1
|
Kim JW, Kim HJ, Heo K, Lee Y, Jang HJ, Lee HY, Park JW, Cho YB, Lee JH, Shin HG, Yang HR, Choi HL, Shim HB, Lee S. A novel bispecific antibody dual-targeting approach for enhanced neutralization against fast-evolving SARS-CoV-2 variants. Front Immunol 2023; 14:1271508. [PMID: 37822941 PMCID: PMC10562541 DOI: 10.3389/fimmu.2023.1271508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction The emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has caused unprecedented health and socioeconomic crises, necessitating the immediate development of highly effective neutralizing antibodies. Despite recent advancements in anti-SARS-CoV-2 receptor-binding domain (RBD)-specific monoclonal antibodies (mAbs) derived from convalescent patient samples, their efficacy against emerging variants has been limited. In this study, we present a novel dual-targeting strategy using bispecific antibodies (bsAbs) that specifically recognize both the SARS-CoV-2 RBD and fusion peptide (FP), crucial domains for viral attachment to the host cell membrane and fusion in SARS-CoV-2 infection. Methods Using phage display technology, we rapidly isolated FP-specific mAbs from an established human recombinant antibody library, identifying K107.1 with a nanomolar affinity for SARS-CoV-2 FP. Furthermore, we generated K203.A, a new bsAb built in immunoglobulin G4-(single-chain variable fragment)2 forms and demonstrating a high manufacturing yield and nanomolar affinity to both the RBD and FP, by fusing K102.1, our previously reported RBD-specific mAb, with K107.1. Results Our comprehensive in vitro functional analyses revealed that the K203.A bsAb significantly outperformed the parental RBD-specific mAb in terms of neutralization efficacy against SARS-CoV-2 variants. Furthermore, intravenous monotherapy with K203.A demonstrated potent in vivo neutralizing activity without significant in vivo toxicity in a mouse model infected with a SARS-CoV-2 variant. Conclusion These findings present a novel bsAb dual-targeting strategy, directed at SARS-CoV-2 RBD and FP, as an effective approach for rapid development and management against continuously evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ji Woong Kim
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Kyun Heo
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
| | - Yoonwoo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Hui Jeong Jang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Yea Bin Cho
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hye Lim Choi
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hyun Bo Shim
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sukmook Lee
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Godínez-Palma S, González-González E, Ramírez-Villedas F, Garzón-Guzmán C, Vallejo-Castillo L, Carballo-Uicab G, Marcelín-Jiménez G, Batista D, Pérez-Tapia SM, Almagro JC. Efficacy, Pharmacokinetics, and Toxicity Profiles of a Broad Anti-SARS-CoV-2 Neutralizing Antibody. Viruses 2023; 15:1733. [PMID: 37632075 PMCID: PMC10459920 DOI: 10.3390/v15081733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
We recently reported the isolation and characterization of an anti-SARS-CoV-2 antibody, called IgG-A7, that protects transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE-2) from an infection with SARS-CoV-2 Wuhan. We show here that IgG-A7 protected 100% of the transgenic mice infected with Delta (B.1.617.2) and Omicron (B.1.1.529) at doses of 0.5 and 5 mg/kg, respectively. In addition, we studied the pharmacokinetic (PK) profile and toxicology (Tox) of IgG-A7 in CD-1 mice at single doses of 100 and 200 mg/kg. The PK parameters at these high doses were proportional to the doses, with serum half-life of ~10.5 days. IgG-A7 was well tolerated with no signs of toxicity in urine and blood samples, nor in histopathology analyses. Tissue cross-reactivity (TCR) with a panel of mouse and human tissues showed no evidence of IgG-A7 interaction with the tissues of these species, supporting the PK/Tox results and suggesting that, while IgG-A7 has a broad efficacy profile, it is not toxic in humans. Thus, the information generated in the CD-1 mice as a PK/Tox model complemented with the mouse and human TCR, could be of relevance as an alternative to Non-Human Primates (NHPs) in rapidly emerging viral diseases and/or quickly evolving viruses such as SARS-CoV-2.
Collapse
Affiliation(s)
- Silvia Godínez-Palma
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (S.G.-P.); (E.G.-G.); (F.R.-V.); (C.G.-G.); (L.V.-C.); (G.C.-U.)
- Laboratorio Nacional Para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) Para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
| | - Edith González-González
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (S.G.-P.); (E.G.-G.); (F.R.-V.); (C.G.-G.); (L.V.-C.); (G.C.-U.)
- Laboratorio Nacional Para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) Para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
| | - Frida Ramírez-Villedas
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (S.G.-P.); (E.G.-G.); (F.R.-V.); (C.G.-G.); (L.V.-C.); (G.C.-U.)
- Laboratorio Nacional Para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) Para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
| | - Circe Garzón-Guzmán
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (S.G.-P.); (E.G.-G.); (F.R.-V.); (C.G.-G.); (L.V.-C.); (G.C.-U.)
- Laboratorio Nacional Para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) Para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (S.G.-P.); (E.G.-G.); (F.R.-V.); (C.G.-G.); (L.V.-C.); (G.C.-U.)
- Laboratorio Nacional Para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) Para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
| | - Gregorio Carballo-Uicab
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (S.G.-P.); (E.G.-G.); (F.R.-V.); (C.G.-G.); (L.V.-C.); (G.C.-U.)
- Laboratorio Nacional Para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) Para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
| | - Gabriel Marcelín-Jiménez
- Pharmometrica Analytical & Statistics Unit, Av. Eje 5 Norte 990, Edificio “C” planta baja, Mexico City 02230, Mexico; (G.M.-J.); (D.B.)
| | - Dany Batista
- Pharmometrica Analytical & Statistics Unit, Av. Eje 5 Norte 990, Edificio “C” planta baja, Mexico City 02230, Mexico; (G.M.-J.); (D.B.)
| | - Sonia M. Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (S.G.-P.); (E.G.-G.); (F.R.-V.); (C.G.-G.); (L.V.-C.); (G.C.-U.)
- Laboratorio Nacional Para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) Para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City 11340, Mexico
| | - Juan C. Almagro
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (S.G.-P.); (E.G.-G.); (F.R.-V.); (C.G.-G.); (L.V.-C.); (G.C.-U.)
- Laboratorio Nacional Para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) Para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
- GlobalBio, Inc., 320 Concord Ave, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Aghaei H, Kheirkhah A, Alizadeh AM, Es'haghi A, Aliakbar-Navahi R, Keikha Z, Chaibakhsh S. Local ocular safety of the subconjunctival injection of cetuximab in rabbits. BMC Ophthalmol 2023; 23:155. [PMID: 37055797 PMCID: PMC10103399 DOI: 10.1186/s12886-023-02893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND To evaluate the safety of different doses of subconjunctival cetuximab in rabbits. METHODS After general anesthesia rabbits received a subconjunctival injection of 2.5 mg in 0.5 ml, 5 mg in 1 ml, and 10 mg in 2 ml of cetuximab in their right eyes (two rabbits in each group). A similar volume of normal saline solution was injected subconjunctivally in the left eyes. The histopathologic changes were evaluated after enucleation with the aid of H&E staining. RESULTS No significant difference were observed between the treated and control eyes in terms of conjunctival inflammation, goblet cell density, or limbal blood vessel density for all administered doses of cetuximab. CONCLUSION Subconjunctival injection of cetuximab with the administrated doses in rabbit eyes are safe.
Collapse
Affiliation(s)
- Hossein Aghaei
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Kheirkhah
- Department of Ophthalmology, Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | | | - Acieh Es'haghi
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Roshanak Aliakbar-Navahi
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Keikha
- Department of Ophthalmology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Chaibakhsh
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Mouse Syngeneic Melanoma Model with Human Epidermal Growth Factor Receptor Expression. Pharmaceutics 2022; 14:pharmaceutics14112448. [PMID: 36432639 PMCID: PMC9697344 DOI: 10.3390/pharmaceutics14112448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The development of epidermal growth factor receptor (EGFR)-targeting agents for the treatment of malignant melanoma requires cheap and easy animal tumor models for high-throughput in vivo screening. Thus, the aim of this study was to develop mouse syngeneic melanoma model that expresses human EGFR. Cloudman S91 clone M3 mouse melanoma cells were transduced with lentiviral particles carrying the human EGFR gene followed by a multistep selection process. The resulting M3-EGFR has been tested for EGFR expression and functionality in vitro and in vivo. Radioligand assay confirmed the presence of 13,900 ± 1500 EGF binding sites per cell at a dissociation constant of 5.3 ± 1.4 nM. M3-EGFR demonstrated the ability to bind and internalize specifically and provide the anticipated intracellular nuclear import of three different EGFR-targeted modular nanotransporters designed for specific anti-cancer drug delivery. Introduction of the human EGFR gene did not alter the tumorigenicity of the offspring M3-EGFR cells in host immunocompetent DBA/2J mice. Preservation of the expression of EGFR in vivo was confirmed by immunohistochemistry. To sum up, we successfully developed the first mouse syngeneic melanoma model with preserved in vivo expression of human EGFR.
Collapse
|
5
|
Gao X, Lee J, Deshpande K, Kang DW, Fathallah AM, Kagan L. Mechanistic Modeling of the Effect of Recombinant Human Hyaluronidase (rHuPH20) on Subcutaneous Delivery of Cetuximab in Rats. Pharm Res 2022; 39:1867-1880. [PMID: 35778631 DOI: 10.1007/s11095-022-03294-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate the duration of effect of rHuPH20 on SC absorption of cetuximab and to develop a mechanistic pharmacokinetic model linking the kinetics of rHuPH20 action with hyaluronan (HA) homeostasis and absorption of cetuximab from the SC space. METHODS Serum pharmacokinetics of cetuximab was evaluated after IV and SC dosing at 0.4 and 10 mg/kg (control groups). In test groups, SC cetuximab was administered simultaneously with rHuPH20 (Co-Injection) or 12 h after injection of rHuPH20 (Pre-Injection). Mechanistic pharmacokinetic model was developed to simultaneously capture cetuximab kinetics in all groups. RESULTS Administration of rHuPH20 resulted in a faster absorption of cetuximab; the difference between co-injection and pre-injection groups appeared to be dependent on the dose level. The model combined three major components: kinetics of rHuPH20 at SC site; HA homeostasis and its disruption by rHuPH20; and cetuximab systemic disposition and the effect of HA disruption on cetuximab SC absorption. The model provided good description of experimental data obtained in this study and collected previously. CONCLUSIONS Proposed model can serve as a potential translational framework for capturing the effect of rHuPH20 across multiple preclinical species and in human studies and can be used for optimization of SC delivery of biotherapeutics.
Collapse
Affiliation(s)
- Xizhe Gao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Jongbong Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Kiran Deshpande
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - David W Kang
- Halozyme Therapeutics Inc., San Diego, California, 92121, USA
| | | | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
6
|
Kuo YC, Kuo CF, Jenkins K, Hung AFH, Chang WC, Park M, Aguilar B, Starr R, Hibbard J, Brown C, Williams JC. Antibody-based redirection of universal Fabrack-CAR T cells selectively kill antigen bearing tumor cells. J Immunother Cancer 2022; 10:jitc-2021-003752. [PMID: 35728874 PMCID: PMC9214433 DOI: 10.1136/jitc-2021-003752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 11/07/2022] Open
Abstract
Background Chimeric antigen receptor (CAR) T cells engineered to recognize and target tumor associated antigens have made a profound impact on the quality of life for many patients with cancer. However, tumor heterogeneity and intratumoral immune suppression reduce the efficacy of this approach, allowing for tumor cells devoid of the target antigen to seed disease recurrence. Here, we address the complexity of tumor heterogeneity by developing a universal CAR. Method We constructed a universal Fabrack-CAR with an extracellular domain composed of the non-tumor targeted, cyclic, twelve residue meditope peptide that binds specifically to an engineered binding pocket within the Fab arm of monoclonal antibodies (mAbs). As this site is readily grafted onto therapeutic mAbs, the antigen specificity of these universal Fabrack-CAR T cells is simply conferred by administering mAbs with specificity to the heterogeneous tumor. Results Using in vitro and in vivo studies with multiple meditope-engineered mAbs, we show the feasibility, specificity, and robustness of this approach. These studies demonstrate antigen- and antibody-specific T cell activation, proliferation, and IFNγ production, selective killing of target cells in a mixed population, and tumor regression in animal models. Conclusion Collectively, these findings support the feasibility of this universal Fabrack-CAR T cell approach and provide the rationale for future clinical use in cancer immunotherapy.
