1
|
Dauplais M, Romero S, Lazard M. Exposure to Selenomethionine and Selenocystine Induces Redox-Mediated ER Stress in Normal Breast Epithelial MCF-10A Cells. Biol Trace Elem Res 2025; 203:1453-1464. [PMID: 38777874 DOI: 10.1007/s12011-024-04244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Selenium is an essential trace element co-translationally incorporated into selenoproteins with important biological functions. Health benefits have long been associated with selenium supplementation. However, cytotoxicity is observed upon excessive selenium intake. The aim of this study is to investigate the metabolic pathways underlying the response to the selenium-containing amino acids selenomethionine and selenocysteine in a normal human breast epithelial cell model. We show that both selenomethionine and selenocystine inhibit the proliferation of non-cancerous MCF-10A cells in the same concentration range as cancerous MCF-7 and Hela cells, which results in apoptotic cell death. Selenocystine exposure in MCF-10A cells caused a severe depletion of free low molecular weight thiols, which might explain the observed upregulation of the expression of the oxidative stress pathway transcription factor NRF2. Both selenomethionine and selenocystine induced the expression of target genes of the unfolded protein response (GRP78, ATF4, CHOP). Using a redox-sensitive fluorescent probe targeted to the endoplasmic reticulum (ER), we show that both selenoamino acids shifted the ER redox balance towards an even more oxidizing environment. These results suggest that alteration of the redox state of the ER may disrupt protein folding and cause ER stress-induced apoptosis in MCF-10A cells exposed to selenoamino acids.
Collapse
Affiliation(s)
- Marc Dauplais
- Laboratoire de Biologie Structurale de La Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP, Paris, Palaiseau, France
| | - Stephane Romero
- Laboratoire de Biologie Structurale de La Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP, Paris, Palaiseau, France
| | - Myriam Lazard
- Laboratoire de Biologie Structurale de La Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP, Paris, Palaiseau, France.
| |
Collapse
|
2
|
Barbanente A, Di Cosola AM, Degli Esposti L, Iafisco M, Niso M, Margiotta N. Exploring Selenium-Functionalized Hydroxyapatite Using Organic Selenocystine for Antitumor Applications. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1043. [PMID: 40077269 PMCID: PMC11901003 DOI: 10.3390/ma18051043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Selenium (Se) is an essential micronutrient, recognized for its role in cellular redox systems and its therapeutic potential in cancer treatment. Organic selenium compounds, particularly selenocystine (SeCys), have demonstrated anticancer efficacy due to the ability to induce apoptosis and enhance the effects of chemotherapy agents. Recent studies have shown that SeCys exhibits selective toxicity against cancer cells while sparing normal cells. Unfortunately, its clinical application is limited by stability and solubility concerns. A possible solution to overcome these hurdles comes from recent advances in functionalized nanomaterials. In this study, we investigate the possible incorporation of SeCys with hydroxyapatite nanoparticles (HASeCys) via various methods (adsorption, co-precipitation, and co-precipitation through thermal decomplexation), resulting in the formation of nanocomposites with elemental selenium. The highest elemental selenium yield was achieved with a thermal decomplexing co-precipitation, highlighting the influence of synthesis parameters on Se allotrope formation. Finally, as a preliminary investigation, the HASeCys samples were tested on a panel of cancer cell lines, showing an interesting activity when the hydroxyapatite nanocrystals were functionalized with both crystalline gray and amorphous red selenium.
Collapse
Affiliation(s)
- Alessandra Barbanente
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (A.B.); (A.M.D.C.)
| | - Anna Maria Di Cosola
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (A.B.); (A.M.D.C.)
| | - Lorenzo Degli Esposti
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso, 31, 16146 Genova, Italy;
| | - Michele Iafisco
- Istituto di Scienza, Tecnologia, e Sostenibilità per lo Sviluppo dei Materiali Ceramici (ISSMC), Consiglio Nazionale delle Ricerche (CNR), Via Granarolo, 64, 48018 Faenza, Italy;
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy
| | - Nicola Margiotta
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (A.B.); (A.M.D.C.)
| |
Collapse
|
3
|
Pal N, Banerjee K, Sarkar S, Mandal TK, Bhabak KP. Synthesis of Thiazolidinedione- and Triazole-Linked Organoselenocyanates and Evaluation of Anticancer Activities Against Breast Cancer with Mechanistic Investigations. Chemistry 2025; 31:e202403026. [PMID: 39630055 DOI: 10.1002/chem.202403026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 12/13/2024]
Abstract
Organoselenocyanates are important classes of organoselenium compounds having potential pharmaceutical applications in cancer biology. In the present study, two different series of organoselenocyanates (15 a-15 c and 16 a-16 c) incorporating crucial heterocyclic pharmacophores such as 2,4-thiazolidine-1,3-dione and 1,2,3-triazole were rationally designed. The organoselenocyanates were synthesized using multi-step organic synthesis and investigated for their anticancer activities against triple-negative breast cancer cells. Based on the preliminary anti-proliferative activities and the selectivity index towards cancer cells over the normal cells, 2,4-thiazolidine-1,3-dione-based selenocyanate 15 a was identified as the lead analogue for detailed investigations. In addition to the anti-migratory activity, compound 15 a induced G1-phase arrest of the cell cycle and led to early apoptosis. Further studies on the redox balance of MDA-MB-231 cells indicated the antioxidant nature of 15 a with the quenching of ROS level and upregulation of TrxR1 expression. Detailed mechanistic investigations with the expression levels of key-cancer marker proteins revealed that the selenocyanate 15 a induced the activation of ERK pathway by upregulating p-ERK expression with the subsequent downregulation of p-Akt and c-Myc levels leading to the inhibition of cellular proliferation. Therefore, the primary outcomes of the study would be valuable in the development of chemotherapeutic agents towards the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Nikita Pal
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Kaustav Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Shilpi Sarkar
- Department Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Tapas K Mandal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| |
Collapse
|
4
|
Huo Y, Ding WJ, Liu YR, Li ZT, Dai KY, Liu C, Ji HY, Liu AJ. Selenochemical modification of low molecular weight polysaccharides from Grifola frondosa and the mechanism of their inhibitory effects on gastric cancer cells. Int J Biol Macromol 2024; 269:131812. [PMID: 38670197 DOI: 10.1016/j.ijbiomac.2024.131812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
An important micronutrient involved in immune response and antitumor is selenium. LMW-GFP, a polysaccharide extracted from Grifola frondosa seed bodies, has a relatively weak antitumor effect on BGC-823 and MFC cells in vitro, whereas selenium binding to LMW-GFP can significantly increase the in vitro antitumor activity of LMW-GFP. In this study, Se-LMW-GFP was prepared by the HNO3-Na2SeO3 method, and the structures of LMW-GFP and Se-LMW-GFP were characterized by UV-visible spectroscopy of absorption, FTIR spectroscopy, and electron scanning microscopy, and these structural analyses showed that selenium was successfully complexed to LMW-GFP. The selenium content of Se-LMW-GFP was measured to be 2.08 % ± 0.08 % by ICP-MS. The anti-tumor activity of LMW-GFP before and after selenium modification was compared by cellular experiments, and the findings indicated that the anti-tumor activity of Se-LMW-GFP was considerably improved over that of LMW-GFP, and inhibited the proliferation of BGC-823 cells and MFC cells through a combination of the Fas/FasL-mediated exogenous death receptor pathway as well as the endogenous mitochondrial pathway. Our results suggest that Se-LMW-GFP not only has great potential for natural health food and anti-gastric cancer drug development but is also a good selenium supplement.
Collapse
Affiliation(s)
- Yao Huo
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wen-Jie Ding
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan-Ru Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhen-Tong Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ke-Yao Dai
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chao Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hai-Yu Ji
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China.
| | - An-Jun Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
5
|
Fan TWM, Winnike J, Al-Attar A, Belshoff AC, Lorkiewicz PK, Tan JL, Wu M, Higashi RM, Lane AN. Differential Inhibition of Anaplerotic Pyruvate Carboxylation and Glutaminolysis-Fueled Anabolism Underlies Distinct Toxicity of Selenium Agents in Human Lung Cancer. Metabolites 2023; 13:774. [PMID: 37512481 PMCID: PMC10383978 DOI: 10.3390/metabo13070774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Past chemopreventive human trials on dietary selenium supplements produced controversial outcomes. They largely employed selenomethionine (SeM)-based diets. SeM was less toxic than selenite or methylseleninic acid (MSeA) to lung cancer cells. We thus investigated the toxic action of these Se agents in two non-small cell lung cancer (NSCLC) cell lines and ex vivo organotypic cultures (OTC) of NSCLC patient lung tissues. Stable isotope-resolved metabolomics (SIRM) using 13C6-glucose and 13C5,15N2-glutamine tracers with gene knockdowns were employed to examine metabolic dysregulations associated with cell type- and treatment-dependent phenotypic changes. Inhibition of key anaplerotic processes, pyruvate carboxylation (PyC) and glutaminolysis were elicited by exposure to MSeA and selenite but not by SeM. They were accompanied by distinct anabolic dysregulation and reflected cell type-dependent changes in proliferation/death/cell cycle arrest. NSCLC OTC showed similar responses of PyC and/or glutaminolysis to the three agents, which correlated with tissue damages. Altogether, we found differential perturbations in anaplerosis-fueled anabolic pathways to underlie the distinct anti-cancer actions of the three Se agents, which could also explain the failure of SeM-based chemoprevention trials.
Collapse
Affiliation(s)
- Teresa W.-M. Fan
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| | - Jason Winnike
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA; (J.W.); (A.C.B.); (P.K.L.)
| | - Ahmad Al-Attar
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| | - Alexander C. Belshoff
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA; (J.W.); (A.C.B.); (P.K.L.)
| | - Pawel K. Lorkiewicz
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA; (J.W.); (A.C.B.); (P.K.L.)
| | - Jin Lian Tan
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Min Wu
- Seahorse Bioscience, Billerica, MA 01862, USA
| | - Richard M. Higashi
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| |
Collapse
|
6
|
Verma R, Kumar Gupta S, Lamba NP, Singh BK, Singh S, Bahadur V, Chauhan MS. Graphene and Graphene Based Nanocomposites for Bio‐Medical and Bio‐safety Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Renu Verma
- Amity University Rajasthan Jaipur India- 303002
| | | | | | | | | | - Vijay Bahadur
- Alliance University Chandapura-Anekal Main Road Bengaluru India- 562106
- Department of Pharmaceutical and Pharmacological science, University of Houston Houston USA- 77204
| | | |
Collapse
|
7
|
Tangjaidee P, Swedlund P, Xiang J, Yin H, Quek SY. Selenium-enriched plant foods: Selenium accumulation, speciation, and health functionality. Front Nutr 2023; 9:962312. [PMID: 36815133 PMCID: PMC9939470 DOI: 10.3389/fnut.2022.962312] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/13/2022] [Indexed: 02/09/2023] Open
Abstract
Selenium (Se) is an essential element for maintaining human health. The biological effects and toxicity of Se compounds in humans are related to their chemical forms and consumption doses. In general, organic Se species, including selenoamino acids such as selenomethionine (SeMet), selenocystine (SeCys2), and Se-methylselenocysteine (MSC), could provide greater bioactivities with less toxicity compared to those inorganics including selenite (Se IV) and selenate (Se VI). Plants are vital sources of organic Se because they can accumulate inorganic Se or metabolites and store them as organic Se forms. Therefore, Se-enriched plants could be applied as human food to reduce deficiency problems and deliver health benefits. This review describes the recent studies on the enrichment of Se-containing plants in particular Se accumulation and speciation, their functional properties related to human health, and future perspectives for developing Se-enriched foods. Generally, Se's concentration and chemical forms in plants are determined by the accumulation ability of plant species. Brassica family and cereal grains have excessive accumulation capacity and store major organic Se compounds in their cells compared to other plants. The biological properties of Se-enriched plants, including antioxidant, anti-diabetes, and anticancer activities, have significantly presented in both in vitro cell culture models and in vivo animal assays. Comparatively, fewer human clinical trials are available. Scientific investigations on the functional health properties of Se-enriched edible plants in humans are essential to achieve in-depth information supporting the value of Se-enriched food to humans.
