1
|
Leprovost S, Plasson C, Balieu J, Walet-Balieu ML, Lerouge P, Bardor M, Mathieu-Rivet E. Fine-tuning the N-glycosylation of recombinant human erythropoietin using Chlamydomonas reinhardtii mutants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3018-3027. [PMID: 38968612 DOI: 10.1111/pbi.14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Abstract
Microalgae are considered as attractive expression systems for the production of biologics. As photosynthetic unicellular organisms, they do not require costly and complex media for growing and are able to secrete proteins and perform protein glycosylation. Some biologics have been successfully produced in the green microalgae Chlamydomonas reinhardtii. However, post-translational modifications like glycosylation of these Chlamydomonas-made biologics have poorly been investigated so far. Therefore, in this study, we report on the first structural investigation of glycans linked to human erythropoietin (hEPO) expressed in a wild-type C. reinhardtii strain and mutants impaired in key Golgi glycosyltransferases. The glycoproteomic analysis of recombinant hEPO (rhEPO) expressed in the wild-type strain demonstrated that the three N-glycosylation sites are 100% glycosylated with mature N-glycans containing four to five mannose residues and carrying core xylose, core fucose and O-methyl groups. Moreover, expression in C. reinhardtii insertional mutants defective in xylosyltransferases A and B and fucosyltransferase resulted in drastic decreases of core xylosylation and core fucosylation of glycans N-linked to the rhEPOs, thus demonstrating that this strategy offers perspectives for humanizing the N-glycosylation of the Chlamydomonas-made biologics.
Collapse
Affiliation(s)
- S Leprovost
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, Rouen, France
- Institute for Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - C Plasson
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, Rouen, France
| | - J Balieu
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, Rouen, France
| | - M-L Walet-Balieu
- Infrastructure de Recherche HeRacLeS, Plate-forme protéomique PISSARO, Université de Rouen Normandie, Rouen, France
| | - P Lerouge
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, Rouen, France
| | - M Bardor
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, Rouen, France
| | - E Mathieu-Rivet
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, Rouen, France
| |
Collapse
|
2
|
Michalak O, Cybulski M, Szymanowski W, Gornowicz A, Kubiszewski M, Ostrowska K, Krzeczyński P, Bielawski K, Trzaskowski B, Bielawska A. Synthesis, Biological Activity, ADME and Molecular Docking Studies of Novel Ursolic Acid Derivatives as Potent Anticancer Agents. Int J Mol Sci 2023; 24:ijms24108875. [PMID: 37240221 DOI: 10.3390/ijms24108875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
A series of new ursolic acid (UA) derivatives substituted with various amino acids (AAs) or dipeptides (DP) at the C-3 position of the steroid skeleton was designed and synthesized. The compounds were obtained by the esterification of UA with the corresponding AAs. The cytotoxic activity of the synthesized conjugates was determined using the hormone-dependent breast cancer cell line MCF-7 and the triple-negative breast cancer cell line MDA. Three derivatives (l-seryloxy-, l-prolyloxy- and l-alanyl-l-isoleucyloxy-) showed micromolar IC50 values and reduced the concentrations of matrix metalloproteinases 2 and 9. Further studies revealed that for two compounds (l-seryloxy- and l-alanyl-l-isoleucyloxy-), a possible mechanism of their antiproliferative action is the activation of caspase-7 and the proapoptotic Bax protein in the apoptotic pathway. The third compound (l-prolyloxy- derivative) showed a different mechanism of action as it induced autophagy as measured by an increase in the concentrations of three autophagy markers: LC3A, LC3B, and beclin-1. This derivative also showed statistically significant inhibition of the proinflammatory cytokines TNF-α and IL-6. Finally, for all synthesized compounds, we computationally predicted their ADME properties as well as performed molecular docking to the estrogen receptor to assess their potential for further development as anticancer agents.
Collapse
Affiliation(s)
- Olga Michalak
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Marcin Cybulski
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Wojciech Szymanowski
- Department of Biotechnology, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| | - Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| | - Marek Kubiszewski
- Analytical Research Section, Pharmaceutical Analysis Laboratory, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Kinga Ostrowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Piotr Krzeczyński
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| | - Bartosz Trzaskowski
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, 2C Banacha Str., 02-097 Warsaw, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| |
Collapse
|
3
|
Wang MX, Yan L, Chen J, Zhao JM, Zhu J, Yu SH. Reinforced erythroid differentiation inhibits leukemogenic potential of t(8;21) leukemia. FASEB J 2022; 36:e22562. [PMID: 36125067 DOI: 10.1096/fj.202200026rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022]
Abstract
Oncoprotein AML1-ETO (AE) derived from t(8;21)(q22;q22) translocation is typically present in a portion of French-American-British-M2 subtype of acute myeloid leukemia (AML). Although these patients have relatively favorable prognoses, substantial numbers of them would relapse after conventional therapy. Here, we explored whether reinforcing the endogenous differentiation potential of t(8;21) AML cells would diminish the associated malignancy. In doing so, we noticed an expansion of immature erythroid blasts featured in both AML1-ETO9a (AE9a) and AE plus c-KIT (N822K) (AK) murine leukemic models. Interestingly, in the AE9a murine model, a spontaneous step-wise erythroid differentiation path, as characterized by the differential expression of CD43/c-Kit and the upregulation of several key erythroid transcription factors (TFs), accompanied the decline or loss of leukemia-initiating potential. Notably, overexpression of one of the key erythroid TFs, Ldb1, potently disrupted the repopulation of AE9a leukemic cells in vivo, suggesting a new promising intervention strategy of t(8;21) AML through enforcing their erythroid differentiation.
Collapse
Affiliation(s)
- Meng-Xi Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Yan
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Mei Zhao
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiang Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China.,Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shan-He Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Abstract
The introduction of antiretroviral therapy (ART) and highly active antiretroviral therapy (HAART) has transformed human immunodeficiency virus (HIV)-1 into a chronic, well-managed disease. However, these therapies do not eliminate all infected cells from the body despite suppressing viral load. Viral rebound is largely due to the presence of cellular reservoirs which support long-term persistence of HIV-1. A thorough understanding of the HIV-1 reservoir will facilitate the development of new strategies leading to its detection, reduction, and elimination, ultimately leading to curative therapies for HIV-1. Although immune cells derived from lymphoid and myeloid progenitors have been thoroughly studied as HIV-1 reservoirs, few studies have examined whether mesenchymal stromal/stem cells (MSCs) can assume this function. In this review, we evaluate published studies which have assessed whether MSCs contribute to the HIV-1 reservoir. MSCs have been found to express the receptors and co-receptors required for HIV-1 entry, albeit at levels of expression and receptor localisation that vary considerably between studies. Exposure to HIV-1 and HIV-1 proteins alters MSC properties in vitro, including their proliferation capacity and differentiation potential. However, in vitro and in vivo experiments investigating whether MSCs can become infected with and harbour latent integrated proviral DNA are lacking. In conclusion, MSCs appear to have the potential to contribute to the HIV-1 reservoir. However, further studies are needed using techniques such as those used to prove that cluster of differentiation (CD)4+ T cells constitute an HIV-1 reservoir before a reservoir function can definitively be ascribed to MSCs.
Collapse
|
5
|
A review on epidermal growth factor receptor's role in breast and non-small cell lung cancer. Chem Biol Interact 2021; 351:109735. [PMID: 34742684 DOI: 10.1016/j.cbi.2021.109735] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022]
Abstract
Epithelial growth factor receptor (EGFR) is a cell surface transmembrane receptor that mediates the tyrosine signaling pathway to carry the extracellular messages inside the cell and thereby alter the function of nucleus. This leads to the generation of various protein products to up or downregulate the cellular function. It is encoded by cell erythroblastosis virus oncogene B1, so called C-erb B1/ERBB2/HER-2 gene that acts as a proto-oncogene. It belongs to the HER-2 receptor-family in breast cancer and responds best with anti-Herceptin therapy (anti-tyrosine kinase monoclonal antibody). HER-2 positive breast cancer patient exhibits worse prognosis without Herceptin therapy. Similar incidence and prognosis are reported in other epithelial neoplasms like EGFR + lung non-small cell carcinoma and glioblastoma (grade IV brain glial tumor). Present study highlights the role and connectivity of EGF with various cancers via signaling pathways, cell surface receptors mechanism, macromolecules, mitochondrial genes and neoplasm. Present study describes the EGFR associated gene expression profiling (in breast cancer and NSCLC), relation between mitrochondrial genes and carcinoma, and several in vitro and in vivo models to screen the synergistic effect of various combination treatments. According to this study, although clinical studies including targeted treatments, immunotherapies, radiotherapy, TKi-EGFR combined targeted therapy have been carried out to investigate the synergism of combination therapy; however still there is a gap to apply the scenarios of experimental and clinical studies for further developments. This review will give an idea about the transition from experimental to most advanced clinical studies with different combination drug strategies to treat cancer.