Collapse
Affiliation(s)
- Yi-Chiu Kuo
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Cheng-Fu Kuo
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA.,Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, California, USA
| | - Kurt Jenkins
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA.,Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, California, USA
| | - Alfur Fu-Hsin Hung
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Wen-Chung Chang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Miso Park
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Brenda Aguilar
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Renate Starr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Jonathan Hibbard
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Christine Brown
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - John C Williams
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
7
|
Phosphorylation of TRIP13 at Y56 induces radiation resistance but sensitizes head and neck cancer to cetuximab. Mol Ther 2022; 30:468-484. [PMID: 34111559 PMCID: PMC8753291 DOI: 10.1016/j.ymthe.2021.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 01/07/2023] Open
Abstract
Radiation therapy, a mainstay of treatment for head and neck cancer, is not always curative due to the development of treatment resistance; additionally, multi-institutional trials have questioned the efficacy of concurrent radiation with cetuximab, the epidermal growth factor receptor (EGFR) inhibitor. We unraveled a mechanism for radiation resistance; that is, radiation induces EGFR, which phosphorylates TRIP13 (thyroid hormone receptor interactor 13) on tyrosine 56. Phosphorylated (phospho-)TRIP13 promotes non-homologous end joining (NHEJ) repair to induce radiation resistance. NHEJ is the main repair pathway for radiation-induced DNA damage. Tumors expressing high TRIP13 do not respond to radiation but are sensitive to cetuximab or cetuximab combined with radiation. Suppression of phosphorylation of TRIP13 at Y56 abrogates these effects. These findings show that EGFR-mediated phosphorylation of TRIP13 at Y56 is a vital mechanism of radiation resistance. Notably, TRIP13-pY56 could be used to predict the response to radiation or cetuximab and could be explored as an actionable target.
Collapse
|
8
|
Fairhall JM, Camilli JC, Gibson BH, Hook S, Gamble AB. EGFR-targeted prodrug activation using bioorthogonal alkene-azide click-and-release chemistry. Bioorg Med Chem 2021; 46:116361. [PMID: 34411983 DOI: 10.1016/j.bmc.2021.116361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in many cancers and therefore serves as an excellent target for prodrug activation. Functionalised trans-cyclooctenes (TCO) were conjugated to an EGFR antibody (cetuximab), providing a reagent for pre-targeting and localisation of the bioorthogonal reagent. The TCOs react with a 4-azidobenzyl carbamate doxorubicin prodrug via a [3 + 2]-cycloaddition and subsequent self-immolation leads to release of doxorubicin (click-and-release). In vitro cell-based assays demonstrated proof-of-concept, that cetuximab conjugated to highly strained TCO (AB-d-TCO) could bind to the EGFR in a melanoma cell line, and selectively activate the doxorubicin prodrug. In a non-EGFR expressing melanoma cell line, no significant prodrug activation was observed. In vivo experiments using this combination of AB-d-TCO and the azido-doxorubicin prodrug in a murine melanoma model revealed no significant anti-tumour activity or increased survival, suggesting there was insufficient prodrug activation and drug release at the tumour site.
Collapse
Affiliation(s)
| | - Júlia C Camilli
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Blake H Gibson
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
9
|
Mahmood I. A Single Animal Species-Based Prediction of Human Clearance and First-in-Human Dose of Monoclonal Antibodies: Beyond Monkey. Antibodies (Basel) 2021; 10:antib10030035. [PMID: 34562983 PMCID: PMC8477747 DOI: 10.3390/antib10030035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
These days, there is a lot of emphasis on the prediction of human clearance (CL) from a single species for monoclonal antibodies (mabs). Many studies indicate that monkey is the most suitable species for the prediction of human clearance for mabs. However, it is not well established if rodents (mouse or rat) can also be used to predict human CL for mabs. The objectives of this study were to predict and compare human CL as well as first-in-human dose of mabs from mouse or rat, ormonkey. Four methods were used for the prediction of human CL of mabs. These methods were: use of four allometric exponents (0.75, 0.80, 0.85, and 0.90), a minimal physiologically based pharmacokinetics method (mPBPK), lymph flow rate, and liver blood flow rate. Based on the predicted CL, first-in-human dose of mabs was projected using either exponent 1.0 (linear scaling) or exponent 0.85, and human-equivalent dose (HED) from each of these species. The results of the study indicated that rat or mouse could provide a reasonably accurate prediction of human CL as well as first-in-human dose of mabs. When exponent 0.85 was used for CL prediction, there were 78%, 95%, and 92% observations within a 2-fold prediction error for mouse, rat, and monkey, respectively. Predicted human dose fell within the observed human dose range (administered to humans) for 10 out of 13 mabs for mouse, 11 out of 12 mabs for rat, and 12 out of 15 mabs for monkey. Overall, the clearance and first-in-human dose of mabs were predicted reasonably well by all three species (a single species). On average, monkey may be the best species for the prediction of human clearance and human dose but mouse or rat especially; rat can be a very useful species for conducting the aforementioned studies.
Collapse
Affiliation(s)
- Iftekhar Mahmood
- Mahmood Clinical Pharmacology Consultancy, LLC., Rockville, MD 20850, USA
| |
Collapse
|
10
|
Wang J, Giragossian C, Hansel S. Analyze impact of tumor-associated kinetics on antibody delivery in solid tumors with a physiologically based pharmacokinetics/pharmacodynamics model. Eur J Pharm Biopharm 2021; 168:110-121. [PMID: 34478854 DOI: 10.1016/j.ejpb.2021.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
Monoclonal antibody (mAb)-based drugs are critical anti-cancer therapies. Unfortunately, therapeutic efficacy can be compromised by spatially heterogeneous intratumoral Ab deposition. Binding-site barriers arising from Ab and tumor-associated kinetics often underlie this phenomenon. Quantitative insight into these issues may lead to more efficient drug delivery. Difficulties in addressing this issue include (1) lack of techniques to quantify critical kinetic events, (2) lack of a pharmacokinetic/pharmacodynamic (PK/PD) model to assess important parameters for specific tumor types, and (3) uncertainty or variability of critical kinetic factors even within a single tumor type. This study developed a mechanism-based PK/PD model to profile heterogeneous distribution of Ab within tumors and tested this model using real-life experimental data. Model simulations incorporating several uncertainties were used to determine how mAb and tumor-associated kinetics influence receptor occupancy. Simulations were also used to predict the potential impact of these findings in preclinical tumor models and human tumors. We found significant differences in tumor-associated kinetics between groups in which mAb therapy was effective versus groups in which it was ineffective. These kinetic differences included rates of tumor-associated antigen (TAA) degradation, TAA expression, apparent flow rates of interstitial fluid, and ratios of Ab-TAA complex internalization to TAA degradation. We found less significant differences in mAb kinetics, including rates of clearance or affinity for target antigens. In conclusion, our mechanism-based PK/PD model suggests that TAA-associated kinetic factors participate more significantly than those associated with the Ab in generating barriers to mAb delivery and distribution in tumors.
Collapse
Affiliation(s)
- Jun Wang
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA.
| | - Craig Giragossian
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | - Steven Hansel
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| |
Collapse
|
11
|
Grundy M, Bau L, Hill C, Paverd C, Mannaris C, Kwan J, Crake C, Coviello C, Coussios C, Carlisle R. Improved therapeutic antibody delivery to xenograft tumors using cavitation nucleated by gas-entrapping nanoparticles. Nanomedicine (Lond) 2021; 16:37-50. [PMID: 33426913 DOI: 10.2217/nnm-2020-0263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aims: Testing ultrasound-mediated cavitation for enhanced delivery of the therapeutic antibody cetuximab to tumors in a mouse model. Methods: Tumors with strong EGF receptor expression were grown bilaterally. Cetuximab was coadministered intravenously with cavitation nuclei, consisting of either the ultrasound contrast agent Sonovue or gas-stabilizing nanoscale SonoTran Particles. One of the two tumors was exposed to focused ultrasound. Passive acoustic mapping localized and monitored cavitation activity. Both tumors were then excised and cetuximab concentration was quantified. Results: Cavitation increased tumoral cetuximab concentration. When nucleated by Sonovue, a 2.1-fold increase (95% CI 1.3- to 3.4-fold) was measured, whereas SonoTran Particles gave a 3.6-fold increase (95% CI 2.3- to 5.8-fold). Conclusions: Ultrasound-mediated cavitation, especially when nucleated by nanoscale gas-entrapping particles, can noninvasively increase site-specific delivery of therapeutic antibodies to solid tumors.
Collapse
Affiliation(s)
- Megan Grundy
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Luca Bau
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Claudia Hill
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Catherine Paverd
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Christophoros Mannaris
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - James Kwan
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Calum Crake
- OxSonics Therapeutics, Oxford Science Park, Oxford OX4 4GA, UK
| | | | - Constantin Coussios
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Robert Carlisle
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| |
Collapse
|
12
|
Wang Q, Gavin W, Masiello N, Tran KB, Laible G, Shepherd PR. Cetuximab produced from a goat mammary gland expression system is equally efficacious as innovator cetuximab in animal cancer models. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00533. [PMID: 33024714 PMCID: PMC7528048 DOI: 10.1016/j.btre.2020.e00533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 11/24/2022]
Abstract
There is increasing demand for improved production and purification systems for biosimilar or biobetter humanised monoclonal antibodies and animal production systems offer one such possibile option. Cetuximab, also known as 'Erbitux', is a humanised monoclonal antibody widely used in cancer therapy. We have previously reported on a genetically engineered goat system to produce cetuximab (gCetuximab) in milk. Herein we report that gCetuximab has similar bioactivity and pharamacokinetic properties compared with the commercial product produced in mammalian cell culture. In particular both forms have very similar efficacy in a HT29 colorectal cancer xenograft model alone or when conjugated to the toxin MMAE. This also demonstrates that the gCetuximab will be a viable vehicle for antibody drug conjugate based therapies. Taken together, this shows that the goat milk monoclonal antibody production system is an effective way of producing a biosimilar form of cetuximab.
Collapse
Affiliation(s)
- Qian Wang
- School of Medical Sciences, University of Auckland, Auckland, 1023, New Zealand
| | | | | | - Khanh B. Tran
- School of Medical Sciences, University of Auckland, Auckland, 1023, New Zealand
| | - Götz Laible
- School of Medical Sciences, University of Auckland, Auckland, 1023, New Zealand
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter R. Shepherd
- School of Medical Sciences, University of Auckland, Auckland, 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
13
|
Peer CJ, Goldstein DA, Goodell JC, Nguyen R, Figg WD, Ratain MJ. Opportunities for using in silico-based extended dosing regimens for monoclonal antibody immune checkpoint inhibitors. Br J Clin Pharmacol 2020; 86:1769-1777. [PMID: 32424951 PMCID: PMC7444775 DOI: 10.1111/bcp.14369] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/10/2020] [Accepted: 04/26/2020] [Indexed: 12/21/2022] Open
Abstract
Therapeutic drug monitoring (TDM) involves frequent measurements of drug concentrations to ensure levels remain within a therapeutic window, and it is especially useful for drugs with narrow therapeutic indices or extensive interindividual pharmacokinetic variability. This technique has never been applied to immuno-oncology drugs, but, given recent examinations of clinical data (both exposure and response) on a number of these drugs, further investigations into TDM may be justified to reduce costs as well as potentially reducing the severity and/or duration of immune-related adverse events. Specifically, all but one of the approved PD-1 and PD-L1 inhibitors (pembrolizumab, nivolumab, cemiplimab-rwlc, atezolizumab, avelumab, durvalumab) have been shown to exhibit a plateaued exposure-response (E-R) curve at doses evaluated extensively to date, as well as time-dependent changes in drug exposure. Furthermore, responders have a greater decrease in drug clearance over time and would, therefore, have supratherapeutic serum concentrations. With frequent trough measurements, it is possible to use pharmacokinetic modelling and simulation to estimate drug clearance via Bayesian methods. Based on patient-specific estimates for clearance, optimal alternative dosing strategies can be simulated to lower drug and cost burden yet maintain therapeutic levels, especially as the clearance of the drug decreases over time. This review will comprehensively discuss each of the FDA approved PD-1, PD-L1/2 and CTLA-4 inhibitors regarding their indications and current recommended dosing, with evidence supporting the investigation of these types of TDM strategies.