Collapse
Affiliation(s)
- Pipat Tangjaidee
- Food Science, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Peter Swedlund
- Food Science, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Jiqian Xiang
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, Enshi, Hubei, China
| | - Hongqing Yin
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, Enshi, Hubei, China
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, University of Auckland, Auckland, New Zealand,Riddet Institute New Zealand Centre of Research Excellence in Food, Palmerston North, New Zealand,*Correspondence: Siew Young Quek,
| |
Collapse
|
8
|
Choi JA, Lee EH, Cho H, Kim JH. High-Dose Selenium Induces Ferroptotic Cell Death in Ovarian Cancer. Int J Mol Sci 2023; 24:ijms24031918. [PMID: 36768241 PMCID: PMC9915545 DOI: 10.3390/ijms24031918] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Selenium is a promising multi-target chemotherapeutic agent with controversial clinical results. Hence, reassessing the anticancer effects of Se is necessary to clearly understand the potential of high-dose selenium in cancer treatment. Here, we observed that high-dose sodium selenite (SS) significantly decreased the proliferation and increased the death of ovarian cancer cells, mediated by an increased generation of reactive oxygen species. Notably, high-dose SS decreased the levels of glutathione peroxidase (GPx), a selenoprotein with antioxidant properties, without altering other selenoproteins. Furthermore, high-dose SS triggered lipid peroxidation and ferroptosis, a type of iron-dependent cell death, due to dysregulated GPx4 pathways. We demonstrated that intravenous high-dose SS significantly reduced the tumor growth and weight in SKOV3-bearing mice. Consistent with our in vitro results, mice with SKOV3 cells treated with high-dose SS showed decreased GPx4 expression in tumors. Therefore, we highlight the significance of high-dose SS as a potential chemotherapeutic agent for ovarian cancer. High-dose SS-mediated ferroptotic therapy integrating glutathione depletion and ROS generation is a promising strategy for cancer therapy.
Collapse
|
9
|
Saranya T, Kavithaa K, Paulpandi M, Ramya S, Winster SH, Mani G, Dhayalan S, Balachandar V, Narayanasamy A. The creation of selenium nanoparticles decorated with troxerutin and their ability to adapt to the tumour microenvironment have therapeutic implications for triple-negative breast cancer. NEW J CHEM 2023. [DOI: 10.1039/d2nj05671b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The unique use of selenium–troxerutin nanoconjugates as an effective management therapy for treating TNBC.
Collapse
Affiliation(s)
- Thiruvenkataswamy Saranya
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, TN, India
| | - Krishnamoorthy Kavithaa
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore 641028, TN, India
| | - Manickam Paulpandi
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, TN, India
| | - Sennimalai Ramya
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, TN, India
- Department of Zoology, PSGR Krishnammal College for Women, Coimbatore 641004, Tamil Nadu, India
| | - Sureshbabu Harysh Winster
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, TN, India
| | - Geetha Mani
- Department of Microbiology, Faculty of Science, Annamalai University, TN, India
| | - Sangeetha Dhayalan
- Department of Microbiology, Faculty of Science, Annamalai University, TN, India
| | - Vellingiri Balachandar
- Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, TN, India
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, TN, India
| |
Collapse
|
10
|
Novotortsev VK, Kuandykov DM, Kukushkin ME, Zyk NV, Beloglazkina EK. Synthesis of 5-methylidene-2-thio- and 2-selenohydantoins from isothiocyanates or isoselenocyanates and l-serine. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
El-Saudi AM, Altouhamy MA, Shaaban S, Badria FA, Youssef MM, El-Senduny FF. Down regulation of fatty acid synthase via inhibition of PI3K/AKT/mTOR in ovarian cancer cell line by novel organoselenium pseudopeptide. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100134. [PMID: 36568265 PMCID: PMC9780069 DOI: 10.1016/j.crphar.2022.100134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Ovarian cancer (OC) is the 7th most common cancer in women world-wide and the 3rd most common female cancer. For the treatment of OC, there is no successful therapeutic. The medications that are currently available have significant side effects and a low therapeutic index. This work aimed to evaluate the anticancer activity of organoselenium pseudopeptide compound against OC cell lines. After treatment with 50 μM of compound 4 (CPD 4), the viability was determined. The anticancer activity was further investigated by different methods including cell cycle and apoptosis analysis, colony formation assay, zymography, comet assay and Western blot. In comparison to a positive control, compound 4 showed cytotoxicity toward A2780CP cells rather than A2780 and SKOV-3 cells. Compound 4 was more selective to OC cells rather than HSF cells. Moreover, Compound 4 was able to inhibit cell migration and proliferation. The anticancer effect of compound 4 was found to be partially via cell cycle arrest, overexpression of p27 cell cycle inhibitor and induction of apoptosis through DNA fragmentation and activated production of ROS. Compound 4 had a differential effect on the modulation of PI3K/AKT/mTOR signaling pathway in the OC treated cell lines, also inhibited lipogenesis process via downregulation of FASN expression. Conclusion: This work highlights the unique role of Compound 4 against OC via modulation of oxidative stress, inhibition of survival PI3K/AKT/mTOR pathway. Compound 4 was found to be a promising alternative therapy for the treatment of OC in this investigation.
Collapse
Affiliation(s)
- Abeer M. El-Saudi
- Biochemistry Division, Chemistry Department, Mansoura University, Mansoura 35516, Egypt
| | - Miram A. Altouhamy
- Biochemistry Division, Chemistry Department, Mansoura University, Mansoura 35516, Egypt
- Faculty of Medicine, New Mansoura University, New Mansoura City, Egypt
| | - Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982, Saudi Arabia
- Organic Chemistry Division, Chemistry Department, Mansoura University, Mansoura 35516, Egypt
| | - Farid A. Badria
- Department of Pharmacognosy, Mansoura University, Mansoura, 35516, Egypt
| | - Magdy M. Youssef
- Biochemistry Division, Chemistry Department, Mansoura University, Mansoura 35516, Egypt
| | - Fardous F. El-Senduny
- Biochemistry Division, Chemistry Department, Mansoura University, Mansoura 35516, Egypt
- Department of Pathology & Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States
| |
Collapse
|
12
|
Ehudin MA, Golla U, Trivedi D, Potlakayala SD, Rudrabhatla SV, Desai D, Dovat S, Claxton D, Sharma A. Therapeutic Benefits of Selenium in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23147972. [PMID: 35887320 PMCID: PMC9323677 DOI: 10.3390/ijms23147972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Supplementing chemotherapy and radiotherapy with selenium has been shown to have benefits against various cancers. This approach has also been shown to alleviate the side effects associated with standard cancer therapies and improve the quality of life in patients. In addition, selenium levels in patients have been correlated with various cancers and have served as a diagnostic marker to track the efficiency of treatments or to determine whether these selenium levels cause or are a result of the disease. This concise review presents a survey of the selenium-based literature, with a focus on hematological malignancies, to demonstrate the significant impact of selenium in different cancers. The anti-cancer mechanisms and signaling pathways regulated by selenium, which impart its efficacious properties, are discussed. An outlook into the relationship between selenium and cancer is highlighted to guide future cancer therapy development.
Collapse
Affiliation(s)
- Melanie A. Ehudin
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (S.D.)
| | - Upendarrao Golla
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Devnah Trivedi
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Shobha D. Potlakayala
- Department of Biological Sciences, School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA; (S.D.P.); (S.V.R.)
| | - Sairam V. Rudrabhatla
- Department of Biological Sciences, School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA; (S.D.P.); (S.V.R.)
| | - Dhimant Desai
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (S.D.)
| | - David Claxton
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Arati Sharma
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence:
| |
Collapse
|
13
|
Alkan B, Durucan C. Complete chemical and structural characterization of selenium-incorporated hydroxyapatite. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 33:5. [PMID: 34950967 PMCID: PMC8702414 DOI: 10.1007/s10856-021-06631-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Hydroxyapatite (HAp) has long been used as synthetic bone tissue replacement material. Recent advances in this area have led to development of dual-functional bioceramics exhibiting high biocompability/osteoconductivity together with the therapeutic effect. Selenium, in that respect, is an effective therapeutic agent with promising antioxidant activity and anticancer effects. In this study, selenium-incorporated hydroxyapatite (HAp:Se) particles have been synthesized by modified aqueous precipitation method using calcium (Ca(NO3)2·4H2O) and phosphate ((NH4)2HPO4) salts and sodium selenite (Na2SeO3). The effects of selenium incorporation and post-synthesis calcination treatment (900-1100 °C) on physical, chemical properties and crystal structure of resultant HAp powders have been investigated. Complete chemical identification was performed with spectroscopical analyses including Fourier transform infrared and x-ray photoelectron spectroscopy to elucidate the mechanism and chemical nature of selenium incorporation in HAp. Meanwhile, detailed x-ray diffraction studies by Rietveld refinement have conducted to explain changes in the HAp crystal structure upon selenium incorporation.
Collapse
Affiliation(s)
- Baris Alkan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800, Ankara, Turkey
- BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - Caner Durucan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800, Ankara, Turkey.
- BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
14
|
Adimulam T, Arumugam T, Foolchand A, Ghazi T, Chuturgoon AA. The Effect of Organoselenium Compounds on Histone Deacetylase Inhibition and Their Potential for Cancer Therapy. Int J Mol Sci 2021; 22:ijms222312952. [PMID: 34884764 PMCID: PMC8657714 DOI: 10.3390/ijms222312952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic and epigenetic changes alter gene expression, contributing to cancer. Epigenetic changes in cancer arise from alterations in DNA and histone modifications that lead to tumour suppressor gene silencing and the activation of oncogenes. The acetylation status of histones and non-histone proteins are determined by the histone deacetylases and histone acetyltransferases that control gene transcription. Organoselenium compounds have become promising contenders in cancer therapeutics. Apart from their anti-oxidative effects, several natural and synthetic organoselenium compounds and metabolites act as histone deacetylase inhibitors, which influence the acetylation status of histones and non-histone proteins, altering gene transcription. This review aims to summarise the effect of natural and synthetic organoselenium compounds on histone and non-histone protein acetylation/deacetylation in cancer therapy.