Collapse
|
6
|
Bracamonte SE, Knopf K, Monaghan MT. Encapsulation of Anguillicola crassus reduces the abundance of adult parasite stages in the European eel (Anguilla anguilla). JOURNAL OF FISH DISEASES 2021; 44:771-782. [PMID: 33270932 DOI: 10.1111/jfd.13301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
Encapsulation of the parasitic nematode Anguillicola crassus Kuwahara, Niimi & Hagaki is commonly observed in its native host, the Japanese eel (Anguilla japonica Temminck & Schlegel). Encapsulation has also been described in a novel host, the European eel (A. anguilla L.), and there is evidence that encapsulation frequency has increased since the introduction of A. crassus. We examined whether encapsulation of A. crassus provides an advantage to its novel host in Lake Müggelsee, NE Germany. We provide the first evidence that encapsulation was associated with reduced abundance of adult A. crassus. This pattern was consistent in samples taken 3 months apart. There was no influence of infection on the expression of the two metabolic genes studied, but the number of capsules was negatively correlated with the expression of two mhc II genes of the adaptive immune response, suggesting a reduced activation. Interestingly, eels that encapsulated A. crassus had higher abundances of two native parasites compared with non-encapsulating eels. We propose that the response of A. anguilla to infection by A. crassus may interfere with its reaction to other co-occurring parasites.
Collapse
Affiliation(s)
- Seraina E Bracamonte
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Klaus Knopf
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael T Monaghan
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Lee J, Vernet A, Gruber NG, Kready KM, Burrill DR, Way JC, Silver PA. Rational engineering of an erythropoietin fusion protein to treat hypoxia. Protein Eng Des Sel 2021; 34:6414420. [PMID: 34725710 DOI: 10.1093/protein/gzab025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 12/16/2022] Open
Abstract
Erythropoietin enhances oxygen delivery and reduces hypoxia-induced cell death, but its pro-thrombotic activity is problematic for use of erythropoietin in treating hypoxia. We constructed a fusion protein that stimulates red blood cell production and neuroprotection without triggering platelet production, a marker for thrombosis. The protein consists of an anti-glycophorin A nanobody and an erythropoietin mutant (L108A). The mutation reduces activation of erythropoietin receptor homodimers that induce erythropoiesis and thrombosis, but maintains the tissue-protective signaling. The binding of the nanobody element to glycophorin A rescues homodimeric erythropoietin receptor activation on red blood cell precursors. In a cell proliferation assay, the fusion protein is active at 10-14 M, allowing an estimate of the number of receptor-ligand complexes needed for signaling. This fusion protein stimulates erythroid cell proliferation in vitro and in mice, and shows neuroprotective activity in vitro. Our erythropoietin fusion protein presents a novel molecule for treating hypoxia.
Collapse
Affiliation(s)
- Jungmin Lee
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Andyna Vernet
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Nathalie G Gruber
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Kasia M Kready
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Devin R Burrill
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jeffrey C Way
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Pramanik SK, Das A. Small luminescent molecular probe for developing as assay for alkaline phosphatase. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Du Q, He D, Zeng HL, Liu J, Yang H, Xu LB, Liang H, Wan D, Tang CY, Cai P, Huang JH, Zhang SH. Siwu Paste protects bone marrow hematopoietic function in rats with blood deficiency syndrome by regulating TLR4/NF-κB/NLRP3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113160. [PMID: 32736053 DOI: 10.1016/j.jep.2020.113160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Siwu Paste (SWP) was recorded in the first national Pharmacopoeia of China, "Tai Ping Hui Min He Ji Ju Fang", it showed excellent effects in regulating all syndromes relevant to blood. AIM OF THE STUDY This study aimed to investigate the protective effects of Siwu Paste (SWP) on bone marrow hematopoietic by using rats' model with blood deficiency syndrome induced by chemotherapy. MATERIALS AND METHODS Animal model with blood deficiency syndrome was successfully established by evaluating their peripheral blood cell level and erythrocyte membrane energy metabolism enzyme activity. Serum hematopoietic cytokine levels were detected by using Enzyme-linked immunosorbent assay (ELISA). Hematoxylin-Eosin (HE) staining method was used to observe the pathological morphology of femur bone marrow, and the viability of BMSC was detected by Cell Counting Kit (CCK-8). Furthermore, the expression of toll-like receptor 4 (TLR4), nuclear transcription factor kB (NF-κB), and NOD-like receptor protein 3 (NLRP3) protein in femur bone marrow were detected by using Western-blotting and High-content cell imaging analysis system (HCA). RESULTS Obtained results showed that SWP could significantly improve the status of anemia, regulate the expressions of serum hematopoietic cytokines, and protect bone marrow hematopoietic cells. Furthermore, the expressions of TLR4, NF-κB, and NLRP3 protein were inhibited in bone marrow hematopoietic cells. CONCLUSIONS Siwu Paste (SWP) could recover the bone marrow hematopoietic functions in rats with blood deficiency syndrome. The therapeutic mechanism may be related to the regulation of serum hematopoietic cytokines, and inhibition of TLR4/NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Qing Du
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Dan He
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Hong-Liang Zeng
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Jian Liu
- The First Hospital of Hunan University of Chinese Medicine, Central Laboratory, Changsha, Hunan, 410007, China.
| | - Hui Yang
- The First Hospital of Hunan University of Chinese Medicine, Central Laboratory, Changsha, Hunan, 410007, China.
| | - Lin-Ben Xu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Hao Liang
- Institute of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Dan Wan
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Chun-Yu Tang
- Hunan Times Sunshine Pharmaceutical Co., Ltd., Changsha, Hunan, 410208, China.
| | - Ping Cai
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Jian-Hua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Shui-Han Zhang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| |
Collapse
|
10
|
Locatelli F, Del Vecchio L, De Nicola L, Minutolo R. Are all erythropoiesis-stimulating agents created equal? Nephrol Dial Transplant 2020; 36:1369-1377. [PMID: 32206785 DOI: 10.1093/ndt/gfaa034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/29/2019] [Indexed: 12/17/2022] Open
Abstract
Erythropoiesis-stimulating agents (ESAs) are effective drugs to correct and maintain haemoglobin (Hb) levels, however, their use at doses to reach high Hb targets has been associated with an increased risk of cardiovascular adverse events, mortality and cancer. Presently used ESAs have a common mechanism of action but different pharmacokinetic and pharmacodynamic characteristics. Accordingly, the mode of activation of the erythropoietin (EPO) receptor can exert marked differences in downstream events. It is unknown whether the various ESA molecules have different efficacy/safety profiles. The relative mortality and morbidity risks associated with the use of different types of ESAs remains poorly evaluated. Recently an observational study and a randomized clinical trial provided conflicting results regarding this matter. However, these two studies displayed several differences in patient characteristics and ESA molecules used. More importantly, by definition, randomized clinical trials avoid bias by indication and suffer less from confounding factors. Therefore they bring a higher degree of evidence. The scenario becomes even more complex when considering the new class of ESAs, called prolyl-hydroxylase domain (PHD) inhibitors. They are oral drugs that mimic exposure to hypoxia and stabilize hypoxia-inducible factor α. They profoundly differ from presently used ESAs, as they have multiple targets of action, including the stimulation of endogenous EPO synthesis, direct mobilization/absorption of iron and a higher reduction of hepcidin. Accordingly, they have the potential to be more effective in inflamed patients with functional iron deficiency, i.e. the setting of patients who are at higher risk of cardiovascular events and mortality in response to present ESA use. As for ESAs, individual PHD inhibitors differ in molecular structure and degree of selectivity for the three main PHD isoforms; their efficacy and safety profiles may therefore be different from that of presently available ESAs.
