1
|
Hasani S, Khalaj-Kondori M, Safaei S, Amini M, Riazi-Tabrizi N, Maghsoudi M, Baradaran B. Co-targeting NRF2 potentially enhances the in vitro anticancer effects of paclitaxel in gastric cancer cells. Discov Oncol 2024; 15:424. [PMID: 39256224 PMCID: PMC11387580 DOI: 10.1007/s12672-024-01312-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a highly chemoresistant malignancy with a poor prognosis. Paclitaxel's low response rate as second-line chemotherapy for advanced GC has prompted intensive research into its molecular basis and prospective targeted therapies to enhance its therapeutic efficacy. The objective of this study was to investigate the synergistic effects of NRF2 silencing in combination with paclitaxel treatment on GC cell viability, apoptosis, proliferation, autophagy, and migration. METHODS \After the siRNA-mediated silencing of NRF2 in AGS cells, the transfection efficacy was evaluated by qRT-PCR. The MTT assay was then applied to assess cell viability, followed by flow cytometry analysis for apoptosis, proliferation, and autophagy in AGS cells treated with NRF2 siRNA, paclitaxel, or their combination. Thereafter, the migration of cells was measured using a wound-healing assay. Ultimately, the relative gene expression levels of apoptotic (Bax, Caspase-3, and Caspase-9), anti-apoptotic (Bcl-2), metastatic (MMP-2), and cell cycle (P53) genes were measured by qRT-PCR in all experiment groups to further assess the molecular basis for the combination therapy. RESULTS NRF2 siRNA transfection significantly enhanced paclitaxel-induced apoptosis and sensitized AGS cells to paclitaxel via modulating the expression of apoptosis-related genes including Bcl-2, Bax, Caspase-3, and Caspase-9. Besides, NRF2 siRNA and paclitaxel synergistically induced cell cycle arrest at the G2 phase, promoted autophagy activation, and inhibited AGS cell migration via MMP-2 downregulation. Additionally, P53, a key regulator of cell growth, was significantly upregulated in the treated groups compared to the control group. CONCLUSIONS Our findings suggest that paclitaxel combined with siRNA-mediated silencing of NRF2 might represent a promising therapeutic strategy for GC, however further translational and clinical research are warranted.
Collapse
Affiliation(s)
- Shima Hasani
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Riazi-Tabrizi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohadeseh Maghsoudi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Osman AA, Arslan E, Bartels M, Michikawa C, Lindemann A, Tomczak K, Yu W, Sandulache V, Ma W, Shen L, Wang J, Singh AK, Frederick MJ, Spencer ND, Kovacs J, Heffernan T, Symmans WF, Rai K, Myers JN. Dysregulation and Epigenetic Reprogramming of NRF2 Signaling Axis Promote Acquisition of Cisplatin Resistance and Metastasis in Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 2023; 29:1344-1359. [PMID: 36689560 PMCID: PMC10068451 DOI: 10.1158/1078-0432.ccr-22-2747] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
PURPOSE Cisplatin (CDDP)-based chemotherapy is a first-line treatment for patients with advanced head and neck squamous cell carcinomas (HNSCC), despite a high rate of treatment failures, acquired resistance, and subsequent aggressive behavior. The purpose of this study was to study the mechanism of CDDP resistance and metastasis in HNSCC. We investigated the role of NRF2 pathway activation as a driven event for tumor progression and metastasis of HNSCC. EXPERIMENTAL DESIGN Human HNSCC cell lines that are highly resistant to CDDP were generated. Clonogenic survival assays and a mouse model of oral cancer were used to examine the impact of NRF2 activation in vitro and in vivo on CDDP sensitivity and development of metastasis. Western blotting, immunostaining, whole-exome sequencing, single-cell transcriptomic and epigenomic profiling platforms were performed to dissect clonal evolution and molecular mechanisms. RESULTS Implantation of CDDP-resistant HNSCC cells into the tongues of nude mice resulted in a very high rate of distant metastases. The CDDP-resistant cells had significantly higher expression of NRF2 pathway genes in the presence of newly acquired KEAP1 mutations, or via epigenomic activation of target genes. Knockdown of NRF2 or restoration of the wild-type KEAP1 genes resensitized resistant cells to CDDP and decreased distant metastasis (DM). Finally, treatment with inhibitor of glutaminase-1, a NRF2 target gene, alleviated CDDP resistance. CONCLUSIONS CDDP resistance and development of DM are associated with dysregulated and epigenetically reprogrammed KEAP1-NRF2 signaling pathway. A strategy targeting KEAP1/NRF2 pathway or glutamine metabolism deserves further clinical investigation in patients with CDDP-resistant head and neck tumors.
Collapse
Affiliation(s)
- Abdullah A. Osman
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emre Arslan
- Department of Genomic Medicine and MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mason Bartels
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chieko Michikawa
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Antje Lindemann
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Katarzyna Tomczak
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wangjie Yu
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Vlad Sandulache
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Wencai Ma
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anand K. Singh
- Department of Genomic Medicine and MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mitchell J. Frederick
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Nakia D. Spencer
- TRACTION Platform, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Jeffery Kovacs
- TRACTION Platform, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Timothy Heffernan
- TRACTION Platform, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - William F. Symmans
- Department of Pathology, Division of Pathology and Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kunal Rai
- Department of Genomic Medicine and MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
3
|
Tossetta G, Marzioni D. Targeting the NRF2/KEAP1 pathway in cervical and endometrial cancers. Eur J Pharmacol 2023; 941:175503. [PMID: 36641100 DOI: 10.1016/j.ejphar.2023.175503] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Cervical and endometrial cancers are among the most dangerous gynaecological malignancies, with high fatality and recurrence rates due to frequent diagnosis at an advanced stage and chemoresistance onset. The NRF2/KEAP1 signalling pathway plays an important role in protecting cells against oxidative damage due to increased reactive oxygen species (ROS) levels. NRF2, activated by ROS, induces the expression of antioxidant enzymes such as heme oxygenase, catalase, glutathione peroxidase and superoxide dismutase which neutralize ROS, protecting cells against oxidative stress damage. However, activation of NRF2/KEAP1 signalling in cancer cells results in chemoresistance, inactivating drug-mediated oxidative stress and protecting cancer cells from drug-induced cell death. We review the literature on the role of the NRF2/KEAP1 pathway in cervical and endometrial cancers, with a focus on the expression of its components and downstream genes. We also examine the role of the NRF2/KEAP1 pathway in chemotherapy resistance and how this pathway can be modulated by natural and synthetic modulators.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy; Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126, Ancona, Italy.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| |
Collapse
|
4
|
Watanabe E, Yokoi A, Yoshida K, Sugiyama M, Kitagawa M, Nishino K, Yamamoto E, Niimi K, Yamamoto Y, Kajiyama H. Drug library screening identifies histone deacetylase inhibition as a novel therapeutic strategy for choriocarcinoma. Cancer Med 2023; 12:4543-4556. [PMID: 36106577 PMCID: PMC9972027 DOI: 10.1002/cam4.5243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Choriocarcinoma is a rare and aggressive gynecological malignancy. The standard treatment is systemic chemotherapy as choriocarcinoma exhibits high chemosensitivity. However, refractory choriocarcinoma exhibits chemoresistance; thus, the prognosis remains very poor. This study aimed to identify novel therapeutic agents for choriocarcinoma by utilizing a drug repositioning strategy. METHODS Three choriocarcinoma cell lines (JAR, JEG-3, and BeWo) and a human extravillous trophoblast cell line (HTR-8/SVneo) were used for the analyses. The growth inhibitory effects of 1,271 FDA-approved compounds were evaluated in vitro screening assays and selected drugs were tested in tumor-bearing mice. Functional analyses of drug effects were performed based on RNA sequencing. RESULTS Muti-step screening identified vorinostat, camptothecin (S, +), topotecan, proscillaridin A, and digoxin as exhibiting an anti-cancer effect in choriocarcinoma cells. Vorinostat, a histone deacetylase inhibitor, was selected as a promising candidate for validation and the IC50 values for choriocarcinoma cells were approximately 1 μM. RNA sequencing and subsequent pathway analysis revealed that the ferroptosis pathway was likely implicated, and key ferroptosis-related genes (i.e., GPX4, NRF2, and SLC3A2) were downregulated following vorinostat treatment. Furthermore, vorinostat repressed tumor growth and downregulated the expression of GPX4 and NRF2 in JAR cell-bearing mice model. CONCLUSION Vorinostat, a clinically approved drug for the treatment of advanced primary cutaneous T-cell lymphoma, showed a remarkable anticancer effect both in vitro and in vivo by regulating the expression of ferroptosis-related genes. Therefore, vorinostat may be an effective therapeutic candidate for patients with choriocarcinoma.
Collapse
Affiliation(s)
- Eri Watanabe
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Mai Sugiyama
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masami Kitagawa
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kimihiro Nishino
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eiko Yamamoto
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Alakuş H, Kaya M, Özer H, Eğilmez HR, Karadayı K. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a potential prognostic factor in patients with gastric adenocarcinoma. Arab J Gastroenterol 2023; 24:5-10. [PMID: 36400701 DOI: 10.1016/j.ajg.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 11/08/2020] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Gastric cancer is one of the leading causes of cancer-related death, and many researchers are focused on the discovery and use of different biomarkers in prognosis prediction. The use of Nrf2 as a prognostic marker in patients with gastric cancer remains controversial. In this study, we evaluated the expression of Nrf2 protein in gastric adenocarcinoma. PATIENTS AND METHODS A total of 86 patients who underwent gastric resection and D2 lymph node dissection due to gastric adenocarcinoma were included. Clinicopathological characteristics, such as age, gender, gastrectomy type, pathologic T (pT) and N (pN) stages, tumor grade, tumor type per Lauren's classification, presence of lymphovascular invasion, and Nrf2 expression were evaluated. RESULTS While pT, pN, and Nrf-2 expression were found to be negative prognostic predictors for overall survival in one-way analysis of variance, Nrf-2 expression was the only significant negative prognostic predictor in multivariance analysis. pT, pN, diffuse type, high tumor grade, and Nrf-2 expression significantly affected overall survival in Kaplan-Meier survival analyses (p = 0.02, p = 0.03, p < 0.01, p = 0.027, and p = 0.001, respectively). CONCLUSIONS Our findings support that Nrf2 is a prognostic marker in patients with gastric adenocarcinoma. Anti-Nrf2 therapy options should be investigated to improve prognosis in gastric cancer patients.
Collapse
Affiliation(s)
- Hüseyin Alakuş
- Department of Surgical Oncology, Adiyaman University Faculty of Medicine, Adiyaman, Turkey.
| | - Mustafa Kaya
- Department of Surgical Oncology, Dr. Ersin Aslan Education and Research Hospital, Gaziantep, Turkey
| | - Hatice Özer
- Department of Pathology, Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| | | | - Kürşat Karadayı
- Department of Surgical Oncology, Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| |
Collapse
|
6
|
Cheraghi O, Dabirmanesh B, Ghazi F, Amanlou M, Atabakhshi-kashi M, Fathollahi Y, Khajeh K. The effect of Nrf2 deletion on the proteomic signature in a human colorectal cancer cell line. BMC Cancer 2022; 22:979. [PMID: 36100939 PMCID: PMC9472369 DOI: 10.1186/s12885-022-10055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background Colorectal cancer is one of the most common cancer and the third leading cause of death worldwide. Increased generation of reactive oxygen species (ROS) is observed in many types of cancer cells. Several studies have reported that an increase in ROS production could affect the expression of proteins involved in ROS-scavenging, detoxification and drug resistance. Nuclear factor erythroid 2 related factor 2 (Nrf2) is a known transcription factor for cellular response to oxidative stress. Several researches exhibited that Nrf2 could exert multiple functions and expected to be a promising therapeutic target in many cancers. Here, Nrf2 was knocked down in colorectal cancer cell line HT29 and changes that occurred in signaling pathways and survival mechanisms were evaluated. Methods The influence of chemotherapy drugs (doxorubicin and cisplatin), metastasis and cell viability were investigated. To explore the association between specific pathways and viability in HT29-Nrf2−, proteomic analysis, realtime PCR and western blotting were performed. Results In the absence of Nrf2 (Nrf2−), ROS scavenging and detoxification potential were dramatically faded and the HT29-Nrf2− cells became more susceptible to drugs. However, a severe decrease in viability was not observed. Bioinformatic analysis of proteomic data revealed that in Nrf2− cells, proteins involved in detoxification processes, respiratory electron transport chain and mitochondrial-related compartment were down regulated. Furthermore, proteins related to MAPKs, JNK and FOXO pathways were up regulated that possibly helped to overcome the detrimental effect of excessive ROS production. Conclusions Our results revealed MAPKs, JNK and FOXO pathways connections in reducing the deleterious effect of Nrf2 deficiency, which can be considered in cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10055-y.