Collapse
|
15
|
Zahra KF, Lefter R, Ali A, Abdellah EC, Trus C, Ciobica A, Timofte D. The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9965916. [PMID: 34394838 PMCID: PMC8360750 DOI: 10.1155/2021/9965916] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Oxygen-free radicals, reactive oxygen species (ROS) or reactive nitrogen species (RNS), are known by their "double-sided" nature in biological systems. The beneficial effects of ROS involve physiological roles as weapons in the arsenal of the immune system (destroying bacteria within phagocytic cells) and role in programmed cell death (apoptosis). On the other hand, the redox imbalance in favor of the prooxidants results in an overproduction of the ROS/RNS leading to oxidative stress. This imbalance can, therefore, be related to oncogenic stimulation. High levels of ROS disrupt cellular processes by nonspecifically attacking proteins, lipids, and DNA. It appears that DNA damage is the key player in cancer initiation and the formation of 8-OH-G, a potential biomarker for carcinogenesis. The harmful effect of ROS is neutralized by an antioxidant protection treatment as they convert ROS into less reactive species. However, contradictory epidemiological results show that supplementation above physiological doses recommended for antioxidants and taken over a long period can lead to harmful effects and even increase the risk of cancer. Thus, we are describing here some of the latest updates on the involvement of oxidative stress in cancer pathology and a double view on the role of the antioxidants in this context and how this could be relevant in the management and pathology of cancer.
Collapse
Affiliation(s)
- Kamal Fatima Zahra
- Faculty of Sciences and Techniques, Laboratory of Physical Chemistry of Processes and Materials/Agri-Food and Health, Hassan First University, B.P. 539, 26000 Settat, Morocco
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, 8th Carol I Avenue, 700506 Iasi, Romania
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, India
| | - Ech-Chahad Abdellah
- Faculty of Sciences and Techniques, Laboratory of Physical Chemistry of Processes and Materials, Hassan First University, B.P. 539, 26000 Settat, Morocco
| | - Constantin Trus
- Department of Morphological and Functional Sciences, Faculty of Medicine, Dunarea de Jos University, 800008 Galati, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 11th Carol I Avenue, 700506 Iasi, Romania
| | - Daniel Timofte
- Faculty of Medicine, “Grigore T. Popa”, University of Medicine and Pharmacy, Strada Universitatii 16, 700115 Iasi, Romania
| |
Collapse
|
16
|
Selvam AK, Jawad R, Gramignoli R, Achour A, Salter H, Björnstedt M. A Novel mRNA-Mediated and MicroRNA-Guided Approach to Specifically Eradicate Drug-Resistant Hepatocellular Carcinoma Cell Lines by Se-Methylselenocysteine. Antioxidants (Basel) 2021; 10:1094. [PMID: 34356326 PMCID: PMC8301172 DOI: 10.3390/antiox10071094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/25/2023] Open
Abstract
Despite progress in the treatment of non-visceral malignancies, the prognosis remains poor for malignancies of visceral organs and novel therapeutic approaches are urgently required. We evaluated a novel therapeutic regimen based on treatment with Se-methylselenocysteine (MSC) and concomitant tumor-specific induction of Kynurenine aminotransferase 1 (KYAT1) in hepatocellular carcinoma (HCC) cell lines, using either vector-based and/or lipid nanoparticle-mediated delivery of mRNA. Supplementation of MSC in KYAT1 overexpressed cells resulted in significantly increased cytotoxicity, due to ROS formation, as compared to MSC alone. Furthermore, microRNA antisense-targeted sites for miR122, known to be widely expressed in normal hepatocytes while downregulated in hepatocellular carcinoma, were added to specifically limit cytotoxicity in HCC cells, thereby limiting the off-target effects. KYAT1 expression was significantly reduced in cells with high levels of miR122 supporting the concept of miR-guided induction of tumor-specific cytotoxicity. The addition of alpha-ketoacid favored the production of methylselenol, enhancing the cytotoxic efficacy of MSC in HCC cells, with no effects on primary human hepatocytes. Altogether, the proposed regimen offers great potential to safely and specifically target hepatic tumors that are currently untreatable.
Collapse
Affiliation(s)
- Arun Kumar Selvam
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, S-141 86 Stockholm, Sweden; (A.K.S.); (R.J.); (R.G.); (H.S.)
| | - Rim Jawad
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, S-141 86 Stockholm, Sweden; (A.K.S.); (R.J.); (R.G.); (H.S.)
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, S-141 86 Stockholm, Sweden; (A.K.S.); (R.J.); (R.G.); (H.S.)
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, & Division of Infectious Diseases, Karolinska University Hospital, SE-171 77 Solna, Sweden;
| | - Hugh Salter
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, S-141 86 Stockholm, Sweden; (A.K.S.); (R.J.); (R.G.); (H.S.)
- Moderna, Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Mikael Björnstedt
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, S-141 86 Stockholm, Sweden; (A.K.S.); (R.J.); (R.G.); (H.S.)
| |
Collapse
|
17
|
Skrajnowska D, Tokarz A, Makowska J, Bobrowska-Korczak B. Changes in the Mineral Composition of Rat Tissues Induced by Breast Cancer and Dietary Supplementation. In Vivo 2021; 35:259-266. [PMID: 33402472 DOI: 10.21873/invivo.12254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM The aim of the study was to determine the effect of various diets with zinc or zinc in combination with resveratrol or genistein on mineral contents of the serum, urine, liver, kidney and heart in rats with chemically-induced mammary carcinoma. MATERIALS AND METHODS The manuscript presents the tissues and body fluids content of iron, calcium, zinc, magnesium and copper in control rats or rats treated with 7,12-dimethyl-1,2-benz[a]anthracene to induce mammary carcinogenesis, under four dietary conditions: standard feed, Zn supplemented feed (6.9 mg Zn/ml), Zn and resveratrol (0.2 mg/kg body) supplemented feed, or Zn and genistein (0.2 mg/kg body) supplemented feed. RESULTS The content of calcium and copper highly varied depending on the tissue and the type of dietary supplement (no change for zinc and magnesium). Irrespective of the diet used, the chemical induction of mammary cancer caused a decrease in iron concentration in most samples analysed. Only supplementation of the rats' diet with zinc and genistein induced no changes in iron distribution in the serum, urine, liver, kidney and heart. CONCLUSION Further research using various levels of zinc and genistein in the diet should be conducted to determine how the development and progression of cancer is linked to iron content in cells and its ability to accumulate in tumour tissue.
Collapse
Affiliation(s)
| | - Andrzej Tokarz
- Department of Bromatology, Medical University of Warsaw, Warsaw, Poland
| | - Justyna Makowska
- Department of Bromatology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
18
|
Chuai H, Zhang SQ, Bai H, Li J, Wang Y, Sun J, Wen E, Zhang J, Xin M. Small molecule selenium-containing compounds: Recent development and therapeutic applications. Eur J Med Chem 2021; 223:113621. [PMID: 34217061 DOI: 10.1016/j.ejmech.2021.113621] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential micronutrient of organism and has important function. It participates in the functions of selenoprotein in several manners. In recent years, Se has attracted much attention because of its therapeutic potential against several diseases. Many natural and synthetic organic Se-containing compounds were studied and explored for the treatment of cancer and other diseases. Studies have showed that incorporation of Se atom into small molecules significantly enhanced their bioactivities. In this paper, according to different applications and structural characteristics, the research progress and therapeutic application of Se-containing compounds are reviewed, and more than 110 Se-containing compounds were selected as representatives which showed potent activities such as anticancer, antioxidant, antifibrolytic, antiparasitic, antibacterial, antiviral, antifungal and central nervous system related effects. This review is expected to provide a basis for further study of new promising Se-containing compounds.
Collapse
Affiliation(s)
- Hongyan Chuai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Huanrong Bai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiyu Li
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Yang Wang
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Jiajia Sun
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Ergang Wen
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiye Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
19
|
Sahebi Z, Emtyazjoo M, Mostafavi PG, Bonakdar S. Promising Chemoprevention of Colonic Aberrant Crypt Foci by Portunus segnis Muscle and Shell Extracts in Azoxymethane-Induced Colorectal Cancer in Rats. Anticancer Agents Med Chem 2021; 20:2041-2052. [PMID: 32532197 DOI: 10.2174/1871520620666200612144912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/07/2019] [Accepted: 02/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE This study subjected a rat model to the extracts of muscle and shell tissues from Portunus segnis to assess their therapeutic effects on the HT-29 colon cancer cells as well as on colonic Aberrant Crypt Foci (ACF) induced by Azoxymethane (AOM). METHODS The cell line was exposed to the extracts to compare the cytotoxicity of hexane, butanol, ethyl acetate, and water extract of muscle and ethanolic extract of the shell. Male rats (n=40) were assigned into control, positive, negative, and treatment groups. The animals were injected with AOM, except the control group, and then exposed to 250 and 500mg/kg of the crude extracts. Immunohistochemical localization of Bax and Bcl-2, as well as ACF and antioxidant enzymes, were evaluated in the rat colon. RESULTS The butanolic muscle extract and ethanolic shell one demonstrated an IC50 of 9.02±0.19μg/ml and 20.23±0.27μg/ml towards the cell line, respectively. Dietary exposure inhibited the ACF formation and crypt multiplicity in the colon compared to the cancer control group. The activity of SOD and CAT increased, while that of MDA decreased. The expression of Bax and Bcl-2 increased and decreased, respectively. CONCLUSION Taken together, the results show that both extractions were suggested to be suppressive to AOMinduced colon cancer.
Collapse
Affiliation(s)
- Zahra Sahebi
- Department of Marine Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mozhgan Emtyazjoo
- Department of Marine Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Pargol G Mostafavi
- Department of Marine Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
20
|
Benassi JC, Barbosa FAR, Grinevicius VMAS, Ourique F, Coelho D, Felipe KB, Braga AL, Filho DW, Pedrosa RC. Novel Dihydropyrimidinone-Derived Selenoesters as Potential Cytotoxic Agents to Human Hepatocellular Carcinoma: Molecular Docking and DNA Fragmentation. Anticancer Agents Med Chem 2021; 21:703-715. [PMID: 32723262 DOI: 10.2174/1871520620666200728124640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/18/2020] [Accepted: 05/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Evidence point out promising anticancer activities of Dihydropyrimidinones (DHPM) and organoselenium compounds. This study aimed to evaluate the cytotoxic and antiproliferative potential of DHPM-derived selenoesters (Se-DHPM), as well as their molecular mechanisms of action. METHODS Se-DHPM cytotoxicity was evaluated against cancer lines (HeLa, HepG2, and MCF-7) and normal cells (McCoy). HepG2 clonogenic assay allowed verifying antiproliferative effects. The propidium iodide/ orange acridine fluorescence readings showed the type of cell death induced after treatments (72h). Molecular simulations with B-DNA and 49H showed docked positions (AutoDock Vina) and trajectories/energies (GROMACS). In vitro molecular interactions used CT-DNA and 49H applying UV-Vis absorbance and fluorescence. Comet assay evaluated DNA fragmentation of HepG2 cells. Flow cytometry analysis verified HepG2 cell cycle effects. Levels of proteins (β-actin, p53, BAX, HIF-1α, γH2AX, PARP-1, cyclin A, CDK-2, and pRB) were quantified by immunoblotting. RESULTS Among Se-DHPM, 49H was selectively cytotoxic to HepG2 cells, reduced cell proliferation, and increased BAX (80%), and p53 (66%) causing apoptosis. Molecular assays revealed 49H inserted in the CT-DNA molecule causing the hypochromic effect. Docking simulations showed H-bonds and hydrophobic interactions, which kept the ligand partially inserted into the DNA minor groove. 49H increased the DNA damage (1.5 fold) and γH2AX level (153%). Besides, treatments reduced PARP-1 (60%) and reduced pRB phosphorylation (21%) as well as decreased cyclin A (46%) arresting cell cycle at the G1 phase. CONCLUSION Together all data obtained confirmed the hypothesis of disruptive interactions between Se-DHPM and DNA, thereby highlighting its potential as a new anticancer drug.