Collapse
Affiliation(s)
- Francesco Locatelli
- Past Director of the Department of Nephrology and Dialysis, Alessandro Manzoni Hospital, ASST Lecco, Lecco, Italy
| | | | - Luca De Nicola
- Department of Scienze Mediche e Chirurgiche Avanzate, Division of Nephrology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberto Minutolo
- Department of Scienze Mediche e Chirurgiche Avanzate, Division of Nephrology, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
11
|
Zhang Z, Zhang Y, Gao M, Cui X, Yang Y, van Duijn B, Wang M, Hu Y, Wang C, Xiong Y. Steamed Panax notoginseng Attenuates Anemia in Mice With Blood Deficiency Syndrome via Regulating Hematopoietic Factors and JAK-STAT Pathway. Front Pharmacol 2020; 10:1578. [PMID: 32038252 PMCID: PMC6985777 DOI: 10.3389/fphar.2019.01578] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
Panax notoginseng (Burk.) F. H. Chen is a medicinal herb used to treat blood disorders since ancient times, of which the steamed form exhibits the anti-anemia effect and acts with a “blood-tonifying” function according to traditional use. The present study aimed to investigate the anti-anemia effect and underlying mechanism of steamed P. notoginseng (SPN) on mice with blood deficiency syndrome induced by chemotherapy. Blood deficiency syndrome was induced in mice by cyclophosphamide and acetylphenylhydrazine. A number of peripheral blood cells and organs (liver, kidney, and spleen) coefficients were measured. The mRNA expression of hematopoietic function-related cytokines in the bone marrow of mice was detected by RT-qPCR. The janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway was screened based on our previous analysis by network pharmacology. The expression of related proteins and cell cycle factors predicted in the pathway was determined by Western blot and RT-qPCR. SPN could significantly increase the numbers of peripheral blood cells and reverse the enlargement of spleen in a dose-dependent manner. The quantities of related hematopoietic factors in bone marrow were also increased significantly after SPN administration. SPN was involved in the cell cycle reaction and activation of immune cells through the JAK-STAT pathway, which could promote the hematopoiesis.
Collapse
Affiliation(s)
- Zejun Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yiming Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Min Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Bert van Duijn
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands.,Fytagoras BV, Leiden, Netherlands
| | - Mei Wang
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands.,LU-European Center for Chinese Medicine, Leiden University, Leiden, Netherlands.,SUBioMedicine BV, Leiden, Netherlands
| | - Yupiao Hu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Chengxiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yin Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Institute of Biology Leiden, Leiden University, Leiden, Netherlands.,Fytagoras BV, Leiden, Netherlands.,LU-European Center for Chinese Medicine, Leiden University, Leiden, Netherlands
| |
Collapse
|
12
|
Li ZH, Wu C, Ke H, Xue Q, Tang Q, Li J, Feng S, Xu XY. You-Gui-Yin improved the reproductive dysfunction of male rats with chronic kidney disease via regulating the HIF1α-STAT5 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112240. [PMID: 31526861 DOI: 10.1016/j.jep.2019.112240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/26/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE You-Gui-Yin (YGY) is a famous Chinese traditional medicine compound that has been used to treat renal function diseases for more than 300 years. It is recorded in Jing Yue Quanshu, which was written by a famous medical scientist named Jiebing Zhang in the Ming Dynasty. AIM OF THE STUDY Reproductive dysfunction is one of the most serious complications of chronic kidney disease (CKD). The aim of this study was to observe the effect of You-Gui-Yin (YGY) on reproductive dysfunction of male rats with adenine-induced CKD and to determine if any effects occurred via regulation of the HIF1α-STAT5 pathway. MATERIALS AND METHODS UPLC-Q-TOF-MS was used to detect the main medicinal components and conduct quality control of YGY. A total of 60 rats were randomly divided into 2 groups: the NC group (10 rats) and the CKD model group (50 rats). The CKD model rats was established by administration of adenine 150 mg kg-1 orally for 14 days. After that, the CKD rats were randomly divided into 5 groups: the CKD group, YGY (10 g kg-1 group, 20 g kg-1 group, 40 g kg-1 group) and the GUI-LU-ER-XIAN-JIAO (GL) 10 g kg-1 group with 10 rats in each group. From the 15th day to the 45th day rats were given 150 mg kg-1 adenine orally every other day to maintain the model (except in the NC group). The YGY groups and the GL group were orally administered the relevant drug once per day for 30 days. The NC group and the CKD group were orally administered an equal volume of normal saline for 30 days. On the 45th day, the rats' sexual behavior index was tested. On the 46th day, the rats were sacrificed. Biochemical indexes, histopathological changes of the kidneys and testes, sperm morphology, sperm abnormality rate, and key proteins in the HIF1α-STAT5 pathway in the kidney and testis were detected. RESULTS Thirteen components in the YGY extract were identified by UPLC-Q-TOF-MS for quality control of the YGY extract. The results of the biochemical and physiological tests validated the success of inducing CKD accompanied by reproductive dysfunction in rats. YGY significantly retarded the CKD progression and improved the hormone levels of male CKD rats. Sexual behavior tests showed YGY can significantly improve CKD rats' sexual function. In addition, the pathological changes of the kidney and testis, sperm abnormality rate and sperm morphological abnormalities of the CKD rats were reduced by YGY. Furthermore, decreased expression of HIF1α and EPO, and increased expression of p-EPOR (Tyr368), p-JAK2 (Tyr570) and p-STAT5 (Ser725) were observed in the kidney and the testis of the CKD rats. The YGY extract dramatically increased the expression of HIF1α and EPO, and decreased the expression of p-EPOR (Tyr368), p-JAK2 (Tyr570) and p-STAT5 (Ser725) to regulate key proteins in the HIF1α-STAT5 pathway of the kidney and testis. CONCLUSIONS YGY has obvious reversal effects on the abnormal symptoms of adenine-induced CKD and the abnormal symptoms of rats with hypothyroidism and male reproductive hypotension. Its mechanism is related to its ability to regulate the HIF1α-STAT5 pathway.
Collapse
Affiliation(s)
- Zhuo-Heng Li
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, 400715, China; Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, 400715, China
| | - Chao Wu
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, 400715, China; Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, 400715, China
| | - Hui Ke
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, 400715, China; Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, 400715, China
| | - Qiang Xue
- Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Qing Tang
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, 400715, China; Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, 400715, China
| | - Jingjing Li
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, 400715, China; Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, 400715, China
| | - Shan Feng
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, 400715, China; Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, 400715, China
| | - Xiao-Yu Xu
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, 400715, China; Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, 400715, China.
| |
Collapse
|
13
|
Teo GY, Rasedee A, Al-Haj NA, Beh CY, How CW, Rahman HS, Alitheen NB, Rosli R, Abdullah ASH, Ali AS. Effect of fetal bovine serum on erythropoietin receptor expression and viability of breast cancer cells. Saudi J Biol Sci 2019; 27:653-658. [PMID: 32210684 PMCID: PMC6997850 DOI: 10.1016/j.sjbs.2019.11.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/17/2019] [Accepted: 11/24/2019] [Indexed: 02/03/2023] Open
Abstract
Erythropoietin receptors (EPORs) are present not only in erythrocyte precursors but also in non-hematopoietic cells including cancer cells. In this study, we determined the effect of fetal bovine serum (FBS) in culture medium on the EPOR expression and viability of the estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Using flow cytometry, we showed that the inclusion of 10% FBS in the medium increased the EPOR expressions and viabilities of MDA-MB-231 and MCF-7 cells. The MDA-MB-231 showed greater EPOR expression than MCF-7 cells, suggesting that the presence of ERs on cells is associated with poor expression of EPOR. Culture medium containing 10% FBS also caused increased number of breast cancer cells entering the synthesis phase of the cell cycle. The study also showed that rHuEPO treatment did not affect viability of breast cancer cells. In conclusion, it was shown that the inclusion of FBS in culture medium increased expression of EPOR in breast cancer cells and rHuEPO treatment had no effect on the proliferation of these cancer cells.
