1
|
Kowalczyk K, Błauż A, Krawczyk K, Rychlik B, Plażuk D. Design and synthesis of ferrocenyl 1,4-dihydropyridines and their evaluation as kinesin-5 inhibitors. Dalton Trans 2024; 53:16038-16053. [PMID: 39291736 DOI: 10.1039/d4dt01853b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Kinesin-5 inhibitors offer cancer cell-targeted approach, thus securing reduced systemic toxicity compared to other antimitotic agents. By modifying the 1,4-dihydropyridine-based kinesin-5 inhibitor CPUYL064 with a ferrocenyl moiety (Fc), we designed and prepared a series of organometallic hybrids that show high antiproliferative activity, with the best compounds exhibiting up to 19-fold increased activity. This enhanced activity can be attributed to the presence of the ferrocenyl moiety.
Collapse
Affiliation(s)
- Karolina Kowalczyk
- Laboratory of Molecular Spectroscopy, Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland.
| | - Andrzej Błauż
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Krzysztof Krawczyk
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Błażej Rychlik
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Damian Plażuk
- Laboratory of Molecular Spectroscopy, Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland.
| |
Collapse
|
2
|
Karami Fath M, Nazari A, Parsania N, Behboodi P, Ketabi SS, Razmjouei P, Farzam F, Shafagh SG, Nabi Afjadi M. Centromeres in cancer: Unraveling the link between chromosomal instability and tumorigenesis. Med Oncol 2024; 41:254. [PMID: 39352464 DOI: 10.1007/s12032-024-02524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 11/14/2024]
Abstract
Centromeres are critical structures involved in chromosome segregation, maintaining genomic stability, and facilitating the accurate transmission of genetic information. They are key in coordinating the assembly and help keep the correct structure, location, and function of the kinetochore, a proteinaceous structure vital for ensuring proper chromosome segregation during cell division. Abnormalities in centromere structure can lead to aneuploidy or chromosomal instability, which have been implicated in various diseases, including cancer. Accordingly, abnormalities in centromeres, such as structural rearrangements and dysregulation of centromere-associated proteins, disrupt gene function, leading to uncontrolled cell growth and tumor progression. For instance, altered expression of CENP-A, CENP-E, and others such as BUB1, BUBR1, MAD1, and INCENP, have been shown to ascribe to centromere over-amplification, chromosome missegregation, aneuploidy, and chromosomal instability; this, in turn, can culminate in tumor progression. These centromere abnormalities also promoted tumor heterogeneity by generating genetically diverse cell populations within tumors. Advanced techniques like fluorescence in situ hybridization (FISH) and chromosomal microarray analysis are crucial for detecting centromere abnormalities, enabling accurate cancer classification and tailored treatment strategies. Researchers are exploring strategies to disrupt centromere-associated proteins for targeted cancer therapies. Thus, this review explores centromere abnormalities in cancer, their molecular mechanisms, diagnostic implications, and therapeutic targeting. It aims to advance our understanding of centromeres' role in cancer and develop advanced diagnostic tools and targeted therapies for improved cancer management and treatment.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ahmad Nazari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Parsania
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Paria Behboodi
- Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Pegah Razmjouei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Fuentes-Martín R, Ayuda-Durán P, Hanes R, Gallego-Yerga L, Wolterinck L, Enserink JM, Álvarez R, Peláez R. Promising anti-proliferative indolic benzenesulfonamides alter mechanisms with sulfonamide nitrogen substituents. Eur J Med Chem 2024; 275:116617. [PMID: 38959729 DOI: 10.1016/j.ejmech.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Agents that cause apoptotic cell death by interfering with tubulin dynamics, such as vinblastine and paclitaxel, are an important class of chemotherapeutics. Unfortunately, these compounds are substrates for multidrug resistance (MDR) pumps, allowing cancer cells to gain resistance to these chemotherapeutics. The indolesulfonamide family of tubulin inhibitors are not excluded by MDR pumps and have a promising activity profile, although their high lipophilicity is a pharmacokinetic limitation for their clinical use. Here we present a new family of N-indolyl-3,4,5-trimethoxybenzenesulfonamide derivatives with modifications on the indole system at positions 1 and 3 and on the sulfonamide nitrogen. We synthesized and screened against HeLa cells 34 novel indolic benzenesulfonamides. The most potent derivatives (1.7-109 nM) were tested against a broad panel of cancer cell lines, which revealed that substituted benzenesulfonamides analogs had highest potency. Importantly, these compounds were only moderately toxic to non-tumorigenic cells, suggesting the presence of a therapeutic index. Consistent with known clinical anti-tubulin agents, these compounds arrested the cell cycle at G2/M phase. Mechanistically, they induced apoptosis via caspase 3/7 activation, which occurred during M arrest. The substituents on the sulfonamide nitrogen appeared to determine different mechanistic results and cell fates. These results suggest that the compounds act differently depending on the bridge substituents, thus making them very interesting as mechanistic probes as well as potential drugs for further development.