Collapse
Affiliation(s)
- Cody J. Peer
- Clinical Pharmacology ProgramNational Cancer InstituteBethesdaMDUSA
| | | | | | - Ryan Nguyen
- Clinical Pharmacology ProgramNational Cancer InstituteBethesdaMDUSA
| | - William D. Figg
- Clinical Pharmacology ProgramNational Cancer InstituteBethesdaMDUSA
| | - Mark J. Ratain
- Department of Medicine, Center for Personalized Therapeutics, and Comprehensive Cancer CenterThe University of ChicagoChicagoILUSA
| |
Collapse
|
14
|
Yamamoto T, Miyoshi H, Kakizaki F, Maekawa H, Yamaura T, Morimoto T, Katayama T, Kawada K, Sakai Y, Taketo MM. Chemosensitivity of Patient-Derived Cancer Stem Cells Identifies Colorectal Cancer Patients with Potential Benefit from FGFR Inhibitor Therapy. Cancers (Basel) 2020; 12:cancers12082010. [PMID: 32708005 PMCID: PMC7465102 DOI: 10.3390/cancers12082010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Some colorectal cancer patients harboring FGFR (fibroblast growth factor receptor) genetic alterations, such as copy number gain, mutation, and/or mRNA overexpression, were selected for enrollment in several recent clinical trials of FGFR inhibitor, because these genetic alterations were preclinically reported to be associated with FGFR inhibitor sensitivity as well as poor prognosis, invasiveness, and/or metastatic potential. However, few enrolled patients were responsive to FGFR inhibitors. Thus, practical strategies are eagerly awaited that can stratify patients for the subset that potentially responds to FGFR inhibitor chemotherapy. In the present study, we evaluated the sensitivity to FGFR inhibitor erdafitinib on 25 patient-derived tumor-initiating cell (TIC) spheroid lines carrying wild-type RAS and RAF genes, both in vitro and in vivo. Then, we assessed possible correlations between the sensitivity and the genetic/genomic data of the spheroid lines tested. Upon their exposure to erdafitinib, seven lines (7/25, 28%) responded significantly. Normal colonic epithelial stem cells were unaffected by the inhibitors. Moreover, the combination of erdafitinib with EGFR inhibitor erlotinib showed stronger growth inhibition than either drug alone, as efficacy was observed in 21 lines (84%) including 14 (56%) that were insensitive to erdafitinib alone. The in vitro erdafitinib response was accurately reflected on mouse xenografts of TIC spheroid lines. However, we found little correlation between their genetic/genomic alterations of TIC spheroids and the sensitivity to the FGFR inhibitor. Accordingly, we propose that direct testing of the patient-derived spheroids in vitro is one of the most reliable personalized methods in FGFR-inhibitor therapy of colorectal cancer patients.
Collapse
Affiliation(s)
- Takehito Yamamoto
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.Y.); (H.M.); (F.K.); (H.M.); (T.Y.); (T.M.)
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; (K.K.); (Y.S.)
| | - Hiroyuki Miyoshi
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.Y.); (H.M.); (F.K.); (H.M.); (T.Y.); (T.M.)
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan
- Office of Society-Academia Collaboration for Innovation, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumihiko Kakizaki
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.Y.); (H.M.); (F.K.); (H.M.); (T.Y.); (T.M.)
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan
- Office of Society-Academia Collaboration for Innovation, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hisatsugu Maekawa
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.Y.); (H.M.); (F.K.); (H.M.); (T.Y.); (T.M.)
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; (K.K.); (Y.S.)
| | - Tadayoshi Yamaura
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.Y.); (H.M.); (F.K.); (H.M.); (T.Y.); (T.M.)
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; (K.K.); (Y.S.)
| | - Tomonori Morimoto
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.Y.); (H.M.); (F.K.); (H.M.); (T.Y.); (T.M.)
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; (K.K.); (Y.S.)
| | - Toshiro Katayama
- Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Kita-ku, Osaka 530-8480, Japan;
| | - Kenji Kawada
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; (K.K.); (Y.S.)
| | - Yoshiharu Sakai
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; (K.K.); (Y.S.)
| | - M. Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.Y.); (H.M.); (F.K.); (H.M.); (T.Y.); (T.M.)
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan
- Office of Society-Academia Collaboration for Innovation, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Kita-ku, Osaka 530-8480, Japan;
- Correspondence: ; Tel.: +81-75-753-4391
| |
Collapse
|
15
|
Wang J, Chan DKW, Sen A, Ma WW, Straubinger RM. Tumor Priming by SMO Inhibition Enhances Antibody Delivery and Efficacy in a Pancreatic Ductal Adenocarcinoma Model. Mol Cancer Ther 2019; 18:2074-2084. [PMID: 31363010 DOI: 10.1158/1535-7163.mct-18-0354] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/12/2018] [Accepted: 07/25/2019] [Indexed: 01/04/2023]
Abstract
Despite frequent overexpression of numerous growth factor receptors by pancreatic ductal adenocarcinomas (PDAC), such as EGFR, therapeutic antibodies have not proven effective. Desmoplasia, hypovascularity, and hypoperfusion create a functional drug delivery barrier that contributes to treatment resistance. Drug combinations that target tumor/stroma interactions could enhance tumor deposition of therapeutic antibodies, although clinical trials have yet to support this strategy. We hypothesize that macromolecular or nanoparticulate therapeutic agents may best exploit stroma-targeting "tumor priming" strategies, based on the fundamental principles of the Enhanced Permeability and Retention phenomenon. Therefore, we investigated the molecular and pharmacologic tumor responses to NVP-LDE225, an SMO inhibitor of sonic hedgehog signaling (sHHI), of patient-derived xenograft models that recapitulate the desmoplasia and drug delivery barrier properties of PDAC. Short-term sHHI exposure mediated dose- and time-dependent changes in tumor microvessel patency, extracellular matrix architecture, and interstitial pressure, which waned with prolonged sHHI exposure, and increased nanoparticulate permeability probe deposition in multiple PDAC patient-derived xenograft isolates. During sHHI-mediated priming, deposition and intratumor distribution of both a nontargeted mAb and a mAb targeting EGFR, cetuximab, were enhanced. Sequencing the sHH inhibitor with cetuximab administration resulted in marked tumor growth inhibition compared with cetuximab alone. These studies suggest that PDAC drug delivery barriers confound efforts to employ mAb against targets in PDAC, and that short-term, intermittent exposure to stromal modulators can increase tumor cell exposure to therapeutic antibodies, improving their efficacy, and potentially minimize adverse effects that may accompany longer-term, continuous sHHI treatment.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Darren K W Chan
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Arindam Sen
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, New York.,Department of Cell Stress Biochemistry and Biophysics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Wen Wee Ma
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York. .,Department of Cell Stress Biochemistry and Biophysics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
16
|
Yasunaga M, Saijou S, Hanaoka S, Anzai T, Tsumura R, Matsumura Y. Significant antitumor effect of an antibody against TMEM180, a new colorectal cancer-specific molecule. Cancer Sci 2019; 110:761-770. [PMID: 30537002 PMCID: PMC6361608 DOI: 10.1111/cas.13907] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
The present state of therapy for colorectal cancer (CRC) is far from satisfactory, highlighting the need for new targets for this disease. We identified a new CRC‐specific molecule, TMEM180, a predicted 11‐pass transmembrane protein that apparently functions as a cation symporter. We developed an anti‐TMEM180 mAb and then succeeded in humanizing the mAb. Immunohistochemistry (IHC) in CRC with the mAb showed a similar positivity rate as compared with anti‐epidermal growth factor receptor mAb, and IHC with anti‐TMEM180 mAb did not show staining in major organs used in this study. Immune electron microscopy clearly indicated that TMEM180 was present on the tumor exosome. The TMEM180 promoter region contains 10 hypoxia‐responsive element consensus sequences; accordingly, SW480 cells upregulated TMEM180 under low‐oxygen conditions. Anti‐TMEM180 mAb has in vitro antibody‐dependent cell‐mediated cytotoxicity and complement‐dependent cytotoxicity activity, and SW480 CRC xenografts were eradicated by the mAb. These data indicate that TMEM180 may be a new CRC marker and that a mAb against this protein could be used as antibody‐based therapy against CRC.
Collapse
Affiliation(s)
- Masahiro Yasunaga
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Centre, National Cancer Centre, Kashiwa, Japan
| | - Shinji Saijou
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Centre, National Cancer Centre, Kashiwa, Japan
| | - Shingo Hanaoka
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Centre, National Cancer Centre, Kashiwa, Japan
| | - Takahiro Anzai
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Centre, National Cancer Centre, Kashiwa, Japan
| | - Ryo Tsumura
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Centre, National Cancer Centre, Kashiwa, Japan
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Centre, National Cancer Centre, Kashiwa, Japan
| |
Collapse
|
17
|
Lee TS, Song IH, Shin JI, Park YS, Kim JY, Kim KI, Lee YJ, Kang JH. PET Imaging Biomarkers of Anti-EGFR Immunotherapy in Esophageal Squamous Cell Carcinoma Models. Cells 2018; 7:cells7110187. [PMID: 30373221 PMCID: PMC6262544 DOI: 10.3390/cells7110187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed and considered as a proper molecular target for diagnosis and targeted therapy of esophageal squamous cell carcinoma (ESCC). This study evaluated the usefulness of PET imaging biomarkers with 64Cu-PCTA-cetuximab and 18F-FDG-PET for anti-EGFR immunotherapy in ESCC models. In vivo EGFR status and glucose metabolism by cetuximab treatment were evaluated using 64Cu-PCTA-cetuximab and 18F-FDG-PET, respectively. Therapeutic responses with imaging biomarkers were confirmed by western blot and immunohistochemistry. TE-4 and TE-8 tumors were clearly visualized by 64Cu-PCTA-cetuximab, and EGFR expression on TE-8 tumors showed 2.6-fold higher uptake than TE-4. Tumor volumes were markedly reduced by cetuximab in TE-8 tumor (92.5 ± 5.9%), but TE-4 tumors were refractory to cetuximab treatment. The SUVs in 64Cu-PCTA-cetuximab and 18F-FDG-PET images were statistically significantly reduced by cetuximab treatment in TE-8 but not in TE-4. 64Cu-PCTA-cetuximab and 18F-FDG-PET images were well correlated with EGFR and pAkt levels. 64Cu-PCTA-cetuximab immuno-PET had a potential for determining EGFR level and monitoring therapeutic response by anti-EGFR therapy. 18F-FDG-PET was also attractive for monitoring efficacy of anti-EGFR therapy. In conclusion, PET imaging biomarkers may be useful for selecting patients that express target molecules and for monitoring therapeutic efficacy of EGFR-targeted therapy in ESCC patients.