Collapse
Affiliation(s)
- Jean C Benassi
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Flavio A R Barbosa
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Fabiana Ourique
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniela Coelho
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Karina B Felipe
- Departament of Clinical Analysis, Federal University of Parana, Curitiba, Brazil
| | - Antônio L Braga
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Danilo W Filho
- Departament of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rozangela C Pedrosa
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
21
|
Mabwa D, Kubiena T, Parnell H, Su R, Furniss D, Tang Z, Leach R, Benson TM, Scotchford CA, Seddon AB. Evaluating the cytotoxicity of Ge–Sb–Se chalcogenide glass optical fibres on 3T3 mouse fibroblasts. RSC Adv 2021; 11:8682-8693. [PMID: 35423389 PMCID: PMC8695193 DOI: 10.1039/d0ra00353k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/02/2021] [Indexed: 01/17/2023] Open
Abstract
In vivo cancer detection based on the mid-infrared molecular fingerprint of tissue is promising for the fast diagnosis and treatment of suspected cancer patients. Few materials are mid-infrared transmissive, even fewer, which can be converted into functional, low-loss optical fibres for in vivo non-invasive testing. Chalcogenide-based glass optical fibres are, however, one of the few. These glasses are transmissive in the mid-infrared and are currently under development for use in molecular sensing devices. The cytotoxicity of these materials is however unknown. The cytotoxicity of Ge–Sb–Se chalcogenide optical glass fibres on 3T3 mouse fibroblast cells is here investigated. Fibres exposed to four different pre-treatment conditions are used: as-drawn (AD), propylamine-etched (PE), oxidised-and-washed (OW) and oxidised (Ox). To achieve the latter two conditions, fibres are treated with H2O2(aqueous (aq.)) and dried to produce a surface oxide layer; this is either washed off (OW) or left on the glass surface (Ox). Cellular response is investigated via 3 day elution and 14 day direct contact trials. The concentration of the metalloids (Ge, Sb and Se) in each leachate was measured via inductively coupled plasma mass spectrometry. Cell viability is assessed using the neutral red assay and scanning electron microscopy. The concentration of Ge, Sb and Se ions after a 3 day dissolution was as follows. In AD leachates, Ge: 0.40 mg L−1, Sb: 0.17 mg L−1, and Se: 0.06 mg L−1. In PE leachates, Ge: 0.22 mg L−1, Sb: 0.15 mg L−1, and Se: 0.02 mg L−1. In Ox leachates, Ge: 823.8 mg L−1, Sb: 2586.6 mg L−1, and Se: 3750 mg L−1. Direct contact trials show confluent cell layers on AD, PE and OW fibres after 14 days, while no cells are observed on the Ox surfaces. A >50% cell viability is observed in AD, PE and OW eluates after 3 days, when compared with Ox eluates (<10% cell viability). Toxicity in Ox is attributed to the notable pH change, from neutral pH 7.49 to acidic pH 2.44, that takes place on dissolution of the surface oxide layer in the growth media. We conclude, as-prepared Ge–Sb–Se glasses are cytocompatible and toxicity arises when an oxide layer is forced to develop on the glass surface. We present a study that aims to evaluate the cytotoxicity of Ge20Sb10Se70 at% glass optical fibres on 3T3 mouse fibroblast cells. To observe the toxicity of these optical fibres, 3T3 fibroblast proliferation was investigated.![]()
Collapse
|
22
|
Zachariah M, Maamoun H, Milano L, Rayman MP, Meira LB, Agouni A. Endoplasmic reticulum stress and oxidative stress drive endothelial dysfunction induced by high selenium. J Cell Physiol 2020; 236:4348-4359. [PMID: 33241572 DOI: 10.1002/jcp.30175] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Selenium is an essential trace element important for human health. A balanced intake is, however, crucial to maximize the health benefits of selenium. At physiological concentrations, selenium mediates antioxidant, anti-inflammatory, and pro-survival actions. However, supra-nutritional selenium intake was associated with increased diabetes risk leading potentially to endothelial dysfunction, the initiating step in atherosclerosis. High selenium causes apoptosis in cancer cells via endoplasmic reticulum (ER) stress, a mechanism also implicated in endothelial dysfunction. Nonetheless, whether ER stress drives selenium-induced endothelial dysfunction, remains unknown. Here, we investigated the effects of increasing concentrations of selenium on endothelial cells. High selenite reduced nitric oxide bioavailability and impaired angiogenesis. High selenite also induced ER stress, increased reactive oxygen species (ROS) production, and apoptosis. Pretreatment with the chemical chaperone, 4-phenylbutyrate, prevented the toxic effects of selenium. Our findings support a model where high selenite leads to endothelial dysfunction through activation of ER stress and increased ROS production. These results highlight the importance of tailoring selenium supplementation to achieve maximal health benefits and suggest that prophylactic use of selenium supplements as antioxidants may entail risk.
Collapse
Affiliation(s)
- Matshediso Zachariah
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Hatem Maamoun
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Larissa Milano
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Margaret P Rayman
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Lisiane B Meira
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
23
|
Hariharan S, Dharmaraj S. Selenium and selenoproteins: it's role in regulation of inflammation. Inflammopharmacology 2020; 28:667-695. [PMID: 32144521 PMCID: PMC7222958 DOI: 10.1007/s10787-020-00690-x] [Citation(s) in RCA: 327] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022]
Abstract
Abstract Selenium is an essential immunonutrient which holds the human’s metabolic activity with its chemical bonds. The organic forms of selenium naturally present in human body are selenocysteine and selenoproteins. These forms have a unique way of synthesis and translational coding. Selenoproteins act as antioxidant warriors for thyroid regulation, male-fertility enhancement, and anti-inflammatory actions. They also participate indirectly in the mechanism of wound healing as oxidative stress reducers. Glutathione peroxidase (GPX) is the major selenoprotein present in the human body, which assists in the control of excessive production of free radical at the site of inflammation. Other than GPX, other selenoproteins include selenoprotein-S that regulates the inflammatory cytokines and selenoprotein-P that serves as an inducer of homeostasis. Previously, reports were mainly focused on the cellular and molecular mechanism of wound healing with reference to various animal models and cell lines. In this review, the role of selenium and its possible routes in translational decoding of selenocysteine, synthesis of selenoproteins, systemic action of selenoproteins and their indirect assimilation in the process of wound healing are explained in detail. Some of the selenium containing compounds which can acts as cancer preventive and therapeutics are also discussed. These compounds directly or indirectly exhibit antioxidant properties which can sustain the intracellular redox status and these activities protect the healthy cells from reactive oxygen species induced oxidative damage. Although the review covers the importance of selenium/selenoproteins in wound healing process, still some unresolved mystery persists which may be resolved in near future. Graphic abstract ![]()
Collapse
Affiliation(s)
- Sneha Hariharan
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari Post, Pollachi Main Road, Coimbatore, Tamil Nadu, 641021, India
| | - Selvakumar Dharmaraj
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari Post, Pollachi Main Road, Coimbatore, Tamil Nadu, 641021, India.
| |
Collapse
|
24
|
Evans SO, Jacobson GM, Goodman HJB, Bird S, Jameson MB. Comparison of three oral selenium compounds in cancer patients: Evaluation of differential pharmacodynamic effects in normal and malignant cells. J Trace Elem Med Biol 2020; 58:126446. [PMID: 31838377 DOI: 10.1016/j.jtemb.2019.126446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/23/2019] [Accepted: 12/06/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Selenium (Se) compounds have demonstrated therapeutic synergism in combination with anticancer treatments whilst reducing normal tissue toxicities in a range of experimental models. While reduction in some toxicities of chemotherapy and radiation has been confirmed in randomised clinical trials, they have not been powered to evaluate improved anticancer efficacy. A lack of data on the clinical potencies of the main nutritionally-relevant forms of Se and the relationship between their pharmacokinetic (PK) profiles and pharmacodynamic (PD) effects in cancer patients has hampered progress to date. The primary objective of this study was to determine the dose and form of Se that can be most safely and effectively used in clinical trials in combination with anti-cancer therapies. STUDY METHODS In a phase I randomised double-blinded study, the PD profile of sodium selenite (SS), Se-methylselenocysteine (MSC) and seleno-l-methionine (SLM) were compared in two cohorts of 12 patients, one cohort with chronic lymphocytic leukaemia (CLL) and the other with solid malignancies. All 24 patients were randomised to receive 400 μg of elemental Se as either SS, MSC or SLM, taken orally daily for 8 weeks. PD parameters were assessed before, during and 4 weeks after Se compound exposure in plasma and peripheral blood mononuclear cells (PBMCs). RESULTS No significant sustained changes were observed in plasma concentrations of vascular endothelial growth factor-α (VEGF-α), expression of proteins associated with endoplasmic reticulum stress (the unfolded protein response) or in intracellular total glutathione in PBMCs, in either disease cohort or when grouped by Se compound. CONCLUSIONS At the 400 μg dose level no substantial changes in PD parameters were noted. Extrapolating from pre-clinical data, the dose examined in this cohort was too low to achieve the Se plasma concentration (≥ 5 μM) expected to elicit significant PD effects. Recruitment of a subsequent cohort at higher doses to exceed this PK threshold is planned.
Collapse
Affiliation(s)
- Stephen O Evans
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand; Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand.
| | - Gregory M Jacobson
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand.
| | | | - Steve Bird
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand.
| | - Michael B Jameson
- Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand; Oncology Department, Waikato Hospital, Hamilton, New Zealand.
| |
Collapse
|
25
|
Chen Z, Lai H, Hou L, Chen T. Rational design and action mechanisms of chemically innovative organoselenium in cancer therapy. Chem Commun (Camb) 2020; 56:179-196. [PMID: 31782422 DOI: 10.1039/c9cc07683b] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Organo-seleno compounds (org-Se) have been widely used in antitumor, antiviral, and antiinflammatory therapy; antioxidation and other biological fields. As such, they have made an important contribution to overcoming various kinds of diseases, and researchers are increasingly attracted to org-Se's synthesis and functional design. This review is mainly focused on the design and synthesis of various kinds of org-Se, followed by their anticancer mechanisms such as the mitochondria mediated pathway induced by ROS, death receptor mediated pathways involving p53 phosphorylation, and the activation of the AMPK pathway to promote apoptosis. Org-Se also serves as a sensitizer in chemotherapy and radiotherapy, and an antagonist against the cytotoxic effects induced by chemotherapeutic agents. Finally, we will summarize the development of cancer-targeted org-Se containing complexes, and nanotechnology-based org-Se for anticancer application. This review could provide information for the future design of chemically innovative org-Se with anticancer potential, and shed light on the discovery of nanomaterial-based pharmaceuticals to improve drug development and formation.