Collapse
|
7
|
Khodakarami A, Adibfar S, Karpisheh V, Abolhasani S, Jalali P, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The molecular biology and therapeutic potential of Nrf2 in leukemia. Cancer Cell Int 2022; 22:241. [PMID: 35906617 PMCID: PMC9336077 DOI: 10.1186/s12935-022-02660-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) transcription factor has contradictory roles in cancer, which can act as a tumor suppressor or a proto-oncogene in different cell conditions (depending on the cell type and the conditions of the cell environment). Nrf2 pathway regulates several cellular processes, including signaling, energy metabolism, autophagy, inflammation, redox homeostasis, and antioxidant regulation. As a result, it plays a crucial role in cell survival. Conversely, Nrf2 protects cancerous cells from apoptosis and increases proliferation, angiogenesis, and metastasis. It promotes resistance to chemotherapy and radiotherapy in various solid tumors and hematological malignancies, so we want to elucidate the role of Nrf2 in cancer and the positive point of its targeting. Also, in the past few years, many studies have shown that Nrf2 protects cancer cells, especially leukemic cells, from the effects of chemotherapeutic drugs. The present paper summarizes these studies to scrutinize whether targeting Nrf2 combined with chemotherapy would be a therapeutic approach for leukemia treatment. Also, we discussed how Nrf2 and NF-κB work together to control the cellular redox pathway. The role of these two factors in inflammation (antagonistic) and leukemia (synergistic) is also summarized.
Collapse
Affiliation(s)
- Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Adibfar
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Pouremamali F, Jeddi F, Samadi N. Nrf2-ME-1 axis is associated with 5-FU resistance in gastric cancer cell line. Process Biochem 2022. [DOI: 10.1016/j.procbio.2020.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Effect of Kaempferol and Its Glycoside Derivatives on Antioxidant Status of HL-60 Cells Treated with Etoposide. Molecules 2022; 27:molecules27020333. [PMID: 35056649 PMCID: PMC8777684 DOI: 10.3390/molecules27020333] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 11/23/2022] Open
Abstract
Kaempferol is a well-known antioxidant found in many plants and plant-based foods. In plants, kaempferol is present mainly in the form of glycoside derivatives. In this work, we focused on determining the effect of kaempferol and its glycoside derivatives on the expression level of genes related to the reduction of oxidative stress—NFE2L2, NQO1, SOD1, SOD2, and HO-1; the enzymatic activity of superoxide dismutases; and the level of glutathione. We used HL-60 acute promyelocytic leukemia cells, which were incubated with the anticancer drug etoposide and kaempferol or one of its three glycoside derivatives isolated from the aerial parts of Lens culinaris Medik.—kaempferol 3-O-[(6-O-E-caffeoyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P2), kaempferol 3-O-[(6-O-E-p-coumaroyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P5), and kaempferol 3-O-[(6-O-E-feruloyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P7). We showed that none of the tested compounds affected NFE2L2 gene expression. Co-incubation with etoposide (1 µM) and kaempferol (10 and 50 µg/mL) leads to an increase in the expression of the HO-1 (9.49 and 9.33-fold at 10 µg/mL and 50 µg/mL, respectively), SOD1 (1.68-fold at 10 µg/mL), SOD2 (1.72-fold at 10–50 µg/mL), and NQO1 (1.84-fold at 50 µg/mL) genes in comparison to cells treated only with etoposide. The effect of kaempferol derivatives on gene expression differs depending on the derivative. All tested polyphenols increased the SOD activity in cells co-incubated with etoposide. We observed that the co-incubation of HL-60 cells with etoposide and kaempferol or derivative P7 increases the level of total glutathione in these cells. Taken together, our observations suggest that the antioxidant activity of kaempferol is related to the activation of antioxidant genes and proteins. Moreover, we observed that glycoside derivatives can have a different effect on the antioxidant cellular systems than kaempferol.
Collapse
|
10
|
Hanssen KM, Haber M, Fletcher JI. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: Beyond pharmacological inhibition. Drug Resist Updat 2021; 59:100795. [PMID: 34983733 DOI: 10.1016/j.drup.2021.100795] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022]
Abstract
Resistance to chemotherapy remains one of the most significant obstacles to successful cancer treatment. While inhibiting drug efflux mediated by ATP-binding cassette (ABC) transporters is a seemingly attractive and logical approach to combat multidrug resistance (MDR), small molecule inhibition of ABC transporters has so far failed to confer clinical benefit, despite considerable efforts by medicinal chemists, biologists, and clinicians. The long-sought treatment to eradicate cancers displaying ABC transporter overexpression may therefore lie within alternative targeting strategies. When aberrantly expressed, the ABC transporter multidrug resistance-associated protein 1 (MRP1, ABCC1) confers MDR, but can also shift cellular redox balance, leaving the cell vulnerable to select agents. Here, we explore the physiological roles of MRP1, the rational for targeting this transporter in cancer, the development of small molecule MRP1 inhibitors, and the most recent developments in alternative therapeutic approaches for targeting cancers with MRP1 overexpression. We discuss approaches that extend beyond simple MRP1 inhibition by exploiting the collateral sensitivity to glutathione depletion and ferroptosis, the rationale for targeting the shared transcriptional regulators of both MRP1 and glutathione biosynthesis, advances in gene silencing, and new molecules that modulate transporter activity to the detriment of the cancer cell. These strategies illustrate promising new approaches to address multidrug resistant disease that extend beyond the simple reversal of MDR and offer exciting routes for further research.
Collapse
Affiliation(s)
- Kimberley M Hanssen
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Cruz-Gregorio A, Aranda-Rivera AK, Pedraza-Chaverri J. Nuclear factor erythroid 2-related factor 2 in human papillomavirus-related cancers. Rev Med Virol 2021; 32:e2308. [PMID: 34694662 DOI: 10.1002/rmv.2308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023]
Abstract
High-risk human papillomavirus (HR-HPV) infection is a necessary cause for the development of cervical cancer. Moreover, HR-HPV is also associated with cancers in the anus, vagina, vulva, penis and oropharynx. HR-HPVs target and modify the function of different cell biomolecules, such as glucose, amino acids, lipids and transcription factors (TF), such as p53, nuclear factor erythroid 2-related factor 2 (Nrf2), among others. The latter is a master TF that maintains redox homeostasis. Nrf2 also induces the transcription of genes associated with cell detoxification. Since both processes are critical for cell physiology, Nrf2 deregulation is associated with cancer development. Nrf2 is a crucial molecule in HPV-related cancer development but underexplored. Moreover, Nrf2 activation is also associated with resistance to chemotherapy and radiotherapy in these cancers. This review focusses on the importance of Nrf2 during HPV-related cancer development, resistance to therapy and potential therapies associated with Nrf2 as a molecular target.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Ana Karina Aranda-Rivera
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - José Pedraza-Chaverri
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| |
Collapse
|
12
|
Role of NRF2 cascade in determining the differential response of cervical cancer cells to anticancer drugs: an in vitro study. Mol Biol Rep 2021; 49:109-119. [PMID: 34674139 DOI: 10.1007/s11033-021-06848-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/15/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cervical cancers are usually treatable if detected in early stages by a combination of therapies. However, the prognosis of cervical cancer patients with metastasis remains unfavorable due to the fact that most of the cervical carcinomas are either resistant to anticancer drugs or show signs of relapse after initial treatment. Therefore, it is important to control the chemoresistance as it is the key to develop effective treatment options for cervical cancer. OBJECTIVE The current study aimed at evaluating the differential responses of cervical cancer cells to anti-cancer drugs and assessed whether the differences in the expression profiles of antioxidant genes regulated by nuclear factor erythroid-2-related factor 2 (NRF2), led to the variations in the sensitivities of the cancer cells to treatment. METHODOLOGY Three cervical cancer cell lines were investigated for their differences in NRF2 pathway by measuring the gene expression and enzyme activity. The differences in the sensitivity to anti-cancer drugs and variation in ROS profile was also evaluated. The addition of exogenous drugs to manipulate the intracellular ROS and its effect on NRF2 pathway genes was also investigated. RESULTS HeLa and SiHa cells were more sensitive to cisplatin and oxaliplatin treatment than C33A cells. HeLa and SiHa cells had significantly lower NRF2 gene levels, NQO1 enzyme activity and basal GSH levels than C33A cells. Levels of ROS induced were higher in HeLa than C33A cells. CONCLUSION Overall, the differences in the cellular levels of antioxidant regulatory genes led to the differential response of cervical cancer cells to anti-cancer drugs.
Collapse
|
13
|
Skowron MA, Oing C, Bremmer F, Ströbel P, Murray MJ, Coleman N, Amatruda JF, Honecker F, Bokemeyer C, Albers P, Nettersheim D. The developmental origin of cancers defines basic principles of cisplatin resistance. Cancer Lett 2021; 519:199-210. [PMID: 34320371 DOI: 10.1016/j.canlet.2021.07.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 02/09/2023]
Abstract
Cisplatin-based chemotherapy has been used for more than four decades as a standard therapeutic option in several tumor entities. However, being a multifaceted and heterogeneous phenomenon, inherent or acquired resistance to cisplatin remains a major obstacle during the treatment of several solid malignancies and inevitably results in disease progression. Hence, we felt there was an urgent need to evaluate common mechanisms between multifarious cancer entities to identify patient-specific therapeutic strategies. We found joint molecular and (epi)genetic resistance mechanisms and specific cisplatin-induced mutational signatures that depended on the developmental origin (endo-, meso-, ectoderm) of the tumor tissue. Based on the findings of thirteen tumor entities, we identified three resistance groups, where Group 1 (endodermal origin) prominently indicates NRF2-pathway activation, Group 2 (mesodermal origin, primordial germ cells) shares elevated DNA repair mechanisms and decreased apoptosis induction, and Group 3 (ectodermal and paraxial mesodermal origin) commonly presents deregulated apoptosis induction and alternating pathways as the main cisplatin-induced resistance mechanisms. This review further proposes potential and novel therapeutic strategies to improve the outcome of cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Margaretha A Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Christoph Oing
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Martinsstraße 52, 20246 Hamburg, Germany; Mildred Scheel Cancer Career Center HaTriCs4, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinsstraße 52, 20246 Hamburg, Germany.
| | - Felix Bremmer
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Str.4, 37075 Gottingen, Germany.
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Str.4, 37075 Gottingen, Germany.
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Department of Pediatric Hematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK.
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK.
| | - James F Amatruda
- Departments of Pediatrics and Medicine, Keck School of Medicine, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, University of Southern California, 1975 Zonal Ave., Los Angeles, CA 90033, USA.
| | - Friedemann Honecker
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinsstraße 52, 20246 Hamburg, Germany; Tumor and Breast Center ZeTuP St. Gallen, Rorschacher Strasse 150, 9000 St. Gallen, Switzerland.
