1
|
Zhou Z, Liu S, Mei J, Liu T, Liu F, Zhang G. Systemic therapies for high-volume metastatic hormone-sensitive prostate cancer: a network meta-analysis. Acta Oncol 2023; 62:1083-1090. [PMID: 37548225 DOI: 10.1080/0284186x.2023.2241985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND We compared the effectiveness of currently available systemic therapies for high-volume metastatic hormone-sensitive prostate cancer (mHSPC) and aimed to establish the optimal treatment regimen. MATERIAL AND METHODS We searched multiple databases for randomized controlled trials (RCTs) that evaluated the efficacy of systemic therapy in patients with high-volume mHSPC. Bayesian network meta-analysis was used to indirectly compare overall survival (OS) and progression-free survival (PFS) of various systemic therapies. RESULTS Eleven RCTs (6708 participants) finally met the eligibility criteria. Compared with androgen deprivation therapy (ADT) alone, rezvilutamide (REZ) [hazard ratio (HR) = 0.58, 95% confidence interval (CI): 0.44-0.77], abiraterone (ABI) (HR = 0.61, 95% CI: 0.53-0.71), apalutamide (APA) (HR = 0.70, 95% CI: 0.56-0.88), enzalutamide (ENZ) (HR = 0.65, 95% CI: 0.53-0.80), docetaxel (DOC) (HR = 0.72, 95% CI: 0.63-0.84), darolutamide (DAR) + DOC (HR = 0.49, 95% CI: 0.39-0.62), and ABI + DOC (HR = 0.52, 95% CI: 0.38-0.71) significantly improved OS in patients with high-volume mHSPC. Compared with DOC, no advantages were observed for doublet therapies, including REZ, ABI, APA, and ENZ on the basis of ADT, whereas DAR + DOC (HR = 0.68, 95% CI: 0.57-0.82) and ABI + DOC (HR = 0.72, 95% CI: 0.55-0.95) was associated with better OS. The ranking analysis showed that triplet therapy (DAR + DOC + ADT and ABI + DOC + ADT) had the greatest improvement in OS, followed by REZ + ADT. All the regimens showed improved PFS in patients with high-volume mHSPC. Compared with DOC, significant differences were detected for DAR + DOC, ABI + DOC, ENZ + DOC, REZ, and ENZ. According to the ranking analysis, triplet therapy ranked first, followed by ENZ and REZ. CONCLUSIONS REZ + ADT were the highest ranked doublet therapy for improvement in OS of patients with high-volume mHSPC, second only to triplet therapy (DAR + DOC + ADT and ABI + DOC + ADT).
Collapse
Affiliation(s)
- Zhonghan Zhou
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Liu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingchang Mei
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tian Liu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Feng Liu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guiming Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Wang X, Wu Y, Liu J, Xu X, Sheng Z, Liu W, Chen M, Ma Y, Zhao D, Li D, Zheng X. Identification of target and pathway of aspirin combined with Lipitor treatment in prostate cancer through integrated bioinformatics analysis. Toxicol Appl Pharmacol 2022; 452:116169. [PMID: 35926565 DOI: 10.1016/j.taap.2022.116169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Our previous studies have confirmed that aspirin combined with Lipitor inhibited the development of prostate cancer (PCa), but the mechanisms need to be comprehensively expounded. The study aims to screen out the hub genes of combination therapy and to explore their association with the pathogenesis and prognosis of PCa. METHODS Gene expressions were quantified by RNA sequencing (RNA-seq). Altered biological function, pathways of differentially expressed genes (DEGs), protein-protein interaction network, the filtering of hub genes, gene co-expression and the pathogenesis and prognosis were revealed by bioinformatics analysis. The correlation between hub gene expression and patient survival was validated by Kaplan-Meier. The effects of silent DNA replication and sister chromatid cohesion 1 (siDSCC1) combined with Lipitor and aspirin on DSCC1 expression, viability, invasion and migration of PCa cells were detected by qRT-PCR, Wound healing and transwell assays. RESULTS 157 overlapped DEGs involved in FoxO, PI3K-Akt and p53 signaling pathways were identified. Ten hub genes (NEIL3, CDC7, DSCC1, CDC25C, PRIM1, MCM10, FBXO5, DTL, SERPINE1, EXO1) were verified to be correlated with the pathology and prognosis of PCa. DSCC1 silencing not only inhibited the viability, migration and invasion of PCa cells, but also strengthened the suppressing effects of Lipitor and aspirin alone or in combination on PCa cells. CONCLUSION The enrichment pathways and targets of Lipitor combined with aspirin in PCa are discovered, and DSCC1 silencing can potentiate the effect of Lipitor combined with aspirin in the treatment of PCa.
