common mutation in normal karyotype AML. CEBPAdm AML has been recognized as a separate entity, but there is still controversy to the prognosis of CEBPAsm patients. METHODS A total of 151 newly diagnosed cytogenetically normal AML patients treated at the Second Hospital Center of Shanxi Medical University from February 2017 to December 2019 were the subjects of the study. According to the number of mutations in the CEBPA gene, the patients were divided into three groups, CEBPAsm, CEBPAdm, and CEBPAwt patients. The clinical characteristics, gene mutations, response, and prognosis were retrospectively compared among the three groups. RESULTS CEBPAsm patients had lower hemoglobin values compared to CEBPAdm (P = .049). There was no statistical difference between the CEBPAsm cases and the CEBPAdm cases in the mutation types and the distribution of mutation regions (P > .050). Compared with CEBPAdm, cases with CEBPAsm were more likely associated with multiple other gene mutations (P = .023). Patients with CEBPAdm had a higher CR, ORR, and OS than those CEBPAwt (P < .050). CEBPAsm patients had a similar OS with CEBPAdm and CEBPAwt patients (P = .281). These CEBPAsm patients with VAF<30% had lower OS than the patients with VAF≥30%. FLT3-ITD mutations could reduce CEBPAsm patients' OS (P = .019). CONCLUSION Our data first highlighted the impact of CEBPAsm VAF on OS, and the results showed the lower the VAF was, the shorter the OS tended to. The VAF of CEBPAsm could provide specific significance in some extent for the prognosis of patients.
Collapse
Affiliation(s)
- Yefang Kang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiuhua Chen
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fang Fang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lingli Zhang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiaxuan Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chuchu Tian
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenzheng Guo
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Huanying Ren
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Daniel Muteb Muyey
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanhong Tan
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhifang Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Higa KC, Goodspeed A, Chavez JS, De Dominici M, Danis E, Zaberezhnyy V, Rabe JL, Tenen DG, Pietras EM, DeGregori J. Chronic interleukin-1 exposure triggers selection for Cebpa-knockout multipotent hematopoietic progenitors. J Exp Med 2021; 218:212039. [PMID: 33914855 PMCID: PMC8094119 DOI: 10.1084/jem.20200560] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 02/11/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The early events that drive myeloid oncogenesis are not well understood. Most studies focus on the cell-intrinsic genetic changes and how they impact cell fate decisions. We consider how chronic exposure to the proinflammatory cytokine, interleukin-1β (IL-1β), impacts Cebpa-knockout hematopoietic stem and progenitor cells (HSPCs) in competitive settings. Surprisingly, we found that Cebpa loss did not confer a hematopoietic cell–intrinsic competitive advantage; rather chronic IL-1β exposure engendered potent selection for Cebpa loss. Chronic IL-1β augments myeloid lineage output by activating differentiation and repressing stem cell gene expression programs in a Cebpa-dependent manner. As a result, Cebpa-knockout HSPCs are resistant to the prodifferentiative effects of chronic IL-1β, and competitively expand. We further show that ectopic CEBPA expression reduces the fitness of established human acute myeloid leukemias, coinciding with increased differentiation. These findings have important implications for the earliest events that drive hematologic disorders, suggesting that chronic inflammation could be an important driver of leukemogenesis and a potential target for intervention.