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Martinsstraße 52, 20246 Hamburg, Germany.
| | - Peter Albers
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
14
|
Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021; 34:1428-1483. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (NRF2/KEAP1) pathway is a crucial and highly conserved defensive system that is required to maintain or restore the intracellular homeostasis in response to oxidative, electrophilic, and other types of stress conditions. The tight control of NRF2 function is maintained by a complex network of biological interactions between positive and negative regulators that ultimately ensure context-specific activation, culminating in the NRF2-driven transcription of cytoprotective genes. Recent Advances: Recent studies indicate that deregulated NRF2 activation is a frequent event in malignant tumors, wherein it is associated with metabolic reprogramming, increased antioxidant capacity, chemoresistance, and poor clinical outcome. On the other hand, the growing interest in the modulation of the cancer cells' redox balance identified NRF2 as an ideal therapeutic target. Critical Issues: For this reason, many efforts have been made to identify potent and selective NRF2 inhibitors that might be used as single agents or adjuvants of anticancer drugs with redox disrupting properties. Despite the lack of specific NRF2 inhibitors still represents a major clinical hurdle, the researchers have exploited alternative strategies to disrupt NRF2 signaling at different levels of its biological activation. Future Directions: Given its dualistic role in tumor initiation and progression, the identification of the appropriate biological context of NRF2 activation and the specific clinicopathological features of patients cohorts wherein its inactivation is expected to have clinical benefits, will represent a major goal in the field of cancer research. In this review, we will briefly describe the structure and function of the NRF2/ KEAP1 system and some of the most promising NRF2 inhibitors, with a particular emphasis on natural compounds and drug repurposing. Antioxid. Redox Signal. 34, 1428-1483.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
15
|
Mirzaei S, Mohammadi AT, Gholami MH, Hashemi F, Zarrabi A, Zabolian A, Hushmandi K, Makvandi P, Samec M, Liskova A, Kubatka P, Nabavi N, Aref AR, Ashrafizadeh M, Khan H, Najafi M. Nrf2 signaling pathway in cisplatin chemotherapy: Potential involvement in organ protection and chemoresistance. Pharmacol Res 2021; 167:105575. [PMID: 33771701 DOI: 10.1016/j.phrs.2021.105575] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a vital transcription factor and its induction is of significant importance for protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) stimulate Nrf2 signaling, enhancing the activity of antioxidant enzymes such as catalase, superoxide dismutase and glutathione peroxidase. These enzymes are associated with retarding oxidative stress. On the other hand, Nrf2 activation in cancer cells is responsible for the development of chemoresistance due to disrupting oxidative mediated-cell death by reducing ROS levels. Cisplatin (CP), cis-diamminedichloroplatinum(II), is a potent anti-tumor agent extensively used in cancer therapy, but its frequent application leads to the development of chemoresistance as well. In the present study, association of Nrf2 signaling with chemoresistance to CP and protection against its deleterious effects is discussed. Anti-tumor compounds, mainly phytochemicals, retard chemoresistance by suppressing Nrf2 signaling. Upstream mediators such as microRNAs can regulate Nrf2 expression during CP chemotherapy regimens. Protection against side effects of CP is mediated via activating Nrf2 signaling and its downstream targets activating antioxidant defense system. Protective agents that activate Nrf2 signaling, can ameliorate CP-mediated ototoxicity, nephrotoxicity and neurotoxicity. Reducing ROS levels and preventing cell death are the most important factors involved in alleviating CP toxicity upon Nrf2 activation. As pre-clinical experiments advocate the role of Nrf2 in chemoprotection and CP resistance, translating these findings to the clinic can provide a significant progress in treatment of cancer patients.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aliasghar Tabatabaei Mohammadi
- Asu Vanda Gene Research Company, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Science Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, 56025 Pisa, Pontedera, Italy
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6 Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanashah University of Medical Sciences, Kermanshah 6715847141, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
16
|
Mohs A, Otto T, Schneider KM, Peltzer M, Boekschoten M, Holland CH, Hudert CA, Kalveram L, Wiegand S, Saez-Rodriguez J, Longerich T, Hengstler JG, Trautwein C. Hepatocyte-specific NRF2 activation controls fibrogenesis and carcinogenesis in steatohepatitis. J Hepatol 2021; 74:638-648. [PMID: 33342543 DOI: 10.1016/j.jhep.2020.09.037] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS In chronic liver diseases, inflammation induces oxidative stress and thus may contribute to the progression of liver injury, fibrosis, and carcinogenesis. The KEAP1/NRF2 axis is a major regulator of cellular redox balance. In the present study, we investigated whether the KEAP1/NRF2 system is involved in liver disease progression in humans and mice. METHODS The clinical relevance of oxidative stress was investigated by liver RNA sequencing in a well-characterized cohort of patients with non-alcoholic fatty liver disease (n = 63) and correlated with histological and clinical parameters. For functional analysis, hepatocyte-specific Nemo knockout (NEMOΔhepa) mice were crossed with hepatocyte-specific Keap1 knockout (KEAP1Δhepa) mice. RESULTS Immunohistochemical analysis of human liver sections showed increased oxidative stress and high NRF2 expression in patients with chronic liver disease. RNA sequencing of liver samples in a human pediatric NAFLD cohort revealed a significant increase of NRF2 activation correlating with the grade of inflammation, but not with the grade of steatosis, which could be confirmed in a second adult NASH cohort. In mice, microarray analysis revealed that Keap1 deletion induces NRF2 target genes involved in glutathione metabolism and xenobiotic stress (e.g., Nqo1). Furthermore, deficiency of one of the most important antioxidants, glutathione (GSH), in NEMOΔhepa livers was rescued after deleting Keap1. As a consequence, NEMOΔhepa/KEAP1Δhepa livers showed reduced apoptosis compared to NEMOΔhepa livers as well as a dramatic downregulation of genes involved in cell cycle regulation and DNA replication. Consequently, NEMOΔhepa/KEAP1Δhepa compared to NEMOΔhepa livers displayed decreased fibrogenesis, lower tumor incidence, reduced tumor number, and decreased tumor size. CONCLUSIONS NRF2 activation in patients with non-alcoholic steatohepatitis correlates with the grade of inflammation, but not steatosis. Functional analysis in mice demonstrated that NRF2 activation in chronic liver disease is protective by ameliorating fibrogenesis, initiation and progression of hepatocellular carcinogenesis. LAY SUMMARY The KEAP1 (Kelch-like ECH-associated protein-1)/NRF2 (erythroid 2-related factor 2) axis has a major role in regulating cellular redox balance. Herein, we show that NRF2 activity correlates with the grade of inflammation in patients with non-alcoholic steatohepatitis. Functional studies in mice actually show that NRF2 activation, resulting from KEAP1 deletion, protects against fibrosis and cancer.
Collapse
Affiliation(s)
- Antje Mohs
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tobias Otto
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Kai Markus Schneider
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Mona Peltzer
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Mark Boekschoten
- Department of Agrotechnology and Food Sciences, University Wageningen, Wageningen, the Netherlands
| | - Christian H Holland
- Faculty of Medicine, Institute of Computational Biomedicine, Heidelberg University, Bioquant, Heidelberg, Germany; Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Aachen, Germany; Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund (IfADo), Dortmund, Germany
| | - Christian A Hudert
- Department of Pediatric Gastroenterology, Charité - Universitätsmedizin Berlin, Germany
| | - Laura Kalveram
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susanna Wiegand
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Institute of Computational Biomedicine, Heidelberg University, Bioquant, Heidelberg, Germany; Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Aachen, Germany
| | - Thomas Longerich
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Jan G Hengstler
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund (IfADo), Dortmund, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
17
|
Clinico-pathological and prognostic implications of Srx, Nrf2, and PROX1 expression in gastric cancer and adjacent non-neoplastic mucosa - an immunohistochemical study. Contemp Oncol (Pozn) 2021; 24:229-240. [PMID: 33531870 PMCID: PMC7836280 DOI: 10.5114/wo.2020.102671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/11/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Sulfiredoxin (Srx), which is an endogenous antioxidant substance which could, regulate the signaling pathways of reactive oxygen species. Nuclear factor erythroid 2-related factor 2 (Nrf2) is Cap-N-collar (CNC) transcription factors family member that have essential roles in regulation of antioxidant response. The transcription factor PROX1 is a transcription factor and a key regulatory protein in cancer development. Aim of the study To analyze levels of tissue expression of Srx, Nrf2, and PROX1 in gastric cancer and adjacent non-neoplastic gastric mucosa to clarify the relationship between their expression levels, clinical, pathological parameters and patients’ outcome. The results might lead to discovering novel targeted therapies to gastric cancers. Material and methods We included 70 paraffin-embedded samples: 50 specimens from gastric carcinomas and 20 specimens from adjacent non-neoplastic gastric mucosa. All samples are stained with Srx, Nrf2, and PROX1 using immunohistochemistry, correlated their expression with clinicopathological and prognostic parameters of patients. Results High levels of Srx and Nrf2 expression were positively associated with higher cancer grade (p = 0.006, 0.031 respectively), advanced stage (p < 0.001, 0.02 respectively), higher incidence of distant metastases (p = 0.029, 0.03 respectively) and dismal outcome (p < 0.001). High levels of PROX1 expression were associated with lower cancer grade (p = 0.005), absence of lymph nodes metastases (p = 0.023), early stage (p = 0.003), absence of relapse (p = 0.004), and favorable outcome (p < 0.001). Conclusions Srx and Nrf2 expression increase gastric cancer invasiveness, suggesting their utility as poor prognostic markers, but PROX1 serves as a favorable prognostic marker of gastric cancer patients.
Collapse
|
18
|
Smolková K, Mikó E, Kovács T, Leguina-Ruzzi A, Sipos A, Bai P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid Redox Signal 2020; 33:966-997. [PMID: 31989830 PMCID: PMC7533893 DOI: 10.1089/ars.2020.8024] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Nuclear factor erythroid 2 (NFE2)-related factor 2 (NFE2L2, or NRF2) is a transcription factor predominantly affecting the expression of antioxidant genes. NRF2 plays a significant role in the control of redox balance, which is crucial in cancer cells. NRF2 activation regulates numerous cancer hallmarks, including metabolism, cancer stem cell characteristics, tumor aggressiveness, invasion, and metastasis formation. We review the molecular characteristics of the NRF2 pathway and discuss its interactions with the cancer hallmarks previously listed. Recent Advances: The noncanonical activation of NRF2 was recently discovered, and members of this pathway are involved in carcinogenesis. Further, cancer-related changes (e.g., metabolic flexibility) that support cancer progression were found to be redox- and NRF2 dependent. Critical Issues: NRF2 undergoes Janus-faced behavior in cancers. The pro- or antineoplastic effects of NRF2 are context dependent and essentially based on the specific molecular characteristics of the cancer in question. Therefore, systematic investigation of NRF2 signaling is necessary to clarify its role in cancer etiology. The biggest challenge in the NRF2 field is to determine which cancers can be targeted for better clinical outcomes. Further, large-scale genomic and transcriptomic studies are missing to correlate the clinical outcome with the activity of the NRF2 system. Future Directions: To exploit NRF2 in a clinical setting in the future, the druggable members of the NRF2 pathway should be identified. In addition, it will be important to study how the modulation of the NRF2 system interferes with cytostatic drugs and their combinations.