Collapse
Affiliation(s)
- Tae Sup Lee
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea.
| | - In Ho Song
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea.
| | - Jong Il Shin
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea.
| | - Yong Serk Park
- Department of Biomedical Laboratory Science, College of Health Science, Yonsei University, Wonju 26493, Korea.
| | - Jung Young Kim
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea.
| | - Kwang Il Kim
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea.
| | - Yong Jin Lee
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea.
| | - Joo Hyun Kang
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea.
| |
Collapse
|
18
|
Isoda Y, Piao W, Taguchi E, Iwano J, Takaoka S, Uchida A, Yoshikawa K, Enokizono J, Arakawa E, Tomizuka K, Shiraishi Y, Masuda K. Development and evaluation of a novel antibody-photon absorber conjugate reveals the possibility of photoimmunotherapy-induced vascular occlusion during treatment in vivo. Oncotarget 2018; 9:31422-31431. [PMID: 30140380 PMCID: PMC6101140 DOI: 10.18632/oncotarget.25831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/13/2018] [Indexed: 02/02/2023] Open
Abstract
Photodynamic therapy (PDT) utilize a photosensitizing agent and light for cancer therapy. It exerts anti-cancer effect mainly by inducing vascular occlusion at the irradiated site. By controlling the irradiation area, PDT can be used in a tumor-specific manner. However, the non-specific cellular damage in the surrounding normal tissue is still a serious concern. Photoimmunotherapy (PIT) is a new type of targeted cancer therapy that uses an antibody-photon absorber conjugate (APC). The superiority of PIT to PDT is the improved target specificity, thereby reducing the damage to normal tissues. Here, we developed a novel APC targeting epithelial cell adhesion molecule (EpCAM) as well as a negative control APC that does not bind to the EpCAM antigen. Our in vitro analysis of APC cytotoxicity demonstrated that the EpCAM APC, but not the negative control, was cytotoxic to EpCAM expressing COLO 205 cells after photoirradiation, suggesting that the cytotoxicity is antigen-dependent. However, in our in vivo analysis using a mouse xenograft tumor model, decreased volume of the tumors was observed in all the mice treated with irradiation, regardless of whether they were treated with the EpCAM APC or the negative control. Detailed investigation of the mechanism of these in vivo reveal that both APCs induce vascular occlusion at the irradiation site. Furthermore, the level of vascular occlusion was correlated with the blood concentration of APC, not the tumor concentration. These results imply that, similar to PDT, PIT can also induce non-targeted vascular occlusion and further optimization is required before widespread clinical use.
Collapse
Affiliation(s)
- Yuya Isoda
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Machida-shi, Tokyo, Japan
| | - Wen Piao
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Machida-shi, Tokyo, Japan
| | - Eri Taguchi
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Machida-shi, Tokyo, Japan
| | - Junko Iwano
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Machida-shi, Tokyo, Japan
| | - Shigeki Takaoka
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Machida-shi, Tokyo, Japan
| | - Aiko Uchida
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Machida-shi, Tokyo, Japan
| | - Kiyomi Yoshikawa
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Machida-shi, Tokyo, Japan
| | - Junichi Enokizono
- Translational Research Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Suntou-gun, Shizuoka, Japan
| | - Emi Arakawa
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin Co., Ltd, Suntou-gun, Shizuoka, Japan
| | - Kazuma Tomizuka
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Machida-shi, Tokyo, Japan
| | - Yasuhisa Shiraishi
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Machida-shi, Tokyo, Japan
| | - Kazuhiro Masuda
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Machida-shi, Tokyo, Japan
| |
Collapse
|
19
|
Maekawa H, Miyoshi H, Yamaura T, Itatani Y, Kawada K, Sakai Y, Taketo MM. A Chemosensitivity Study of Colorectal Cancer Using Xenografts of Patient-Derived Tumor-Initiating Cells. Mol Cancer Ther 2018; 17:2187-2196. [PMID: 29970483 DOI: 10.1158/1535-7163.mct-18-0128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/07/2018] [Accepted: 06/27/2018] [Indexed: 11/16/2022]
Abstract
Current genomic and gene expression analyses provide versatile tools to improve cancer chemotherapy. However, it is still difficult to predict whether each patient responds to a particular regimen or not. To predict chemosensitivity in each patient with colorectal cancer, we developed an evaluation method using the primary tumor-initiating cells (TIC, aka cancer stem cells) xenografted in nude mice subcutaneously (patient-derived spheroid xenografts; PDSX). Simultaneously, we also prepared the conventional patient-derived xenografts (PDX) from the same patients' tumors and compared the dosing results with those of PDSXs. We further compared the chemosensitivities of PDSXs with those of 7 patients who had been given regimens such as FOLFOX and FOLFIRI to treat their metastatic lesions. As per the results, the PDSX method provided much more precise and predictable tumor growth with less variance than conventional PDX, although both retained the epithelial characteristics of the primary tumors. Likewise, drug-dosing tests showed essentially the same results in PDXs and PDSXs, with stronger statistical power in PDSXs. Notably, the cancer chemosensitivity in each patient was precisely reflected in that of the PDSX mice along the clinical course until the resistance emerged at the terminal stage. This "paraclinical" xenograft trials using PDSXs may help selection of chemotherapy regimens efficacious for each patient, and, more importantly, avoiding inefficient ones by which the patient can lose precious time and QOL. Furthermore, the PDSX method may be employed for evaluations of off-label uses of cancer chemotherapeutics and compassionate uses of yet-unapproved new drugs in personalized therapies. Mol Cancer Ther; 17(10); 2187-96. ©2018 AACR.
Collapse
Affiliation(s)
- Hisatsugu Maekawa
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoé-cho, Sakyo-ku, Kyoto, Japan.,Department of Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Hiroyuki Miyoshi
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoé-cho, Sakyo-ku, Kyoto, Japan.,Office of Society-Academia Collaboration for Innovation, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, Japan
| | - Tadayoshi Yamaura
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoé-cho, Sakyo-ku, Kyoto, Japan.,Department of Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Yoshiro Itatani
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoé-cho, Sakyo-ku, Kyoto, Japan.,Department of Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoé-cho, Sakyo-ku, Kyoto, Japan. .,Office of Society-Academia Collaboration for Innovation, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
20
|
McKnight BN, Kuda-Wedagedara ANW, Sevak KK, Abdel-Atti D, Wiesend WN, Ku A, Selvakumar D, Carlin SD, Lewis JS, Viola-Villegas NT. Imaging EGFR and HER3 through 89Zr-labeled MEHD7945A (Duligotuzumab). Sci Rep 2018; 8:9043. [PMID: 29899472 PMCID: PMC5998059 DOI: 10.1038/s41598-018-27454-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
Tumor resistance to treatment paved the way toward the development of single agent drugs that target multiple molecular signatures amplified within the malignancy. The discovered crosstalk between EGFR and HER3 as well as the role of HER3 in mediating EGFR resistance made these two receptor tyrosine kinases attractive targets. MEHD7945A or duligotuzumab is a single immunotherapy agent that dually targets both molecular signatures. In this study, a positron emission tomography (PET) companion diagnostic to MEHD7945A is reported and evaluated in pancreatic cancer. Tumor accretion and whole body pharmacokinetics of 89Zr-MEHD7945A were established. Specificity of the probe for EGFR and/or HER3 was further examined.
Collapse
Affiliation(s)
- Brooke N McKnight
- Department of Oncology, Karmanos Cancer Institute, 4100 John R. Street, Detroit, MI, 48201, USA
| | | | - Kuntal K Sevak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Dalya Abdel-Atti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Wendy N Wiesend
- Department of Anatomic Pathology, Beaumont Hospital, 3601 West 13 Mile Road, Royal Oak, MI, 48073, USA
| | - Anson Ku
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - Sean D Carlin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Nerissa T Viola-Villegas
- Department of Oncology, Karmanos Cancer Institute, 4100 John R. Street, Detroit, MI, 48201, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
21
|
Immunoassays for Measuring Serum Concentrations of Monoclonal Antibodies and Anti-biopharmaceutical Antibodies in Patients. Ther Drug Monit 2018; 39:316-321. [PMID: 28570370 DOI: 10.1097/ftd.0000000000000419] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Monoclonal antibodies (mAbs) may be used as biopharmaceuticals to treat various diseases, ranging from oncology to inflammatory and cardiovascular affections. Trustworthy analytical methods are necessary to study their pharmacokinetics, both during their development and in post-marketing studies. Because biopharmaceuticals are macromolecules, ligand-binding assays (both immunoassays and bioassays) are methods of choice to measure their concentrations. Immunoassays are based on the capture of biopharmaceuticals by their target, which may be a circulating or membrane antigen or by an antibody recognizing their structure. Bioassays measure the activity of the biopharmaceutical in a specific in vitro test. A number of techniques have been reported, but their limits of detection and quantification vary widely. Anti-drug antibodies (ADA) against biopharmaceuticals are often formed and sometimes interfere with clinical efficacy. Accurate and reliable detection of ADA is therefore necessary. Binding of ADA is dependent on affinity and avidity, which makes quantification challenging. In this review, we discuss the benefits and limitations of each method to determine mAb levels and carefully compare ADA assays.
Collapse
|
22
|
Gomes SE, Simões AES, Pereira DM, Castro RE, Rodrigues CMP, Borralho PM. miR-143 or miR-145 overexpression increases cetuximab-mediated antibody-dependent cellular cytotoxicity in human colon cancer cells. Oncotarget 2017; 7:9368-87. [PMID: 26824186 PMCID: PMC4891046 DOI: 10.18632/oncotarget.7010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/01/2016] [Indexed: 12/21/2022] Open
Abstract
miR-143 and miR-145 are downregulated in colon cancer. Here, we tested the effect of restoring these miRNAs on sensitization to cetuximab in mutant KRAS (HCT116 and SW480) and wild-type KRAS (SW48) colon cancer cells. We evaluated cetuximab-mediated antibody-dependent cellular cytotoxicity (ADCC) and the modulation of signaling pathways involved in immune effector cell-mediated elimination of cancer cells. Stable miR-143 or miR-145 overexpression increased cell sensitivity to cetuximab, resulting in a significant increase of cetuximab-mediated ADCC independently of KRAS status. Importantly, HCT116 cells overexpressing these miRNAs triggered apoptosis in result of cetuximab-mediated ADCC, effected by peripheral blood mononuclear cells (p < 0.01). This was associated with increased apoptosis and caspase-3/7 activity, and reduced Bcl-2 protein expression (p < 0.01). In addition, caspase inhibition abrogated cetuximab-mediated ADCC in HCT116 cells overexpressing either miR-143 or miR-145 (p < 0.01). Furthermore, Bcl-2 silencing led to high level of cetuximab-mediated ADCC, compared to control siRNA (p < 0.05). Importantly, granzyme B inhibition, abrogated cetuximab-mediated ADCC, reducing caspase-3/7 activity (p < 0.01). Collectively, our data suggests that re-introduction of miR-143 or miR-145 may provide a new approach for development of therapeutic strategies to re-sensitize colon cancer cells to cetuximab by stimulating cetuximab-dependent ADCC to induce cell death.
Collapse
Affiliation(s)
- Sofia E Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - André E S Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Diane M Pereira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
23
|
Residualization Rates of Near-Infrared Dyes for the Rational Design of Molecular Imaging Agents. Mol Imaging Biol 2016; 17:757-62. [PMID: 25869081 DOI: 10.1007/s11307-015-0851-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Near-infrared (NIR) fluorescence imaging is widely used for tracking antibodies and biomolecules in vivo. Clinical and preclinical applications include intraoperative imaging, tracking therapeutics, and fluorescent labeling as a surrogate for subsequent radiolabeling. Despite their extensive use, one of the fundamental properties of NIR dyes, the residualization rate within cells following internalization, has not been systematically studied. This rate is required for the rational design of probes and proper interpretation of in vivo results. PROCEDURES In this brief report, we measure the cellular residualization rate of eight commonly used dyes encompassing three core structures (cyanine, boron-dipyrromethene (BODIPY), and oxazine/thiazine/carbopyronin). RESULTS We identify residualizing (half-life >24 h) and non-residualizing (half-life <24 h) dyes in both the far-red (~650-680 nm) and near-infrared (~740-800 nm) regions. CONCLUSIONS This data will allow researchers to independently and rationally select the wavelength and residualizing nature of dyes for molecular imaging agent design.