Collapse
Affiliation(s)
- Kelly C Higa
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO.,Integrated Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - James S Chavez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Marco De Dominici
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Etienne Danis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Vadym Zaberezhnyy
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jennifer L Rabe
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, Singapore.,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Eric M Pietras
- Integrated Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO.,Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO.,Integrated Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO.,Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
9
|
Liu H, Zhang X, Li M, Zhou W, Jiang G, Yin W, Song C. The incidence and prognostic effect of Fms-like tyrosine kinase 3 gene internal tandem and nucleolar phosphoprotein 1 genes in acute myeloid leukaemia: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23707. [PMID: 33371116 PMCID: PMC7748362 DOI: 10.1097/md.0000000000023707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Molecular genotyping is an important prognostic role in acute myeloid leukemia (AML) patients. We aimed to design this meta-analysis to discuss the incidence and prognostic effect of nucleolar phosphoprotein 1 (NPM1) and Fms-like tyrosine kinase 3 gene internal tandem (FLT3-ITD) gene in AML patients. METHODS PubMed, Embase, Medline, and Cochrane library were systematically searched due to May 15, 2020. Four combinations of genotypes (FLT3-ITDneg/NPM1mut, FLT3-ITDpos/NPM1mut, FLT3-ITDneg/NPM1wt, FLT3-ITDpos/NPM1wt) were compared in association with the overall survival (OS) and leukemia-free survival (LFS) outcome, which expressed as pooled hazard ratio (HR) and 95% confidence intervals (CIs). RESULTS Twenty-eight studies were included in our study. The incidence of FLT3-ITDneg/NPM1mut, FLT3-ITDpos/NPM1mut, FLT3-ITDneg/NPM1wt, and FLT3-ITDpos/NPM1wt was 16%, 13%, 50%, and 10%, respectively. The patients with FLT3-ITDneg/NPM1mut gene may have the best OS and LFS when comparing with FLT3-ITDpos/NPM1mut (HR = 1.94 and 1.70, P < .01), FLT3-ITDneg/NPM1wt (HR = 1.57 and 2.09, P < .01), and FLT3-ITDpos/NPM1wt (HR = 2.25 and 2.84, P < .001). CONCLUSION AML patients with FLT3-ITDneg/NPM1mut gene type have the best survival outcome than the other 3 gene types, which should be an independent genotyping in AML classification.
Collapse
Affiliation(s)
| | | | - Ming Li
- Department of Laboratory Medicine
| | | | | | - Weihua Yin
- Department of Oncology, Yichun City People's Hospital
| | - Chunping Song
- Department of Blood Supply, Blood Station, Yichun City, Jiangxi Province, China
| |
Collapse
|
10
|
Zhao X, Liu HQ, Wang LN, Yang L, Liu XL. Current and emerging molecular and epigenetic disease entities in acute myeloid leukemia and a critical assessment of their therapeutic modalities. Semin Cancer Biol 2020; 83:121-135. [PMID: 33242577 DOI: 10.1016/j.semcancer.2020.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023]
Abstract
Acute myeloid leukemia (AML) is the most frequently diagnosed acute leukemia, and its incidence increases with age. Although the etiology of AML remains unknown, exposure to genotoxic agents or some prior hematologic disorders could lead to the development of this condition. The pathogenesis of AML involves the development of malignant transformation of hematopoietic stem cells that undergo successive genomic alterations, ultimately giving rise to a full-blown disease. From the disease biology perspective, AML is considered to be extremely complex with significant genetic, epigenetic, and phenotypic variations. Molecular and cytogenetic alterations in AML include mutations in those subsets of genes that are involved in normal cell proliferation, maturation and survival, thus posing significant challenge to targeting these pathways without attendant toxicity. In addition, multiple malignant cells co-exist in the majority of AML patients. Individual subclones are characterized by unique genetic and epigenetic abnormalities, which contribute to the differences in their response to treatment. As a result, despite a dramatic progress in our understanding of the pathobiology of AML, not much has changed in therapeutic approaches to treat AML in the past four decades. Dose and regimen modifications with improved supportive care have contributed to improved outcomes by reducing toxicity-related side effects. Several drug candidates are currently being developed, including targeted small-molecule inhibitors, cytotoxic chemotherapies, monoclonal antibodies and epigenetic drugs. This review summarizes the current state of affairs in the pathobiological and therapeutic aspects of AML.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, China
| | - Huan-Qiu Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Li-Na Wang
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, China
| | - Le Yang
- Department of Endocrinology, The People's Hospital of Jilin Province, Changchun, China.