Collapse
Affiliation(s)
- Katarína Smolková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alberto Leguina-Ruzzi
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary.,Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
19
|
Majumder D, Nath P, Debnath R, Maiti D. Understanding the complicated relationship between antioxidants and carcinogenesis. J Biochem Mol Toxicol 2020; 35:e22643. [PMID: 32996240 DOI: 10.1002/jbt.22643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/09/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) are generated as by-product of cellular respiration and also due to the exposure of various xenobiotics, whereas mitochondrial electron transport chain is considered as the main source of ROS generation. The sequential addition to molecular oxygen gives rise to various forms of ROS like superoxide anion, peroxide, hydroxyl radical, hydroxyl ion, and so forth. However, the uncontrolled level of ROS generation and accumulation alters the body homeostasis. Excessive generation of ROS leads to oxidative stress and various kinds of diseases including cancer. To counteract ROS, enzymatic and nonenzymatic antioxidants' armory is available in our body. Apart from endogenous antioxidants, we are also consuming various exogenous antioxidants. Antioxidants protect us from ROS-mediated damages and inhibit ROS-induced carcinogenesis. Recent studies have revealed that antioxidants could also act as tumor-promoting agents. Various anticancer drugs are used to kill the cancer cells through the generation of oxidative stress in them, but the cancer cells can counteract the effect with the help of various endogenous as well as exogenous antioxidants. Our review will summarize the multifaceted relationship between antioxidants and carcinogenesis, and it will help to create new directions in antioxidant-based chemotherapy.
Collapse
Affiliation(s)
- Debabrata Majumder
- Department of Human Physiology, Immunology Microbiology Lab, Tripura University, Suryamaninagar, Tripura, India
| | - Priyatosh Nath
- Department of Human Physiology, Immunology Microbiology Lab, Tripura University, Suryamaninagar, Tripura, India
| | - Rahul Debnath
- Department of Human Physiology, Immunology Microbiology Lab, Tripura University, Suryamaninagar, Tripura, India
| | - Debasish Maiti
- Department of Human Physiology, Immunology Microbiology Lab, Tripura University, Suryamaninagar, Tripura, India
| |
Collapse
|
20
|
Sulfiredoxin as a Potential Therapeutic Target for Advanced and Metastatic Prostate Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2148562. [PMID: 32411320 PMCID: PMC7201699 DOI: 10.1155/2020/2148562] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/09/2019] [Indexed: 12/28/2022]
Abstract
The incidence of prostate cancer (PCa) is increasing, and it is currently the second most frequent cause of death by cancer in men. Despite advancements in cancer therapies, new therapeutic approaches are still needed for treatment-refractory advanced metastatic PCa. Cross-species analysis presents a robust strategy for the discovery of new potential therapeutic targets. This strategy involves the integration of genomic data from genetically engineered mouse models (GEMMs) and human PCa datasets. Considering the role of antioxidant pathways in tumor initiation and progression, we searched oxidative stress-related genes for a potential therapeutic target for PCa. First, we analyzed RNA-sequencing data from Pb-Cre4; Ptenf/f mice and discovered an increase in sulfiredoxin (Srxn1) mRNA expression in high-grade prostatic intraepithelial neoplasia (PIN), well-differentiated adenocarcinoma (medium-stage tumors), and poor-differentiated adenocarcinoma (advanced-stage prostate tumors). The increase of SRXN1 protein expression was confirmed by immunohistochemistry in mouse prostate tumor paraffin samples. Analyses of human databases and prostate tissue microarrays demonstrated that SRXN1 is overexpressed in a subset of high-grade prostate tumors and correlates with aggressive PCa with worse prognosis and decreased survival. Analyses in vitro showed that SRXN1 expression is also higher in most PCa cell lines compared to normal cell lines. Furthermore, siRNA-mediated downregulation of SRXN1 led to decreased viability of PCa cells LNCaP. In conclusion, we identified the antioxidant enzyme SRXN1 as a potential therapeutic target for PCa. Our results suggest that the use of specific SRXN1 inhibitors may be an effective strategy for the adjuvant treatment of castration-resistant PCa with SRXN1 overexpression.
Collapse
|
21
|
Belanova A, Beseda D, Chmykhalo V, Stepanova A, Belousova M, Khrenkova V, Gavalas N, Zolotukhin P. Berberine Effects on NFκB, HIF1A and NFE2L2/AP-1 Pathways in HeLa Cells. Anticancer Agents Med Chem 2019; 19:487-501. [DOI: 10.2174/1871520619666181211121405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/19/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022]
Abstract
Background:
Berberine has multitudinous anti-cancer stem cells effects making it a highly promising
candidate substance for the next-generation cancer therapy. However, berberine modes of action predispose it to
significant side-effects that probably limit its clinical testing and application.
Materials and Methods:
HeLa cells were treated with two concentrations of berberine (30 and 100 µM) for 24
hours to assess the functioning of the NFE2L2/AP-1, NFκB and HIF1A pathways using 22 RNAs expression
qPCR-based analysis.
Results:
Berberine effects appeared to be highly dose-dependent, with the lower concentration being capable of
suppressing the NFκB functioning and the higher concentration causing severe signaling side-effects seen in the
HIF1A pathway and the NFE2L2 sub-pathways, and especially and more importantly in the AP-1 sub-pathway.
Conclusion:
The results of the study suggest that berberine has clinically valuable anti-NFκB effects however
jeopardized by its side effects on the HIF1A and especially NFE2L2/AP-1 pathways, its therapeutic window
phenomenon and its cancer type-specificity. These, however, may be ameliorated using the cocktail approach,
provided there is enough data on signaling effects of berberine.
Collapse
Affiliation(s)
- Anna Belanova
- Biomedical Innovations LLC, 112 Mechnikova st., 344013, Rostov-on-Don, Russian Federation
| | - Darya Beseda
- Biomedical Innovations LLC, 112 Mechnikova st., 344013, Rostov-on-Don, Russian Federation
| | - Victor Chmykhalo
- Biomedical Innovations LLC, 112 Mechnikova st., 344013, Rostov-on-Don, Russian Federation
| | - Alisa Stepanova
- Biomedical Innovations LLC, 112 Mechnikova st., 344013, Rostov-on-Don, Russian Federation
| | - Mariya Belousova
- English Language Department for Natural Sciences Faculties, Southern Federal University, 5 Sorge st., 344090, Rostov-on-Don, Russian Federation
| | - Vera Khrenkova
- Rostov State Medical University, 119 Suvorova st., 344022, Rostov-on-Don, Russian Federation
| | - Nikolaos Gavalas
- Division of Clinical Therapeutics, National and Kapodistrian University of Athens, 80 Vas. Sofias Av., 11521, Athens, Greece
| | - Peter Zolotukhin
- Biomedical Innovations LLC, 112 Mechnikova st., 344013, Rostov-on-Don, Russian Federation
| |
Collapse
|
22
|
Wang M, Xue Y, Shen L, Qin P, Sang X, Tao Z, Yi J, Wang J, Liu P, Cheng H. Inhibition of SGK1 confers vulnerability to redox dysregulation in cervical cancer. Redox Biol 2019; 24:101225. [PMID: 31136958 PMCID: PMC6536746 DOI: 10.1016/j.redox.2019.101225] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/23/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer has poor prognosis and patients are often diagnosed at advanced stages of the disease with limited treatment options. There is thus an urgent need for the discovery of new therapeutic strategies in cervical cancer. The activation of SGK1 has been linked to the development of various cancer types but little is known about the role of SGK1 in cervical cancer and its potential as a therapeutic target. Here we report that SGK1 is an antioxidative factor that promotes survival of cervical cancer cells. Gene set enrichment analysis of RNA-Seq data reveals a strong inverse association between SGK1 and oxidative phosphorylation. Consistently, inhibition of SGK1 via siRNA or pharmacological inhibitor GSK650394 induces ROS and cytotoxicity upon H2O2 stress. Further analysis of clinical data associates SGK1 with gene expression signatures regulated by the antioxidant transcription factor NRF2 in cervical cancer. Mechanistically, SGK1 activation exerts antioxidant effect through induction of c-JUN-dependent NRF2 expression and activity. Importantly, we find that inhibition of SGK1 confers vulnerability to melatonin as a pro-oxidant, resulting in ROS over-accumulation and consequently enhanced cell cytotoxicity. We further demonstrate that combined use of GSK650394 and melatonin yields substantial regression of cervical tumors in vivo. This work opens new perspectives on the potential of SGK1 inhibitors as sensitizing agents to enable the design of therapeutically redox-modulating strategies against cervical cancer.
Collapse
Affiliation(s)
- Min Wang
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Yijue Xue
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Lanlin Shen
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Pan Qin
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Xiaolin Sang
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Zhiwei Tao
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Jingyan Yi
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Jia Wang
- Department of Breast Surgery, Institute of Breast Disease, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Pixu Liu
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.
| | - Hailing Cheng
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
23
|
Ebrahimi S, Soltani A, Hashemy SI. Oxidative stress in cervical cancer pathogenesis and resistance to therapy. J Cell Biochem 2019; 120:6868-6877. [PMID: 30426530 DOI: 10.1002/jcb.28007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/10/2018] [Indexed: 01/24/2023]
Abstract
Cervical cancer (CC) is one of the most common cancers among females, and it is most notable in developing countries. The exact etiology of CC is poorly understood; but, smoking, oral contraceptives, immunosuppression, and infection with human papillomavirus (HPV) may increase the risk of CC. There is also an association between CC and oxidative stress. Oxidative stress is caused by a disturbed oxidant-antioxidant balance in favor of the former, leading to an excessive generation of free radicals, particularly reactive oxygen species (ROS), and subsequently to biological damages. Thus, redox enzymatic and nonenzymatic regulators are required to maintain the redox homeostasis. Dysregulated antioxidants system and the pathogenic role of oxidative stress in CC have been investigated in several clinical and preclinical studies. In this study, we reviewed studies that have addressed the cross-talk between oxidative stress and CC pathogenesis and resistance to therapy.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Kari E, Teppo HR, Haapasaari KM, Kuusisto MEL, Lemma A, Karihtala P, Pirinen R, Soini Y, Jantunen E, Turpeenniemi-Hujanen T, Kuittinen O. Nuclear factor erythroid 2-related factors 1 and 2 are able to define the worst prognosis group among high-risk diffuse large B cell lymphomas treated with R-CHOEP. J Clin Pathol 2019; 72:316-321. [PMID: 30755497 PMCID: PMC6580789 DOI: 10.1136/jclinpath-2018-205584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 01/09/2023]
Abstract
AIMS Oxidative stress markers and antioxidant enzymes have previously been shown to have prognostic value and associate with adverse outcome in patients with diffuse large B cell lymphoma (DLBCL). Nuclear factor erythroid 2-related factor 1 (Nrf1) and factor 2 (Nrf2) are among the principal inducers of antioxidant enzyme production. Kelch ECH associating protein 1 (Keap1) is a negative regulator of Nrf2, and BTB (BR-C, ttk and bab) domain and CNC homolog 1 (Bach1) represses the function of both factors. Their significance in DLBCL prognosis is unknown. METHODS Diagnostic biopsy samples of 76 patients with high-risk DLBCL were retrospectively stained with immunohistochemistry for Nrf1, Nrf2, Keap1 and Bach1, and correlated with clinical data and outcome. RESULTS Nuclear Nrf2 and nuclear Bach1 expression were associated with adverse clinical features (anaemia, advanced stage, high IPI, high risk of neutropaenic infections), whereas cytoplasmic Nrf1 and Nrf2 were associated with favourable clinical presentation (normal haemoglobin level, no B symptoms, limited stage). None of the evaluated factors could predict survival alone. However, when two of the following parameters were combined: high nuclear score of Nrf2, low nuclear score of Nrf1, high cytoplasmic score of Nrf1 and low cytoplasmic score of Keap1 were associated with significantly worse overall survival. CONCLUSIONS Nrf1 and Nrf2 are relevant in disease presentation and overall survival in high-risk DLBCL. Low nuclear expression of Nrf1, high cytoplasmic expression of Nrf1, high nuclear expression of Nrf2 and low cytoplasmic expression of Keap1 are associated with adverse outcome in this patient group.