Collapse
|
24
|
Miyamoto R, Oda T, Hashimoto S, Kurokawa T, Inagaki Y, Shimomura O, Ohara Y, Yamada K, Akashi Y, Enomoto T, Kishimoto M, Yanagihara H, Kita E, Ohkohchi N. Cetuximab delivery and antitumor effects are enhanced by mild hyperthermia in a xenograft mouse model of pancreatic cancer. Cancer Sci 2016; 107:514-20. [PMID: 26782353 PMCID: PMC4832851 DOI: 10.1111/cas.12888] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
Even with current promising antitumor antibodies, their antitumor effects on stroma‐rich solid cancers have been insufficient. We used mild hyperthermia with the intent of improving drug delivery by breaking the stromal barrier. Here, we provide preclinical evidence of cetuximab + mild hyperthermia therapy. We used four in vivo pancreatic cancer xenograft mouse models with different stroma amounts (scarce, MIAPaCa‐2; moderate, BxPC‐3; and abundant, Capan‐1 and Ope‐xeno). Cetuximab (1 mg/kg) was given systemically, and the mouse leg tumors were concurrently heated using a water bath method for 30 min at three different temperatures, 25°C (control), 37°C (intra‐abdominal organ level), or 41°C (mild hyperthermia) (n = 4, each group). The evaluated variables were the antitumor effects, represented by tumor volume, and in vivo cetuximab accumulation, indirectly quantified by the immunohistochemical fluorescence intensity value/cell using antibodies against human IgG Fc. At 25°C, the antitumor effects were sufficient, with a cetuximab accumulation value (florescence intensity/cell) of 1632, in the MIAPaCa‐2 model, moderate (1063) in the BxPC‐3 model, and negative in the Capan‐1 and Ope‐xeno models (760, 461). By applying 37°C or 41°C heat, antitumor effects were enhanced shown in decreased tumor volumes. These enhanced effects were accompanied by boosted cetuximab accumulation, which increased by 2.8‐fold (2980, 3015) in the BxPC‐3 model, 2.5‐ or 4.8‐fold (1881, 3615) in the Capan‐1 model, and 3.2‐ or 4.2‐fold (1469, 1922) in the Ope‐xeno model, respectively. Cetuximab was effective in treating even stroma‐rich and k‐ras mutant pancreatic cancer mouse models when the drug delivery was improved by combination with mild hyperthermia.
Collapse
Affiliation(s)
- Ryoichi Miyamoto
- Department of Surgery, Clinical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tatsuya Oda
- Department of Surgery, Clinical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shinji Hashimoto
- Department of Surgery, Clinical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tomohiro Kurokawa
- Department of Surgery, Clinical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuki Inagaki
- Department of Surgery, Clinical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Osamu Shimomura
- Department of Surgery, Clinical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yusuke Ohara
- Department of Surgery, Clinical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Keiichi Yamada
- Department of Surgery, Clinical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshimasa Akashi
- Department of Surgery, Clinical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tsuyoshi Enomoto
- Department of Surgery, Clinical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mikio Kishimoto
- Institute of Applied Physics, University of Tsukuba, Tsukuba, Japan
| | | | - Eiji Kita
- Institute of Applied Physics, University of Tsukuba, Tsukuba, Japan
| | - Nobuhiro Ohkohchi
- Department of Surgery, Clinical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
25
|
Deng R, Bumbaca D, Pastuskovas CV, Boswell CA, West D, Cowan KJ, Chiu H, McBride J, Johnson C, Xin Y, Koeppen H, Leabman M, Iyer S. Preclinical pharmacokinetics, pharmacodynamics, tissue distribution, and tumor penetration of anti-PD-L1 monoclonal antibody, an immune checkpoint inhibitor. MAbs 2016; 8:593-603. [PMID: 26918260 DOI: 10.1080/19420862.2015.1136043] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MPDL3280A is a human monoclonal antibody that targets programmed cell death-1 ligand 1 (PD-L1), and exerts anti-tumor activity mainly by blocking PD-L1 interaction with programmed cell death-1 (PD-1) and B7.1. It is being investigated as a potential therapy for locally advanced or metastatic malignancies. The purpose of the study reported here was to characterize the pharmacokinetics, pharmacodynamics, tissue distribution and tumor penetration of MPDL3280A and/or a chimeric anti-PD-L1 antibody PRO304397 to help further clinical development. The pharmacokinetics of MPDL3280A in monkeys at 0.5, 5 and 20 mg · kg(-1) and the pharmacokinetics / pharmacodynamics of PRO304397 in mice at 1, 3 10 mg · kg(-1) were determined after a single intravenous dose. Tissue distribution and tumor penetration for radiolabeled PRO304397 in tumor-bearing mouse models were determined. The pharmacokinetics of MPDL3280A and PRO304397 were nonlinear in monkeys and mice, respectively. Complete saturation of PD-L1 in blood in mice was achieved at serum concentrations of PRO304397 above ∼ 0.5 µg · mL(-1). Tissue distribution and tumor penetration studies of PRO304397 in tumor-bearing mice indicated that the minimum tumor interstitial to plasma radioactivity ratio was ∼ 0.3; saturation of target-mediated uptake in non-tumor tissues and desirable exposure in tumors were achieved at higher serum concentrations, and the distribution into tumors was dose-and time-dependent. The biodistribution data indicated that the efficacious dose is mostly likely higher than that estimated based on simple pharmacokinetics/pharmacodynamics in blood. These data also allowed for estimation of the target clinical dose for further development of MPDL3280A.
Collapse
Affiliation(s)
- Rong Deng
- a Genentech Research and Early Development, Genentech, Inc. , South San Francisco , CA , USA
| | - Daniela Bumbaca
- a Genentech Research and Early Development, Genentech, Inc. , South San Francisco , CA , USA
| | - Cinthia V Pastuskovas
- a Genentech Research and Early Development, Genentech, Inc. , South San Francisco , CA , USA
| | - C Andrew Boswell
- a Genentech Research and Early Development, Genentech, Inc. , South San Francisco , CA , USA
| | - David West
- a Genentech Research and Early Development, Genentech, Inc. , South San Francisco , CA , USA
| | - Kyra J Cowan
- a Genentech Research and Early Development, Genentech, Inc. , South San Francisco , CA , USA
| | - Henry Chiu
- a Genentech Research and Early Development, Genentech, Inc. , South San Francisco , CA , USA
| | - Jacqueline McBride
- a Genentech Research and Early Development, Genentech, Inc. , South San Francisco , CA , USA
| | - Clarissa Johnson
- a Genentech Research and Early Development, Genentech, Inc. , South San Francisco , CA , USA
| | - Yan Xin
- a Genentech Research and Early Development, Genentech, Inc. , South San Francisco , CA , USA
| | - Hartmut Koeppen
- a Genentech Research and Early Development, Genentech, Inc. , South San Francisco , CA , USA
| | - Maya Leabman
- a Genentech Research and Early Development, Genentech, Inc. , South San Francisco , CA , USA
| | - Suhasini Iyer
- a Genentech Research and Early Development, Genentech, Inc. , South San Francisco , CA , USA
| |
Collapse
|
26
|
Heindl S, Eggenstein E, Keller S, Kneissl J, Keller G, Mutze K, Rauser S, Gasteiger G, Drexler I, Hapfelmeier A, Höfler H, Luber B. Relevance of MET activation and genetic alterations of KRAS and E-cadherin for cetuximab sensitivity of gastric cancer cell lines. J Cancer Res Clin Oncol 2015; 138:843-58. [PMID: 22290393 DOI: 10.1007/s00432-011-1128-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE The therapeutic activity of the epidermal growth factor receptor (EGFR)-directed monoclonal antibody cetuximab in gastric cancer is currently being investigated. Reliable biomarkers for the identification of patients who are likely to benefit from the treatment are not available. The aim of the study was to examine the drug sensitivity of five gastric cancer cell lines towards cetuximab as a single agent and to establish predictive markers for chemosensitivity in this cell culture model. The effect of a combination of cetuximab with chemotherapy was compared between a sensitive and a nonsensitive cell line. METHODS EGFR expression, activation and localisation, the presence and subcellular localisation of the cell adhesion molecule E-cadherin as well as MET activation were examined by Western blot analysis, flow cytometry and immunofluorescence staining. Cells were treated with varying concentrations of cetuximab and cisplatin and 5-fluorouracil in tumour-relevant concentrations. The biological endpoint was cell viability, which was measured by XTT cell proliferation assay. Response to treatment was evaluated using statistical methods. RESULTS We assessed the activity of cetuximab in five gastric cancer cell lines (AGS, KATOIII, MKN1, MKN28 and MKN45). The viability of two cell lines, MKN1 and MKN28, was significantly reduced by cetuximab treatment. High EGFR expression and low levels of receptor activation were associated with cetuximab responsiveness. MET activation as well as mutations of KRAS and CDH1 (gene encoding E-cadherin) was associated with cetuximab resistance. CONCLUSION These data indicate that our examinations may be clinically relevant, and the candidate markers should therefore be tested in clinical studies.
Collapse
Affiliation(s)
- Stefan Heindl
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Klinikum rechts der Isar, Trogerstr. 18, 81675, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
van Dijk LK, Boerman OC, Kaanders JH, Bussink J. PET Imaging in Head and Neck Cancer Patients to Monitor Treatment Response: A Future Role for EGFR-Targeted Imaging. Clin Cancer Res 2015; 21:3602-9. [DOI: 10.1158/1078-0432.ccr-15-0348] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/20/2015] [Indexed: 11/16/2022]
|
28
|
Reilly EB, Phillips AC, Buchanan FG, Kingsbury G, Zhang Y, Meulbroek JA, Cole TB, DeVries PJ, Falls HD, Beam C, Gu J, Digiammarino EL, Palma JP, Donawho CK, Goodwin NC, Scott AM. Characterization of ABT-806, a Humanized Tumor-Specific Anti-EGFR Monoclonal Antibody. Mol Cancer Ther 2015; 14:1141-51. [DOI: 10.1158/1535-7163.mct-14-0820] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/21/2015] [Indexed: 11/16/2022]
|
29
|
Kobold S, Steffen J, Chaloupka M, Grassmann S, Henkel J, Castoldi R, Zeng Y, Chmielewski M, Schmollinger JC, Schnurr M, Rothenfußer S, Schendel DJ, Abken H, Sustmann C, Niederfellner G, Klein C, Bourquin C, Endres S. Selective bispecific T cell recruiting antibody and antitumor activity of adoptive T cell transfer. J Natl Cancer Inst 2014; 107:364. [PMID: 25424197 DOI: 10.1093/jnci/dju364] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND One bottleneck for adoptive T cell therapy (ACT) is recruitment of T cells into tumors. We hypothesized that combining tumor-specific T cells, modified with a marker antigen and a bispecific antibody (BiAb) that selectively recognizes transduced T cells and tumor cells would improve T cell recruitment to tumors and enhance therapeutic efficacy. METHODS SV40 T antigen-specific T cells from T cell receptor (TCR)-I-transgenic mice were transduced with a truncated human epidermal growth factor receptor (EGFR) as a marker protein. Targeting and killing by combined ACT and anti-EGFR-anti-EpCAM BiAb therapy was analyzed in C57Bl/6 mice (n = six to 12 per group) carrying subcutaneous tumors of the murine gastric cancer cell line GC8 (SV40(+) and EpCAM(+)). Anti-EGFR x anti-c-Met BiAb was used for targeting of human tumor-specific T cells to c-Met(+) human tumor cell lines. Differences between experimental conditions were analyzed using the Student's t test, and differences in tumor growth with two-way analysis of variance. Overall survival was analyzed by log-rank test. All statistical tests were two-sided. RESULTS The BiAb linked EGFR-transduced T cells to tumor cells and enhanced tumor cell lysis. In vivo, the combination of ACT and Biab produced increased T cell infiltration of tumors, retarded tumor growth, and prolonged survival compared with ACT with a control antibody (median survival 95 vs 75 days, P < .001). In human cells, this strategy enhanced recruitment of human EGFR-transduced T cells to immobilized c-Met and recognition of tyrosinase(+) melanoma cells by TCR-, as well as of CEA(+) colon cancer cells by chimeric antigen receptor (CAR)-modified T cells. CONCLUSIONS BiAb recruitment of tumor-specific T cells transduced with a marker antigen to tumor cells may enhance efficacy of ACT.