Collapse
Affiliation(s)
- Raúl Fuentes-Martín
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS). Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain
| | - Pilar Ayuda-Durán
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Robert Hanes
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS). Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain
| | - Lisanne Wolterinck
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; HAN University of Applied Sciences, Nijmegen, the Netherlands
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS). Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS). Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain.
| |
Collapse
|
4
|
Neri JM, Siqueira PEA, Oliveira ALCDSL, Araújo RM, de Araújo RF, Martins AA, Marques IDL, Silva RA, de Araújo AA, Menezes FG. Anticancer, anti-inflammatory and analgesic activities of aminoalcohol-based quinoxaline small molecules. Acta Cir Bras 2024; 39:e395124. [PMID: 39109780 PMCID: PMC11299385 DOI: 10.1590/acb395124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/08/2024] [Indexed: 08/11/2024] Open
Abstract
PURPOSE Bioactive molecules are relevant to fight cancer and associated conditions. Quinoxaline is a privileged N-heterocycle, notably as anticancer agents. Herein, we report the evaluation of the quinoxaline derivatives DEQX and OAQX as anticancer agents, as well as in function of their anti-inflammatory and analgesic activities. METHODS Quinoxalines were synthesized and tested as anticancer agents based on cell viability and Annexin V-FITC apoptosis. Anti-inflammatory activity was evaluated from mouse carrageenan peritonitis and levels of interleukin (IL)-1β and tumor necrosis factor (TNF)-alfa for enzyme-linked immunosorbent assay. Hot-plate and acetic acid-induced writing test were employed to investigate analgesia. RESULTS Both reduced the Ht-29 cell viability in a dependent-concentration manner (p < 0.001). Total apoptosis was detected for cells treated with 12.5 and 25 µg/mL of both the compounds for 24 and 48 h (all doses, p < 0.0001). DEQX (all doses, p < 0.01) and OAQX (all doses, p < 0.001) acted in leukocyte migration and decreased the IL-1β and TNF-β levels (p < 0.05). DEQX (all doses, p < 0.05) and OAQX (5mg/kg, p < 0.001) showed peripheral analgesic effect. CONCLUSIONS In-vitro and in-vivo results suggest that these quinoxalines are promising for application in pharmacological area due to their anticancer, anti-inflammatory, and peripheric analgesia.
Collapse
Affiliation(s)
- Jannyely Moreira Neri
- Universidade Federal do Rio Grande do Norte – Instituto de Química – Natal (RN) – Brazil
| | | | | | - Renata Mendonça Araújo
- Universidade Federal do Rio Grande do Norte – Instituto de Química – Natal (RN) – Brazil
| | - Raimundo Fernandes de Araújo
- Universidade Federal do Rio Grande do Norte – Programa de Pós-Graduação em Ciências da Saúde – Natal (RN) – Brazil
- Universidade Federal do Rio Grande do Norte – Programa de Pós-graduação em Biologia Funcional e Estrutural – Natal (RN) – Brazil
- Universidade Federal do Rio Grande do Norte – Departamento de Morfologia – Natal (RN) – Brazil
| | - Agnes Andrade Martins
- Universidade Federal do Rio Grande do Norte – Programa de Pós-Graduação em Ciências Odontológicas – Natal (RN) – Brazil
| | | | - Rafaela Alcindo Silva
- Universidade Federal do Rio Grande do Norte – Programa de Pós-Graduação em Ciências Odontológicas – Natal (RN) – Brazil
| | - Aurigena Antunes de Araújo
- Universidade Federal do Rio Grande do Norte – Programa de Pós-Graduação em Ciências Odontológicas – Natal (RN) – Brazil
- Universidade Federal do Rio Grande do Norte – Programa de Pós-graduação em Ciências Farmacêuticas – Natal (RN) – Brazil
- Universidade Federal do Rio Grande do Norte – Departamento de Biofísica e Farmacologia – Natal (RN) – Brazil
| | - Fabrício Gava Menezes
- Universidade Federal do Rio Grande do Norte – Instituto de Química – Natal (RN) – Brazil
| |
Collapse
|
5
|
