1
|
Dong J, Buradagunta CS, Zhang T, Spellman S, Bolon YT, DeZern AE, Gadalla SM, Deeg HJ, Nazha A, Cutler C, Cheng C, Urrutia R, Auer P, Saber W. Prognostic landscape of mitochondrial genome in myelodysplastic syndrome after stem-cell transplantation. J Hematol Oncol 2023; 16:21. [PMID: 36899395 PMCID: PMC9999628 DOI: 10.1186/s13045-023-01418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023] Open
Abstract
Despite mitochondrial DNA (mtDNA) mutations are common events in cancer, their global frequency and clinical impact have not been comprehensively characterized in patients with myelodysplastic neoplasia (also known as myelodysplastic syndromes, MDS). Here we performed whole-genome sequencing (WGS) on samples obtained before allogenic hematopoietic cell transplantation (allo-HCT) from 494 patients with MDS who were enrolled in the Center for International Blood and Marrow Transplant Research. We evaluated the impact of mtDNA mutations on transplantation outcomes, including overall survival (OS), relapse, relapse-free survival (RFS), and transplant-related mortality (TRM). A random survival forest algorithm was applied to evaluate the prognostic performance of models that include mtDNA mutations alone and combined with MDS- and HCT-related clinical factors. A total of 2666 mtDNA mutations were identified, including 411 potential pathogenic variants. We found that overall, an increased number of mtDNA mutations was associated with inferior transplantation outcomes. Mutations in several frequently mutated mtDNA genes (e.g., MT-CYB and MT-ND5) were identified as independent predictors of OS, RFS, relapse and/or TRM after allo-HCT. Integration of mtDNA mutations into the models based on the Revised International Prognostic Scores (IPSS-R) and clinical factors related to MDS and allo-HCT could capture more prognostic information and significantly improve the prognostic stratification efforts. Our study represents the first WGS effort in MDS receiving allo-HCT and shows that there may be clinical utility of mtDNA variants to predict allo-HCT outcomes in combination with more standard clinical parameters.
Collapse
Affiliation(s)
- Jing Dong
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, HRC 5860, Milwaukee, WI, 53226, USA.
- Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA.
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Christopher Staffi Buradagunta
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, HRC 5860, Milwaukee, WI, 53226, USA
| | - Tao Zhang
- CIBMTR® (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program®/Be The Match®, Minneapolis, MN, USA
| | - Stephen Spellman
- CIBMTR® (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program®/Be The Match®, Minneapolis, MN, USA
| | - Yung-Tsi Bolon
- CIBMTR® (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program®/Be The Match®, Minneapolis, MN, USA
| | - Amy E DeZern
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology & Genetics, NIH-NCI Clinical Genetics Branch, Rockville, MD, USA
| | - H Joachim Deeg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Aziz Nazha
- Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Corey Cutler
- Stem Cell Transplantation and Cellular Therapy, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Paul Auer
- Division of Biostatistics, Institute for Health & Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Hematology and Oncology, Department of Medicine, CIBMTR® (Center for International Blood and Marrow Transplant Research), Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI, 53226, USA
- Cancer Center Biostatistics Shared Resource, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wael Saber
- Division of Hematology and Oncology, Department of Medicine, CIBMTR® (Center for International Blood and Marrow Transplant Research), Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI, 53226, USA.
| |
Collapse
|
2
|
Shaker Ardakani Z, Heidari MM, Khatami M, Bitaraf Sani M. Association of Pathogenic Missense and Nonsense Mutations in Mitochondrial COII Gene with Familial Adenomatous Polyposis (FAP). INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 9:255-265. [PMID: 33688483 PMCID: PMC7936074 DOI: 10.22088/ijmcm.bums.9.4.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/14/2020] [Indexed: 10/31/2022]
Abstract
Nuclear genetic mutations have been extensively investigated in solid tumors. However, the role of the mitochondrial genome remains uncertain. Since the metabolism of solid tumors is associated with aerobic glycolysis and high lactate production, tumors may have mitochondrial dysfunctions. Familial adenomatous polyposis (FAP) is a rare form of colorectal cancer and an autosomal dominant inherited condition that is characterized by the progress of numerous adenomatous polyps in the rectum and colon. The present study aimed at understanding the nature and effect of mitochondrial cytochrome c oxidase subunit 2 (COII) gene mutations in FAP tumorigenesis. Fifty-six (26 familial and 30 sporadic) FAP patients and 60 normal controls were enrolled in this study. COII point mutations were evaluated by PCR and direct sequencing methods, and a total of 7 mtDNA mutations were detected (3 missense, 1 nonsense, and 3 synonymous variations). Novel non-synonymous COII gene mutations were mostly in heteroplasmic state. These mutations change amino acid residues in the N-terminal and C-terminal regions of COXII. Bioinformatics analysis and three-dimensional structural modeling predicted that these missense and nonsense mutations have functional importance, and mainly affected on cytochrome c oxidase (complex IV). Also, FAP patients carried a meaningfully higher prevalence of mutations in the COII gene in comparison with healthy controls (P <0.001). Analysis of cancer-associated mtDNA mutation could be an invaluable tool for molecular assessment of FAP so that these findings can be helpful for the development of potential new biomarkers in the diagnosis of cancer for future clinical assessments.