| | - Xiao-Liang Liu
- Department of Hematology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
11
|
High IFITM3 expression predicts adverse prognosis in acute myeloid leukemia. Cancer Gene Ther 2019; 27:38-44. [PMID: 30923336 DOI: 10.1038/s41417-019-0093-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) is a malignancy caused by the uncontrolled and dysregulated clonal expansion of abnormal myeloid primordial cells. In general, the prognosis of AML remains poor despite new discoveries in its pathogenesis and treatment. It is crucial to find early and sensitive biomarkers and continue to explore active targeted treatments. Interferon-induced transmembrane protein (IFITM) family is an important part of the interferon signaling pathway and participate in the regulation of immune cell signaling, adhesion, cancer, and liver cell migration. However, the clinical and prognostic value of the IFITM family in AML has rarely been studied. We screened The Cancer Genome Atlas database and found 155 AML patients with IFITM family (IFITM1-5) expression data. In patients who only received chemotherapy, those with high IFITM3 expression had significantly shorter event-free survival (EFS) and overall survival (OS) than patients with low expression (all P < 0.05). Multivariate analysis demonstrated that high IFITM3 expression was an independent risk factor for EFS and OS in patients only received chemotherapy (all P < 0.05). In patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT), however, all IFITM members had no impact on either EFS or OS. In conclusion, our study elucidated that high IFITM3 expression could be an adverse prognostic factor for AML, whose effect might be overcome by allo-HSCT.
Collapse
|
12
|
Wang BH, Li YH, Yu L. Genomics-based Approach and Prognostic Stratification Significance of Gene Mutations in Intermediate-risk Acute Myeloid Leukemia. Chin Med J (Engl) 2015; 128:2395-403. [PMID: 26315090 PMCID: PMC4733808 DOI: 10.4103/0366-6999.163400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Intermediate-risk acute myeloid leukemia (IR-AML), which accounts for a substantial number of AML cases, is highly heterogeneous. We systematically summarize the latest research progress on the significance of gene mutations for prognostic stratification of IR-AML. DATA SOURCES We conducted a systemic search from the PubMed database up to October, 2014 using various search terms and their combinations including IR-AML, gene mutations, mutational analysis, prognosis, risk stratification, next generation sequencing (NGS). STUDY SELECTION Clinical or basic research articles on NGS and the prognosis of gene mutations in IR-AML were included. RESULTS The advent of the era of whole-genome sequencing has led to the discovery of an increasing number of molecular genetics aberrations that involved in leukemogenesis, and some of them have been used for prognostic risk stratification. Several studies have consistently identified that some gene mutations have prognostic relevance, however, there are still many controversies for some genes because of lacking sufficient evidence. In addition, tumor cells harbor hundreds of mutated genes and multiple mutations often coexist, therefore, single mutational analysis is not sufficient to make accurate prognostic predictions. The comprehensive analysis of multiple mutations based on sophisticated genomic technologies has raised increasing interest in recent years. CONCLUSIONS NGS represents a pioneering and helpful approach to prognostic risk stratification of IR-AML patients. Further large-scale studies for comprehensive molecular analysis are needed to provide guidance and a theoretical basis for IR-AML prognostic stratification and clinical management.
Collapse
Affiliation(s)
| | | | - Li Yu
- Department of Hematology, Chinese People's Liberation Army General Hospital, Beijing 100853; Department of Clinical Medicine, Tsinghua University School of Medicine, Medical Center, Beijing 100084, China
| |
Collapse
|
13
|
Lin P, Falini B. Acute Myeloid Leukemia With Recurrent Genetic Abnormalities Other Than Translocations. Am J Clin Pathol 2015; 144:19-28. [PMID: 26071459 DOI: 10.1309/ajcp97bjbevzeuin] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVES Session 2 of the workshop focused on cases of acute myeloid leukemia (AML) with gene mutations in the setting of a normal karyotype. METHODS Among 22 AML cases submitted, 14 had the NPM1 mutation, most also accompanied by mutations of other genes such as FLT3-ITD, DNMT3A, or, rarely, TP53; three cases had the heterozygous CEBPA mutation; and two cases had MYC amplification. RESULTS We explored prognostic implications of gene mutations such as DNMT3A, issues related to the classification of AML cases with the NPM1 mutation, and myelodysplasia-related changes arising from chronic myelomonocytic leukemia after a short latency interval. Disparate patterns of treatment response to targeted therapy using an FLT3 inhibitor, designated as cytotoxic or differentiation, and their genetic underpinnings were described. Finally, a minimal screening panel for gene mutations and the optimal approach for monitoring minimal residual disease were discussed. CONCLUSIONS In aggregate, this session highlighted the need for a refined molecular classification of AML as well as improved risk stratification based on systematic assessment for genetic alterations and their evolution over time.