Collapse
Affiliation(s)
- Guan-Young Teo
- Institute of Bioscience, Universiti Putra Malaysia, Malaysia
| | - Abdullah Rasedee
- Institute of Bioscience, Universiti Putra Malaysia, Malaysia.,Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| | - Nagi A Al-Haj
- Institute of Bioscience, Universiti Putra Malaysia, Malaysia
| | - Chaw Yee Beh
- Institute of Bioscience, Universiti Putra Malaysia, Malaysia
| | - Chee Wun How
- Monash University, 47500 Bandar Sunway, Selangor, Malaysia
| | | | | | - Rozita Rosli
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | | | | |
Collapse
|
14
|
Heo GS, Detering L, Luehmann HP, Primeau T, Lee YS, Laforest R, Li S, Stec J, Lim KH, Lockhart AC, Liu Y. Folate Receptor α-Targeted 89Zr-M9346A Immuno-PET for Image-Guided Intervention with Mirvetuximab Soravtansine in Triple-Negative Breast Cancer. Mol Pharm 2019; 16:3996-4006. [PMID: 31369274 DOI: 10.1021/acs.molpharmaceut.9b00653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Folate receptor α (FRα) is a well-studied tumor biomarker highly expressed in many epithelial tumors such as breast, ovarian, and lung cancers. Mirvetuximab soravtansine (IMGN853) is the antibody-drug conjugate of FRα-binding humanized monoclonal antibody M9346A and cytotoxic maytansinoid drug DM4. IMGN853 is currently being evaluated in multiple clinical trials, in which the immunohistochemical evaluation of an archival tumor or biopsy specimen is used for patient screening. However, limited tissue collection may lead to inaccurate diagnosis due to tumor heterogeneity. Herein, we developed a zirconium-89 (89Zr)-radiolabeled M9346A (89Zr-M9346A) as an immuno-positron emission tomography (immuno-PET) radiotracer to evaluate FRα expression in triple-negative breast cancer (TNBC) patients, providing a novel means to guide intervention with therapeutic IMGN853. In this study, we verified the binding specificity and immunoreactivity of 89Zr-M9346A by in vitro studies in FRαhigh cells (HeLa) and FRαlow cells (OVCAR-3). In vivo PET/computed tomography (PET/CT) imaging in HeLa xenografts and TNBC patient-derived xenograft (PDX) mouse models with various levels of FRα expression demonstrated its targeting specificity and sensitivity. Following PET imaging, the treatment efficiencies of IMGN853, pemetrexed, IMGN853 + pemetrexed, paclitaxel, and saline were assessed in FRαhigh and FRαlow TNBC PDX models. The correlation between 89Zr-M9346A tumor uptake and treatment response using IMGN853 in FRαhigh TNBC PDX model suggested the potential of 89Zr-M9346A PET as a noninvasive tool to prescreen patients based on the in vivo PET imaging for IMGN853-targeted treatment.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents, Phytogenic/chemistry
- Drug Therapy, Combination
- Female
- Folate Receptor 1/immunology
- Folate Receptor 1/metabolism
- HeLa Cells
- Humans
- Immunoconjugates/chemistry
- Immunoconjugates/pharmacokinetics
- Immunoconjugates/therapeutic use
- Maytansine/analogs & derivatives
- Maytansine/chemistry
- Maytansine/pharmacokinetics
- Maytansine/therapeutic use
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- Molecular Targeted Therapy/methods
- Paclitaxel/therapeutic use
- Pemetrexed/therapeutic use
- Positron Emission Tomography Computed Tomography/methods
- Radioisotopes/chemistry
- Radioisotopes/pharmacokinetics
- Tissue Distribution
- Treatment Outcome
- Triple Negative Breast Neoplasms/diagnostic imaging
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/metabolism
- Xenograft Model Antitumor Assays
- Zirconium/chemistry
- Zirconium/pharmacokinetics
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - James Stec
- ImmunoGen, Inc. , Waltham , Massachusetts 02451 , United States
| | | | | | | |
Collapse
|
15
|
de Oliveira LR, Jaqaman K. FISIK: Framework for the Inference of In Situ Interaction Kinetics from Single-Molecule Imaging Data. Biophys J 2019; 117:1012-1028. [PMID: 31443908 DOI: 10.1016/j.bpj.2019.07.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/27/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Recent experimental and computational developments have been pushing the limits of live-cell single-molecule imaging, enabling the monitoring of intermolecular interactions in their native environment with high spatiotemporal resolution. However, interactions are captured only for the labeled subset of molecules, which tends to be a small fraction. As a result, it has remained a challenge to calculate molecular interaction kinetics, in particular association rates, from live-cell single-molecule tracking data. To overcome this challenge, we developed a mathematical modeling-based Framework for the Inference of in Situ Interaction Kinetics (FISIK) from single-molecule imaging data with substoichiometric labeling. FISIK consists of (I) devising a mathematical model of molecular movement and interactions, mimicking the biological system and data-acquisition setup, and (II) estimating the unknown model parameters, including molecular association and dissociation rates, by fitting the model to experimental single-molecule data. Due to the stochastic nature of the model and data, we adapted the method of indirect inference for model calibration. We validated FISIK using a series of tests in which we simulated trajectories of diffusing molecules that interact with each other, considering a wide range of model parameters, and including resolution limitations, tracking errors, and mismatches between the model and the biological system it mimics. We found that FISIK has the sensitivity to determine association and dissociation rates, with accuracy and precision depending on the labeled fraction of molecules and the extent of molecule tracking errors. For cases where the labeled fraction is too low (e.g., to afford accurate tracking), combining dynamic but sparse single-molecule imaging data with almost-whole population oligomer distribution data improves FISIK's performance. All in all, FISIK is a promising approach for the derivation of molecular interaction kinetics in their native environment from single-molecule imaging data with substoichiometric labeling.
Collapse
Affiliation(s)
| | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas; Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
16
|
Elliott S. Impact of Inadequate Methods and Data Analysis on Reproducibility. J Pharm Sci 2019; 109:1211-1219. [PMID: 31351867 DOI: 10.1016/j.xphs.2019.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022]
Abstract
Failure to reproduce results of articles is recognized, but the causes, and therefore solutions, are not. One possibility is that deficits in quality of the work result in varying or inconclusive results. Erythropoiesis-stimulating agents have been used to treat anemia in patients with cancer, but there are concerns that erythropoiesis-stimulating agents might stimulate Epo receptors on tumor cells (Epo receptor-cancer hypothesis). Articles have been published on the topic, but the data and conclusions conflict, making them suitable for examination of a relationship between quality and reproducibility. Comprehensive literature searches were performed, and 280 relevant articles were identified. Numerous conflicts between and within these articles were apparent. The incidence of faults in quality parameters was high, including absence of adequate controls (90% of articles), inadequate validation of reagents and methods (87% of articles), and inadequate or improper statistical methods (84% of articles) with questionable interpretation of the data (81% of articles). This resulted in false-positive/negative data that varied with the reagents and methods used. The low quality of evidence may explain the poor reproducibility of Epo receptor-cancer articles.