Collapse
Affiliation(s)
- Esa Kari
- Cancer Research and Translational Medicine Research Unit, University of Oulu, Oulu, Finland .,Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
| | - Hanna-Riikka Teppo
- Cancer Research and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Pathology, Oulu University Hospital, Oulu, Finland
| | | | - Milla Elvi Linnea Kuusisto
- Cancer Research and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
| | - Aurora Lemma
- Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
| | - Peeter Karihtala
- Cancer Research and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
| | - Risto Pirinen
- Department of Pathology, North Karelia Central Hospital, Joensuu, Finland
| | - Ylermi Soini
- Department of Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Esa Jantunen
- Department of Internal Medicine, Institute of Clinical Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Taina Turpeenniemi-Hujanen
- Cancer Research and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
| | - Outi Kuittinen
- Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Department of Oncology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
25
|
Hori R, Yamaguchi K, Sato H, Watanabe M, Tsutsumi K, Iwamoto S, Abe M, Onodera H, Nakamura S, Nakai R. The discovery and characterization of K-563, a novel inhibitor of the Keap1/Nrf2 pathway produced by Streptomyces sp. Cancer Med 2019; 8:1157-1168. [PMID: 30735010 PMCID: PMC6434342 DOI: 10.1002/cam4.1949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Keap1/Nrf2 pathway regulates the antioxidant stress response, detoxification response, and energy metabolism. Previous reports found that aberrant Keap1/Nrf2 pathway activation due to Kelch‐like ECH‐associated protein 1 (Keap1) mutations or Nuclear factor E2‐related factor 2 (Nrf2) mutations induced resistance of cancer cells to chemotherapy and accelerated cell growth via the supply of nutrients. Therefore, Keap1/Nrf2 pathway activation is associated with a poor prognosis in many cancers. These previous findings suggested that inhibition of Keap1/Nrf2 pathway could be a target for anti‐cancer therapies. To discover a small‐molecule Keap1/Nrf2 pathway inhibitor, we conducted high‐throughput screening in Keap1 mutant human lung cancer A549 cells using a transcriptional reporter assay. Through this screening, we identified the novel Keap1/Nrf2 pathway inhibitor K‐563, which was isolated from actinomycete Streptomyces sp. K‐563 suppressed the expression of Keap1/Nrf2 pathway downstream target genes or the downstream target protein, which induced suppression of GSH production, and activated reactive oxygen species production in A549 cells. K‐563 also inhibited the expression of downstream target genes in other Keap1‐ or Nrf2‐mutated cancer cells. Furthermore, K‐563 exerted anti‐proliferative activities in these mutated cancer cells. These in vitro analyses showed that K‐563 was able to inhibit cell growth in Keap1‐ or Nrf2‐mutated cancer cells by Keap1/Nrf2 pathway inhibition. K‐563 also exerted synergistic combinational effects with lung cancer chemotherapeutic agents. An in vivo study in mice xenotransplanted with A549 cells to further explore the therapeutic potential of K‐563 revealed that it also inhibited Keap1/Nrf2 pathway in lung cancer tumors. K‐563, a novel Keap1/Nrf2 pathway inhibitor, may be a lead compound for development as an anti‐cancer agent.
Collapse
Affiliation(s)
- Ran Hori
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Kozo Yamaguchi
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Hidetaka Sato
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Miwa Watanabe
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Kyoko Tsutsumi
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Susumu Iwamoto
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Masayuki Abe
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Hideyuki Onodera
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Satoshi Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Ryuichiro Nakai
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| |
Collapse
|
26
|
Sahin K, Yenice E, Bilir B, Orhan C, Tuzcu M, Sahin N, Ozercan IH, Kabil N, Ozpolat B, Kucuk O. Genistein Prevents Development of Spontaneous Ovarian Cancer and Inhibits Tumor Growth in Hen Model. Cancer Prev Res (Phila) 2019; 12:135-146. [PMID: 30651293 DOI: 10.1158/1940-6207.capr-17-0289] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 07/30/2018] [Accepted: 01/10/2019] [Indexed: 11/16/2022]
Abstract
Genistein, the major isoflavone in soybean, has been reported to exert anticancer effects on various types of cancer including ovarian cancer; however, its chemopreventive effects and mechanisms of action in ovarian cancer have not been fully elucidated in spontaneously developing ovarian cancer models. In this study, we demonstrated the preventive effects and mechanisms of genistein in the laying hen model that develops spontaneous ovarian cancer at high incidence rates. Laying hens were randomized to three groups: control (3.01 mg/hen, n = 100), low (52.48 mg/hen n = 100), and high genistein supplementation (106.26 mg/hen/day; per group). At the end of 78 weeks, hens were euthanized and ovarian tumors were collected and analyzed. We observed that genistein supplementation significantly reduced the ovarian tumor incidence (P = 0.002), as well as the number and size of the tumors (P = 0.0001). Molecular analysis of the ovarian tumors revealed that genistein downregulated serum malondialdehyde, a marker for oxidative stress and the expression of NFκB and Bcl-2, whereas it upregulated Nrf2, HO-1, and Bax expression at protein level in ovarian tissues. Moreover, genistein intake decreased the activity of mTOR pathway as evidenced by reduced phosphorylation of mTOR, p70S6K1, and 4E-BP1. Taken together, our findings strongly support the potential of genistein in the chemoprevention of ovarian cancer and highlight the effects of the genistein on the molecular pathways involved in ovarian tumorigenesis.
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | | | - Birdal Bilir
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Division of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Ibrahim H Ozercan
- Department of Pathology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Nashwa Kabil
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia. .,Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
27
|
Li X, Cai Y. Methylation-Based Classification of Cervical Squamous Cell Carcinoma into Two New Subclasses Differing in Immune-Related Gene Expression. Int J Mol Sci 2018; 19:ijms19113607. [PMID: 30445744 PMCID: PMC6275080 DOI: 10.3390/ijms19113607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is traditionally classified into two major histological subtypes, cervical squamous cell carcinoma (CSCC) and cervical adenocarcinoma (CA). However, heterogeneity exists among patients, comprising possible subpopulations with distinct molecular profiles. We applied consensus clustering to 307 methylation samples with cervical cancer from The Cancer Genome Atlas (TCGA). Fisher’s exact test was used to perform transcription factors (TFs) and genomic region enrichment. Gene expression profiles were downloaded from TCGA to assess expression differences. Immune cell fraction was calculated to quantify the immune cells infiltration. Putative neo-epitopes were predicted from somatic mutations. Three subclasses were identified: Class 1 correlating with the CA subtype and Classes 2 and 3 dividing the CSCC subtype into two subclasses. We found the hypomethylated probes in Class 3 exhibited strong enrichment in promoter region as compared with Class 2. Five TFs significantly enriched in the hypomethylated promoters and their highly expressed target genes in Class 3 functionally involved in the immune pathway. Gene function analysis revealed that immune-related genes were significantly increased in Class 3, and a higher level of immune cell infiltration was estimated. High expression of 24 immune genes exhibited a better overall survival and correlated with neo-epitope burden. Additionally, we found only two immune-related driver genes, CARD11 and JAK3, to be significantly increased in Class 3. Our analyses provide a classification of the largest CSCC subtype into two new subclasses, revealing they harbored differences in immune-related gene expression.
Collapse
Affiliation(s)
- Xia Li
- Research Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China.
| | - Yunpeng Cai
- Research Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China.
| |
Collapse
|
28
|
Zhu J, Wang H, Chen F, Lv H, Xu Z, Fu J, Hou Y, Xu Y, Pi J. Triptolide enhances chemotherapeutic efficacy of antitumor drugs in non-small-cell lung cancer cells by inhibiting Nrf2-ARE activity. Toxicol Appl Pharmacol 2018; 358:1-9. [PMID: 30196066 DOI: 10.1016/j.taap.2018.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022]
Abstract
Non-small cell lung cancer (NSCLC) has a high mortality rate worldwide. Various treatments strategies have been used against NSCLC including individualized chemotherapies, but innate or acquired cancer cell drug resistance remains a major obstacle. Recent studies revealed that the Kelch-like ECH associated protein 1/Nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) pathway is intimately involved in cancer progression and chemoresistance. Thus, antagonizing Nrf2 would seem to be a viable strategy in cancer therapy. In the present study a traditional Chinese medicine, triptolide, was identified that markedly inhibited expression and transcriptional activity of Nrf2 in various cancer cells, including NSCLC and liver cancer cells. Consequently, triptolide made cancer cells more chemosensitivity toward antitumor drugs both in vitro and in a xenograft tumor model system using lung carcinoma cells. These results suggest that triptolide blocks chemoresistance in cancer cells by targeting the Nrf2 pathway. Triptolide should be further investigated in clinical cancer trials.
Collapse
Affiliation(s)
- Jiayu Zhu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China
| | - Huihui Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China.
| | - Feng Chen
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Road, Heping Area, Shenyang, 110001, China; Interventional Department, Qianfoshan Hospital, Shandong University, No.16766 Jingshi Road, Jinan 250014, China
| | - Hang Lv
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China
| | - Zijin Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China.
| |
Collapse
|
29
|
Zhang J, Jiao K, Liu J, Xia Y. Metformin reverses the resistance mechanism of lung adenocarcinoma cells that knocks down the Nrf2 gene. Oncol Lett 2018; 16:6071-6080. [PMID: 30333878 DOI: 10.3892/ol.2018.9382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/14/2018] [Indexed: 12/12/2022] Open
Abstract
The nuclear factor, erythroid 2 like 2 (Nrf2)/antioxidant response element (ARE) pathway has an important role in the drug resistance of adenocarcinoma, and may act via different mechanisms, including the mitogen-activated protein kinase (MAPK) pathway. However, it has remained elusive whether metformin affects Nrf2 and regulates Nrf2/ARE in adenocarcinoma. In the present study, reverse-transcription quantitative polymerase chain reaction, cell transfection, western blot analysis, a Cell Counting kit-8 assay and apoptosis detection were used to investigate the above in the A549 cell line and cisplatin-resistant A549 cells (A549/DDP). The results indicated that Nrf2, glutathione S-transferase α 1 (GSTA1) and ATP-binding cassette subfamily C member 1 (ABCC1) were dose-dependently reduced by metformin, and that the effect in A549 cells was greater than that in A549/DDP cells. Treatment with metformin decreased the proliferation and increased the apoptosis of A549 cells to a greater extent than that of A549/DDP cells, and the effect was dose-dependent. After transfection of A549/DDP cells with Nrf2 short hairpin RNA (shRNA), GSTA1 and ABCC1 were markedly decreased, compared with the shRNA-control group of A549/DDP, and low dose-metformin reduced the proliferation and increased apoptosis of A549/DDP cells. Metformin inhibited the Akt and extracellular signal-regulated kinase (ERK)1/2 pathways in A549 cells and activated the p38 MAPK and c-Jun N-terminal kinase (JNK) pathways. Furthermore, in the presence of metformin, inhibitors of the p38 MAPK and JNK signaling pathway at different concentrations did not affect the levels of Nrf2, but inhibitors of the Akt and ERK1/2 pathway at different doses reduced the expression of Nrf2. In addition, inhibitors of p38 MAPK and JNK did not affect the effect of metformin on Nrf2, while inhibitors of Akt and ERK1/2 dose-dependently enhanced the inhibitory effects of metformin in A549 cells. In conclusion, metformin inhibits the phosphoinositide-3 kinase/Akt and ERK1/2 signaling pathways in A549 cells to reduce the expression of Nrf2, GSTA1 and ABCC1. Metformin also reverses the resistance of A549/DDP cells to platinum drugs, inhibits the proliferation and promotes apoptosis of drug-resistant cells. These results may provide a theoretical basis and therapeutic targets for the clinical treatment of tumors.