Collapse
Affiliation(s)
- Xiao Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City 529020, China
| | - Yi Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Junlei Liu
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City 529020, China
| | - Zhaojun Sheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City 529020, China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City 529020, China
| | - Min Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City 529020, China
| | - Yanyan Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City 529020, China
| | - Denggao Zhao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City 529020, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City 529020, China
| | - Xi Zheng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Ruters University, Piscataway NJ08854, USA.
| |
Collapse
|
3
|
Abstract
The ADAMs family belongs to the transmembrane protein superfamily of zinc-dependent metalloproteases, which consists of multiple domains. These domains have independent but complementary functions that enable them to participate in multiple biological processes. Among them, ADAM9 can not only participate in the degradation of extracellular matrix as a metalloprotease, but also mediate tumor cell adhesion through its deintegrin domain, which is closely related to tumor invasion and metastasis. It is widely expressed in a variety of tumor cells and can affect the proliferation, invasion and metastasis of related cancer cells. We provide our views on current progress, its increasing importance as a strategic treatment goal, and our vision for the future of ADAM9.
Collapse
Affiliation(s)
- M A Haoyuan
- Department of Clinical Medicine, China Medical University , Liaoning, Shenyang, China
| | - L I Yanshu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University , Liaoning, Shenyang, China
| |
Collapse
|
4
|
Göktuna SI, Diamanti MA, Chau TL. IKK
s and tumor cell plasticity. FEBS J 2018; 285:2161-2181. [DOI: 10.1111/febs.14444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serkan I. Göktuna
- Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
- National Nanotechnology Research Center (UNAM) Bilkent University Ankara Turkey
| | - Michaela A. Diamanti
- Georg‐Speyer‐Haus Institute for Tumor Biology and Experimental Therapy Frankfurt am Main Germany
| | - Tieu Lan Chau
- Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
| |
Collapse
|
5
|
Sun HY, Hou TJ, Zhang HY. Finding chemical drugs for genetic diseases. Drug Discov Today 2014; 19:1836-40. [DOI: 10.1016/j.drudis.2014.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/24/2014] [Accepted: 09/15/2014] [Indexed: 02/03/2023]
|
6
|
Koczurkiewicz P, Podolak I, Skrzeczyńska-Moncznik J, Sarna M, Wójcik KA, Ryszawy D, Galanty A, Lasota S, Madeja Z, Czyż J, Michalik M. Triterpene saponosides from Lysimachia ciliata differentially attenuate invasive potential of prostate cancer cells. Chem Biol Interact 2013; 206:6-17. [PMID: 23954719 DOI: 10.1016/j.cbi.2013.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 07/25/2013] [Accepted: 08/05/2013] [Indexed: 01/06/2023]
Abstract
Neither androgen ablation nor chemotherapeutic agents are effective in reducing the risk of prostate cancer progression. On the other hand, multifaceted effects of phytochemicals, such as triterpene saponins, on cancer cells have been suggested. A promising safety and tolerability profile indicate their possible application in the treatment of advanced prostate cancers. We analyzed the specificity, selectivity and versatility of desglucoanagalloside B effects on human prostate cancer cells derived from prostate cancer metastases to brain (DU-145 cells) and bone (PC-3 cells). Prominent growth arrest and apoptotic response of both cell types was observed in the presence of sub-micromolar desglucoanagalloside B concentrations. This was accompanied by cytochrome c release and caspase 3/7 activation. A relatively low cytostatic and pro-apoptotic response of cancer cells to a desglucoanagalloside B analog, anagallosaponin IV, illustrated the specificity of the effects of desglucoanagalloside B, whereas the low sensitivity of normal prostate PNT2 cells to desglucoanagalloside B showed the selectivity of its action. Inhibition of cancer cell motility was observed in the presence of both saponins, however only desglucoanagalloside B attenuated cancer cell invasive potential, predominantly through an effect on cell elastic properties. These data demonstrate the versatility of its effects on prostate cancer cells. In contrast to PNT2 cells, cancer cells tested in this study were relatively resistant to mitoxantrone. The multifaceted action of desglucoanagalloside B on basic cellular traits, crucial for prostate cancer progression, opens perspectives for elaboration of combined palliative therapies and new prostate cancer prophylaxis regimens.