Collapse
Affiliation(s)
- Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB).
| | - Julius Steffen
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Michael Chaloupka
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Simon Grassmann
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Jonas Henkel
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Raffaella Castoldi
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Yi Zeng
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Markus Chmielewski
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Jan C Schmollinger
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Max Schnurr
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Simon Rothenfußer
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Dolores J Schendel
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Hinrich Abken
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Claudio Sustmann
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Gerhard Niederfellner
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Christian Klein
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Carole Bourquin
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| |
Collapse
|
30
|
Higgins B, Glenn K, Walz A, Tovar C, Filipovic Z, Hussain S, Lee E, Kolinsky K, Tannu S, Adames V, Garrido R, Linn M, Meille C, Heimbrook D, Vassilev L, Packman K. Preclinical optimization of MDM2 antagonist scheduling for cancer treatment by using a model-based approach. Clin Cancer Res 2014; 20:3742-52. [PMID: 24812409 DOI: 10.1158/1078-0432.ccr-14-0460] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Antitumor clinical activity has been demonstrated for the MDM2 antagonist RG7112, but patient tolerability for the necessary daily dosing was poor. Here, utilizing RG7388, a second-generation nutlin with superior selectivity and potency, we determine the feasibility of intermittent dosing to guide the selection of initial phase I scheduling regimens. EXPERIMENTAL DESIGN A pharmacokinetic-pharmacodynamic (PKPD) model was developed on the basis of preclinical data to determine alternative dosing schedule requirements for optimal RG7388-induced antitumor activity. This PKPD model was used to investigate the pharmacokinetics of RG7388 linked to the time-course of the antitumor effect in an osteosarcoma xenograft model in mice. These data were used to prospectively predict intermittent and continuous dosing regimens, resulting in tumor stasis in the same model system. RESULTS RG7388-induced apoptosis was delayed relative to drug exposure with continuous treatment not required. In initial efficacy testing, daily dosing at 30 mg/kg and twice a week dosing at 50 mg/kg of RG7388 were statistically equivalent in our tumor model. In addition, weekly dosing of 50 mg/kg was equivalent to 10 mg/kg given daily. The implementation of modeling and simulation on these data suggested several possible intermittent clinical dosing schedules. Further preclinical analyses confirmed these schedules as viable options. CONCLUSION Besides chronic administration, antitumor activity can be achieved with intermittent schedules of RG7388, as predicted through modeling and simulation. These alternative regimens may potentially ameliorate tolerability issues seen with chronic administration of RG7112, while providing clinical benefit. Thus, both weekly (qw) and daily for five days (5 d on/23 off, qd) schedules were selected for RG7388 clinical testing.
Collapse
Affiliation(s)
| | | | - Antje Walz
- Modeling and Simulation, Pharma Research and Early Development, Hoffmann-La Roche, Inc., Basel, Switzerland
| | | | | | | | - Edmund Lee
- Authors' Affiliations: Discovery Oncology
| | | | | | - Violeta Adames
- Non-Clinical Safety, Pharma Research and Early Development, Hoffmann-La Roche, Inc., Nutley, New Jersey; and
| | - Rosario Garrido
- Non-Clinical Safety, Pharma Research and Early Development, Hoffmann-La Roche, Inc., Nutley, New Jersey; and
| | - Michael Linn
- Non-Clinical Safety, Pharma Research and Early Development, Hoffmann-La Roche, Inc., Nutley, New Jersey; and
| | - Christophe Meille
- Modeling and Simulation, Pharma Research and Early Development, Hoffmann-La Roche, Inc., Basel, Switzerland
| | | | | | | |
Collapse
|
31
|
Seo Y, Ishii Y, Ochiai H, Fukuda K, Akimoto S, Hayashida T, Okabayashi K, Tsuruta M, Hasegawa H, Kitagawa Y. Cetuximab-mediated ADCC activity is correlated with the cell surface expression level of EGFR but not with the KRAS/BRAF mutational status in colorectal cancer. Oncol Rep 2014; 31:2115-22. [PMID: 24626880 DOI: 10.3892/or.2014.3077] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/14/2014] [Indexed: 01/26/2023] Open
Abstract
Cetuximab, an IgG1 monoclonal antibody against the epidermal growth factor receptor (EGFR), is widely used for the treatment of metastatic colorectal cancer (mCRC). One of the mechanisms of action is considered to be antibody-dependent cell-mediated cytotoxicity (ADCC) triggered by Fcγ-R on natural killer cells. However, whether ADCC is associated with EGFR expression and/or the mutational status of EGF downstream effectors (KRAS and BRAF) in colorectal cancer (CRC) remains unclear. The aim of the present study was to verify whether ADCC activities are associated with the cell surface expression levels of EGFR and/or the mutational status of KRAS and BRAF. Five human CRC cell lines with different cell surface expression levels of EGFR and different KRAS and BRAF mutational statuses were selected to evaluate ADCC activity using peripheral blood mononuclear cells (PBMCs) from healthy human donors. Furthermore, tumor cells from resected specimens of CRC patients were used to evaluate the cell surface expression level of EGFR using immunohistochemistry and the KRAS and BRAF mutational statuses using direct sequencing, while the ADCC activity was examined using PBMCs from the same CRC patients. A strong correlation was observed between the expression levels of EGFR and the ADCC activities in the cell lines (correlation coefficient: 0.949; P=0.003). Of the 13 resected specimens, a high ADCC activity level was significantly observed in tumor cells with high expression levels of cell surface EGFR, when compared with that in the tumor cells with low expression levels (P=0.027). In both CRC cell lines and tumor cells from CRC patients, the ADCC activities were significantly associated with the cell surface expression levels of EGFR [standard partial regression coefficients: 0.911 (P=0.017) and 0.660 (P=0.018), respectively], but not with the mutational status of KRAS and BRAF [standard partial regression coefficient: -0.101 (P=0.631) and 0.160 (P=0.510), respectively]. Cetuximab-mediated ADCC activity may be correlated with the cell surface expression level of EGFR, regardless of the mutational statuses of KRAS and BRAF, in CRC.
Collapse
Affiliation(s)
- Yuki Seo
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshiyuki Ishii
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroki Ochiai
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazumasa Fukuda
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shingo Akimoto
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tetsu Hayashida
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Koji Okabayashi
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masashi Tsuruta
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hirotoshi Hasegawa
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
32
|
Abstract
Prostate cancer is no longer viewed mostly as a disease of abnormally proliferating epithelial cells, but rather as a disease affecting the complex interactions between the cells of the prostate epithelial compartment and the surrounding stromal compartment in which they live. Indeed, the microenvironment in which tumor cells evolve towards an aggressive phenotype is highly heterogeneous, as it is composed of different cell populations such as endothelial cells, fibroblasts, macrophages, and lymphocytes, either resident or trans-differentiated by bone marrow-derived mesenchymal stem cells recruited at the tumor site. Cancer-associated fibroblasts, the most abundant population within this microenvironment, exert a mandatory role in prostate cancer progression as they metabolically sustain cancer cell survival and growth, recruit inflammatory and immune cells, and promote cancer cells stemness and epithelial mesenchymal transition, thereby favoring metastatic dissemination of aggressive cancers. The interruption of this two-compartment crosstalk, together with the idea that stromal cells are mostly vulnerable, being drug-sensitive, could lead to the development of anticancer therapies that target tumor stromal elements.
Collapse
Affiliation(s)
- Paola Chiarugi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, University of Florence, Tuscany Tumor Institute, viale Morgagni 50, 50134 Florence, Italy.
| | - Paolo Paoli
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, University of Florence, Tuscany Tumor Institute, viale Morgagni 50, 50134 Florence, Italy
| | - Paolo Cirri
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, University of Florence, Tuscany Tumor Institute, viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
33
|
Radiolabeled anti-EGFR-antibody improves local tumor control after external beam radiotherapy and offers theragnostic potential. Radiother Oncol 2014; 110:362-9. [PMID: 24440046 DOI: 10.1016/j.radonc.2013.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 12/25/2022]
Abstract
PURPOSE The effect of radioimmunotherapy (RIT) using the therapeutic radionuclide Y-90 bound to the anti-EGFR antibody cetuximab combined with external beam irradiation (EBRT) (EBRIT) on permanent local tumor control in vivo was examined. METHODS Growth delay was evaluated in three human squamous cell carcinoma models after RIT with [(90)Y]Y-(CHX-A''-DTPA)₄-cetuximab (Y-90-cetuximab). The EBRT dose required to cure 50% of the tumors (TCD₅₀) for EBRT alone or EBRIT was evaluated in one RIT-responder (FaDu) and one RIT-non-responder (UT-SCC-5). EGFR expression and microenvironmental parameters were evaluated in untreated tumors, bioavailability was visualized by PET using ([(86)Y]Y-(CHX-A''-DTPA)₄-cetuximab (Y-86-cetuximab) and biodistribution using Y-90-cetuximab. RESULTS In UT-SCC-8 and FaDu but not in UT-SCC-5 radiolabeled cetuximab led to significant tumor growth delay. TCD₅₀ after EBRT was significantly decreased by EGFR-targeted RIT in FaDu but not in UT-SCC-5. In contrast to EGFR expression, parameters of the tumor micromilieu and in particular the Y-90-cetuximab biodistribution or Y-86-cetuximab visualization in PET correlated with the responsiveness to RIT or EBRIT. CONCLUSION EGFR-targeted EBRIT can improve permanent local tumor control compared to EBRT alone. PET imaging of bioavailability of labeled cetuximab appears to be a suitable predictor for response to EBRIT. This theragnostic approach should be further explored for clinical translation.
Collapse
|
34
|
Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet 2013; 52:83-124. [PMID: 23299465 DOI: 10.1007/s40262-012-0027-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Development of monoclonal antibodies (mAbs) and their functional derivatives represents a growing segment of the development pipeline in the pharmaceutical industry. More than 25 mAbs and derivatives have been approved for a variety of therapeutic applications. In addition, around 500 mAbs and derivatives are currently in different stages of development. mAbs are considered to be large molecule therapeutics (in general, they are 2-3 orders of magnitude larger than small chemical molecule therapeutics), but they are not just big chemicals. These compounds demonstrate much more complex pharmacokinetic and pharmacodynamic behaviour than small molecules. Because of their large size and relatively poor membrane permeability and instability in the conditions of the gastrointestinal tract, parenteral administration is the most usual route of administration. The rate and extent of mAb distribution is very slow and depends on extravasation in tissue, distribution within the particular tissue, and degradation. Elimination primarily happens via catabolism to peptides and amino acids. Although not definitive, work has been published to define the human tissues mainly involved in the elimination of mAbs, and it seems that many cells throughout the body are involved. mAbs can be targeted against many soluble or membrane-bound targets, thus these compounds may act by a variety of mechanisms to achieve their pharmacological effect. mAbs targeting soluble antigen generally exhibit linear elimination, whereas those targeting membrane-bound antigen often exhibit non-linear elimination, mainly due to target-mediated drug disposition (TMDD). The high-affinity interaction of mAbs and their derivatives with the pharmacological target can often result in non-linear pharmacokinetics. Because of species differences (particularly due to differences in target affinity and abundance) in the pharmacokinetics and pharmacodynamics of mAbs, pharmacokinetic/pharmacodynamic modelling of mAbs has been used routinely to expedite the development of mAbs and their derivatives and has been utilized to help in the selection of appropriate dose regimens. Although modelling approaches have helped to explain variability in both pharmacokinetic and pharmacodynamic properties of these drugs, there is a clear need for more complex models to improve understanding of pharmacokinetic processes and pharmacodynamic interactions of mAbs with the immune system. There are different approaches applied to physiologically based pharmacokinetic (PBPK) modelling of mAbs and important differences between the models developed. Some key additional features that need to be accounted for in PBPK models of mAbs are neonatal Fc receptor (FcRn; an important salvage mechanism for antibodies) binding, TMDD and lymph flow. Several models have been described incorporating some or all of these features and the use of PBPK models are expected to expand over the next few years.