Collapse
Affiliation(s)
| | | | - Mehri Khatami
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Morteza Bitaraf Sani
- Animal Science Research Department, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Yazd, Iran
| |
Collapse
|
3
|
Jaberi E, Tresse E, Grønbæk K, Weischenfeldt J, Issazadeh-Navikas S. Identification of unique and shared mitochondrial DNA mutations in neurodegeneration and cancer by single-cell mitochondrial DNA structural variation sequencing (MitoSV-seq). EBioMedicine 2020; 57:102868. [PMID: 32629384 PMCID: PMC7334819 DOI: 10.1016/j.ebiom.2020.102868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Point mutations and structural variations (SVs) in mitochondrial DNA (mtDNA) contribute to many neurodegenerative diseases. Technical limitations and heteroplasmy, however, have impeded their identification, preventing these changes from being examined in neurons in healthy and disease states. Methods We have developed a high-resolution technique—Mitochondrial DNA Structural Variation Sequencing (MitoSV-seq)—that identifies all types of mtDNA SVs and single-nucleotide variations (SNVs) in single neurons and novel variations that have been undetectable with conventional techniques. Findings Using MitoSV-seq, we discovered SVs/SNVs in dopaminergic neurons in the Ifnar1−/− murine model of Parkinson disease. Further, MitoSV-seq was found to have broad applicability, delivering high-quality, full-length mtDNA sequences in a species-independent manner from human PBMCs, haematological cancers, and tumour cell lines, regardless of heteroplasmy. We characterised several common SVs in haematological cancers (AML and MDS) that were linked to the same mtDNA region, MT-ND5, using only 10 cells, indicating the power of MitoSV-seq in determining single-cancer-cell ontologies. Notably, the MT-ND5 hotspot, shared between all examined cancers and Ifnar1−/− dopaminergic neurons, suggests that its mutations have clinical value as disease biomarkers. Interpretation MitoSV-seq identifies disease-relevant mtDNA mutations in single cells with high resolution, rendering it a potential drug screening platform in neurodegenerative diseases and cancers. Funding The Lundbeck Foundation, Danish Council for Independent Research-Medicine, and European Union Horizon 2020 Research and Innovation Programme.
Collapse
Affiliation(s)
- Elham Jaberi
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Emilie Tresse
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Kirsten Grønbæk
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; Department of Hematology, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; The Danish Stem Cell Center (Danstem), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 14, DK-2200 Copenhagen, Denmark
| | - Joachim Weischenfeldt
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
4
|
Shi Q, Luan Q, Wang X, Cai Y. Correlation study on mtDNA polymorphisms as potential risk factors in aggressive periodontitis by NGS. Oral Dis 2019; 26:401-408. [PMID: 31715075 DOI: 10.1111/odi.13231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/11/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Using next-generation sequencing (NGS) to determine whether aggressive periodontitis is associated with specific mitochondrial polymorphisms. MATERIALS AND METHODS A total of 165 unrelated Han Chinese were enrolled in the study. We analyzed the mitochondrial DNA (mtDNA) in 97 patients with aggressive periodontitis and 68 healthy controls by NGS. The mitochondrial DNA was L-PCR-amplified and subsequently sequenced by an Illumina Genome Analyzer (NGS). Chi-square tests were used to assess the differences between the two groups. In cases of significant difference, multivariate logistic regression models were further used to analyze the association between mtDNA polymorphisms and aggressive periodontitis. RESULTS Significant association was observed between aggressive periodontitis and eight mitochondrial polymorphisms: "8860G-10400C" (OR = 2.828, p = .002), "8701A" (OR = 2.308, p = .005), "12705C-10398A" (OR = 2.683, p = .002), "9540C" (OR = 3.838, p = .001) and "10873T-15043G" (OR = 4.375, p = .001). CONCLUSIONS The pathogenesis of aggressive periodontitis is complicated, and its heredity is not well characterized. Our study was the first to use next-generation sequencing and found that 8860G-10400C, 8701A, 12705C-10398A, 9540C, and 10873T-15043G are associated with aggressive periodontitis in the Han Chinese population.