Collapse
|
14
|
Sarojam S, Raveendran S, Vijay S, Sreedharan J, Narayanan G, Sreedharan H. Characterization of CEBPA Mutations and Polymorphisms and their Prognostic Relevance in De Novo Acute Myeloid Leukemia Patients. Asian Pac J Cancer Prev 2015; 16:3785-92. [DOI: 10.7314/apjcp.2015.16.9.3785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Gosse G, Celton M, Lamontagne V, Forest A, Wilhelm BT. Whole genome and transcriptome analysis of a novel AML cell line with a normal karyotype. Leuk Res 2015; 39:709-18. [PMID: 25934047 DOI: 10.1016/j.leukres.2015.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Abstract
Acute myeloid leukemia (AML) occurs when hematopoietic progenitor cells acquire genetic defects blocking the regulation of normal growth and differentiation. Although recurrent translocations have been identified in AML, almost half of adult AML patients present with a normal karyotype (NK-AML). While cell line models exist to study AML, they frequently have abnormal/unstable karyotypes, while primary cells from NK-AML patients are difficult to maintain in vitro. Here we provide a thorough molecular characterization of a recently established cell line, CG-SH, which has normal cytogenetics, representing a useful new model for NK-AML. Using high-throughput DNA sequencing, we first defined the genetic background of this cell line. In addition to identifying potentially deleterious SNVs in genes relevant to AML, we also found insertions in both GATA2 and EZH2, two genes previously linked to AML. We further characterized the growth of this model system in vitro with a cytokine mix that promotes faster cell growth. We assessed gene expression changes after the addition of cytokines to the culture media and found differential expression in genes implicated in proliferation, apoptosis and differentiation. Our results provide a detailed molecular characterization of genetic defects in this cell line derived from an NK-AML patient.
Collapse
Affiliation(s)
- Géraldine Gosse
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada; Laboratory for High Throughput Genomics, Montreal, QC, Canada; The Leucegene Project, Canada
| | - Magalie Celton
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada; Laboratory for High Throughput Genomics, Montreal, QC, Canada
| | - Vikie Lamontagne
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada; Laboratory for High Throughput Genomics, Montreal, QC, Canada
| | - Audrey Forest
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada; Laboratory for High Throughput Genomics, Montreal, QC, Canada
| | - Brian T Wilhelm
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada; Laboratory for High Throughput Genomics, Montreal, QC, Canada; The Leucegene Project, Canada.