Collapse
|
17
|
Effect of ESA as a modifier of radiotherapy in curative intended treatment of squamous cell carcinoma of the head and neck (HNSCC). Radiother Oncol 2019; 130:191-192. [DOI: 10.1016/j.radonc.2018.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 08/21/2018] [Indexed: 11/20/2022]
|
18
|
Knudsen LB, Lau J. The Discovery and Development of Liraglutide and Semaglutide. Front Endocrinol (Lausanne) 2019; 10:155. [PMID: 31031702 PMCID: PMC6474072 DOI: 10.3389/fendo.2019.00155] [Citation(s) in RCA: 397] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
The discovery of glucagon-like peptide-1 (GLP-1), an incretin hormone with important effects on glycemic control and body weight regulation, led to efforts to extend its half-life and make it therapeutically effective in people with type 2 diabetes (T2D). The development of short- and then long-acting GLP-1 receptor agonists (GLP-1RAs) followed. Our article charts the discovery and development of the long-acting GLP-1 analogs liraglutide and, subsequently, semaglutide. We examine the chemistry employed in designing liraglutide and semaglutide, the human and non-human studies used to investigate their cellular targets and pharmacological effects, and ongoing investigations into new applications and formulations of these drugs. Reversible binding to albumin was used for the systemic protraction of liraglutide and semaglutide, with optimal fatty acid and linker combinations identified to maximize albumin binding while maintaining GLP-1 receptor (GLP-1R) potency. GLP-1RAs mediate their effects via this receptor, which is expressed in the pancreas, gastrointestinal tract, heart, lungs, kidneys, and brain. GLP-1Rs in the pancreas and brain have been shown to account for the respective improvements in glycemic control and body weight that are evident with liraglutide and semaglutide. Both liraglutide and semaglutide also positively affect cardiovascular (CV) outcomes in individuals with T2D, although the precise mechanism is still being explored. Significant weight loss, through an effect to reduce energy intake, led to the approval of liraglutide (3.0 mg) for the treatment of obesity, an indication currently under investigation with semaglutide. Other ongoing investigations with semaglutide include the treatment of non-alcoholic fatty liver disease (NASH) and its use in an oral formulation for the treatment of T2D. In summary, rational design has led to the development of two long-acting GLP-1 analogs, liraglutide and semaglutide, that have made a vast contribution to the management of T2D in terms of improvements in glycemic control, body weight, blood pressure, lipids, beta-cell function, and CV outcomes. Furthermore, the development of an oral formulation for semaglutide may provide individuals with additional benefits in relation to treatment adherence. In addition to T2D, liraglutide is used in the treatment of obesity, while semaglutide is currently under investigation for use in obesity and NASH.
Collapse
Affiliation(s)
- Lotte Bjerre Knudsen
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
- *Correspondence: Lotte Bjerre Knudsen
| | - Jesper Lau
- Global Research Technology, Novo Nordisk A/S, Måløv, Denmark
| |
Collapse
|
19
|
Protective Role of Histidine Supplementation Against Oxidative Stress Damage in the Management of Anemia of Chronic Kidney Disease. Pharmaceuticals (Basel) 2018; 11:ph11040111. [PMID: 30347874 PMCID: PMC6315830 DOI: 10.3390/ph11040111] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022] Open
Abstract
Anemia is a major health condition associated with chronic kidney disease (CKD). A key underlying cause of this disorder is iron deficiency. Although intravenous iron treatment can be beneficial in correcting CKD-associated anemia, surplus iron can be detrimental and cause complications. Excessive generation of reactive oxygen species (ROS), particularly by mitochondria, leads to tissue oxidation and damage to DNA, proteins, and lipids. Oxidative stress increase in CKD has been further implicated in the pathogenesis of vascular calcification. Iron supplementation leads to the availability of excess free iron that is toxic and generates ROS that is linked, in turn, to inflammation, endothelial dysfunction, and cardiovascular disease. Histidine is indispensable to uremic patients because of the tendency toward negative plasma histidine levels. Histidine-deficient diets predispose healthy subjects to anemia and accentuate anemia in chronic uremic patients. Histidine is essential in globin synthesis and erythropoiesis and has also been implicated in the enhancement of iron absorption from human diets. Studies have found that L-histidine exhibits antioxidant capabilities, such as scavenging free radicals and chelating divalent metal ions, hence the advocacy for its use in improving oxidative stress in CKD. The current review advances and discusses evidence for iron-induced toxicity in CKD and the mechanisms by which histidine exerts cytoprotective functions.
Collapse
|
20
|
Aapro M, Beguin Y, Bokemeyer C, Dicato M, Gascón P, Glaspy J, Hofmann A, Link H, Littlewood T, Ludwig H, Österborg A, Pronzato P, Santini V, Schrijvers D, Stauder R, Jordan K, Herrstedt J. Management of anaemia and iron deficiency in patients with cancer: ESMO Clinical Practice Guidelines. Ann Oncol 2018; 29:iv96-iv110. [PMID: 29471514 DOI: 10.1093/annonc/mdx758] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Affiliation(s)
- M Aapro
- Genolier Cancer Centre, Clinique de Genolier, Genolier, Switzerland
| | - Y Beguin
- University of Liège, Liège
- CHU of Liège, Liège, Belgium
| | - C Bokemeyer
- Department of Oncology, Hematology and BMT with Section Pneumology, University of Hamburg, Hamburg, Germany
| | - M Dicato
- Hématologie-Oncologie, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - P Gascón
- Department of Haematology-Oncology, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - J Glaspy
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - A Hofmann
- Medical Society for Blood Management, Laxenburg, Austria
| | - H Link
- Klinik für Innere Medizin I, Westpfalz-Klinikum, Kaiserslautern, Germany
| | - T Littlewood
- Department of Haematology, John Radcliffe Hospital, Oxford, UK
| | - H Ludwig
- Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | - A Österborg
- Karolinska Institute and Karolinska Hospital, Stockholm, Sweden
| | - P Pronzato
- Medica Oncology, IRCCS Asiana Pedaliter Universitaria San Martino - IST, Institutor Nazionale per la Ricercars sol Chancre, Genova
| | - V Santini
- Department of Experimental and Clinical Medicine, Haematology, University of Florence, Florence, Italy
| | - D Schrijvers
- Department of Medical Oncology, Ziekenhuisnetwerk Antwerpen, Antwerp, Belgium
| | - R Stauder
- Department of Internal Medicine V (Haematology and Oncology), Innsbruck Medical University, Innsbruck, Austria
| | - K Jordan
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - J Herrstedt
- Department of Oncology, Zealand University Hospital Roskilde, Roskilde
- University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Dik A, Saffari R, Zhang M, Zhang W. Contradictory effects of erythropoietin on inhibitory synaptic transmission in left and right prelimbic cortex of mice. Neurobiol Stress 2018; 9:113-123. [PMID: 30450377 PMCID: PMC6234276 DOI: 10.1016/j.ynstr.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/24/2018] [Indexed: 12/28/2022] Open
Abstract
Erythropoietin (EPO) has been shown to improve cognitive function in mammals as well as in patients of psychiatric diseases by directly acting on the brain. In addition, EPO attenuates the synaptic transmission and enhances short- and long-term synaptic plasticity in hippocampus of mice, although there are still many discrepancies between different studies. It has been suggested that the divergences of different studies take root in different in-vivo application schemata or in long-term trophic effects of EPO. In the current study, we investigated the direct effects of EPO in slices of prelimbic cortex (PrL) by acute ex-vivo application of EPO, so that the erythropoietic or other trophic effects could be entirely excluded. Our results showed that the EPO effects were contradictory between the left and the right PrL. It enhanced the inhibitory transmission in the left and depressed the inhibitory transmission in the right PrL. Strikingly, this lateralized effect of EPO could be consistently found in individual bi-lateral PrL of all tested mice. Thus, our data suggest that EPO differentially modulates the inhibitory synaptic transmission of neuronal networks in the left and the right PrL. We hypothesize that such lateralized effects of EPO contribute to the development of the lateralization of stress reaction in PFC and underlie the altered bilateral GAGAergic synaptic transmission and oscillation patterns under stress that impact the central emotional and cognitive control in physiology as well as in pathophysiology. EPO showed fast effects on inhibitory transmission in the prefrontal cortex of mice. EPO enhanced the inhibitory transmission in the left and depressed it in the right prelimbic cortex of mice. The expression of EPOR in GAD+-neurons is different between the left and right PFC.