Collapse
Affiliation(s)
- Qiao Shi
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Qingxian Luan
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaoxuan Wang
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yu Cai
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
5
|
Ghosh K, Ghosh K. Iron chelators or therapeutic modulators of iron overload: Are we anywhere near ideal one? Indian J Med Res 2019; 148:369-372. [PMID: 30665999 PMCID: PMC6362722 DOI: 10.4103/ijmr.ijmr_2001_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Kanjaksha Ghosh
- Surat Raktadan Kendra & Research Centre, Surat 395 002, Gujarat, India
| | - Kinjalka Ghosh
- Department of Biochemistry, Tata Memorial Hospital, Mumbai 400 012, Maharashtra, India
| |
Collapse
|
6
|
Li L, Xing R, Cui J, Li W, Lu Y. Investigation of frequent somatic mutations of MTND5 gene in gastric cancer cell lines and tissues. MITOCHONDRIAL DNA PART B-RESOURCES 2018; 3:1002-1008. [PMID: 33474396 PMCID: PMC7800514 DOI: 10.1080/23802359.2018.1501287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present study investigated the single nucleotide variants (SNVs) in mitochondrial DNA (mtDNA) of 13 paired gastric cancer tissue samples and seven gastric cancer cell lines using direct sequencing analysis of the MTND5 region. Results showed that nuclear mitochondrial pseudogenes (NUMTs) and mitochondrial copy number affected the detection of the SNV frequency in gastric cancer tissue and cell line samples using high-throughput sequencing technique. The heteroplasmic point mutation C12474T and G12835A happened in AGS and BGC823 cell lines, respectively. A total of seven SNVs were found in three paired gastric cancer tissue samples, including five heteroplasmic point mutations (A12406G, C12705T, T12882C, G12501A, and A12584G) and two homoplasmic point mutations (G12561A and C13590T). Gastric cancer tissue sample 16 exhibited the highest SNVs frequency with four SNVs (np 12406, np 12705, np 12882, and np 12501), whereas no SNVs or SNPs were detected in the tissue sample 4. SNP 12705 turned out to be an SNV in gastric cancer tissue sample 16. SNV 12338 detected by exome sequencing approach appeared to be an SNP in this study.
Collapse
Affiliation(s)
- Lian Li
- Department of Microbiology, Basic Medical College of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Rui Xing
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiantao Cui
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Wenmei Li
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Youyong Lu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
7
|
Should every Patient with MDS get Iron Chelation - Probably Yes. Mediterr J Hematol Infect Dis 2017; 9:e2017055. [PMID: 28894564 PMCID: PMC5584764 DOI: 10.4084/mjhid.2017.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022] Open
|
8
|
Wang HR, Li YW, Wu JL, Guo SL. Mitochondrial tRNA mutations in patients with myelodysplastic syndromes. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 27:2315-7. [PMID: 25812051 DOI: 10.3109/19401736.2015.1022760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increasing evidence showed that mitochondria play an important role in the development of myelodysplastic syndromes (MDS). Mitochondrial dysfunctions caused by mitochondrial DNA mutations, especially mitochondrial tRNA mutations, were found to be associated with MDS in many studies. However, the link between a candidate mitochondrial tRNA mutation and MDS was not clear. In this study, we investigated the role of some mitochondrial tRNA mutations, and their deleterious roles were further discussed.
Collapse
Affiliation(s)
- Hui-Rui Wang
- a Department of Hematology , Luoyang Central Hospital Affiliated to Zhengzhou University , Luoyang , China
| | - Ya-Wei Li
- a Department of Hematology , Luoyang Central Hospital Affiliated to Zhengzhou University , Luoyang , China
| | - Jun-Long Wu
- a Department of Hematology , Luoyang Central Hospital Affiliated to Zhengzhou University , Luoyang , China
| | - Shu-Li Guo
- a Department of Hematology , Luoyang Central Hospital Affiliated to Zhengzhou University , Luoyang , China
| |
Collapse
|
9
|
Andel M, Masri F, Klema J, Krejcik Z, Belickova M. Sparse omics-network regularization to increase interpretability and performance of linear classification models. 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) 2015:615-620. [DOI: 10.1109/bibm.2015.7359754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Genetics factors associated with myelodysplastic syndromes. Blood Cells Mol Dis 2015; 55:76-81. [PMID: 25976472 DOI: 10.1016/j.bcmd.2015.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/16/2015] [Indexed: 12/16/2022]
Abstract
The myelodysplastic syndromes (MDS) are a clinically and cytogenetically heterogeneous group of clonal diseases. Clonal chromosomal abnormalities are observed in 30-50% of patients with MDS. The deletions are among the most common alterations, and often involve the long arms of chromosomes 5, 7, 8, 13, and 20 and the short arms of chromosomes 12 and 17. The advent of new technologies for the detection of genetic abnormalities led to the description of a new set of recurrent mutations, leading to new insights into the pathophysiology of MDS. The recent recognition that genes involved in the regulation of histone function (EZH2, ASXL1, and UTX) and DNA methylation (DNMT3A, IDH1/IDH2, and TET2) are frequently mutated in MDS, has led to the proposal that there is an important link between genetic and epigenetic alterations in this disease. In fact, regulatory factors have also been considered as miR-143/miR-145, miR-146a, miR-125a and MiR-21. Somatic mutations may influence the clinical phenotype but are not included in current prognostic scoring systems. In recent years research has brought new insights into these diseases, but few of the findings are sufficiently robust to be incorporated into the clinical routine at this time. Thus, the aim of this study was to review the role of genetic factors involved in the diagnosis and development of the different phenotypes of MDS.
Collapse
|
11
|
Cayci T, Kurt B, Gulcan Kurt Y, Akgul EO. MtDNA depletion and deletions may also have a role in myelodysplastic syndrome. Ann Hematol 2014; 93:179. [DOI: 10.1007/s00277-013-1778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/28/2013] [Indexed: 10/26/2022]
|