| |
Collapse
|
16
|
Li HY, Deng DH, Huang Y, Ye FH, Huang LL, Xiao Q, Zhang B, Ye BB, Lai YR, Mo ZN, Liu ZF. Favorable prognosis of biallelic CEBPA gene mutations in acute myeloid leukemia patients: a meta-analysis. Eur J Haematol 2015; 94:439-48. [PMID: 25227715 DOI: 10.1111/ejh.12450] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Increasing number of studies suggested that biallelic CEBPA (bi CEBPA) mutations were associated with favorable prognosis in patients with acute myeloid leukemia (AML), but the results remain inconclusive. We therefore present a meta-analysis to evaluate the prognostic value of bi CEBPA mutations in patients with AML. METHODS A comprehensive literature search was undertaken through August 2014 looking for eligible studies. Pooled hazard ratios (HRs) estimates and 95% confidence intervals (95% CIs) in overall survival (OS) and event-free survival (EFS) were used to calculate estimated effect. RESULTS Ten studies covering a total of 6219 subjects were included in this analysis. Overall, bi CEBPA mutations were associated with favorable clinical outcome in patients with AML (HR for EFS: 0.41, 95% CI: 0.32-0.52; for OS: 0.37, 95% CI: 0.27-0.50), in cytogenetically normal (CN)-AML (HR for EFS: 0.38, 95% CI: 0.29-0.49; for OS: 0.32, 95% CI: 0.23-0.43). When took the cohort of monoallelic CEBPA (mo CEBPA) mutated and wild-type CEBPA (wt CEBPA) AML as a reference group, bi CEBPA mutated AML also shown beneficial outcomes (HR for OS: 0.52, 95% CI: 0.37-0.72). No significant difference was found between mo CEBPA mutation and wt CEBPA in patients with AML or CN-AML (P > 0.05). CONCLUSION Bi CEBPA mutations in patients with AML are strongly associated with a favorable prognosis, which suggested that bi CEBPA mutations would potentially serve as a novel prognostic marker in AML.
Collapse
Affiliation(s)
- Hong-Ying Li
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
A Clinical Grade Sequencing-Based Assay for CEBPA Mutation Testing. J Mol Diagn 2015; 17:76-84. [DOI: 10.1016/j.jmoldx.2014.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/19/2014] [Accepted: 09/29/2014] [Indexed: 11/21/2022] Open
|
18
|
Pastore F, Kling D, Hoster E, Dufour A, Konstandin NP, Schneider S, Sauerland MC, Berdel WE, Buechner T, Woermann B, Braess J, Hiddemann W, Spiekermann K. Long-term follow-up of cytogenetically normal CEBPA-mutated AML. J Hematol Oncol 2014; 7:55. [PMID: 25214041 PMCID: PMC4172831 DOI: 10.1186/s13045-014-0055-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/24/2014] [Indexed: 12/18/2022] Open
Abstract
Background The aim of this study was to analyze the long-term survival of AML patients with CEBPA mutations. Patients and methods We investigated 88 AML patients with a median age of 61 years and (1) cytogenetically normal AML (CN-AML), (2) monoallelic (moCEBPA) or biallelic (biCEBPA) CEBPA mutation, and (3) intensive induction treatment. 60/88 patients have been described previously with a shorter follow-up. Results Median follow-up time was 9.8 years (95% CI: 9.4-10.1 years) compared to 3.2 and 5.2 years in our former analyses. Patients with biCEBPA mutations survived significantly longer compared to those with moCEBPA (median overall survival (OS) 9.6 years vs. 1.7 years, p = 0.008). Patients ≤ 60 years and biCEBPA mutations showed a favorable prognosis with a 10-year OS rate of 81%. Both, bi- and moCEBPA-mutated groups had a low early death (d60) rate of 7% and 9%, respectively. Complete remission (CR) rates for biCEBPA- and moCEBPA-mutated patients were 82% vs. 70% (p = 0.17). biCEBPA-mutated patients showed a longer relapse free survival (RFS) (median RFS 9.4 years vs. 1.5 years, p = 0.021) and a lower cumulative incidence of relapse (CIR) compared to moCEBPA-mutated patients. These differences in OS and RFS were confirmed after adjustment for known clinical and molecular prognostic factors. Conclusions In this long-term observation we confirmed the favorable prognostic outcome of patients with biCEBPA mutations compared to moCEBPA-mutated CN-AML. The high probability of OS (81%) in younger patients is helpful to guide intensity of postremission therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13045-014-0055-7) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Matsuo H, Kajihara M, Tomizawa D, Watanabe T, Saito AM, Fujimoto J, Horibe K, Kodama K, Tokumasu M, Itoh H, Nakayama H, Kinoshita A, Taga T, Tawa A, Taki T, Tanaka S, Adachi S. Prognostic implications of CEBPA mutations in pediatric acute myeloid leukemia: a report from the Japanese Pediatric Leukemia/Lymphoma Study Group. Blood Cancer J 2014; 4:e226. [PMID: 25014773 PMCID: PMC4219441 DOI: 10.1038/bcj.2014.47] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 05/19/2014] [Indexed: 11/30/2022] Open