Collapse
Affiliation(s)
- Paulina Koczurkiewicz
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; Department of Pharmacognosy, Pharmaceutical Faculty, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Imamura Y, Sakamoto S, Endo T, Utsumi T, Fuse M, Suyama T, Kawamura K, Imamoto T, Yano K, Uzawa K, Nihei N, Suzuki H, Mizokami A, Ueda T, Seki N, Tanzawa H, Ichikawa T. FOXA1 promotes tumor progression in prostate cancer via the insulin-like growth factor binding protein 3 pathway. PLoS One 2012; 7:e42456. [PMID: 22879989 PMCID: PMC3411739 DOI: 10.1371/journal.pone.0042456] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/09/2012] [Indexed: 12/28/2022] Open
Abstract
Fork-head box protein A1 (FOXA1) is a "pioneer factor" that is known to bind to the androgen receptor (AR) and regulate the transcription of AR-specific genes. However, the precise role of FOXA1 in prostate cancer (PC) remains unknown. In this study, we report that FOXA1 plays a critical role in PC cell proliferation. The expression of FOXA1 was higher in PC than in normal prostate tissues (P = 0.0002), and, using immunohistochemical analysis, we found that FOXA1 was localized in the nucleus. FOXA1 expression levels were significantly correlated with both PSA and Gleason scores (P = 0.016 and P = 0.031, respectively). Moreover, FOXA1 up-regulation was a significant factor in PSA failure (P = 0.011). Depletion of FOXA1 in a prostate cancer cell line (LNCaP) using small interfering RNA (siRNA) significantly inhibited AR activity, led to cell-growth suppression, and induced G0/G1 arrest. The anti-proliferative effect of FOXA1 siRNA was mediated through insulin-like growth factor binding protein 3 (IGFBP-3). An increase in IGFBP-3, mediated by depletion of FOXA1, inhibited phosphorylation of MAPK and Akt, and increased expression of the cell cycle regulators p21 and p27. We also found that the anti-proliferative effect of FOXA1 depletion was significantly reversed by simultaneous siRNA depletion of IGFBP-3. These findings provide direct physiological and molecular evidence for a role of FOXA1 in controlling cell proliferation through the regulation of IGFBP-3 expression in PC.
Collapse
Affiliation(s)
- Yusuke Imamura
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shinichi Sakamoto
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
- * E-mail:
| | - Takumi Endo
- Department of Urology, Toho University Medical Center Sakura Hospital, Chiba, Japan
| | - Takanobu Utsumi
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Miki Fuse
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takahito Suyama
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Koji Kawamura
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takashi Imamoto
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kojiro Yano
- Faculty of Information Science and Technology, Osaka Institute of Technology, Osaka, Japan
| | - Katsuhiro Uzawa
- Department of Clinical Molecular Biology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naoki Nihei
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroyoshi Suzuki
- Department of Urology, Toho University Medical Center Sakura Hospital, Chiba, Japan
| | - Atsushi Mizokami
- Department of Urology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Takeshi Ueda
- Prostate Center and Division of Urology, Chiba Cancer Center, Chiba, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideki Tanzawa
- Department of Clinical Molecular Biology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
8
|
Kato T, Ueda Y, Kinoh H, Yoneyama Y, Matsunaga A, Komaru A, Harada Y, Suzuki H, Komiya A, Shibata S, Hasegawa M, Hayashi H, Ichikawa T, Yonemitsu Y. RIG-I helicase-independent pathway in sendai virus-activated dendritic cells is critical for preventing lung metastasis of AT6.3 prostate cancer. Neoplasia 2010; 12:906-14. [PMID: 21076616 PMCID: PMC2978913 DOI: 10.1593/neo.10732] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 11/18/2022]
Abstract
We recently demonstrated highly efficient antitumor immunity against dermal tumors of B16F10 murine melanoma with the use of dendritic cells (DCs) activated by replication-competent, as well as nontransmissible-type, recombinant Sendai viruses (rSeV), and proposed a new concept, "immunostimulatory virotherapy," for cancer immunotherapy. However, there has been little information on the efficacies of this method: 1) in more clinically relevant situations including metastatic diseases, 2) on other tumor types and other animal species, and 3) on the related molecular/cellular mechanisms. In this study, therefore, we investigated the efficacy of vaccinating DCs activated by fusion gene-deleted nontransmissible rSeV on a rat model of lung metastasis using a highly malignant subline of Dunning R-3327 prostate cancer, AT6.3. rSeV/dF-green fluorescent protein (GFP)-activated bone marrow-derived DCs (rSeV/dF-GFP-DC), consistent with results previously observed in murine DCs. Vaccination of rSeV/dF-GFP-DC was highly effective at preventing lung metastasis after intravenous loading of R-3327 tumor cells, compared with the effects observed with immature DCs or lipopolysaccharide-activated DCs. Interestingly, neither CTL activity nor DC trafficking showed any apparent difference among groups. Notably, rSeV/dF-DCs expressing a dominant-negative mutant of retinoic acid-inducible gene I (RIG-I) (rSeV/dF-RIGIC-DC), an RNA helicase that recognizes the rSeV genome for inducing type I interferons, largely lost the expression of proinflammatory cytokines without any impairment of antitumor activity. These results indicate the essential role of RIG-I-independent signaling on antimetastatic effect induced by rSeV-activated DCs and may provide important insights to DC-based immunotherapy for advanced malignancies.