Collapse
Affiliation(s)
- Zhen Chen
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | | | | | | |
Collapse
|
26
|
Gandhi VV, Phadnis PP, Kunwar A. 2,2′-Dipyridyl diselenide (Py2Se2) induces G1 arrest and apoptosis in human lung carcinoma (A549) cells through ROS scavenging and reductive stress. Metallomics 2020; 12:1253-1266. [DOI: 10.1039/d0mt00106f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study demonstrates the cytotoxic activity and the underlying mechanisms of a synthetic organoselenium compound containing pyridine and diselenide moieties.
Collapse
Affiliation(s)
- V. V. Gandhi
- Radiation and Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
- Homi Bhabha National Institute
| | - Prasad P. Phadnis
- Homi Bhabha National Institute
- Mumbai-400 094
- India
- Chemistry Division
- Bhabha Atomic Research Centre
| | - A. Kunwar
- Radiation and Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
- Homi Bhabha National Institute
| |
Collapse
|
27
|
Zhang L, Shi Y, Sheng Z, Zhang Y, Kai X, Li M, Yin X. Bioluminescence Imaging of Selenocysteine in Vivo with a Highly Sensitive Probe. ACS Sens 2019; 4:3147-3155. [PMID: 31701738 DOI: 10.1021/acssensors.9b01268] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Selenocysteine (Sec), a vital member of reactive selenium species, is closely implicated in diverse pathophysiological states, including cancer, cardiovascular diseases, diabetes, neurodegenerative diseases, and male infertility. Monitoring Sec in vivo is of significant interest for understanding the physiological roles of Sec and the mechanisms of human diseases associated with abnormal levels of Sec. However, no bioluminescence probe for real-time monitoring of Sec in vivo has been reported. Herein, we present a novel bioluminescent probe BF-1 as an effective tool for the determination of Sec in living cells and in vivo for the first time. BF-1 has advantages of high sensitivity (a detection limit of 8 nM), remarkable bioluminescence enhancement (580-fold), reasonable selectivity, low cytotoxicity, and high signal-to-noise ratio imaging feasibility of Sec in living cells and mice. More importantly, BF-1 affords high sensitivity for monitoring Sec stimulated by Na2SeO3 in tumor-bearing mice. These results demonstrate that our new probe could serve as a powerful tool to selectively monitor Sec in vivo, thus providing a valuable approach for exploring the physiological and pathological functions and anticancer mechanisms of selenium.
Collapse
Affiliation(s)
- Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Yanfen Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Zhijia Sheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Yiran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Xiaoning Kai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Shandong University, Jinan 250012, PR China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| |
Collapse
|
28
|
Pang KL, Chin KY. Emerging Anticancer Potentials of Selenium on Osteosarcoma. Int J Mol Sci 2019; 20:E5318. [PMID: 31731474 PMCID: PMC6862058 DOI: 10.3390/ijms20215318] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/05/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Selenium is a trace element essential to humans and forms complexes with proteins, which exert physiological functions in the body. In vitro studies suggested that selenium possesses anticancer effects and may be effective against osteosarcoma. This review aims to summarise current evidence on the anticancer activity of inorganic and organic selenium on osteosarcoma. Cellular studies revealed that inorganic and organic selenium shows cytotoxicity, anti-proliferative and pro-apoptotic effects on various osteosarcoma cell lines. These actions may be mediated by oxidative stress induced by selenium compounds, leading to the activation of p53, proapoptotic proteins and caspases. Inorganic selenium is selective towards cancer cells, but can cause non-selective cell death at a high dose. This condition challenges the controlled release of selenium from biomaterials. Selenium treatment in animals inoculated with osteosarcoma reduced the tumour size, but did not eliminate the incidence of osteosarcoma. Only one study investigated the relationship between selenium and osteosarcoma in humans, but the results were inconclusive. In summary, although selenium may exert anticancer properties on osteosarcoma in experimental model systems, its effects in humans require further investigation.
Collapse
Affiliation(s)
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
29
|
Zheng W, Boada R, He R, Xiao T, Ye F, Simonelli L, Valiente M, Zhao Y, Hassan M. Extracellular Albumin Covalently Sequesters Selenocompounds and Determines Cytotoxicity. Int J Mol Sci 2019; 20:ijms20194734. [PMID: 31554226 PMCID: PMC6801750 DOI: 10.3390/ijms20194734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 01/30/2023] Open
Abstract
Selenocompounds (SeCs) are well-known nutrients and promising candidates for cancer therapy; however, treatment efficacy is very heterogeneous and the mechanism of action is not fully understood. Several SeCs have been reported to have albumin-binding ability, which is an important factor in determining the treatment efficacy of drugs. In the present investigation, we hypothesized that extracellular albumin might orchestrate SeCs efficacy. Four SeCs representing distinct categories were selected to investigate their cytotoxicity, cellular uptake, and species transformation. Concomitant treatment of albumin greatly decreased cytotoxicity and cellular uptake of SeCs. Using both X-ray absorption spectroscopy and hyphenated mass spectrometry, we confirmed the formation of macromolecular conjugates between SeCs and albumin. Although the conjugate was still internalized, possibly via albumin scavenger receptors expressed on the cell surface, the uptake was strongly inhibited by excess albumin. In summary, the present investigation established the importance of extracellular albumin binding in determining SeCs cytotoxicity. Due to the fact that albumin content is higher in humans and animals than in cell cultures, and varies among many patient categories, our results are believed to have high translational impact and clinical implications.
Collapse
Affiliation(s)
- Wenyi Zheng
- Department of Laboratory Medicine, Karolinska Institute, 141 86 Huddinge, Sweden.
| | - Roberto Boada
- Centre GTS, Department of Chemistry, Autonomous University of Barcelona, 08193 Barcelona, Spain.
| | - Rui He
- Department of Laboratory Medicine, Karolinska Institute, 141 86 Huddinge, Sweden.
| | - Tingting Xiao
- Centre GTS, Department of Chemistry, Autonomous University of Barcelona, 08193 Barcelona, Spain.
| | - Fei Ye
- Division of Functional Nanomaterials, Royal Institute of Technology, 100 40 Stockholm, Sweden.
| | - Laura Simonelli
- CELLS-ALBA Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290 Barcelona, Spain.
| | - Manuel Valiente
- Centre GTS, Department of Chemistry, Autonomous University of Barcelona, 08193 Barcelona, Spain.
| | - Ying Zhao
- Department of Laboratory Medicine, Karolinska Institute, 141 86 Huddinge, Sweden.
- ECM, Clinical Research Center, Karolinska University Hospital, 141 86 Huddinge, Sweden.
| | - Moustapha Hassan
- Department of Laboratory Medicine, Karolinska Institute, 141 86 Huddinge, Sweden.
- ECM, Clinical Research Center, Karolinska University Hospital, 141 86 Huddinge, Sweden.
| |
Collapse
|
30
|
The Cell Culture Medium Affects Growth, Phenotype Expression and the Response to Selenium Cytotoxicity in A549 and HepG2 Cells. Antioxidants (Basel) 2019; 8:antiox8050130. [PMID: 31091728 PMCID: PMC6563005 DOI: 10.3390/antiox8050130] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Selenium compounds influence cell growth and are highly interesting candidate compounds for cancer chemotherapy. Over decades an extensive number of publications have reported highly efficient growth inhibitory effects with a number of suggested mechanisms f especially for redox-active selenium compounds. However, the studies are difficult to compare due to a high degree of variations in half-maximal inhibitor concentration (IC50) dependent on cultivation conditions and methods to assess cell viability. Among other factors, the variability in culture conditions may affect the experimental outcome. To address this, we have compared the maintenance effects of four commonly used cell culture media on two cell lines, A549 and HepG2, evaluated by the toxic response to selenite and seleno-methylselenocysteine, cell growth and redox homeostasis. We found that the composition of the cell culture media greatly affected cell growth and sensitivity to selenium cytotoxicity. We also provided evidence for change of phenotype in A549 cells when maintained under different culture conditions, demonstrated by changes in cytokeratin 18 (CK18) and vimentin expression. In conclusion, our results have shown the importance of defining the cell culture medium used when comparing results from different studies.
Collapse
|
31
|
Vozza G, Khalid M, Byrne HJ, Ryan SM, Frias JM. Nutraceutical formulation, characterisation, and in-vitro evaluation of methylselenocysteine and selenocystine using food derived chitosan:zein nanoparticles. Food Res Int 2019; 120:295-304. [PMID: 31000242 DOI: 10.1016/j.foodres.2019.02.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 11/18/2022]
Abstract
Selenoamino acids (SeAAs) have been shown to possess antioxidant and anticancer properties. However, their bioaccessibility is low and they may be toxic above the recommended nutritional intake level, thus improved targeted oral delivery methods are desirable. In this work, the SeAAs, Methylselenocysteine (MSC) and selenocystine (SeCys2) were encapsulated into nanoparticles (NPs) using the mucoadhesive polymer chitosan (Cs), via ionotropic gelation with tripolyphosphate (TPP) and the NPs produced were then coated with zein (a maize derived prolamine rich protein). NPs with optimized physicochemical properties for oral delivery were obtained at a 6: 1 ratio of Cs:TPP, with a 1:0.75 mass ratio of Cs:zein coating (diameter ~260 nm, polydispersivity index ~0.2, zeta potential >30 mV). Scanning Electron Microscopy (SEM) analysis showed that spheroidal, well distributed particles were obtained. Encapsulation Efficiencies of 80.7% and 78.9% were achieved, respectively, for MSC and SeCys2 loaded NPs. Cytotoxicity studies of MSC loaded NPs showed no decrease in cellular viability in either Caco-2 (intestine) or HepG2 (liver) cells after 4 and 72 h exposures. For SeCys2 loaded NPs, although no cytotoxicity was observed in Caco-2 cells after 4 h, a significant reduction in cytotoxicity was observed, compared to pure SeCys2, across all test concentrations in HepG2 after 72 h exposure. Accelerated thermal stability testing of both loaded NPs indicated good stability under normal storage conditions. Lastly, after 6 h exposure to simulated gastrointestinal tract environments, the sustained release profile of the formulation showed that 62 ± 8% and 69 ± 4% of MSC and SeCys2, had been released from the NPs respectively.