Collapse
Affiliation(s)
- Andre Dik
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Germany.,Department of Neurology, University of Muenster, Germany
| | - Roja Saffari
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Germany
| | - Mingyue Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Germany
| | - Weiqi Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Germany
| |
Collapse
|
22
|
Reifarth M, Schubert US, Hoeppener S. Considerations for the Uptake Characteristic of Inorganic Nanoparticles into Mammalian Cells-Insights Gained by TEM Investigations. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Martin Reifarth
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
23
|
Zhuang X, Zhao D, Yang P, Jia Y, Liang R, Zhao Q, Han C, Kinsella JM, Sheng R, Li J. 99m Tc-labeled rHuEpo for imaging of the erythropoietin receptor in tumors. J Labelled Comp Radiopharm 2017; 61:77-83. [PMID: 29140573 DOI: 10.1002/jlcr.3586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 11/10/2022]
Abstract
To analyze erythropoietin receptor (EpoR) status in tumors, recombinant human erythropoietin (rHuEpo) was labeled with 99m Tc by 99m Tc-centered 1-pot synthesis, resulting in high radiochemical purity, stability, and biological activity. Both in vitro cell culture experiments and biodistribution studies of normal rats demonstrated successful EpoR targeting. The biodistribution of labeled rHuEpo in a NCI-H1975 xenograft model showed tumor accumulation (tumor-to-muscle ratio, 4.27 ± 1.77), confirming the expression of active EpoR in tumors. Thus, as a novel single positron emission computerized tomography tracer for the imaging of EpoR expression in vivo, 99m Tc-rHuEpo is effective for exploring the role of EpoR in cancer growth, metastasis and angiogenesis.
Collapse
Affiliation(s)
- Xiaoqing Zhuang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Dan Zhao
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Pengfei Yang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yingqin Jia
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Rui Liang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Qian Zhao
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chunlei Han
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Ruilong Sheng
- CAS Key Laboratory for Organic Functional Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,CQM-Centrode Quimica da Madeira, Universidade da Madeira, Funchal, Madeira, Portugal
| | - Juan Li
- General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
24
|
Wang J, Hayashi Y, Yokota A, Xu Z, Zhang Y, Huang R, Yan X, Liu H, Ma L, Azam M, Bridges JP, Cancelas JA, Kalfa TA, An X, Xiao Z, Huang G. Expansion of EPOR-negative macrophages besides erythroblasts by elevated EPOR signaling in erythrocytosis mouse models. Haematologica 2017; 103:40-50. [PMID: 29051279 PMCID: PMC5777189 DOI: 10.3324/haematol.2017.172775] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/10/2017] [Indexed: 02/04/2023] Open
Abstract
Activated erythropoietin (EPO) receptor (EPOR) signaling causes erythrocytosis. The important role of macrophages for the erythroid expansion and differentiation process has been reported, both in baseline and stress erythropoiesis. However, the significance of EPOR signaling for regulation of macrophages contributing to erythropoiesis has not been fully understood. Here we show that EPOR signaling activation quickly expands both erythrocytes and macrophages in vivo in mouse models of primary and secondary erythrocytosis. To mimic the chimeric condition and expansion of the disease clone in the polycythemia vera patients, we combined Cre-inducible Jak2V617F/+ allele with LysM-Cre allele which expresses in mature myeloid cells and some of the HSC/Ps (LysM-Cre;Jak2V617F/+ mice). We also generated inducible EPO-mediated secondary erythrocytosis models using Alb-Cre, Rosa26-loxP-stop-loxP-rtTA, and doxycycline inducible EPAS1-double point mutant (DPM) alleles (Alb-Cre;DPM mice). Both models developed a similar degree of erythrocytosis. Macrophages were also increased in both models without increase of major inflammatory cytokines and chemokines. EPO administration also quickly induced these macrophages in wild-type mice before observable erythrocytosis. These findings suggest that EPOR signaling activation could induce not only erythroid cell expansion, but also macrophages. Surprisingly, an in vivo genetic approach indicated that most of those macrophages do not express EPOR, but erythroid cells and macrophages contacted tightly with each other. Given the importance of the central macrophages as a niche for erythropoiesis, further elucidation of the EPOR signaling mediated-regulatory mechanisms underlying macrophage induction might reveal a potential therapeutic target for erythrocytosis.
Collapse
Affiliation(s)
- Jieyu Wang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA.,Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yoshihiro Hayashi
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Asumi Yokota
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Zefeng Xu
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yue Zhang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Rui Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Xiaomei Yan
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Hongyun Liu
- Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liping Ma
- Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mohammad Azam
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - James P Bridges
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Jose A Cancelas
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Theodosia A Kalfa
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Gang Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA .,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
25
|
Reid G, Lois N. Erythropoietin in diabetic retinopathy. Vision Res 2017; 139:237-242. [PMID: 28652140 DOI: 10.1016/j.visres.2017.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/21/2017] [Accepted: 05/24/2017] [Indexed: 12/19/2022]
Abstract
Over the past years, knowledge has expanded with regards to the multiple roles played by erythropoietin (EPO) in the body. Once believed to be a hormone synthesised in the kidney and involved only in the modulation of erythrocyte production, it is recognised now that EPO can be produced in many tissues, including the retina, and by many cells. In these tissues EPO is released in response to "tissue injury" and appears to have protective functions. Despite the extensive research conducted to date, the cues leading to release of EPO and its effects in the normal and diseased retina have not been fully elucidated. In vitro and in vivo experimental studies as well as small interventional clinical studies suggest a potential beneficial effect of externally administered EPO in early diabetic retinopathy and diabetic macular oedema. In contrast, controversy exists with regards to the possible use of EPO in proliferative diabetic retinopathy. Non-erythropoietic EPO-derived peptides, produced with the aim of increasing effectiveness and reducing side effects of EPO, are currently under investigation in early phase clinical trials.
Collapse
Affiliation(s)
- Gerard Reid
- Ophthalmology Department, Belfast Health and Social Care Trust, Royal Victoria Hospital, 274 Grosvenor Rd, Belfast BT12 6BA, UK
| | - Noemi Lois
- Ophthalmology Department, Belfast Health and Social Care Trust, Royal Victoria Hospital, 274 Grosvenor Rd, Belfast BT12 6BA, UK; Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, BT9 7BL Belfast, UK.
| |
Collapse
|
26
|
Miljus N, Massih B, Weis MA, Rison JV, Bonnas CB, Sillaber I, Ehrenreich H, Geurten BRH, Heinrich R. Neuroprotection and endocytosis: erythropoietin receptors in insect nervous systems. J Neurochem 2017; 141:63-74. [DOI: 10.1111/jnc.13967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/23/2016] [Accepted: 01/24/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Natasa Miljus
- Department of Cellular Neurobiology; Institute for Zoology; University of Goettingen; Goettingen Germany
| | - Bita Massih
- Department of Cellular Neurobiology; Institute for Zoology; University of Goettingen; Goettingen Germany
| | - Marissa A. Weis
- Department of Cellular Neurobiology; Institute for Zoology; University of Goettingen; Goettingen Germany
| | - Jan Vincent Rison
- Department of Cellular Neurobiology; Institute for Zoology; University of Goettingen; Goettingen Germany
| | | | | | - Hannelore Ehrenreich
- Clinical Neuroscience; Max Planck Institute of Experimental Medicine; Goettingen Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB); Goettingen Germany
| | - Bart R. H. Geurten
- Department of Cellular Neurobiology; Institute for Zoology; University of Goettingen; Goettingen Germany
| | - Ralf Heinrich
- Department of Cellular Neurobiology; Institute for Zoology; University of Goettingen; Goettingen Germany
| |
Collapse
|
27
|
Wood MA, Goldman N, DePierri K, Somerville J, Riggs JE. Erythropoietin increases macrophage-mediated T cell suppression. Cell Immunol 2016; 306-307:17-24. [PMID: 27262376 PMCID: PMC4983461 DOI: 10.1016/j.cellimm.2016.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/06/2016] [Accepted: 05/25/2016] [Indexed: 12/22/2022]
Abstract
Erythropoietin (EPO), used to treat anemia in cancer patients, has been reported to accelerate tumor progression and increase mortality. Research of the mechanism for this effect has focused upon EPOR expression by tumor cells. We model the high macrophage to lymphocyte ratio found in tumor microenvironments (TMEs) by culturing peritoneal cavity (PerC) cells that naturally have a high macrophage to T cell ratio. Following TCR ligation, C57BL/6J PerC T cell proliferation is suppressed due to IFNγ-triggered inducible nitric oxide synthase (iNOS) expression. EPO was tested in the PerC culture model and found to increase T cell suppression. This effect could be abrogated by inhibiting iNOS by enzyme inhibition, genetic ablation, or blocking IFNγ signaling. Flow cytometry revealed the EPOR on CD11b(+)F4/80(+) macrophages. These results suggest that EPO could increase T cell suppression in the TME by acting directly on macrophages.