Collapse
Affiliation(s)
- Tomonori Kato
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasuji Ueda
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroaki Kinoh
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasuo Yoneyama
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akinao Matsunaga
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Komaru
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yui Harada
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyoshi Suzuki
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akira Komiya
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Satoko Shibata
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Hideki Hayashi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
- Center for Frontier Medical Engineering, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshikazu Yonemitsu
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Rabi T, Gupta S. Dietary terpenoids and prostate cancer chemoprevention. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:3457-69. [PMID: 18508447 PMCID: PMC4019960 DOI: 10.2741/2940] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer chemoprevention by phytochemicals may be one of the most feasible approaches for cancer control. Phytochemicals obtained from vegetables, fruits, spices, teas, herbs and medicinal plants, such as terpenoids and other phenolic compounds, have been proven to suppress experimental carcinogenesis in various organs in pre-clinical models. Recent studies have indicated that mechanisms underlying chemopreventive potential may be a combination of antioxidant, anti-inflammatory, immune-enhancing, and hormone modulation effects, with modification of drug metabolizing enzymes, influence on cell cycle and cell differentiation, induction of apoptosis, suppression of proliferation and angiogenesis playing roles in the initiation and secondary modification stages of neoplastic development. Specific features of prostate cancer, such as high prevalence and long latency period provides ample opportunities for chemopreventive agents to work at various stages of disease progression. Finally, suitable populations with appropriate risk factors, including the presence of pre-malignant lesions and genetic predispositions, need to be well characterized for future chemopreventive interventions. Here we review naturally occurring dietary terpenoids as useful agents for prostate cancer chemoprevention with reference to their classes and sources.
Collapse
Affiliation(s)
- Thangaiyan Rabi
- Department of Urology & Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
- University Hospitals Case Medical Center, Cleveland, Ohio 44106
| | - Sanjay Gupta
- Department of Urology & Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
- University Hospitals Case Medical Center, Cleveland, Ohio 44106
- Case Comprehensive Cancer Center, Cleveland, Ohio 44106
| |
Collapse
|
10
|
Hellsten R, Johansson M, Dahlman A, Dizeyi N, Sterner O, Bjartell A. Galiellalactone is a novel therapeutic candidate against hormone-refractory prostate cancer expressing activated Stat3. Prostate 2008; 68:269-80. [PMID: 18163422 DOI: 10.1002/pros.20699] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (Stat3) is constitutively active (phosphorylated) in several forms of cancer, including prostate cancer (PCa). Stat3 signaling may be an interesting target for cancer therapy since inhibition of this pathway mediates growth inhibition and apoptosis of these cells. In this study we investigated the in vitro and in vivo effects of the fungal metabolite galiellalactone, a direct inhibitor of Stat3, on PCa cells. METHODS The human PCa cell lines DU145, PC-3, and LNCaP were used. Nude mice with subcutaneous PCa cell xenografts were subjected to daily intraperitoneal injections of galiellalactone for 3 weeks. The effect of galiellalactone on the induction of apoptosis of cultured PCa cells was investigated by Western blot analysis, immunocytochemistry, and annexin V staining. Effects of galiellalactone on Stat3 signaling were investigated by a luciferase reporter gene assay. Expression of Stat3 associated proteins and mRNA was investigated by Western blot and real-time quantitative PCR analysis. RESULTS Galiellalactone induced apoptosis of p-Stat3 positive PCa cells (androgen-insensitive DU145 and PC-3) but not in cells lacking p-Stat3 (androgen-sensitive LNCaP). Galiellalactone inhibited Stat3-mediated luciferase activity (IC(50) approximately 5 microM) and reduced the expression of Bcl-2, Bcl-x(L), c-myc, and cyclin D1. Furthermore, galiellalactone significantly suppressed DU145 xenograft growth in vivo (42% growth reduction; P<0.002) and reduced the relative mRNA expression of Bcl-x(L) and Mcl-1. CONCLUSIONS Galiellalactone induced growth inhibition and apoptosis in androgen-insensitive PCa cells expressing p-Stat3. We suggest that galiellalactone is a potential anti-tumor lead against hormone-refractory PCa with constitutively active Stat3.