Collapse
Affiliation(s)
- Giuliana Vozza
- School of Food Science and Environmental Health, Technological University Dublin, Marlborough Street, Dublin 1, Ireland; FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
| | - Minna Khalid
- School of Food Science and Environmental Health, Technological University Dublin, Marlborough Street, Dublin 1, Ireland; FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
| | - Sinéad M Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 7, Ireland
| | - Jesus M Frias
- Environmental Science and Health Institute, Technological University Dublin, Grangegorman, Dublin 7, Ireland.
| |
Collapse
|
32
|
Tan HW, Mo HY, Lau ATY, Xu YM. Selenium Species: Current Status and Potentials in Cancer Prevention and Therapy. Int J Mol Sci 2018; 20:ijms20010075. [PMID: 30585189 PMCID: PMC6337524 DOI: 10.3390/ijms20010075] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023] Open
Abstract
Selenium (Se) acts as an essential trace element in the human body due to its unique biological functions, particularly in the oxidation-reduction system. Although several clinical trials indicated no significant benefit of Se in preventing cancer, researchers reported that some Se species exhibit superior anticancer properties. Therefore, a reassessment of the status of Se and Se compounds is necessary in order to provide clearer insights into the potentiality of Se in cancer prevention and therapy. In this review, we organize relevant forms of Se species based on the three main categories of Se-inorganic, organic, and Se-containing nanoparticles (SeNPs)-and overview their potential functions and applications in oncology. Here, we specifically focus on the SeNPs as they have tremendous potential in oncology and other fields. In general, to make better use of Se compounds in cancer prevention and therapy, extensive further study is still required to understand the underlying mechanisms of the Se compounds.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| | - Hai-Ying Mo
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
33
|
Zhang L, Kai X, Zhang Y, Zheng Y, Xue Y, Yin X, Zhao J. A reaction-based near-infrared fluorescent probe that can visualize endogenous selenocysteine in vivo in tumor-bearing mice. Analyst 2018; 143:4860-4869. [PMID: 30128454 DOI: 10.1039/c8an00765a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Monitoring the fluctuations of endogenous selenocysteine (Sec) in vivo is of significant interest to understand the physiological roles of Sec and the mechanisms of Sec-relevant diseases. Herein, a new near-infrared fluorescent probe, Fsec-1, has been developed for the determination of endogenous Sec in living cells and in vivo. Fsec-1 exhibits large fluorescence enhancement (136-fold) and a remarkably large Stokes shift (195 nm) when reacted with Sec. With the advantages of high sensitivity (a detection limit of 10 nM), good selectivity and low cytotoxicity, Fsec-1 was able to recognize both exogenous and endogenous Sec in living cells. The probe was also successfully applied in visualizing both exogenous and endogenous Sec in living mice. Notably, endogenously generated Sec in living tumors xenografted in nude mice was selectively detected by our reaction-based NIR probe for the first time. These results indicated that our new probe could serve as an efficient tool in monitoring endogenous Sec in vivo and exploring the anticancer mechanism of selenium.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Wagner MS, Schultze E, Oliveira TL, de Leon PMM, Thurow HS, Campos VF, Oliveira I, de Souza D, Rodrigues OED, Collares T, Seixas FK. Revitalizing the AZT Through of the Selenium: An Approach in Human Triple Negative Breast Cancer Cell Line. Front Oncol 2018; 8:525. [PMID: 30524958 PMCID: PMC6262369 DOI: 10.3389/fonc.2018.00525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/26/2018] [Indexed: 02/05/2023] Open
Abstract
Triple-negative breast cancer represents about 15% of all cases of breast cancer, and still represents a therapeutic challenge. 3′-Azido-3′-deoxythymidine (AZT) is a nucleoside reverse transcriptase inhibitor with antitumor activity. Chalcogenides compounds, such as selenium, are very important intermediates applied in organic synthesis. Our objective was to investigate the effect and the underlying cell death mechanisms of AZT and its derivatives, in human breast cancer cell lines. The inhibitory effect of AZT and derivatives (1072, 1073, and 1079) was determined by MTT assay (0.1, 1, 10, 50, and 100 μM for concentrations and times 4, 24, 48, and 72 h) and Live/Dead in tumor cell lines MCF-7, MDA-MB 231 and also in non-tumor cell line CHO. Gene expression profiles related to apoptosis were investigated by qRT-PCR and induction of apoptosis was investigated by flow cytometry. MTT and Live/Dead assays showed that AZT derivatives decreased the rate of cell proliferation at concentrations of 50 and 100 μM in tumor cell lines MCF-7 and MDA-MB 231 while the commercial AZT presented a low antitumoral potential in all strains tested. In flow cytometry analysis we demonstrated that derivatives of AZT induced apoptosis, with an increase in both initial and late stages in both tumor cell lines evaluated, especially in MDA-MB 231. Our data show that the AZT derivative 1072 increased the expression of transcripts of the genes caspase 3 and 8 in MDA-MB 231 cell line when compared to control, suggesting that the extrinsic pathway of apoptosis was activated. In conclusion, derivatives of AZT, especially 1072, induce cytotoxicity in vitro in the triple negative breast cancer cell line through activation of the extrinsic pathway of apoptosis. These compounds containing selenium in its formulation are potential therapeutic agents for breast cancer.
Collapse
Affiliation(s)
- Mônica Silveira Wagner
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Eduarda Schultze
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Thais Larre Oliveira
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Priscila Marques Moura de Leon
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Helena Strelow Thurow
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Vinicius Farias Campos
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Isabel Oliveira
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Diego de Souza
- LabSelen-NanoBio - Universidade de Federal de Santa Maria, Santa Maria, Brazil
| | | | - Tiago Collares
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Fabiana Kömmling Seixas
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
35
|
Gandin V, Khalkar P, Braude J, Fernandes AP. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic Biol Med 2018; 127:80-97. [PMID: 29746900 DOI: 10.1016/j.freeradbiomed.2018.05.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/12/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022]
Abstract
Selenium(Se)-containing compounds have attracted a growing interest as anticancer agents over recent decades, with mounting reports demonstrating their high efficacy and selectivity against cancer cells. Typically, Se compounds exert their cytotoxic effects by acting as pro-oxidants that alter cellular redox homeostasis. However, the precise intracellular targets, signalling pathways affected and mechanisms of cell death engaged following treatment vary with the chemical properties of the selenocompound and its metabolites, as well as the cancer model that is used. Naturally occurring organic Se compounds, besides encompassing a significant antitumor activity with an apparent ability to prevent metastasis, also seem to have fewer side effects and less systemic effects as reported for many inorganic Se compounds. On this basis, many novel organoselenium compounds have also been synthesized and examined as potential chemotherapeutic agents. This review aims to summarize the most well studied natural and synthetic organoselenium compounds and provide the most recent developments in our understanding of the molecular mechanisms that underlie their potential anticancer effects.
Collapse
Affiliation(s)
- Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Prajakta Khalkar
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jeremy Braude
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
36
|
Stable Isotope-Resolved Metabolomics Shows Metabolic Resistance to Anti-Cancer Selenite in 3D Spheroids versus 2D Cell Cultures. Metabolites 2018; 8:metabo8030040. [PMID: 29996515 PMCID: PMC6161115 DOI: 10.3390/metabo8030040] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
Conventional two-dimensional (2D) cell cultures are grown on rigid plastic substrates with unrealistic concentration gradients of O2, nutrients, and treatment agents. More importantly, 2D cultures lack cell–cell and cell–extracellular matrix (ECM) interactions, which are critical for regulating cell behavior and functions. There are several three-dimensional (3D) cell culture systems such as Matrigel, hydrogels, micropatterned plates, and hanging drop that overcome these drawbacks but they suffer from technical challenges including long spheroid formation times, difficult handling for high throughput assays, and/or matrix contamination for metabolic studies. Magnetic 3D bioprinting (M3DB) can circumvent these issues by utilizing nanoparticles that enable spheroid formation and growth via magnetizing cells. M3DB spheroids have been shown to emulate tissue and tumor microenvironments while exhibiting higher resistance to toxic agents than their 2D counterparts. It is, however, unclear if and how such 3D systems impact cellular metabolic networks, which may determine altered toxic responses in cells. We employed a Stable Isotope-Resolved Metabolomics (SIRM) approach with 13C6-glucose as tracer to map central metabolic networks both in 2D cells and M3DB spheroids formed from lung (A549) and pancreatic (PANC1) adenocarcinoma cells without or with an anti-cancer agent (sodium selenite). We found that the extent of 13C-label incorporation into metabolites of glycolysis, the Krebs cycle, the pentose phosphate pathway, and purine/pyrimidine nucleotide synthesis was largely comparable between 2D and M3DB culture systems for both cell lines. The exceptions were the reduced capacity for de novo synthesis of pyrimidine and sugar nucleotides in M3DB than 2D cultures of A549 and PANC1 cells as well as the presence of gluconeogenic activity in M3DB spheroids of PANC1 cells but not in the 2D counterpart. More strikingly, selenite induced much less perturbation of these pathways in the spheroids relative to the 2D counterparts in both cell lines, which is consistent with the corresponding lesser effects on morphology and growth. Thus, the increased resistance of cancer cell spheroids to selenite may be linked to the reduced capacity of selenite to perturb these metabolic pathways necessary for growth and survival.