Collapse
Affiliation(s)
- Michelle A Wood
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - Naomi Goldman
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - Kelley DePierri
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - John Somerville
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - James E Riggs
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA.
| |
Collapse
|
28
|
Carbamylated erythropoietin enhances mice ventilatory responses to changes in O2 but not CO2 levels. Respir Physiol Neurobiol 2016; 232:1-12. [PMID: 27317882 DOI: 10.1016/j.resp.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 11/21/2022]
Abstract
Erythropoietin (EPO) has beneficial tissue-protective effects in several diseases but erythrocytosis may cause deleterious effects in EPO-treated patients. Thus carbamylated-EPO (C-EPO) and other derivatives retaining tissue-protective but lacking bone marrow-stimulating actions have been developed. Although EPO modulates ventilatory responses, the effects of C-EPO on ventilation have not been investigated. Here, basal breathing and respiratory chemoreflexes were measured by plethysmography after acute and chronic treatments with recombinant human C-EPO (rhC-EPO; 15,000 IU/kg during 5days) or saline (control group). Hematocrit, plasma and brainstem rhC-EPO levels were also quantified. Chronic rhC-EPO significantly elevated tissue rhC-EPO levels but not hematocrit. None of the drug regimen altered basal ventilation (normoxia). Chronic but not acute rhC-EPO enhanced hyperoxic ventilatory depression, and sustained the hypoxic ventilatory response mainly via a reduction of the roll-off phase. By contrast, rhC-EPO did not blunt the ventilatory response to hypercapnia. Thus, chronic C-EPO may be a promising therapy to improve breathing during hypoxia while minimizing adverse effects on cardiovascular function.
Collapse
|
29
|
Fandrey J, Hallek M. [Erythropoiesis: Physiology, pathophysiology, and algorithm for classification of the type of anemia]. Internist (Berl) 2015; 56:970-7. [PMID: 26338062 DOI: 10.1007/s00108-015-3712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Erythropoiesis is a continuous process that replaces 1% of all erythrocytes per day. To keep the erythrocyte count within stable limits about 3 million cells/s must be renewed. This enormous turnover requires folic acid and vitamin B12 for proper cell differentiation and iron for sufficient haemoglobin synthesis. In particular, iron metabolism underlies a precise regulation which may be disturbed by chronic bleeding, inflammatory disease or impaired dietary intake. If the loss of red blood cells due to physiological aging or bleeding is not balanced by sufficient erythropoiesis in the bone marrow, anaemia will develop. For the classification of various types of anaemia, a well-established algorithm has been proven useful. This algorithm addresses basic questions such as erythrocyte volume, the underlying mechanism, e.g. whether too many cells are destroyed or new cells are not sufficiently generated, and finally aims to define the main causes for the above identified disturbance of erythropoiesis.
Collapse
Affiliation(s)
- J Fandrey
- Institut für Physiologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Deutschland,
| | | |
Collapse
|
30
|
Meyer FRL, Steinborn R, Grausgruber H, Wolfesberger B, Walter I. Expression of platelet-derived growth factor BB, erythropoietin and erythropoietin receptor in canine and feline osteosarcoma. Vet J 2015; 206:67-74. [PMID: 26189892 PMCID: PMC4582422 DOI: 10.1016/j.tvjl.2015.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022]
Abstract
The discovery of expression of the erythropoietin receptor (EPO-R) on neoplastic cells has led to concerns about the safety of treating anaemic cancer patients with EPO. In addition to its endocrine function, the receptor may play a role in tumour progression through an autocrine mechanism. In this study, the expression of EPO, EPO-R and platelet-derived growth factor BB (PDGF-BB) was analysed in five feline and 13 canine osteosarcomas using immunohistochemistry (IHC) and reverse transcription polymerase chain reaction (RT-PCR). EPO expression was positive in all tumours by IHC, but EPO mRNA was only detected in 38% of the canine and 40% of the feline samples. EPO-R was expressed in all samples by quantitative RT-PCR (RT-qPCR) and IHC. EPO-R mRNA was expressed at higher levels in all feline tumours, tumour cell lines, and kidney when compared to canine tissues. PDGF-BB expression was variable by IHC, but mRNA was detected in all samples. To assess the functionality of the EPO-R on tumour cells, the proliferation of canine and feline osteosarcoma cell lines was evaluated after EPO administration using an alamarBlue assay and Ki67 immunostaining. All primary cell lines responded to EPO treatment in at least one of the performed assays, but the effect on proliferation was very low indicating only a weak responsiveness of EPO-R. In conclusion, since EPO and its receptor are expressed by canine and feline osteosarcomas, an autocrine or paracrine tumour progression mechanism cannot be excluded, although in vitro data suggest a minimal role of EPO-R in osteosarcoma cell proliferation.
Collapse
Affiliation(s)
- F R L Meyer
- Institute of Anatomy, Histology and Embryology, Department of Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - R Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - H Grausgruber
- Division of Plant Breeding, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz-Strasse 24, 3430 Vienna, Austria
| | - B Wolfesberger
- Department for Companion Animals and Horses, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - I Walter
- Institute of Anatomy, Histology and Embryology, Department of Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
31
|
Doleschel D, Rix A, Arns S, Palmowski K, Gremse F, Merkle R, Salopiata F, Klingmüller U, Jarsch M, Kiessling F, Lederle W. Erythropoietin improves the accumulation and therapeutic effects of carboplatin by enhancing tumor vascularization and perfusion. Am J Cancer Res 2015; 5:905-18. [PMID: 26000061 PMCID: PMC4440446 DOI: 10.7150/thno.11304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/27/2015] [Indexed: 11/05/2022] Open
Abstract
Recombinant human erythropoietin (rhuEpo) is currently under debate for the treatment of chemotherapy-induced anemia due to clinical trials showing adverse effects in Epo-treated patients and the discovery of the erythropoietin-receptor (EpoR) in tumor and endothelial cells. Here, using Epo-Cy5.5 as theranostic near-infrared fluorescent probe we analyzed the effects of rhuEpo as co-medication to carboplatin in non-small-cell-lung-cancer (NSCLC)-xenografts with different tumor cell EpoR-expression (H838 ~8-fold higher than A549). Nude mice bearing subcutaneous A549 and H838 NSCLC-xenografts received either only carboplatin or carboplatin and co-medication of rhuEpo in two different doses. Tumor sizes and relative blood volumes (rBV) were longitudinally measured by 3D-contrast-enhanced ultrasound (3D-US). Tumoral EpoR-levels were determined by combined fluorescence molecular tomography (FMT)/ micro computed tomography (µCT) hybrid imaging. We found that rhuEpo predominantly acted on the tumor endothelium. In both xenografts, rhuEpo co-medication significantly increased vessel densities, diameters and the amount of perfused vessels. Accordingly, rhuEpo induced EpoR-phoshorylation and stimulated proliferation of endothelial cells. However, compared with solely carboplatin-treated tumors, tumor growth was significantly slower in the groups co-medicated with rhuEpo. This is explained by the Epo-mediated vascular remodeling leading to improved drug delivery as obvious by a more than 2-fold higher carboplatin accumulation and significantly enhanced tumor apoptosis. In addition, co-medication of rhuEpo reduced tumor hypoxia and diminished intratumoral EpoR-levels which continuously increased during carboplatin (Cp) -treatment. These findings suggest that co-medication of rhuEpo in well balanced doses can be used to improve the accumulation of anticancer drugs. Doses and indications may be personalized and refined using theranostic EpoR-probes.