Collapse
|
35
|
Kurai J, Chikumi H, Hashimoto K, Takata M, Sako T, Yamaguchi K, Kinoshita N, Watanabe M, Touge H, Makino H, Igishi T, Hamada H, Yano S, Shimizu E. Therapeutic antitumor efficacy of anti-epidermal growth factor receptor antibody, cetuximab, against malignant pleural mesothelioma. Int J Oncol 2012; 41:1610-8. [PMID: 22922885 PMCID: PMC3583649 DOI: 10.3892/ijo.2012.1607] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 07/24/2012] [Indexed: 12/29/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is commonly overexpressed in malignant pleural mesothelioma (MPM). Cetuximab is a chimeric mouse-human antibody targeted against EGFR and induces potent antibody-dependent cellular cytotoxicity (ADCC). The action of cetuximab against MPM cells has not been well studied. Therefore, in this study, we investigated the antitumor activity of cetuximab against MPM cell lines, particularly with respect to ADCC activity in vitro and in vivo. EGFR expression of MPM cells was measured by a quantitative flow cytometric analysis and immunohistochemistry. The effect of cetuximab on growth inhibition was assessed using a modified MTT assay. The ADCC activity was measured by a 4-h 51Cr release assay using fresh or IL-2-activated peripheral blood mononuclear cells. In vivo antitumor activity of cetuximab was evaluated using an orthotopic implantation mouse model. Cetuximab-mediated ADCC activity against MPM cells was observed at low concentration (0.25 mg/ml) and was enhanced by IL-2, whereas no direct effect on growth inhibition was detected. A logarithmic correlation was observed between the number of EGFRs on MPM cells and ADCC activity. Low EGFR expression on the MPM cells, which was weakly detectable by immunohistochemistry, was sufficient for maximum ADCC activity. In the mouse model, cetuximab treatment with or without IL-2 significantly inhibited intrathoracic tumor growth and prolonged their survival. Our study shows that cetuximab has potent anti-MPM activity both in vitro and in vivo, mainly through the immunologic mechanism of ADCC. Cetuximab has the potential to be used as a novel therapy for MPM patients.
Collapse
Affiliation(s)
- Jun Kurai
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago-shi, Tottori-ken 683-8504, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bumbaca D, Xiang H, Boswell CA, Port RE, Stainton SL, Mundo EE, Ulufatu S, Bagri A, Theil FP, Fielder PJ, Khawli LA, Shen BQ. Maximizing tumour exposure to anti-neuropilin-1 antibody requires saturation of non-tumour tissue antigenic sinks in mice. Br J Pharmacol 2012; 166:368-77. [PMID: 22074316 DOI: 10.1111/j.1476-5381.2011.01777.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Neuropilin-1 (NRP1) is a VEGF receptor that is widely expressed in normal tissues and is involved in tumour angiogenesis. MNRP1685A is a rodent and primate cross-binding human monoclonal antibody against NRP1 that exhibits inhibition of tumour growth in NPR1-expressing preclinical models. However, widespread NRP1 expression in normal tissues may affect MNRP1685A tumour uptake. The objective of this study was to assess MNRP1685A biodistribution in tumour-bearing mice to understand the relationships between dose, non-tumour tissue uptake and tumour uptake. EXPERIMENTAL APPROACH Non-tumour-bearing mice were given unlabelled MNRP1685A at 10 mg·kg(-1) . Tumour-bearing mice were given (111) In-labelled MNRP1685A along with increasing amounts of unlabelled antibody. Blood and tissues were collected from all animals to determine drug concentration (unlabelled) or radioactivity level (radiolabelled). Some animals were imaged using single photon emission computed tomography - X-ray computed tomography. KEY RESULTS MNRP1685A displayed faster serum clearance than pertuzumab, indicating that target binding affected MNRP1685A clearance. I.v. administration of (111) In-labelled MNRP1685A to tumour-bearing mice yielded minimal radioactivity in the plasma and tumour, but high levels in the lungs and liver. Co-administration of unlabelled MNRP1685A with the radiolabelled antibody was able to competitively block lungs and liver radioactivity uptake in a dose-dependent manner while augmenting plasma and tumour radioactivity levels. CONCLUSIONS AND IMPLICATIONS These results indicate that saturation of non-tumour tissue uptake is required in order to achieve tumour uptake and acceptable exposure to antibody. Utilization of a rodent and primate cross-binding antibody allows for translation of these results to clinical settings.
Collapse
Affiliation(s)
- Daniela Bumbaca
- Department of Pharmacokinetic and Pharmacodynamic Sciences, Genentech Research and Early Development, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bugelski PJ, Martin PL. Concordance of preclinical and clinical pharmacology and toxicology of therapeutic monoclonal antibodies and fusion proteins: cell surface targets. Br J Pharmacol 2012; 166:823-46. [PMID: 22168282 PMCID: PMC3417412 DOI: 10.1111/j.1476-5381.2011.01811.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/14/2011] [Accepted: 11/28/2011] [Indexed: 12/20/2022] Open
Abstract
Monoclonal antibodies (mAbs) and fusion proteins directed towards cell surface targets make an important contribution to the treatment of disease. The purpose of this review was to correlate the clinical and preclinical data on the 15 currently approved mAbs and fusion proteins targeted to the cell surface. The principal sources used to gather data were: the peer reviewed Literature; European Medicines Agency 'Scientific Discussions'; and the US Food and Drug Administration 'Pharmacology/Toxicology Reviews' and package inserts (United States Prescribing Information). Data on the 15 approved biopharmaceuticals were included: abatacept; abciximab; alefacept; alemtuzumab; basiliximab; cetuximab; daclizumab; efalizumab; ipilimumab; muromonab; natalizumab; panitumumab; rituximab; tocilizumab; and trastuzumab. For statistical analysis of concordance, data from these 15 were combined with data on the approved mAbs and fusion proteins directed towards soluble targets. Good concordance with human pharmacodynamics was found for mice receiving surrogates or non-human primates (NHPs) receiving the human pharmaceutical. In contrast, there was poor concordance for human pharmacodynamics in genetically deficient mice and for human adverse effects in all three test systems. No evidence that NHPs have superior predictive value was found.
Collapse
Affiliation(s)
- Peter J Bugelski
- Biologics Toxicology, Janssen Research & Development, division of Johnson & Johnson Pharmaceutical Research & Development, LLC, Radnor, PA 19087, USA
| | | |
Collapse
|
38
|
Kneissl J, Keller S, Lorber T, Heindl S, Keller G, Drexler I, Hapfelmeier A, Höfler H, Luber B. Association of amphiregulin with the cetuximab sensitivity of gastric cancer cell lines. Int J Oncol 2012; 41:733-44. [PMID: 22614881 DOI: 10.3892/ijo.2012.1479] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/02/2012] [Indexed: 01/22/2023] Open
Abstract
The therapeutic activity of the epidermal growth factor receptor (EGFR)-directed monoclonal antibody cetuximab in gastric cancer is currently being investigated in clinical studies. Reliable biomarkers for the identification of patients who are likely to benefit from this treatment are not available. In this study, we assessed the activity of cetuximab in five gastric cancer cell lines (AGS, AZ521, Hs746T, LMSU and MKN1). The viability of two of these cell lines, AZ521 and MKN1, was significantly reduced by cetuximab treatment. High expression and secretion levels of the EGFR-binding ligand, amphiregulin (AREG), were associated with cetuximab responsiveness. MET activation and mutations in Kirsten-Ras gene (KRAS) were associated with cetuximab resistance. By introducing a hierarchy between these markers, we established a model that facilitated the correct classification of all five gastric cancer cell lines as cetuximab responsive or non-responsive. The highest priority was allocated to activating KRAS mutations, followed by MET activation and finally by the levels of secreted AREG. In order to validate these results, we used three additional human gastric cancer cell lines (KATOIII, MKN28 and MKN45). In conclusion, we propose that our model allows the response of gastric cancer cell lines to cetuximab treatment to be predicted.
Collapse
Affiliation(s)
- Julia Kneissl
- Institute of Pathology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee BS, Kang SU, Hwang HS, Kim YS, Sung ES, Shin YS, Lim YC, Kim CH. An agonistic antibody to human death receptor 4 induces apoptotic cell death in head and neck cancer cells through mitochondrial ROS generation. Cancer Lett 2012; 322:45-57. [PMID: 22353688 DOI: 10.1016/j.canlet.2012.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 12/13/2022]
Abstract
The proapoptotic death receptor 4 (DR4), along with DR5, is currently regarded as a promising target for development of agonistic anti-cancer agents due to its tumor-selective apoptosis-inducing ability with no significant cytotoxicity to normal cells. In this study, we examine susceptibility of various head and neck cancer (HNC) cells and mechanism of cell death to an anti-DR4 agonistic monoclonal antibody (mAb), AY4. AY4 as a single agent induced caspase-dependent apoptotic cell death of KB and HN9, but not in SNU899 and FaDu cell lines. AY4 treatment resulted in accumulation of intracellular reactive oxygen species (ROS) generated from mitochondria in AY4-sensitive cells. Blockade of ROS production by N-acetyl-l-cysteine (NAC) resulted in protection of AY4-sensitive cells against AY4-induced apoptosis. ROS generation induced by AY4 treatment triggered down-regulation of anti-apoptotic molecules of Bcl-xL and X-linked inhibitor of apoptosis (XIAP) without affecting the expression levels of DR4, Mcl-1, and survivin. AY4 also inhibited growth of pre-established HN9 tumors in a nude mouse xenograft model and did not show noticeable cytotoxicity in a zebrafish model. Our results provide further insight into the mechanism of DR4-mediated cell death and potential use of AY4 mAb as an anti-cancer therapeutic agent in AY4-sensitive HNC types.
Collapse
Affiliation(s)
- Bok-Soon Lee
- Department of Otolaryngology, Ajou University, Suwon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang H, Yun S, Batuwangala TD, Steward M, Holmes SD, Pan L, Tighiouart M, Shin HJC, Koenig L, Park W, Rycroft D, Nannapaneni S, Wang Y, Chen ZG, Shin DM. A dual-targeting antibody against EGFR-VEGF for lung and head and neck cancer treatment. Int J Cancer 2011; 131:956-69. [PMID: 21918971 DOI: 10.1002/ijc.26427] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 08/03/2011] [Indexed: 12/14/2022]
Abstract
An antibody simultaneously targeting epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF), two major tumor growth-driving machineries, may provide a novel effective strategy for optimizing tumor targeting and maximizing potential clinical benefits. Human domain antibodies selected against VEGF and EGFR were formatted into a fully human dual-targeting IgG (DT-IgG) to directly target both antigens in a single molecule. We evaluated the efficacy of DT-IgG in comparison with bevacizumab and cetuximab alone and in combination in the lung cancer cell line A549 (low EGFR expression and KRAS mutant) and the head and neck squamous cell carcinoma (HNSCC) cell line Tu212 (high EGFR expression and KRAS wild type) in vitro and in vivo. DT-IgG suppressed Tu212 and A549 cell growth, inhibited EGFR activation and induced apoptosis as effectively as cetuximab, and neutralized VEGF as effectively as bevacizumab. DT-IgG induced EGFR-dependent VEGF internalization, constituting a novel antiangiogenesis mechanism. In xenograft models with lung and head and neck cancer cell lines, DT-IgG displayed efficacy equivalent to bevacizumab in diminishing tumor growth despite its short serum half-life (36 hr in rats) and both agents may constitute preferable alternatives to cetuximab in KRAS-mutant tumors. Immunofluorescence staining revealed that localization of DT-IgG was similar to that of cetuximab, largely associated with EGFR+tumor cells. Our proof of principle study suggests a DT-IgG against EGFR and VEGF as an alternative therapeutic strategy with potentially enhanced clinical benefit.