Collapse
Affiliation(s)
- Rebecka Hellsten
- Division of Urological Cancers, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
| | | | | | | | | | | |
Collapse
|
11
|
Matharoo-Ball B, Ball G, Rees R. Clinical proteomics: discovery of cancer biomarkers using mass spectrometry and bioinformatics approaches--a prostate cancer perspective. Vaccine 2008; 25 Suppl 2:B110-21. [PMID: 17916461 DOI: 10.1016/j.vaccine.2007.06.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 06/01/2007] [Accepted: 06/15/2007] [Indexed: 10/24/2022]
Abstract
Prostate cancer (PCa) is an intractable disease, where diagnosis and clinical prediction of the disease course and response to treatment is compromised by the lack of objective and robust biomarker assays. In late stage metastatic disease, treatment options are limited, although it is recognized that some patients may benefit from immunotherapy and in particular vaccine therapy. However, research into biomarkers that correlate with the clinical outcome of immunotherapy has lagged behind vaccine development. Thus, proteomic tools are increasingly being utilized for the discovery of biomarkers which will allow us to make clinical decisions about patient treatment at an earlier stage and should aid in shortening the development time for vaccines. In this review we will summarize the various proteomic platforms used to investigate new biomarkers in PCa for better patient diagnosis, prognosis, patient stratification, treatment monitoring and clinical surrogate endpoints. We will discuss method limitations and highlight the key areas of research required for understanding the etiology of PCa.
Collapse
Affiliation(s)
- Balwir Matharoo-Ball
- Interdisciplinary Biomedical Research Centre, School of Biomedical and Natural Sciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | | | | |
Collapse
|
12
|
Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie 2007; 90:369-79. [PMID: 17920749 DOI: 10.1016/j.biochi.2007.08.008] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 08/24/2007] [Indexed: 01/01/2023]
Abstract
A disintegrin and metalloproteinases (ADAMs) are a recently discovered family of proteins that share the metalloproteinase domain with matrix metalloproteinases (MMPs). Among this family, structural features distinguish the membrane-anchored ADAMs and the secreted ADAMs with thrombospondin motifs referred to as ADAMTSs. By acting on a large panel of membrane-associated and extracellular substrates, they control several cell functions such as adhesion, fusion, migration and proliferation. The current review addresses the contribution of these proteinases in the positive and negative regulation of cancer progression as mainly mediated by the regulation of growth factor activities and integrin functions.
Collapse
|
13
|
Simanainen U, Allan CM, Lim P, McPherson S, Jimenez M, Zajac JD, Davey RA, Handelsman DJ. Disruption of prostate epithelial androgen receptor impedes prostate lobe-specific growth and function. Endocrinology 2007; 148:2264-72. [PMID: 17317769 DOI: 10.1210/en.2006-1223] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Prostate development and maturation requires stromal-epithelial interactions and androgen action via the androgen receptor (AR) within these compartments. However, the specific roles of epithelial and stromal AR in postnatal prostate differentiation are unclear. We used Cre-LoxP technology to determine the prostate phenotype in mice with epithelial-selective genetic inactivation of the AR leaving the stromal AR functionally intact. We find that prostate development abolished in mice globally lacking a functional AR can be rescued by restricting the AR knockout to the postnatal prostate epithelium. We show that, at 8 wk of age, prostate epithelial AR knockout (PEARKO) mice exhibit prostate development with normal branching morphogenesis but lobe-specific decrease in prostate weight and hindered structural and functional differentiation of the mature prostate epithelium. No change was observed in PEARKO testis weight or serum testosterone compared with littermate controls. The most striking change was increased proliferation and abnormal lesions of epithelial cells predominantly in the anterior lobe of PEARKO mice. These findings highlight the vital role of stromal AR in postnatal prostate growth and structural differentiation and emphasize the requirement of epithelial AR in maintaining functional differentiation and restraining proliferation of epithelial cells in a lobe-specific manner. This unique PEARKO mouse provides a new paradigm with which to define the molecular mechanisms of the androgen signaling in mature prostate lobes in vivo and provides insight into the identification of better targets for treatment of prostate cancer and hyperplasia.
Collapse
Affiliation(s)
- Ulla Simanainen
- ANZAC Research Institute, University of Sydney, New South Wales 2139, Australia
| | | | | | | | | | | | | | | |
Collapse
|