Collapse
|
37
|
Barbosa FAR, Siminski T, Canto RFS, Almeida GM, Mota NSRS, Ourique F, Pedrosa RC, Braga AL. Novel pyrimidinic selenourea induces DNA damage, cell cycle arrest, and apoptosis in human breast carcinoma. Eur J Med Chem 2018; 155:503-515. [PMID: 29908443 DOI: 10.1016/j.ejmech.2018.06.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 11/30/2022]
Abstract
Novel pyrimidinic selenoureas were synthesized and evaluated against tumour and normal cell lines. Among these, the compound named 3j initially showed relevant cytotoxicity and selectivity for tumour cells. Three analogues of 3j were designed and synthesized keeping in view the structural requirements of this compound. Almost all the tested compounds displayed considerable cytotoxicity. However, 8a, one of the 3j analogues, was shown to be highly selective and cytotoxic, especially for breast carcinoma cells (MCF-7) (IC50 = 3.9 μM). Furthermore, 8a caused DNA damage, inhibited cell proliferation, was able to arrest cell cycle in S phase, and induced cell death by apoptosis in human breast carcinoma cells. Moreover, predictions of pharmacokinetic properties showed that 8a may present good absorption and permeation characteristics for oral administration. Overall, the current study established 8a as a potential drug prototype to be employed as a DNA interactive cytotoxic agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Flavio A R Barbosa
- Laboratório de Síntese de Substâncias de Selênio Bioativas (LabSelen), Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Tâmila Siminski
- Laboratório de Bioquímica Experimental (LABIOEX), Departamento de Bioquímica, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Rômulo F S Canto
- Laboratório de Química Medicinal de Compostos de Selênio (QMCSe), Programa de pós-graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Gabriela M Almeida
- Laboratório de Bioquímica Experimental (LABIOEX), Departamento de Bioquímica, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Nádia S R S Mota
- Laboratório de Bioquímica Experimental (LABIOEX), Departamento de Bioquímica, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Fabiana Ourique
- Laboratório de Bioquímica Experimental (LABIOEX), Departamento de Bioquímica, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Rozangela Curi Pedrosa
- Laboratório de Bioquímica Experimental (LABIOEX), Departamento de Bioquímica, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Antonio Luiz Braga
- Laboratório de Síntese de Substâncias de Selênio Bioativas (LabSelen), Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
38
|
Zhong X, Li L, Wang M, Luo W, Tan Q, Xu F, Zhu W, Wang Q, Wang T, Hou M, Nadimity N, Xue X, Chen J, Ma W, Gao AC, Zhou Q. A proteomic approach to elucidate the multiple targets of selenium-induced cell-growth inhibition in human lung cancer. Thorac Cancer 2018; 2:164-178. [PMID: 27755845 DOI: 10.1111/j.1759-7714.2011.00066.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Methylseleninic acid (MSA) has been implicated as a promising anticancer agent for lung cancer. However, the underlying molecular mechanism(s) responsible for MSA's action is not well understood. Our study aimed to examine the cellular effects of MSA on L9981 human high-metastatic large cell lung cancer cells and gain insights into its possible molecular mechanism(s) through a proteomic approach. METHODS L9981 cells were exposed to MSA at different concentrations and time points. The effects of MSA on cell proliferation and apoptosis were detected by cell viability analyzer Vi-CELL and flow cytometric analysis, respectively. We analyzed the alterations in the proteome profile of L9981 cells induced by MSA using the 2-D difference in gel electrophoresis (2-D DIGE) and identified the differentially expressed proteins using a liquid chromatography system followed by tandem mass spectrometry (LC-MS/MS). RESULTS We found that MSA inhibited cell proliferation in a dose-dependent manner and significantly induced early apoptosis in L9981 cells. 2-D DIGE showed that MSA induced significant changes (>1.29 fold) in the expression levels of 42 protein spots compared to the untreated control (P < 0.05). As identified by LC-MS/MS, proteins that underwent changes in response to MSA were related to various biological functions, including: (i) endoplasmic reticulum stress (upregulation of molecular chaperones like heat shock protein A5, protein disulfide-isomerase precursor, and calreticulin precursor); (ii) oxidative stress response/ thioredoxin system (decreased thioredoxin-like protein 1 and increased thioredoxin reductase 1); (iii) translation regulation (downregulation of translation factors like elongation factor 1-beta and eukaryotic translation initiation factor 6); (iv) mitochondrial bioenergetic function (upregulation of adenosine triphosphate synthase subunit beta and mitochondria); and (v) cell signal transduction regulation (decreased peptidyl-prolyl cis-trans isomerase A and 14-3-3 protein gamma). The protein and gene expression levels of those proteins of interest were further confirmed by Western blot and/or real-time reverse transcription polymerase chain reaction. CONCLUSION Our results suggest that MSA may inhibit cell proliferation and induce apoptosis in lung cancer by modulating multiple targets involved in various crucial cellular processes.
Collapse
Affiliation(s)
- Xiaorong Zhong
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Lu Li
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Min Wang
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Wei Luo
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Qingwei Tan
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Feng Xu
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Wen Zhu
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Qi Wang
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Ting Wang
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Mei Hou
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Nagalakshmi Nadimity
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Xingyang Xue
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Jun Chen
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Wei Ma
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Allen C Gao
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Qinghua Zhou
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| |
Collapse
|
39
|
Lazard M, Dauplais M, Blanquet S, Plateau P. Recent advances in the mechanism of selenoamino acids toxicity in eukaryotic cells. Biomol Concepts 2018; 8:93-104. [PMID: 28574376 DOI: 10.1515/bmc-2017-0007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022] Open
Abstract
Selenium is an essential trace element due to its incorporation into selenoproteins with important biological functions. However, at high doses it is toxic. Selenium toxicity is generally attributed to the induction of oxidative stress. However, it has become apparent that the mode of action of seleno-compounds varies, depending on its chemical form and speciation. Recent studies in various eukaryotic systems, in particular the model organism Saccharomyces cerevisiae, provide new insights on the cytotoxic mechanisms of selenomethionine and selenocysteine. This review first summarizes current knowledge on reactive oxygen species (ROS)-induced genotoxicity of inorganic selenium species. Then, we discuss recent advances on our understanding of the molecular mechanisms of selenocysteine and selenomethionine cytotoxicity. We present evidences indicating that both oxidative stress and ROS-independent mechanisms contribute to selenoamino acids cytotoxicity. These latter mechanisms include disruption of protein homeostasis by selenocysteine misincorporation in proteins and/or reaction of selenols with protein thiols.
Collapse
|
40
|
Rezakhani L, Khazaei MR, Ghanbari A, Khazaei M. Crab Shell Extract Induces Prostate Cancer Cell Line (LNcap) Apoptosis and Decreases Nitric Oxide Secretion. CELL JOURNAL 2017; 19:231-237. [PMID: 28670515 PMCID: PMC5412781 DOI: 10.22074/cellj.2016.4879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Prostate cancer is the second most common cancer worldwide. Chemotherapeutic agents have been shown to have adverse side-effects, and natural compounds have been recommended for cancer treatment, nowadays. Crab shell has been shown to have cancer preventative and suppressive effects in vivo and in vitro. The aim of present study was to investigate the effect of crab shell extract on prostate cancer cell line (LNcap) in vitro. MATERIALS AND METHODS In this in vitro experimental study, LNcap cells were treated with different concentrations (0, 100, 200, 400, 800 and 1000 µg/ml) of crab shell hydroalcoholic extract in three different culture periods (24, 48 and 72 hours). LNcap viability was evaluated by trypan blue staining and MTT assay. Cell apoptosis and nitric oxide (NO) secretion were determined by TUNEL and Griess assays, respectively. Data were analyzed by one-way ANOVA test and P<0.05 was considered significant. RESULTS LNcap viability was decreased dose- and time-dependently. Thus 400, 800, and 1000 µg/ml doses showed significant differences compared to control group (P<0.001). Dose-dependent increase in the apoptotic index was also observed in 800 and 1000 µg/ ml concentrations (P<0.001). Nitric oxide secretion of LNcap cell was decreased time- and dose-dependently, while it was significant for 1000 µg/ml (P<0.05). CONCLUSION Crab shell extract showed anti-prostate cancer effect, by inducing cell apop- tosis and decreasing NO production.
Collapse
Affiliation(s)
- Leila Rezakhani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Rasool Khazaei
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Ghanbari
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
41
|
Abstract
There are several extrinsic and intrinsic factors involving reactive oxygen species that play critical roles in tumor development and progression by inducing DNA mutations, genomic instability, and aberrant pro-tumorigenic signaling. There are various essential micronutrients including minerals and vitamins in the diet, which play pivotal roles in maintaining and reinforcing antioxidant performance, affecting the complex network of genes (nutrigenomic approach) and encoding proteins for carcinogenesis. A lot of these antioxidant agents are available as dietary supplements and are predominant worldwide. However, the best antioxidant micronutrient (or a combination of micronutrients) for reducing cancer risks is unknown. The purpose of this review is to survey the literature on modern biological theories of cancer and the roles of dietary antioxidants in cancer. The roles and functions of antioxidant micronutrients, such as vitamin C (ascorbate), vitamin E (alpha-tocopherol), selenium, and vitamin A, provided through diet for the prevention of cancer are discussed in the present work.
Collapse
Affiliation(s)
- Xiayu Wu
- a School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming , Yunnan , China
| | - Jiaoni Cheng
- b Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Yunnan Stem Cell Translational Research Center, Kunming University , Kunming , China
| | - Xu Wang
- a School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming , Yunnan , China
| |
Collapse
|
42
|
Abstract
Cancer remains one of the leading causes of death around the world. Initially it is recognized as a genetic disease, but now it is known to involve epigenetic abnormalities along with genetic alterations. Epigenetics refers to heritable changes that are not encoded in the DNA sequence itself, but play an important role in the control of gene expression. It includes changes in DNA methylation, histone modifications, and RNA interference. Although it is heritable, environmental factors such as diet could directly influence epigenetic mechanisms in humans. This article will focus on the role of dietary patterns and phytochemicals that have been demonstrated to influence the epigenome and more precisely histone and non-histone proteins modulation by acetylation that helps to induce apoptosis and phosphorylation inhibition, which counteracts with cells proliferation. Recent developments discussed here enhance our understanding of how dietary intervention could be beneficial in preventing or treating cancer and improving health outcomes.
Collapse
Affiliation(s)
- Wissam Zam
- a Department of Analytical and Food Chemistry , Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Al-Quadmous , Tartous , Syrian Arab Republic
| | - Aziz Khadour
- b Department of Microbiology , Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Al-Quadmous , Tartous , Syrian Arab Republic
| |
Collapse
|
43
|
Antimutagenic Effects of Selenium-Enriched Polysaccharides from Pyracantha fortuneana through Suppression of Cytochrome P450 1A Subfamily in the Mouse Liver. Molecules 2016; 21:molecules21121731. [PMID: 27999293 PMCID: PMC6272851 DOI: 10.3390/molecules21121731] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/24/2016] [Accepted: 12/02/2016] [Indexed: 11/17/2022] Open
Abstract
Both selenium (Se) and polysaccharides from Pyracantha fortuneana (Maxim.) Li (PFPs) (P. fortuneana) have been reported to possess antioxidative and immuno-protective activities. Whether or not Se-containing polysaccharides (Se-PFPs) have synergistic effect of Se and polysaccharides on enhancing the antioxidant and immune activities remains to be determined. We previously reported that polysaccharides isolated from Se-enriched P. fortuneana (Se-PFPs) possessed hepatoprotective effects. However, it is not clear whether or not they have anti-mutagenic effects. In the present study, we compared and evaluated anti-mutagenic effects of Se-PFPs at three concentrations (1.35, 2.7 and 5.4 g/kg body weight) with those of PFPs, Se alone or Se + PFPs in mice using micronucleus assay in bone marrow and peripheral blood as well as mitomycin C-induced chromosomal aberrations in mouse testicular cells. We also elucidated the underlying mechanism. Our results demonstrated that Se-PFPs inhibited cyclophosphamide (CP)-induced micronucleus formation in both bone marrow and peripheral blood, enhanced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in mouse liver, and reduced the activity and expression of cytochrome P450 1A (CYP4501A) in mouse liver in a dose-dependent manner. In addition, we found that the anti-mutagenic potential of Se-PFPs was higher than those of PFPs, Se alone or Se + PFPs at the same level. These results suggest that the anti-mutagenic potential of Se-PFPs may be mediated through the inhibition of the activity and expression of CYP4501A. This study indicates that application of Se-PFPs may provide an alternative strategy for cancer therapy by targeting CYP1A family.