Collapse
Affiliation(s)
- Hongzheng Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pahl JH, Ruslan SEN, Buddingh EP, Santos SJ, Szuhai K, Serra M, Gelderblom H, Hogendoorn PC, Egeler RM, Schilham MW, Lankester AC. Anti-EGFR Antibody Cetuximab Enhances the Cytolytic Activity of Natural Killer Cells toward Osteosarcoma. Clin Cancer Res 2011; 18:432-41. [DOI: 10.1158/1078-0432.ccr-11-2277] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Hurwitz SJ, Zhang H, Yun S, Batuwangala TD, Steward M, Holmes SD, Rycroft D, Pan L, Tighiouart M, Shin HJC, Koenig L, Wang Y, Chen Z, Shin DM. Pharmacodynamics of DT-IgG, a dual-targeting antibody against VEGF-EGFR, in tumor xenografted mice. Cancer Chemother Pharmacol 2011; 69:577-90. [DOI: 10.1007/s00280-011-1713-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 07/15/2011] [Indexed: 02/07/2023]
|
43
|
Quesnelle KM, Grandis JR. Dual kinase inhibition of EGFR and HER2 overcomes resistance to cetuximab in a novel in vivo model of acquired cetuximab resistance. Clin Cancer Res 2011; 17:5935-44. [PMID: 21791633 DOI: 10.1158/1078-0432.ccr-11-0370] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Acquired resistance to cetuximab, a chimeric epidermal growth factor receptor (EGFR)-targeting monoclonal antibody, is a widespread problem in the treatment of solid tumors. The paucity of preclinical models has limited investigations to determine the mechanism of acquired therapeutic resistance, thereby limiting the development of effective treatments. The purpose of this study was to generate cetuximab-resistant tumors in vivo to characterize mechanisms of acquired resistance. EXPERIMENTAL DESIGN We generated cetuximab-resistant clones from a cetuximab-sensitive bladder cancer cell line in vivo by exposing cetuximab-sensitive xenografts to increasing concentrations of cetuximab, followed by validation of the resistant phenotype in vivo and in vitro using invasion assays. A candidate-based approach was used to examine the role of HER2 on mediating cetuximab resistance both in vitro and in vivo. RESULTS We generated a novel model of cetuximab resistance, and, for the first time in the context of EGFR-inhibitor resistance, we identified increased phosphorylation of a C-terminal fragment of HER2 (611-CTF) in cetuximab-resistant cells. Afatinib (BIBW-2992), an irreversible kinase inhibitor targeting EGFR and HER2, successfully inhibited growth of the cetuximab-resistant cells in vitro. When afatinib was combined with cetuximab in vivo, we observed an additive growth inhibitory effect in cetuximab-resistant xenografts. CONCLUSIONS These data suggest that the use of dual EGFR-HER2 kinase inhibitors can enhance responses to cetuximab, perhaps in part due to downregulation of 611-CTF. This study conducted in a novel in vivo model provides a mechanistic rationale for ongoing phase I clinical trials using this combination treatment modality.
Collapse
Affiliation(s)
- Kelly M Quesnelle
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
44
|
IL-15 and IL-2 increase Cetuximab-mediated cellular cytotoxicity against triple negative breast cancer cell lines expressing EGFR. Breast Cancer Res Treat 2011; 130:465-75. [DOI: 10.1007/s10549-011-1360-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/18/2011] [Indexed: 12/23/2022]
|
45
|
PKPD and Disease Modeling: Concepts and Applications to Oncology. CLINICAL TRIAL SIMULATIONS 2011. [DOI: 10.1007/978-1-4419-7415-0_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Nukatsuka M, Saito H, Nakagawa F, Abe M, Uchida J, Shibata J, Matsuo KI, Noguchi S, Kiniwa M. Oral fluoropyrimidine may augment the efficacy of aromatase inhibitor via the down-regulation of estrogen receptor in estrogen-responsive breast cancer xenografts. Breast Cancer Res Treat 2010; 128:381-90. [PMID: 20809360 DOI: 10.1007/s10549-010-1141-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/18/2010] [Indexed: 12/12/2022]
Abstract
The present preclinical study was designed to evaluate a new combination therapy comprised of the aromatase inhibitor anastrozole (ANA) and the oral fluoropyrimidines, UFT and S-1 against the estrogen receptor (ER)-positive human breast cancer cell line MCF-7/Arom 14, which was stably transfected with the cDNA of human aromatase. MCF-7/Arom 14 cells showed a high aromatase activity and notably were able to grow in the presence of testosterone and estradiol (E(2)) in vitro. ANA and 5-fluorouracil (5-FU) inhibited cell growth at concentrations of 0.005-10 and 0.2-5 μM, respectively, and the combination of both drugs additively inhibited cell growth. The growth of MCF-7/Arom 14 tumors was significantly inhibited by ANA and S-1 or UFT in vivo. The combination of ANA with S-1 or UFT administered using a 21-day consecutive, metronomic-like regimen significantly enhanced the antitumor efficacy, suppressing tumor growth for 2-4 times longer than monotherapy. To investigate the mechanisms by which S-1 enhances the antitumor activity of ANA, the protein and mRNA expression levels of ER-α in tumor tissue after treatment with S-1, ANA, and the typical chemotherapeutic agents doxorubicin (ADM) or paclitaxel (TXL) were analyzed. The protein and mRNA expression levels of ER-α in the tumor tissue were markedly decreased after treatment with S-1 or S-1 + ANA, but not after treatment with either ADM or TXL. The reduced ER-α level after S-1 treatment might contribute to the increased antitumor activity of ANA by reducing ER-α-induced growth signaling in addition to the decrease in estrogen production induced by ANA. Based on these results, the combination of ANA and S-1 might yield a greater benefit than other chemotherapeutic agents in postmenopausal women with ER-positive breast cancer.
Collapse
Affiliation(s)
- Mamoru Nukatsuka
- Tokushima Research Center, Taiho Pharmaceutical Co., Ltd., 224-2, Ebisuno Hiraishi, Kawauchi-Cho, Tokushima-Shi, Tokushima 771-0194, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lee CM, Tannock IF. The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors. BMC Cancer 2010; 10:255. [PMID: 20525277 PMCID: PMC2889896 DOI: 10.1186/1471-2407-10-255] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 06/03/2010] [Indexed: 12/12/2022] Open
Abstract
Background Poor distribution of some anticancer drugs in solid tumors may limit their anti-tumor activity. Methods Here we used immunohistochemistry to quantify the distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab in relation to blood vessels and to regions of hypoxia in human tumor xenografts. The antibodies were injected into mice implanted with human epidermoid carcinoma A431 or human breast carcinoma MDA-MB-231 transfected with ERBB2 (231-H2N) that express high levels of ErbB1 and ErbB2 respectively, or wild-type MDA-MB-231, which expresses intermediate levels of ErbB1 and low levels of ErbB2. Results The distribution of cetuximab in A431 xenografts and trastuzumab in 231-H2N xenografts was time and dose dependent. At early intervals after injection of 1 mg cetuximab into A431 xenografts, the concentration of cetuximab decreased with increasing distance from blood vessels, but became more uniformly distributed at later times; there remained however limited distribution and binding in hypoxic regions of tumors. Injection of lower doses of cetuximab led to heterogeneous distributions. Similar results were observed with trastuzumab in 231-H2N xenografts. In MDA-MB-231 xenografts, which express lower levels of ErbB1, homogeneity of distribution of cetuximab was achieved more rapidly. Conclusions Cetuximab and trastuzumab distribute slowly, but at higher doses achieve a relatively uniform distribution after about 24 hours, most likely due to their long half-lives in the circulation. There remains poor distribution within hypoxic regions of tumors.
Collapse
Affiliation(s)
- Carol M Lee
- Divisions of Applied Molecular Oncology and Medical Oncology and Hematology Princess Margaret Hospital and University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
48
|
Differential tumor-targeting abilities of three single-domain antibody formats. Cancer Lett 2010; 289:81-90. [DOI: 10.1016/j.canlet.2009.08.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/22/2009] [Accepted: 08/02/2009] [Indexed: 11/21/2022]
|
49
|
Sanchez AB, Nguyen T, Dema-Ala R, Kummel AC, Kipps TJ, Messmer BT. A general process for the development of peptide-based immunoassays for monoclonal antibodies. Cancer Chemother Pharmacol 2010; 66:919-25. [PMID: 20087593 PMCID: PMC2921063 DOI: 10.1007/s00280-009-1240-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 12/29/2009] [Indexed: 12/04/2022]
Abstract
Purpose Monoclonal antibodies (mAb) are an important and growing class of cancer therapeutics, but pharmacokinetic analyses have in many cases been constrained by the lack of standard and robust pharmacologic assays. The goal of this project was to develop a general method for the production of immunoassays that can measure the levels of therapeutic monoclonal antibodies in biologic samples at relevant concentrations. Methods Alemtuzumab and rituximab are monoclonal approved for the treatment of B-cell malignancies and were used as a model system. Phage-displayed peptide libraries were screened for peptide sequences recognized by alemtuzumab (anti-CD52) or rituximab (anti-CD20). Synthetic biotinylated peptides were used in enzyme-linked immunosorbent assays (ELISA). Peptides directly synthesized on polymer resin beads were used in an immunofluorescent-based assay. Results Peptide mimetope sequences were recovered for both mAb and confirmed by competitive staining and kinetic measurements. A peptide-based ELISA method was developed for each. The assay for rituximab had a limit of detection of 4 μg/ml, and the assay for alemtuzumab had a limit of detection of 1 μg/ml. Antibody-specific staining of peptide conjugated beads could be seen in a dose-dependent manner. Conclusion Phage-displayed peptide libraries can be a source of highly specific mimetopes for therapeutic mAb. The biotinylated forms of those peptides are compatible with conventional ELISA methods with sensitivities comparable to other assay methods and sufficient for pharmacological studies of those mAb given at high dose. The process outlined here can be applied to any mAb to enable improved pharmacokinetic analysis during the development and clinical use of this class of therapies. Electronic supplementary material The online version of this article (doi:10.1007/s00280-009-1240-1) contains supplementary material, which is available to authorized users.
Collapse
MESH Headings
- Alemtuzumab
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal, Humanized
- Antibodies, Monoclonal, Murine-Derived
- Antibodies, Neoplasm/administration & dosage
- Antibodies, Neoplasm/immunology
- Antineoplastic Agents/immunology
- Antineoplastic Agents/pharmacokinetics
- Dose-Response Relationship, Drug
- Drug Design
- Enzyme-Linked Immunosorbent Assay/methods
- Fluorescent Antibody Technique/methods
- Humans
- Peptide Library
- Peptides/immunology
- Rituximab
Collapse
Affiliation(s)
- Ana B. Sanchez
- Moores Cancer Center, University of California San Diego, 3855 Health Science Dr, La Jolla, CA 92093-0815 USA
| | - Tammy Nguyen
- Moores Cancer Center, University of California San Diego, 3855 Health Science Dr, La Jolla, CA 92093-0815 USA
| | - Rhanika Dema-Ala
- Moores Cancer Center, University of California San Diego, 3855 Health Science Dr, La Jolla, CA 92093-0815 USA
| | - Andrew C. Kummel
- Moores Cancer Center, University of California San Diego, 3855 Health Science Dr, La Jolla, CA 92093-0815 USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093 USA
| | - Thomas J. Kipps
- Moores Cancer Center, University of California San Diego, 3855 Health Science Dr, La Jolla, CA 92093-0815 USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Bradley T. Messmer
- Moores Cancer Center, University of California San Diego, 3855 Health Science Dr, La Jolla, CA 92093-0815 USA
| |
Collapse
|
50
|
Detecting epidermal growth factor receptor tumor activity in vivo during cetuximab therapy of murine gliomas. Acad Radiol 2010; 17:7-17. [PMID: 19796971 DOI: 10.1016/j.acra.2009.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/22/2009] [Accepted: 07/24/2009] [Indexed: 11/21/2022]
Abstract
RATIONALE AND OBJECTIVES Noninvasive molecular imaging of glioma tumor receptor activity was assessed with diagnostic in vivo fluorescence monitoring during targeted therapy. The study goals were to assess the range of use for treatment monitoring and stratification of tumor types using epidermal growth factor (EGF) receptor (EGFR) status with administration of fluorescently labeled EGF and determine its utility for tumor detection compared to magnetic resonance imaging (MRI). MATERIALS AND METHODS EGFR+ and EGFR- glioma tumor lines (human glioma [U251-GFP] and rat gliosarcoma [9L-GFP], respectively) were used to assess these goals, having a 20-fold difference between their EGF uptakes. RESULTS Treatment with cetuximab in the EGFR+ tumor-bearing animals led to decreased EGF tumor uptake, whereas for the EGFR- tumors, no change in fluorescence signal followed treatment. This diagnostic difference in EGFR expression could be used to stratify the tumor-bearing animals into groups of potential responders and nonresponders, and receiver-operating characteristic curve analysis revealed an area under the curve (AUC) of 0.92 in separating these tumors. The nonlocalized growth pattern of U251-GFP tumors resulted in detection difficulty on standard MRI, but high EGFR expression made them detectable by fluorescence imaging (AUC = 1.0). The EGFR+ U251-GFP tumor-bearing animals could be noninvasively stratified into treated and untreated groups on the basis of fluorescence intensity difference (P = .035, AUC = 0.90). CONCLUSIONS EGFR expression was tracked in vivo with fluorescence and determined to be of use for the stratification of EGFR+ and EGFR- tumors, the detection of EGFR+ tumors, and monitoring of molecular therapy.
Collapse
|