Collapse
Affiliation(s)
- Jiacui Zhang
- Department of Internal Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Department of Respiratory Medicine, People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Keping Jiao
- Department of Respiratory Medicine, People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Jing Liu
- Department of Endocrine Medicine, People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Yu Xia
- Department of Internal Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
30
|
Li C, Cheng L, Wu H, He P, Zhang Y, Yang Y, Chen J, Chen M. Activation of the KEAP1‑NRF2‑ARE signaling pathway reduces oxidative stress in Hep2 cells. Mol Med Rep 2018; 18:2541-2550. [PMID: 30015918 PMCID: PMC6102741 DOI: 10.3892/mmr.2018.9288] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/09/2018] [Indexed: 11/22/2022] Open
Abstract
At present there are no studies investigating the effects of the kelch-like ECH-associated protein 1 (KEAP1)-nuclear factor erythroid 2-related factor 2 (NRF2)-antioxidant response element (ARE) signaling pathway on Hep2 cell line. The present study aimed to investigate this topic through knockdown of the KEAP1 gene. A stable Hep2 cell line specifically silencing the human KEAP1 gene was initially constructed. Hydrogen peroxide (H2O2) was added to the culture medium at various concentrations for various durations to interact with the short hairpin (sh)KEAP1-transfected Hep2 cells. Subsequently, the gene and protein expression levels of KEAP1, NRF2, NAD(P)H quinone oxidoreductase1 (NQO1) and heme oxygenase 1 (HO1) in experimental and control cells were measured by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. Furthermore, the viability and apoptotic rate of the shKEAP1-transfected Hep2 cells were detected by a Cell Counting-Kit 8 assay and flow cytometry, respectively. In the shKEAP1 Hep2 cell line, the mRNA and protein expression levels of NRF2, NQO1 and HO1 were markedly higher compared with the scramble control-transfected Hep2 and parent Hep2 cell lines. Immunofluorescence staining indicated that NRF2 was primarily located in the cytoplasm of scHep2 and parent Hep2 cell lines, but was present in the nuclei and cytoplasm of the shKEAP1 Hep2 cell line, where it translocates into the nuclei in response to H2O2. Following knockdown of the KEAP1 gene Hep2 cells, the apoptosis rates were 31.8 and 45.3% in scHep2 cells at 0.1 and 0.25 mmol/l H2O2 respectively and 14.1 and 27.9% in shKEAP1 cells. The present study indicated that the KEAP1-NRF2-ARE signaling pathway may exhibit an antioxidative effect within Hep2 cells and may be used for clinical treatment of cancer.
Collapse
Affiliation(s)
- Changjiang Li
- Department of Otorhinolaryngology‑Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031, P.R. China
| | - Lei Cheng
- Department of Otorhinolaryngology‑Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031, P.R. China
| | - Haitao Wu
- Department of Otorhinolaryngology‑Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031, P.R. China
| | - Peijie He
- Department of Otorhinolaryngology‑Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031, P.R. China
| | - Yanping Zhang
- Department of Central Laboratory, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Yue Yang
- Department of Otorhinolaryngology‑Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031, P.R. China
| | - Jian Chen
- Department of Otorhinolaryngology‑Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031, P.R. China
| | - Min Chen
- Department of Otorhinolaryngology‑Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031, P.R. China
| |
Collapse
|
31
|
Cruz-Gregorio A, Manzo-Merino J, Lizano M. Cellular redox, cancer and human papillomavirus. Virus Res 2018; 246:35-45. [DOI: 10.1016/j.virusres.2018.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/28/2022]
|
32
|
Liu P, Behray M, Wang Q, Wang W, Zhou Z, Chao Y, Bao Y. Anti-cancer activities of allyl isothiocyanate and its conjugated silicon quantum dots. Sci Rep 2018; 8:1084. [PMID: 29348534 PMCID: PMC5773486 DOI: 10.1038/s41598-018-19353-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
Allyl isothiocyanate (AITC), a dietary phytochemical in some cruciferous vegetables, exhibits promising anticancer activities in many cancer models. However, previous data showed AITC to have a biphasic effect on cell viability, DNA damage and migration in human hepatoma HepG2 cells. Moreover, in a 3D co-culture of HUVEC with pericytes, it inhibited tube formation at high doses but promoted this at low doses, which confirmed its biphasic effect on angiogenesis. siRNA knockdown of Nrf2 and glutathione inhibition abolished the stimulation effect of AITC on cell migration and DNA damage. The biological activity of a novel AITC-conjugated silicon quantum dots (AITC-SiQDs) has been investigated for the first time. AITC-SiQDs showed similar anti-cancer properties to AITC at high doses while avoiding the low doses stimulation effect. In addition, AITC-SiQDs showed a lower and long-lasting activation of Nrf2 translocation into nucleus which correlated with their levels of cellular uptake, as detected by the intrinsic fluorescence of SiQDs. ROS production could be one of the mechanisms behind the anti-cancer effect of AITC-SiQDs. These data provide novel insights into the biphasic effect of AITC and highlight the application of nanotechnology to optimize the therapeutic potential of dietary isothiocyanates in cancer treatment.
Collapse
Affiliation(s)
- Peng Liu
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Mehrnaz Behray
- School of Chemistry, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Qi Wang
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Wei Wang
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Zhigang Zhou
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Yimin Chao
- School of Chemistry, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom.
| |
Collapse
|
33
|
Shi X, Ran L, Liu Y, Zhong SH, Zhou PP, Liao MX, Fang W. Knockdown of hnRNP A2/B1 inhibits cell proliferation, invasion and cell cycle triggering apoptosis in cervical cancer via PI3K/AKT signaling pathway. Oncol Rep 2018; 39:939-950. [PMID: 29328485 PMCID: PMC5802035 DOI: 10.3892/or.2018.6195] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/29/2017] [Indexed: 01/18/2023] Open
Abstract
Cervical cancer is currently one of the major threats to women's health. The overexpression of heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) as the biomarker has been investigated in various cancers. In our previous study, we found that lobaplatin induced apoptosis and cell cycle arrest via downregulation of proteins including hnRNP A2/B1 in cervical cancer cells. However, the underlying relationship between hnRNP A2/B1 and cervical cancer remained largely unknown. hnRNP A2/B1 knock-down in HeLa and CaSki cells was performed by shRNA transfection. The expression of hnRNP A2/B1 was detected by western blot and Quantitative Real-time PCR. Cell proliferation, migration, invasion and the IC50 of lobaplatin and irinotecan were determined by MTT assay, Transwell assay, Plate colony formation assay and wound healing assay. Flow cytometry was perfomed to investigate cell apoptosis and the cell cycle. The expression of PI3K, AKT, p-AKT, p21, p27, caspase-3, cleaved caspase-3 were revealed by western blot. Nude mouse xenograft model was undertaken with HeLa cells and the xenograft tumor tissue samples were analyzed for the expression of PCNA and Ki-67 by immunohistochemistry and the cell morphology was evaluated by hematoxylin and eosin (H&E). Results revealed that hnRNP A2/B1 was successfully silenced in HeLa and CaSki cells. hnRNP A2/B1 knock-down significantly induced the suppression of proliferation, migration, invasion and also enhancement of apoptosis and reduced the IC50 of lobaplatin and irinotecan. The expression of p21, p27 and cleaved caspase-3 in shRNA group were significantly upregulated and the expression of p-AKT was reduced both in vitro and in vivo. The results of immunohistochemistry showed that PCNA and Ki-67 were significantly downregulated in vivo. The growth of nude mouse xenograft tumor was significantly reduced by hnRNP A2/B1 knock-down. Taken together, these data indicate that inhibition of hnRNP A2/B1 in cervical cancer cells can inhibit cell proliferation and invasion, induce cell-cycle arrestment and trigger apoptosis via PI3K/AKT signaling pathway. In addition, after silencing hnRNP A2/B1 can increase the sensitivity of cervical cancer cells to lobaplatin and irinotecan.
Collapse
Affiliation(s)
- Xiang Shi
- Department of Biochemistry, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Li Ran
- Department of Mammary Gland and Gynecologic Oncology, Guizhou Cancer Hospital, Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yao Liu
- Department of Biochemistry, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shu-Huai Zhong
- Department of Biochemistry, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ping-Ping Zhou
- Department of Biochemistry, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ming-Xin Liao
- Department of Biochemistry, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Wen Fang
- Department of Biochemistry, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
34
|
Chen HH, Chang HH, Chang JY, Tang YC, Cheng YC, Lin LM, Cheng SY, Huang CH, Sun MW, Chen CT, Kuo CC. Enhanced B-Raf-mediated NRF2 gene transcription and HATs-mediated NRF2 protein acetylation contributes to ABCC1-mediated chemoresistance and glutathione-mediated survival in acquired topoisomerase II poison-resistant cancer cells. Free Radic Biol Med 2017; 113:505-518. [PMID: 29080842 DOI: 10.1016/j.freeradbiomed.2017.10.375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/20/2017] [Accepted: 10/23/2017] [Indexed: 12/25/2022]
Abstract
Nuclear factor erythroid-2-related factor 2 (NRF2) mainly regulates transcriptional activation through antioxidant-responsive elements (AREs) present in the promoters of NRF2 target genes. Recently, we found that NRF2 was overexpressed in a KB-derived drug-resistant cancer cell panel. In this panel, KB-7D cells, which show acquired resistance to topoisomerase II (Top II) poisons, exhibited the highest NRF2 activation. To investigate whether NRF2 directly contributed to acquired resistance against Top II poisons, we manipulated NRF2 by genetic and pharmacological approaches. The result demonstrated that silencing of NRF2 by RNA interference increased the sensitivity and treatment with NRF2 activator decreased the sensitivity of KB and KB-7D cells toward Top II poisons. Further, increased B-Raf-mediated NRF2 gene transcription and HATs-mediated NRF2 protein acetylation activated NRF2 signaling in KB-7D cells. Moreover, increased binding of NRF2 to an ARE in the promoter of ATP-binding cassette subfamily C member 1 (ABCC1) directly contributed to Top II poison resistance. In addition, activation of NRF2 increased glutathione level and antioxidant capacity in KB-7D cells compared with that in KB cells; moreover, high glutathione level provided survival advantage to KB-7D cells. Our study is the first to show that aberrant NRF2 activation is via increased B-Raf-mediated NRF2 gene transcription and HATs-mediated NRF2 protein acetylation, which increases the acquired resistance and promote the survival of Top II poison-resistant cancer cells. Importantly, NRF2 downstream effectors ABCC1 and glutathione directly contribute to acquired resistance and survival, respectively. These results suggest that blockade of NRF2 signaling may enhance therapeutic efficacy and reduce the survival of Top II poison-refractory tumors in clinical.
Collapse
Affiliation(s)
- Huang-Hui Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Hsin-Huei Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 35053, Taiwan; Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 70101, Taiwan; Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ya-Chu Tang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Li-Mei Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Shu-Ying Cheng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chih-Hsiang Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Man-Wu Sun
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan; Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Graduate Program for Aging, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
35
|
Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M, Buchfelder M, Savaskan N. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 2017; 6:e371. [PMID: 28805788 PMCID: PMC5608917 DOI: 10.1038/oncsis.2017.65] [Citation(s) in RCA: 431] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/05/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer cells are hallmarked by high proliferation and imbalanced redox consumption and signaling. Various oncogenic pathways such as proliferation and evading cell death converge on redox-dependent signaling processes. Nrf2 is a key regulator in these redox-dependent events and operates in cytoprotection, drug metabolism and malignant progression in cancer cells. Here, we show that patients with primary malignant brain tumors (glioblastomas, WHO °IV gliomas, GBM) have a devastating outcome and overall reduced survival when Nrf2 levels are upregulated. Nrf2 overexpression or Keap1 knockdown in glioma cells accelerate proliferation and oncogenic transformation. Further, activation of the Nrf2-Keap1 signaling upregulates xCT (aka SLC7A11 or system Xc−) and amplifies glutamate secretion thereby impacting on the tumor microenvironment. Moreover, both fostered Nrf2 expression and conversely Keap1 inhibition promote resistance to ferroptosis. Altogether, the Nrf2-Keap1 pathway operates as a switch for malignancy in gliomas promoting cell proliferation and resistance to cell death processes such as ferroptosis. Our data demonstrate that the Nrf2-Keap1 pathway is critical for cancer cell growth and operates on xCT. Nrf2 presents the Achilles’ heel of cancer cells and thus provides a valid therapeutic target for sensitizing cancer for chemotherapeutics.