Abstract
CCAAT/enhancer-binding protein alpha (CEBPA) mutations are a favorable prognostic factor in adult acute myeloid leukemia (AML) patients; however, few studies have examined their significance in pediatric AML patients. Here we examined the CEBPA mutation status and clinical outcomes of pediatric AML patients treated in the AML-05 study. We found that 47 (14.9%) of the 315 evaluable patients harbored mutations in CEBPA; 26 cases (8.3%) harbored a single mutation (CEBPA-single) and 21 (6.7%) harbored double or triple mutations (CEBPA-double). After excluding core-binding factor-AML cases, patients harboring CEBPA mutations showed better overall survival (OS; P=0.048), but not event-free survival (EFS; P=0.051), than wild-type patients. Multivariate analysis identified CEBPA-single and CEBPA-double as independent favorable prognostic factors for EFS in the total cohort (hazard ratio (HR): 0.47 and 0.33; P=0.02 and 0.01, respectively). CEBPA-double was also an independent favorable prognostic factor for OS (HR: 0.30; P=0.04). CEBPA-double remained an independent favorable factor for EFS (HR: 0.28; P=0.04) in the normal karyotype cohort. These results suggest that CEBPA mutations, particularly CEBPA-double, are an independent favorable prognostic factor in pediatric AML patients, which will have important implications for risk-stratified therapy.
Collapse
Affiliation(s)
- H Matsuo
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - M Kajihara
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - D Tomizawa
- Department of Pediatrics, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - T Watanabe
- Department of Nutritional Science, Aichi Gakuin University, Aichi, Japan
| | - A M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - J Fujimoto
- Clinical Research Center, National Center for Child Health and Development, Tokyo, Japan
| | - K Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - K Kodama
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - M Tokumasu
- Department of Pediatrics, Kyoto University, Kyoto, Japan
| | - H Itoh
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - H Nakayama
- Department of Pediatrics, National Hospital Organization Fukuoka-Higashi Medical Center, Fukuoka, Japan
| | - A Kinoshita
- Department of Pediatrics, St Marianna University School of Medicine, Kanagawa, Japan
| | - T Taga
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - A Tawa
- Department of Pediatrics, National Hospital Organization Osaka Medical Hospital, Osaka, Japan
| | - T Taki
- Department of Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - S Tanaka
- Department of Pharmacoepidemiology, Kyoto University, Kyoto, Japan
| | - S Adachi
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Fasan A, Haferlach C, Alpermann T, Jeromin S, Grossmann V, Eder C, Weissmann S, Dicker F, Kohlmann A, Schindela S, Kern W, Haferlach T, Schnittger S. The role of different genetic subtypes of CEBPA mutated AML. Leukemia 2013; 28:794-803. [PMID: 24056881 DOI: 10.1038/leu.2013.273] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/06/2013] [Indexed: 11/09/2022]
Abstract
The prognostic impact of mutations in the CCAAT/enhancer binding protein α (CEBPA) gene was evaluated in the context of concomitant molecular mutations and cytogenetic aberrations in acute myeloid leukemia (AML). CEBPA was screened in a cohort of 2296 adult AML cases. Of 244 patients (10.6%) with CEBPA mutations, 140 cases (6.1%) were single-mutated (CEBPAsm) and 104 cases (4.5%) were double-mutated (CEBPAdm). Cytogenetic analysis revealed normal karyotype in 172/244 (70.5%) of CEBPAmut cases, whereas in 72/244 cases (29.5%) at least one cytogenetic aberration was detected. Concurrent molecular mutations were seen less frequently in CEBPAdm than in CEBPAsm AML cases (69.2% vs 88.6% P<0.001). In detail, the spectrum of concurrent mutations was different in both groups with the frequent occurrence of GATA1 and WT1 mutations in CEBPAdm patients. In contrast, FLT3-ITD, NPM1, ASXL1 and RUNX1 mutations were detected more frequently in CEBPAsm cases. Favorable outcome was restricted to CEBPAdm cases and remained an independent prognostic factor for a favorable outcome in multivariate analysis (hazard ratio: 0.438, P=0.020). Outcome in CEBPAsm cases strongly depended on concurrent FLT3-ITD. In conclusion, we propose that only CEBPAdm should be considered as an entity in the WHO classification of AML and should be clearly distinguished from CEBPAsm AML.