Collapse
|
44
|
Biosynthesis of Se-methyl-seleno-l-cysteine in Basidiomycetes fungus Lentinula edodes (Berk.) Pegler. SPRINGERPLUS 2016; 5:733. [PMID: 27376001 PMCID: PMC4909690 DOI: 10.1186/s40064-016-2498-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/02/2016] [Indexed: 11/29/2022]
Abstract
Background The aim of the current study was to investigate whether the Basidiomycetes fungus Lentinula edodes can biosynthesize Se-methyl-seleno-l-cysteine, a seleno-amino acid with strong anticancer activity, and to optimize the culture conditions for its biosynthesis. We hypothesize that preparations obtained from Se-methyl-seleno-l-cysteine-enriched mycelia from this medicinal mushroom would possess stronger cancer-preventive properties than current preparations. Results By optimizing the concentration of selenium in the culture medium, we increased the mycelial concentration of Se-methyl-seleno-l-cysteine from essentially non-detectable levels to 120 µg/g dry weight. Significantly elevated levels of this amino acid also correlated with significant (twofold) inhibition of mycelial growth. Increases in the concentration of mycelial Se-methyl-seleno-l-cysteine appeared to be highly correlated with the enhanced biosynthesis of selenomethionine and total selenium content in mycelium. Conclusions We have demonstrated that in L. edodes, enhanced biosynthesis of this non-protein amino acid eliminates excess selenium.
Collapse
|
45
|
Abstract
Stress granules (SGs) are dynamic accumulations of stalled preinitiation complexes and translational machinery that assemble under stressful conditions. Sodium selenite (Se) induces the assembly of noncanonical type II SGs that differ in morphology, composition, and mechanism of assembly from canonical SGs. Se inhibits translation initiation by altering the cap-binding activity of eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1). In this work, we show that human immunodeficiency virus type 1 (HIV-1) Gag is able to block the assembly of type II noncanonical SGs to facilitate continued Gag protein synthesis. We demonstrate that expression of Gag reduces the amount of hypophosphorylated 4EBP1 associated with the 5′ cap potentially through an interaction with its target, eIF4E. These results suggest that the assembly of SGs is an important host antiviral defense that HIV-1 has evolved for inhibition through several distinct mechanisms. The antiviral stress response is an important host defense that many viruses, including HIV-1, have evolved to evade. Selenite induces a block in translation and leads to stress granule assembly through the sequestration of eIF4E by binding hypophosphorylated 4EBP1. In this work, we demonstrate that in the face of selenite-induced stress, HIV-1 is able to maintain Gag mRNA translation and to elicit a blockade to selenite-induced stress granule assembly by altering the amount of hypophosphorylated 4EBP1 on the 5′ cap.
Collapse
|
46
|
Shimizu T, Kawai J, Ouchi K, Kikuchi H, Osima Y, Hidemi R. Agarol, an ergosterol derivative from Agaricus blazei, induces caspase-independent apoptosis in human cancer cells. Int J Oncol 2016; 48:1670-8. [PMID: 26893131 DOI: 10.3892/ijo.2016.3391] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/12/2016] [Indexed: 11/06/2022] Open
Abstract
Agaricus blazei (A. blazei) is a mushroom with many biological effects and active ingredients. We purified a tumoricidal substance from A. blazei, an ergosterol derivative, and named it 'Agarol'. Cytotoxic effects of Agarol were determined by the MTT assay using A549, MKN45, HSC-3, and HSC-4 human carcinoma cell lines treated with Agarol. Apoptosis was detected by flow cytometry analysis. Reactive oxygen species (ROS) levels and mitochondria membrane potential (∆ψm) were also determined by flow cytometry. Western blot analysis was used to quantify the expression of apoptosis-related proteins. Agarol predominantly induced apoptosis in two p53-wild cell lines (A549 and MKN45) compared to the other p53-mutant cell lines (HSC-3 and HSC-4). Further mechanistic studies revealed that induction of apoptosis is associated with increased generation of ROS, reduced ∆ψm, release of apoptosis-inducing factor (AIF) from the mitochondria to the cytosol, upregulation of Bax, and downregulation of Bcl-2. Caspase-3 activities did not increase, and z-VAD-fmk, a caspase inhibitor, did not inhibit the Agarol-induced apoptosis. These findings indicate that Agarol induces caspase-independent apoptosis in human carcinoma cells through a mitochondrial pathway. The in vivo anticancer activity of Agarol was confirmed in a xenograft murine model. This study suggests a molecular mechanism by which Agarol induces apoptosis in human carcinoma cells and indicates the potential use of Agarol as an anticancer agent.
Collapse
Affiliation(s)
- Takamitsu Shimizu
- Mushroom Research Laboratory, Hokuto Corporation, Nagano 381-0008, Japan
| | - Junya Kawai
- Mushroom Research Laboratory, Hokuto Corporation, Nagano 381-0008, Japan
| | - Kenji Ouchi
- Mushroom Research Laboratory, Hokuto Corporation, Nagano 381-0008, Japan
| | - Haruhisa Kikuchi
- Laboratory of Natural Product Chemistry, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Yoshiteru Osima
- Laboratory of Natural Product Chemistry, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Rikiishi Hidemi
- Department of Microbiology and Immunology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| |
Collapse
|
47
|
Lee JH, Kim C, Park MS. Selenium-containing Bis(alkylselanyl)pyridazines: Synthesis, and Evaluation of Antiproliferative Activities. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ji-Hee Lee
- College of Pharmacy; Duksung Women's University; Seoul 132-714 Korea
| | - Chaewon Kim
- College of Pharmacy; Duksung Women's University; Seoul 132-714 Korea
| | - Myung-Sook Park
- College of Pharmacy; Duksung Women's University; Seoul 132-714 Korea
| |
Collapse
|
48
|
Park SO, Yoo YB, Kim YH, Baek KJ, Yang JH, Choi PC, Lee JH, Lee KR, Park KS. Effects of combination therapy of docetaxel with selenium on the human breast cancer cell lines MDA-MB-231 and MCF-7. Ann Surg Treat Res 2015; 88:55-62. [PMID: 25692115 PMCID: PMC4325646 DOI: 10.4174/astr.2015.88.2.55] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/06/2014] [Accepted: 09/25/2014] [Indexed: 12/20/2022] Open
Abstract
Purpose The anticancer property and cytoprotective role of selenium in chemotherapy have been reported. However, the combination effects of selenium on chemotherapy for advanced breast cancer have not yet been clearly defined. The purpose of this study was to investigate the combined effects of selenium on chemotherapy using docetaxel on breast cancer cell lines. Methods Under adherent culture conditions, two breast cancer cell lines, MDA-MB-231 and MCF-7, were treated with docetaxel at 500pM and selenium at 100nM, 1µM, or 10µM. Changes in cell growth, cell cycle duration, and degree of apoptosis after 72 hours in each treated group were evaluated. Results In the MDA-MB-231 cells, the combination therapy group (docetaxel at 500pM plus selenium at 10µM) showed a significantly decreased percentage of cell growth (15% vs. 28%; P = 0.004), a significantly increased percentage of late apoptosis (63% vs. 26%; P = 0.001), and an increased cell cycle arrest in the G2/M phase (P = 0.001) compared with the solitary docetaxel therapy group. Isobologram analysis demonstrated the synergistic effect of the combination therapy in the MDA-MB-231 cells. However, in the MCF-7 cells, no significant differences in the percentage of cell growth apoptosis, the percentage of apoptosis, and the pattern of cell cycle arrest were noted between the combination therapy groups and the solitary docetaxel therapy group. Conclusion Our in vitro study indicated that the combination of selenium with docetaxel inhibits cell proliferation through apoptosis and cell arrest in the G2/M phase in MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Sang O Park
- Department of Emergency Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Young Bum Yoo
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Yong Hun Kim
- Department of Surgery, Konkuk University Chungju Hospital, Chungju, Korea
| | - Kwang Je Baek
- Department of Emergency Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Jung-Hyun Yang
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Pil Cho Choi
- Department of Emergency Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Hun Lee
- Department of Emergency Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Kyeong Ryong Lee
- Department of Emergency Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Kyoung Sik Park
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Fernandes AP, Gandin V. Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta Gen Subj 2014; 1850:1642-60. [PMID: 25459512 DOI: 10.1016/j.bbagen.2014.10.008] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND With cancer cells encompassing consistently higher production of reactive oxygen species (ROS) and with an induced antioxidant defense to counteract the increased basal ROS production, tumors have a limited reserve capacity resulting in an increased vulnerability of some cancer cells to ROS. Based on this, oxidative stress has been recognized as a tumor-specific target for the rational design of new anticancer agents. Among redox modulating compounds, selenium compounds have gained substantial attention due to their promising chemotherapeutic potential. SCOPE OF REVIEW This review aims in summarizing and providing the recent developments of our understanding of the molecular mechanisms that underlie the potential anticancer effects of selenium compounds. MAJOR CONCLUSIONS It is well established that selenium at higher doses readily can turn into a prooxidant and thereby exert its potential anticancer properties. However, the biological activity of selenium compounds and the mechanism behind these effects are highly dependent on its speciation and the specific metabolic pathways of cells and tissues. Conversely, the chemical properties and the main molecular mechanisms of the most relevant inorganic and organic selenium compounds as well as selenium-based nanoparticles must be taken into account and are discussed herein. GENERAL SIGNIFICANCE Elucidating and deepening our mechanistic knowledge of selenium compounds will help in designing and optimizing compounds with more specific antitumor properties for possible future application of selenium compounds in the treatment of cancer. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
50
|
de Miranda JX, Andrade FDO, Conti AD, Dagli MLZ, Moreno FS, Ong TP. Effects of selenium compounds on proliferation and epigenetic marks of breast cancer cells. J Trace Elem Med Biol 2014; 28:486-91. [PMID: 25087768 DOI: 10.1016/j.jtemb.2014.06.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Breast cancer is a global public health problem and the most frequent cause of cancer death among women. Mammary carcinogenesis is driven not only by genetic alterations but also by epigenetic disturbances. Because epigenetic marks are potentially reversible they represent promising molecular targets for breast cancer prevention interventions. Selenium is a promising anti-breast cancer trace element that has shown the modulation of DNA methylation and histone post-translational modifications in other malignancies. This study aimed to evaluate the effects of selenium compounds [methylseleninic acid (MSA) and selenite] on cell proliferation and death, expression of the tumor suppressor gene RASSF1A and epigenetic marks in MCF-7 human breast adenocarcinoma cells. Treatment with MSA or selenite markedly inhibited (P<0.05) in a dose-dependent manner the proliferation of MCF-7 cells. MSA induced (P<0.05) G2/M cell arrest while selenite presented the opposite effect. Regarding cell death induction, MSA acted mainly by inducing apoptosis (P<0.05), while selenite only induced necrosis (P<0.05). Furthermore selenite, but not MSA, markedly induced (P<0.05) cytotoxicity and increased (P<0.05) RASSF1A expression. Both selenium compounds inhibited (P<0.05) DNMT1 expression. MSA decreased (P<0.05) H3K9me3 and increased (P<0.05) H4K16ac, while selenite decreased (P<0.05) this latter histone mark. To the best of our knowledge this is the first report showing that selenite and MSA modulate epigenetic marks specifically in breast cancer cells. Our data reinforce the anti-breast cancer potential of selenium that is dependent on its chemical form. Furthermore the data show that epigenetic mechanisms represent relevant molecular targets involved in selenium inhibitory effects in breast cancer cells.
Collapse
Affiliation(s)
- Juliana Xavier de Miranda
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fábia de Oliveira Andrade
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aline de Conti
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Lúcia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernando Salvador Moreno
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thomas Prates Ong
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|