Collapse
Affiliation(s)
- Z Fan
- Translational Cell Biology and Neurooncology Laboratory at the Department of Neurosurgery, University Medical School Hospital Universitätsklinikum Erlangen (UKER), Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany.,Laboratory of Exercise and Health, Institute of Movement Sciences, Department of Health Sciences and Technology, (D-HEST), ETH Zürich, Schwerzenbach, Switzerland
| | - A-K Wirth
- Translational Cell Biology and Neurooncology Laboratory at the Department of Neurosurgery, University Medical School Hospital Universitätsklinikum Erlangen (UKER), Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - D Chen
- Translational Cell Biology and Neurooncology Laboratory at the Department of Neurosurgery, University Medical School Hospital Universitätsklinikum Erlangen (UKER), Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
| | - C J Wruck
- Institute of Anatomy and Cell Biology, Universitätsklinikum RWTH Aachen, Aachen, Germany
| | - M Rauh
- Department of Pediatrics and Adolescent Medicine, University Medical School Hospital Erlangen (UKER), Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - M Buchfelder
- Translational Cell Biology and Neurooncology Laboratory at the Department of Neurosurgery, University Medical School Hospital Universitätsklinikum Erlangen (UKER), Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - N Savaskan
- Translational Cell Biology and Neurooncology Laboratory at the Department of Neurosurgery, University Medical School Hospital Universitätsklinikum Erlangen (UKER), Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany.,BiMECON, Berlin, Germany
| |
Collapse
|
36
|
Cervical Cancer Cell Line Secretome Highlights the Roles of Transforming Growth Factor-Beta-Induced Protein ig-h3, Peroxiredoxin-2, and NRF2 on Cervical Carcinogenesis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4180703. [PMID: 28261610 PMCID: PMC5316418 DOI: 10.1155/2017/4180703] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/16/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023]
Abstract
Cancer cells acquire unique secretome compositions that contribute to tumor development and metastasis. The aim of our study was to elucidate the biological processes involved in cervical cancer, by performing a proteomic analysis of the secretome from the following informative cervical cell lines: SiHa (HPV16+), HeLa (HPV18+), C33A (HPV-), and HCK1T (normal). Proteins were analyzed by 2D gel electrophoresis coupled to MALDI-TOF-MS. Enrichment of secreted proteins with characteristic profiles for each cell line was followed by the identification of differentially expressed proteins. Particularly, transforming growth factor-beta-induced protein ig-h3 (Beta ig-h3) and peroxiredoxin-2 (PRDX2) overexpression in the secretome of cancer cell lines was detected and confirmed by Western blot. Bioinformatics analysis identified the transcription factor NRF2 as a regulator of differentially expressed proteins in the cervical cancer secretome. NRF2 levels were measured by both Western blot and Multiple Reaction Monitoring (MRM) in the total cell extract of the four cell lines. NRF2 was upregulated in SiHa and C33A compared to HCK1T. In conclusion, the secreted proteins identified in cervical cancer cell lines indicate that aberrant NRF2-mediated oxidative stress response (OSR) is a prominent feature of cervical carcinogenesis.
Collapse
|
37
|
Basak P, Sadhukhan P, Sarkar P, Sil PC. Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy. Toxicol Rep 2017; 4:306-318. [PMID: 28959654 PMCID: PMC5615147 DOI: 10.1016/j.toxrep.2017.06.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/18/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
The Nuclear factor erythroid2-related factor2 (Nrf2), a master regulator of redox homoeostasis, is a key transcription factor regulating a wide array of genes for antioxidant and detoxification enzymes. It protects organs from various kinds of toxic insults. On the other hand, activation of Nrf2 is also correlated with cancer progression and chemoresistance. Downregulation of Nrf2 activity has attracted an increasing amount of attention as it may provide an alternative cancer therapy. In this review, we examine recent studies on roles of Nrf2 in several pathophysiological conditions emphasising cancer. We discuss elaborately the current knowledge on Nrf2 regulation including KEAP1-dependent and KEAP1-independent cascades. KEAP1/Nrf2 system is a master regulator of cellular response against a variety of environmental stresses. We also highlight several tightly controlled regulations of Nrf2 by numerous proteins, small molecules, toxic metals, etc. In addition, we evaluate the possible therapeutic approaches of increasing chemosensitivity via modulating Nrf2 signaling.
Collapse
|
38
|
Identification of aberrant DNA methylation involved in chemoradiation-resistant HCT116 cells via methylation-specific microarray. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-016-0039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Lu C, Xu W, Zhang F, Shao J, Zheng S. Nrf2 knockdown attenuates the ameliorative effects of ligustrazine on hepatic fibrosis by targeting hepatic stellate cell transdifferentiation. Toxicology 2016; 365:35-47. [DOI: 10.1016/j.tox.2016.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/23/2022]
|
40
|
Nrf2 inhibition sensitizes cholangiocarcinoma cells to cytotoxic and antiproliferative activities of chemotherapeutic agents. Tumour Biol 2016; 37:11495-507. [DOI: 10.1007/s13277-016-5015-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/18/2016] [Indexed: 12/25/2022] Open
|
41
|
Gong J, Li L. Sodium Selenite Inhibits Proliferation of Gastric Cancer Cells by Inducing SBP1 Expression. TOHOKU J EXP MED 2016; 239:279-85. [DOI: 10.1620/tjem.239.279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jianzhuang Gong
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University
| | - Li Li
- Department of Blood Transfusion, Zhengzhou Central Hospital Affiliated to Zhengzhou University
| |
Collapse
|
42
|
Zheng H, Nong Z, Lu G. Correlation Between Nuclear Factor E2-Related Factor 2 Expression and Gastric Cancer Progression. Med Sci Monit 2015; 21:2893-9. [PMID: 26410168 PMCID: PMC4590579 DOI: 10.12659/msm.894467] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Nuclear factor E2-related factor 2 (Nrf2) plays an anti-oxidative and phase II detoxification function via its up-regulation on various antioxidant response elements (ARE) genes. Nrf2 can protect both normal and cancer cells from damages of cell stress, thereby exerting a critical role in the development of cancer. The expression and significance of Nrf2 in gastric cancer, however, has not been reported. This study thus aimed to investigate the expression of Nrf2 in gastric cancer tissues via immunohistochemical (IHC) staining. Material/Methods Gastric carcinoma tissues from a total of 175 patients during surgical resection were examined for Nfr2 expression profiles using IHC staining on paraffin-embedded slides. Between-group-comparisons were performed by chi-square, Fisher’s exact, or Mann-Whitney U test. The correlation between Nfr2 expression and clinical indexes was further analyzed by Kaplan-Meier test, univariate/multivariate analysis, and log-rank test. Results Nrf2 is mainly expressed in nuclei of gastric carcinoma tissues, with significant correlation with clinical indexes, including tumor size, invasive depth, lymph node metastasis, and invasion. Patients with Nrf2-positive expression had significantly lower survival rates compared to those in the negative group (p<0.01), with chemo-resistance against 5-fluorouracil (5-FU) (p<0.05). Conclusions Nrf2 expression is positively correlated with invasive gastric cancer, suggesting its utility as a predictive index for unfavorable prognosis.
Collapse
Affiliation(s)
- Hongyu Zheng
- Department of Ultrasound, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China (mainland)
| | - Zhiwei Nong
- Department of Ultrasound, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China (mainland)
| | - Guohao Lu
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China (mainland)
| |
Collapse
|
43
|
Ma JQ, Tuersun H, Jiao SJ, Zheng JH, xiao JB, Hasim A. Functional Role of NRF2 in Cervical Carcinogenesis. PLoS One 2015; 10:e0133876. [PMID: 26247201 PMCID: PMC4527737 DOI: 10.1371/journal.pone.0133876] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/03/2015] [Indexed: 12/30/2022] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (NFE2L2) is a transcription factor associated with resistance to chemotherapy and increased tumor growth. NRF2 is repressed by the inhibitor Keap1. The Keap1-NRF2 pathway is dysfunctional in multiple tumor types. Among Uighur women, the incidence of cervical squamous cell carcinoma (CSCC) and cervical intraepithelial neoplasia (CIN) was associated with elevated nuclear expression of NRF2 and decreased cytoplasmic expression of Keap1. Up-regulation of nuclear NRF2 was significantly associated with reduced cytoplasmic Keap1 expression. NRF2 positivity and Keap1 negativity were frequently associated with more advanced tumors (i.e., higher histological grade, lymph node involvement, and higher tumor stages) (p<0.05 for all). Methylated CpG islands in the Keap1 gene promoter in cervical cancer tissue were identified using MassARRAY. Moreover, promoter hypermethylation of this gene was significantly associated with decreased protein expression and increased nuclear NRF2 expression in cervical cancer tissues. Overexpression and knockdown of NRF2 in CSCC cell lines showed that NRF2 promotes proliferation, inhibits apoptosis, and enhances migration and invasion. These studies support the concept that epigenetic changes regulate expression of Keap1 in cervical cancer tissues. The association of NRF2 expression with aggressive tumor behavior suggests that NRF2 may be a marker of poor prognosis in patients with cervical cancer.
Collapse
Affiliation(s)
- Jun-Qi Ma
- Department of Gynecology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hatila Tuersun
- Department of Pathology of Medical University of Xinjiang, Urumqi, China
| | - Shu-Juan Jiao
- Department of Pathology of Medical University of Xinjiang, Urumqi, China
| | - Jian-He Zheng
- Department of Pathology of Medical University of Xinjiang, Urumqi, China
| | - Jing-Bao xiao
- Department of Gynecology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ayshamgul Hasim
- Department of Pathology of Medical University of Xinjiang, Urumqi, China
- * E-mail:
| |
Collapse
|
44
|
van der Wijst MGP, Huisman C, Mposhi A, Roelfes G, Rots MG. Targeting Nrf2 in healthy and malignant ovarian epithelial cells: Protection versus promotion. Mol Oncol 2015; 9:1259-73. [PMID: 25841766 DOI: 10.1016/j.molonc.2015.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/30/2022] Open
Abstract
Risk factors indicate the importance of oxidative stress during ovarian carcinogenesis. To tolerate oxidative stress, cells activate the transcription factor Nrf2 (Nfe2l2), the master regulator of antioxidant and cytoprotective genes. Indeed, for most cancers, hyperactivity of Nrf2 is observed, and siRNA studies assigned Nrf2 as therapeutic target. However, the cancer-protective role of Nrf2 in healthy cells highlights the requirement for an adequate therapeutic window. We engineered artificial transcription factors to assess the role of Nrf2 in healthy (OSE-C2) and malignant ovarian cells (A2780). Successful NRF2 up- and downregulation correlated with decreased, respectively increased, sensitivity toward oxidative stress. Inhibition of NRF2 reduced the colony forming potential to the same extent in wild-type and BRCA1 knockdown A2780 cells. Only in BRCA1 knockdown A2780 cells, the effect of Nrf2 inhibition could be enhanced when combined with PARP inhibitors. Therefore, we propose that this combination therapy of PARP inhibitors and Nrf2 inhibition can further improve treatment efficacy specifically in BRCA1 mutant cancer cells without acquiring the side-effects associated with previously studied Nrf2 inhibition combinations with either chemotherapy or radiation. Our findings stress the dual role of Nrf2 in carcinogenesis, while offering approaches to exploit Nrf2 as a potent therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Monique G P van der Wijst
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1 9713 GZ Groningen, The Netherlands.
| | - Christian Huisman
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1 9713 GZ Groningen, The Netherlands.
| | - Archibold Mposhi
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1 9713 GZ Groningen, The Netherlands.