Collapse
Affiliation(s)
- A Fasan
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - C Haferlach
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - T Alpermann
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - S Jeromin
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - V Grossmann
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - C Eder
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - S Weissmann
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - F Dicker
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - A Kohlmann
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - S Schindela
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - W Kern
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - T Haferlach
- MLL Munich Leukemia Laboratory, Munich, Germany
| | | |
Collapse
|
21
|
Park SH, Chi HS, Cho YU, Jang S, Park CJ. CEBPA single mutation can be a possible favorable prognostic indicator in NPM1 and FLT3-ITD wild-type acute myeloid leukemia patients with intermediate cytogenetic risk. Leuk Res 2013; 37:1488-94. [PMID: 24054719 DOI: 10.1016/j.leukres.2013.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/06/2013] [Accepted: 08/24/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to evaluate the prognostic impact of CEBPA single mutation in acute myeloid leukemia (AML) patients with intermediate cytogenetic risk. CEBPA single and double mutations were detected in 11 (9.7%) and 17 (15.1%) of 113 NPM1 wild-type patients, but no CEBPA mutations were detected in a group of 44 NPM1 mutated patients. Among patients with NPM1/FLT3-ITD wild-type, those with CEBPA double mutations (P=0.013 and 0.007 for overall survival and relapse-free survival, respectively) or a single mutation (P=0.039 and 0.020 for overall survival and relapse-free survival, respectively) demonstrated a favorable prognosis compared with CEBPA wild-type patients. Subsequent multivariate analysis confirmed the favorable prognostic impact of CEBPA single and double mutations. Despite the low statistical power of this study due to the small number of patients, our preliminary data suggest that CEBPA single mutation may be associated with favorable clinical outcomes in NPM1/FLT3-ITD wild-type AML patients with intermediate cytogenetic risk.
Collapse
Affiliation(s)
- Sang Hyuk Park
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
22
|
The Impact of FLT3 Mutations on the Development of Acute Myeloid Leukemias. LEUKEMIA RESEARCH AND TREATMENT 2013; 2013:275760. [PMID: 23936658 PMCID: PMC3725705 DOI: 10.1155/2013/275760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/30/2013] [Accepted: 05/14/2013] [Indexed: 11/17/2022]
Abstract
The development of the genetic studies on acute myeloid leukemias (AMLs) has led to the identification of some recurrent genetic abnormalities. Their discovery was of fundamental importance not only for a better understanding of the molecular pathogenesis of AMLs, but also for the identification of new therapeutic targets. In this context, it is essential to identify AML-associated “driver” mutations, which have a causative role in leukemogenesis. Evidences accumulated during the last years indicate that activating internal tandem duplication mutations in FLT3 (FLT3-ITD), detected in about 20% of AMLs, represents driver mutations and valid therapeutic targets in AMLs. Furthermore, the screening of FLT3-ITD mutations has also considerably helped to improve the identification of more accurate prognostic criteria and of the therapeutic selection of patients.