Collapse
|
32
|
Emerging EPO and EPO receptor regulators and signal transducers. Blood 2015; 125:3536-41. [PMID: 25887776 DOI: 10.1182/blood-2014-11-575357] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
As essential mediators of red cell production, erythropoietin (EPO) and its cell surface receptor (EPO receptor [EPOR]) have been intensely studied. Early investigations defined basic mechanisms for hypoxia-inducible factor induction of EPO expression, and within erythroid progenitors EPOR engagement of canonical Janus kinase 2/signal transducer and activator of transcription 5 (JAK2/STAT5), rat sarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (RAS/MEK/ERK), and phosphatidylinositol 3-kinase (PI3K) pathways. Contemporary genetic, bioinformatic, and proteomic approaches continue to uncover new clinically relevant modulators of EPO and EPOR expression, and EPO's biological effects. This Spotlight review highlights such factors and their emerging roles during erythropoiesis and anemia.
Collapse
|
33
|
Wiedenmann T, Ehrhardt S, Cerny D, Hildebrand D, Klein S, Heeg K, Kubatzky KF. Erythropoietin acts as an anti-inflammatory signal on murine mast cells. Mol Immunol 2015; 65:68-76. [PMID: 25645506 DOI: 10.1016/j.molimm.2015.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/23/2014] [Accepted: 01/12/2015] [Indexed: 02/01/2023]
Abstract
Recently it was found that the erythropoietin receptor (EpoR) is expressed on innate immune cells, such as dendritic cells and macrophages. We found that murine bone marrow-derived mast cells express the EpoR and that its expression is increased under hypoxic conditions. Interestingly, Epo stimulation of the cells did not activate signal transducer and activator of transcription molecules, nor did we find differences in the expression of typical STAT-dependent genes, the proliferation rate, and the ability to differentiate or to protect the cells from apoptosis. Instead, we demonstrate that stimulation of mast cells with Epo leads to phosphorylation of the receptor tyrosine kinase c-kit. We hypothesize that this is due to the formation of a receptor complex between the EpoR and c-kit. The common beta chain of the IL-3 receptor family, which was described as part of the tissue protective receptor (TPR) on other non-erythroid cells, however is not activated. To investigate whether the EpoR/c-kit complex has tissue protective properties, cells were treated with the Toll-like receptor ligand LPS. Combined Epo and LPS treatment downregulated the inflammatory response of the cells as detected by a decrease in IL-6 and TNF-α secretion.
Collapse
Affiliation(s)
- Tanja Wiedenmann
- Universitätsklinikum Heidelberg, Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Germany.
| | - Stefanie Ehrhardt
- Universitätsklinikum Heidelberg, Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Germany.
| | - Daniela Cerny
- Universitätsklinikum Heidelberg, Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Germany.
| | - Dagmar Hildebrand
- Universitätsklinikum Heidelberg, Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Germany.
| | - Sabrina Klein
- Universitätsklinikum Heidelberg, Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Germany.
| | - Klaus Heeg
- Universitätsklinikum Heidelberg, Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Germany.
| | - Katharina F Kubatzky
- Universitätsklinikum Heidelberg, Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Germany.
| |
Collapse
|
34
|
Abstract
Osteoblasts are an important cellular component of the bone microenvironment controlling bone formation and hematopoiesis. Understanding the cellular and molecular mechanisms by which osteoblasts regulate these processes is a rapidly growing area of research given the important implications for bone therapy, regenerative medicine, and hematopoietic stem cell transplantation. Here we summarize our current knowledge regarding the cellular and molecular crosstalk driving bone formation and hematopoiesis and will discuss the implications of a recent finding demonstrating that osteoblasts are a cellular source of erythropoietin .
Collapse
|
35
|
Gonzales GF, Chaupis D. Higher androgen bioactivity is associated with excessive erythrocytosis and chronic mountain sickness in Andean Highlanders: a review. Andrologia 2014; 47:729-43. [PMID: 25277225 DOI: 10.1111/and.12359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2014] [Indexed: 01/12/2023] Open
Abstract
Populations living at high altitudes (HA), particularly in the Peruvian Central Andes, are characterised by presenting subjects with erythrocytosis and others with excessive erythrocytosis (EE)(Hb>21 g dl(-1) ). EE is associated with chronic mountain sickness (CMS), or lack of adaptation to HA. Testosterone is an erythropoietic hormone and it may play a role on EE at HA. The objective of the present review was to summarise findings on role of serum T levels on adaptation at HA and genes acting on this process. Men at HA without EE have higher androstenedione levels and low ratio androstenedione/testosterone than men with EE, suggesting low activity of 17beta-hydroxysteroid dehydrogenase (17beta-HSD), and this could be a mechanism of adaptation to HA. Higher conversion of dehydroepiandrosterone to testosterone in men with EE suggests nigher 17beta-HSD activity. Men with CMS at Peruvian Central Andes have two genes SENP1, and ANP32D with higher transcriptional response to hypoxia relative to those without. SUMO-specific protease 1 (SENP1) is an erythropoiesis regulator, which is essential for the stability and activity of hypoxia-inducible factor 1 (HIF-1α) under hypoxia. SENP1 reverses the hormone-augmented SUMOylation of androgen receptor (AR) increasing the transcription activity of AR.In conclusion, increased androgen activity is related with CMS.
Collapse
Affiliation(s)
- G F Gonzales
- Laboratory of Endocrinology and Reproduction, High Altitude Research Institute and Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - D Chaupis
- Laboratory of Endocrinology and Reproduction, High Altitude Research Institute and Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
36
|
Fuge F, Doleschel D, Rix A, Gremse F, Wessner A, Winz O, Mottaghy F, Lederle W, Kiessling F. In-vivo detection of the erythropoietin receptor in tumours using positron emission tomography. Eur Radiol 2014; 25:472-9. [PMID: 25196361 DOI: 10.1007/s00330-014-3413-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/01/2014] [Accepted: 08/25/2014] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Recombinant human erythropoietin (rhuEpo) is used clinically to treat anaemia. However, rhuEpo-treated cancer patients show decreased survival rates and erythropoietin receptor (EpoR) expression has been found in patient tumour tissue. Thus, rhuEpo application might promote EpoR(+) tumour progression. We therefore developed the positron emission tomography (PET)-probe (68)Ga-DOTA-rhuEpo and evaluated its performance in EpoR(+) A549 non-small-cell lung cancer (NSCLC) xenografts. METHODS (68)Ga-DOTA-rhuEpo was generated by coupling DOTA-hydrazide to carbohydrate side-chains of rhuEpo. Biodistribution was determined in tumour-bearing mice 0.5, 3, 6, and 9 h after probe injection. Competition experiments were performed by co-injecting (68)Ga-DOTA-rhuEpo and rhuEpo in five-fold excess. Probe specificity was further evaluated histologically using Epo-Cy5.5 stainings. RESULTS The blood half-life of (68)Ga-DOTA-rhuEpo was 2.6 h and the unbound fraction was cleared by the liver and kidney. After 6 h, the highest tumour to muscle ratio was reached. The highest (68)Ga-DOTA-rhuEpo accumulation was found in liver (10.06 ± 6.26%ID/ml), followed by bone marrow (1.87 ± 0.53%ID/ml), kidney (1.58 ± 0.39%ID/ml), and tumour (0.99 ± 0.16%ID/ml). EpoR presence in these organs was histologically confirmed. Competition experiments showed significantly (p < 0.05) lower PET-signals in tumour and bone marrow at 3 and 6 h. CONCLUSION (68)Ga-DOTA-rhuEpo shows favourable pharmacokinetic properties and detects EpoR specifically. Therefore, it might become a valuable radiotracer to monitor EpoR status in tumours and support decision-making in anaemia therapy. KEY POINTS • PET-probe (68) Ga-DOTA-rhuEpo was administered to assess the EpoR status in vivo • (68) Ga-DOTA-rhuEpo binds specifically to EpoR positive organs in vivo • Tumour EpoR status determination might enable decision-making in anaemia therapy with rhuEpo.
Collapse
Affiliation(s)
- Felix Fuge
- Department for Experimental Molecular Imaging (ExMI), Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|