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Marianne G Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
45
|
Cescon DW, She D, Sakashita S, Zhu CQ, Pintilie M, Shepherd FA, Tsao MS. NRF2 Pathway Activation and Adjuvant Chemotherapy Benefit in Lung Squamous Cell Carcinoma. Clin Cancer Res 2015; 21:2499-505. [PMID: 25739673 DOI: 10.1158/1078-0432.ccr-14-2206] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/23/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Genomic profiling of lung squamous cell carcinomas (SCC) has identified NRF2 pathway alterations, which activate oxidative response pathways, in one third of tumors. Preclinical data suggest these tumors may be resistant to platinum-based chemotherapy. We evaluated the clinical relevance of these findings and assessed whether NRF2 activation predicts benefit from adjuvant chemotherapy in SCC. EXPERIMENTAL DESIGN Logistic regression (LR) and significance analysis of microarrays (SAM) were applied to all 104 TCGA (The Cancer Genome Atlas) SCC cases that had microarray gene expression and mutation data to identify genes associated with somatic NRF2 pathway alterations. The resulting signature (NRF2(ACT)) was tested in 3 independent SCC datasets to evaluate its prognostic and predictive effects. IHC and sequencing for NRF2 and KEAP1 were evaluated in one cohort (n = 43) to assess the relationship between gene expression, mutational status, and protein expression. RESULTS Twenty-eight genes were identified by overlap between LR (291 genes) and SAM (30 genes), and these consistently separated SCC into 2 groups in all datasets, corresponding to putatively NRF pathway-activated and wild-type (WT) tumors. NRF2(ACT) was not prognostic. However, improved survival with adjuvant chemotherapy in the JBR.10-randomized trial appears limited to patients with the WT signature (HR 0.32, P = 0.16; NRF2(ACT) HR 2.28, P = 0.48; interaction P = 0.15). NRF2(ACT) was highly correlated with mutations in NRF2 and KEAP1, and with high NRF2 protein expression. CONCLUSIONS A gene expression signature of NRF2 pathway activation is associated with benefit from adjuvant cisplatin/vinorelbine in SCC. Patients with NRF2 pathway-activating somatic alterations may have reduced benefit from this therapy.
Collapse
Affiliation(s)
- David W Cescon
- Departments of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada. Department of Medicine, University of Toronto, Toronto, Canada
| | - Desmond She
- Department of Pathology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Shingo Sakashita
- Department of Pathology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Chang-Qi Zhu
- Department of Pathology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Melania Pintilie
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Frances A Shepherd
- Departments of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada. Department of Medicine, University of Toronto, Toronto, Canada
| | - Ming-Sound Tsao
- Department of Pathology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
46
|
Kawasaki Y, Ishigami S, Arigami T, Uenosono Y, Yanagita S, Uchikado Y, Kita Y, Nishizono Y, Okumura H, Nakajo A, Kijima Y, Maemura K, Natsugoe S. Clinicopathological significance of nuclear factor (erythroid-2)-related factor 2 (Nrf2) expression in gastric cancer. BMC Cancer 2015; 15:5. [PMID: 25588809 PMCID: PMC4302133 DOI: 10.1186/s12885-015-1008-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/03/2015] [Indexed: 01/01/2023] Open
Abstract
Background The transcription factor nuclear factor (erythroid-2)–related factor 2 (Nrf2) was originally identified as a critical regulator of intracellular anti-oxidants and of phase II detoxification enzymes through its transcriptional up-regulation of many anti-oxidant response element (ARE)-containing genes. Nrf2 protects not only normal cells but also cancer cells from cellular stress, and enhances cancer cell survival. Some studies have shown that Nrf2 expression in cancer patients has clinical significance. However, there has been no comprehensive analysis of the nuclear expression level of Nrf2 in gastrointestinal cancer cells. In this study we aimed to immunohistochemically evaluate the expression of Nrf2, and to assess its clinical significance in gastric cancer. Methods A total of 175 gastric cancer patients who received R0 gastrectomy with standard lymph node dissection were enrolled. We immunohistochemically evaluated Nrf2 expression in the paraffin-embedded surgically resected specimens of these 175 patients. Group differences were analyzed using the χ2 test, Fisher’s exact test, and the Mann–Whitney U test. Associations between Nrf2 expression and clinicopathological features, including clinical outcome, were assessed using univariate and multivariate analyses, and Kaplan-Meier curves with the log-rank test, respectively. Results Nrf2 immunoreactivity was predominantly identified in the nucleus of gastric cancer cells. Nrf2 positivity was closely associated with tumor size, tumor depth, lymph node metastases, lymphovascular invasion, histology and stage (p < 0.05 for all). A log-rank test indicated that the overall survival of the Nrf2-positive group was significantly poorer than that of the Nrf2-negative group (p < 0.01). And, positive Nrf2 expression was significantly associated with resistance to 5FU-based adjuvant chemotherapy (p = 0.024). Conclusions Nrf2 expression was positively associated with aggressive tumor behavior in gastric cancer. This result suggests that Nrf2 expression in gastric cancer is a potential indicator of worse prognosis.
Collapse
Affiliation(s)
- Yota Kawasaki
- Department of Digestive Surgery, Breast and Thyroid surgery Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8520, Japan.
| | - Sumiya Ishigami
- Department of Digestive Surgery, Breast and Thyroid surgery Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8520, Japan.
| | - Takaaki Arigami
- Department of Digestive Surgery, Breast and Thyroid surgery Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8520, Japan.
| | - Yoshikazu Uenosono
- Department of Digestive Surgery, Breast and Thyroid surgery Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8520, Japan.
| | - Shigehiro Yanagita
- Department of Digestive Surgery, Breast and Thyroid surgery Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8520, Japan.
| | - Yasuto Uchikado
- Department of Digestive Surgery, Breast and Thyroid surgery Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8520, Japan.
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid surgery Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8520, Japan.
| | - Yuka Nishizono
- Department of Digestive Surgery, Breast and Thyroid surgery Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8520, Japan.
| | - Hiroshi Okumura
- Department of Digestive Surgery, Breast and Thyroid surgery Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8520, Japan.
| | - Akihiro Nakajo
- Department of Digestive Surgery, Breast and Thyroid surgery Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8520, Japan.
| | - Yuko Kijima
- Department of Digestive Surgery, Breast and Thyroid surgery Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8520, Japan.
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid surgery Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8520, Japan.
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid surgery Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8520, Japan.
| |
Collapse
|
47
|
Hu XF, Yao J, Gao SG, Wang XS, Peng XQ, Yang YT, Feng XS. Nrf2 overexpression predicts prognosis and 5-FU resistance in gastric cancer. Asian Pac J Cancer Prev 2014; 14:5231-5. [PMID: 24175806 DOI: 10.7314/apjcp.2013.14.9.5231] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE NF-E2-related factor 2 (Nrf2) is activated in several human malignancies. However, the role of Nrf2 in gastric cancer (GC) remains incompletely understood. In this study, we therefore analyzed associations of Nrf2 expression status with clinical features and chemotherapeutic resistance in GC. MATERIALS AND METHODS A total of 186 samples from GC patients who underwent gastrectomy were used for prognostic assessment. A further 142 samples from GC cases who received first-line combination chemotherapy were applied for investigation of chemoresistance. The Nrf2 expression was evaluated by immunohistochemistry in GC samples, and its relationship with clinicopathological parameters and chemotherapy sensitivity was analyzed. The effect of Nrf2 gene silencing on chemotherapy resistance was also examined by cell viability assay in vivo. RESULTS Of the 186 patients with GC, 104/186 (55.9%) showed high expression for Nrf2. The overexpression of Nrf2 was an independent predictor of overall survival [OS, hazard ratio (HR) 3.9; P=0.011] and disease-free survival (DFS, HR 4.3; P=0.002). The gene silencing of Nrf2 reduced resistance to cell death induced by 5-FU in GC cell lines. CONCLUSION Our data show that Nrf2 is an independent prognostic factor in GC. Furthermore, Nrf2 confers resistance to chemotherapeutic drug 5-FU in GC cells. Taken together, Nrf2 is a potential prognostic marker and predictive for 5-FU resistance in GC.
Collapse
Affiliation(s)
- Xiu-Feng Hu
- Department of Oncology, Cancer Research Institute, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
48
|
Bao Y, Wang W, Zhou Z, Sun C. Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention. PLoS One 2014; 9:e114764. [PMID: 25532034 PMCID: PMC4273949 DOI: 10.1371/journal.pone.0114764] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 11/13/2014] [Indexed: 01/16/2023] Open
Abstract
The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1–5 µM) to promote cell proliferation to 120–143% of the controls in a number of human cell lines, whilst at high levels (10–40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10–20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint.
Collapse
Affiliation(s)
- Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
- * E-mail:
| | - Wei Wang
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Zhigang Zhou
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
- Department of Cardiovascular Medicine, Affiliated hospital of Nantong University, Nantong, Jiangsu, P. R. China
| | - Changhao Sun
- School of Public Health, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| |
Collapse
|
49
|
Nrf2, the master redox switch: The Achilles' heel of ovarian cancer? Biochim Biophys Acta Rev Cancer 2014; 1846:494-509. [DOI: 10.1016/j.bbcan.2014.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/13/2014] [Accepted: 09/17/2014] [Indexed: 12/21/2022]
|
50
|
Khunluck T, Kukongviriyapan V, Puapairoj A, Khuntikeo N, Senggunprai L, Zeekpudsa P, Prawan A. Association of NRF2 polymorphism with cholangiocarcinoma prognosis in Thai patients. Asian Pac J Cancer Prev 2014; 15:299-304. [PMID: 24528044 DOI: 10.7314/apjcp.2014.15.1.299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cholangiocarcinoma (CCA), a malignancy of biliary duct with a very poor prognosis, is the leading cause of cancer death in countries of the Mekong subregion. Liver fluke infection is the main etiological factor, but genetic variation has been recognized as also important in conferring susceptibility to CCA risk. Nuclear factor (erythroid derived 2)-like 2 (NRF2) is a key transcription factor in detoxification and antioxidant defense. Emerging evidence has demonstrated that genetic polymorphisms in the NRF2 gene may be associated with cancer development. The objectives of this study were to investigate the association of NRF2 genetic polymorphism with CCA risk and to evaluate the influence of the NRF2 genotype on survival time of affected patients. Single nucleotide polymorphisms (SNPs) of the NRF2 gene, including rs6726395: A/G, rs2886161: C/T, rs1806649: C/T, and rs10183914: C/T, were analyzed using TaqMan® SNP genotyping assays. Among 158 healthy northeastern Thai subjects, the allele frequencies were 41, 62, 94, and 92%, respectively. The correlation of NRF2 SNPs and CCA risk was analyzed in the 158 healthy subjects and 198 CCA patients, using unconditional logistic regression. The results showed that whereas the NRF2 SNPs were not associated with CCA risk (p>0.05), Kaplan-Meier analysis of 88 intrahepatic CCA patients showed median survival time with rs6726395 genotypes of GG and AA/AG to be 344±138 (95%CI: 73-615) days and 172±37 (95%CI: 100-244) days, respectively, (p<0.006). On multivariate Cox proportional hazard analysis, the GG genotype of rs6726395 was found to be associated with longer survival with a hazard ratio of 0.54 (95%CI: 0.31-0.94). In addition, non-papillary adenocarcinoma was associated with poor survival with a hazard ratio of 2.09 (95%CI: 1.16-3.75). The results suggest that the NRF2 rs6726395 polymorphism can be a potential prognostic biomarker for CCA patients.
Collapse
Affiliation(s)
- Tueanjai Khunluck
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Thailand E-mail :
| | | | | | | | | | | | | |
Collapse
|