Collapse
|
23
|
Dang H, Chen Y, Kamel-Reid S, Brandwein J, Chang H. CD34 expression predicts an adverse outcome in patients with NPM1-positive acute myeloid leukemia. Hum Pathol 2013; 44:2038-46. [PMID: 23701943 DOI: 10.1016/j.humpath.2013.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/16/2013] [Accepted: 03/20/2013] [Indexed: 11/15/2022]
Abstract
Patients with acute myeloid leukemia (AML) harboring an NPM1 mutation exhibit a heterogeneous clinical outcome. Recent studies have shown that the absence of FLT3 internal tandem duplication (FLT3-ITD) mutation confers a favorable prognosis in NPM1-positive AML. However, the prognostic impact of immunophenotypes in this subgroup remains unclear. In this study, FLT3 mutation status and immunophenotypic profile of 85 NPM1-positive patients with de novo AML were retrospectively analyzed and correlated with their clinical features and survival outcomes. Univariate analysis detected 5 markers with prognostic relevance: older age (≥60 years), high white blood cell (WBC) count (>30 × 10(9)/L), FLT3-ITD, CD7, and CD34 expression. Multivariate analysis showed that high WBC count was the only independent predictor of a lower complete remission rate (P = .019). Older age (P = .035), high WBC count (P = .008), FLT3-ITD (P = .012), and CD34 expression (P = .006) were independent predictors of a shorter event-free survival (EFS). High WBC count (P = .014), FLT3-ITD (P = .005), and CD34 expression (P = .047) were independent predictors of a shorter overall survival (OS). Furthermore, based on FLT3-ITD status in NPM1 mutation-positive patients, we showed that both high WBC and CD34 expression conferred a poor EFS (P = .010 and P = .016, respectively) and OS (P = .032 and P = .001, respectively) in the FLT3-ITD-negative group, whereas high WBC predicted a poor EFS (P = .016) and OS (P = .027) in the FLT3-ITD-positive group. Our results confirm the prognostic value of assessing FLT3-ITD mutations in NPM1-positive AML and identify the adverse prognostic impact of high WBC and CD34 expression in this subgroup of AML.
Collapse
Affiliation(s)
- Harry Dang
- Department of Laboratory Hematology, University Health Network, Toronto, Ontario, Canada M5G 2C4; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A1
| | | | | | | | | |
Collapse
|
24
|
Emadi A, Karp JE. The clinically relevant pharmacogenomic changes in acute myelogenous leukemia. Pharmacogenomics 2013; 13:1257-69. [PMID: 22920396 DOI: 10.2217/pgs.12.102] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acute myelogenous leukemia (AML) is an extremely heterogeneous neoplasm with several clinical, pathological, genetic and molecular subtypes. Combinations of various doses and schedules of cytarabine and different anthracyclines have been the mainstay of treatment for all forms of AMLs in adult patients. Although this combination, with the addition of an occasional third agent, remains effective for treatment of some young-adult patients with de novo AML, the prognosis of AML secondary to myelodysplastic syndromes or myeloproliferative neoplasms, treatment-related AML, relapsed or refractory AML, and AML that occurs in older populations remains grim. Taken into account the heterogeneity of AML, one size does not and should not be tried to fit all. In this article, the authors review currently understood, applicable and relevant findings related to cytarabine and anthracycline drug-metabolizing enzymes and drug transporters in adult patients with AML. To provide a prime-time example of clinical applicability of pharmacogenomics in distinguishing a subset of patients with AML who might be better responders to farnesyltransferase inhibitors, the authors also reviewed findings related to a two-gene transcript signature consisting of high RASGRP1 and low APTX, the ratio of which appears to positively predict clinical response in AML patients treated with farnesyltransferase inhibitors.
Collapse
Affiliation(s)
- Ashkan Emadi
- University of Maryland, School of Medicine, Marlene & Stewart Greenebaum Cancer Center, Leukemia & Hematologic Malignancies, Baltimore, MD 21201, USA
| | | |
Collapse
|
25
|
Aljitawi OS, Lin TL. Research Highlights: Highlights from the latest articles in molecular profiling and prognosis in acute myeloid leukemia. Per Med 2012; 9:679-682. [PMID: 29776265 DOI: 10.2217/pme.12.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Omar S Aljitawi
- University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Tara L Lin
- University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|