Długosz-Pokorska A, Janecki T, Janecka A, Gach-Janczak K. New uracil analog as inhibitor/modulator of ABC transporters or/and NF-κB in taxol-resistant MCF-7/Tx cell line. J Cancer Res Clin Oncol 2024; 150:328. [PMID: 38914845 PMCID: PMC11196363 DOI: 10.1007/s00432-024-05833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE The global increase in breast cancer cases necessitates ongoing exploration of advanced therapies. Taxol (Tx), an initial breast cancer treatment, induces mitotic arrest but faces limitations due to side effects and the development of resistance. Addressing Tx resistance involves understanding the complex molecular mechanisms, including alterations in tubulin dynamics, NF-κB signaling, and overexpression of ABC transporters (ABCB1 and ABCG2), leading to multidrug resistance (MDR). METHODS Real-time PCR and ELISA kits were used to analyze ABCB1, ABCG2 and NF-κB gene and protein expression levels, respectively. An MDR test assessed the resistance cell phenotype. RESULTS MCF-7/Tx cells exhibited a 24-fold higher resistance to Tx. Real-time PCR and ELISA analysis revealed the upregulation of ABCB1, ABCG2, and NF-κB. U-359 significantly downregulated both ABCB1 and ABCG2 gene and protein levels. Co-incubation with Tx and U-359 further decreased the mRNA and protein expression of these transporters. The MDR test indicated that U-359 increased MDR dye retention, suggesting its potential as an MDR inhibitor. U-359 and Tx, either individually or combined, modulated NF-κBp65 protein levels. CONCLUSION The development of a Taxol-resistant MCF-7 cell line provided valuable insights. U-359 demonstrated effectiveness in reducing the expression of ABC transporters and NF-κB, suggesting a potential solution for overcoming multidrug resistance in breast cancer cells. The study recommends a strategy to enhance the sensitivity of cancer cells to chemotherapy by integrating U-359 with traditional drugs.
Collapse
MESH Headings
- Humans
- Paclitaxel/pharmacology
- Drug Resistance, Neoplasm/drug effects
- NF-kappa B/metabolism
- MCF-7 Cells
- Female
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Antineoplastic Agents, Phytogenic/pharmacology
- Drug Resistance, Multiple/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Angelika Długosz-Pokorska
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Tomasz Janecki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
6
|
Alburquerque-González B, Montoro-García S, Bernabé-García Á, Bernabé-García M, Campioni-Rodrigues P, Rodríguez-Martínez A, Luque I, Salo T, Pérez-Garrido A, Pérez-Sánchez H, Cayuela ML, Luengo-Gil G, Luchinat E, Postigo-Corrales F, Staderini T, Nicolás FJ, Conesa-Zamora P. Monastrol suppresses invasion and metastasis in human colorectal cancer cells by targeting fascin independent of kinesin-Eg5 pathway. Biomed Pharmacother 2024; 175:116785. [PMID: 38781869 DOI: 10.1016/j.biopha.2024.116785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Rearrangement of the actin cytoskeleton is a prerequisite for carcinoma cells to develop cellular protrusions, which are required for migration, invasion, and metastasis. Fascin is a key protein involved in actin bundling and is expressed in aggressive and invasive carcinomas. Additionally, fascin appears to be involved in tubulin-binding and microtubule rearrangement. Pharmacophoric-based in silico screening was performed to identify compounds with better fascin inhibitory properties than migrastatin, a gold-standard fascin inhibitor. We hypothesized that monastrol displays anti-migratory and anti-invasive properties via fascin blocking in colorectal cancer cell lines. Biophysical (thermofluor and ligand titration followed by fluorescence spectroscopy), biochemical (NMR), and cellular assays (MTT, invasion of human tissue), as well as animal model studies (zebrafish invasion) were performed to characterize the inhibitory effect of monastrol on fascin activity. In silico analysis revealed that monastrol is a potential fascin-binding compound. Biophysical and biochemical assays demonstrated that monastrol binds to fascin and interferes with its actin-bundling activity. Cell culture studies, including a 3D human myoma disc model, showed that monastrol inhibited fascin-driven cytoplasmic protrusions as well as invasion. In silico, confocal microscopy, and immunoprecipitation assays demonstrated that monastrol disrupted fascin-tubulin interactions. These anti-invasive effects were confirmed in vivo. In silico confocal microscopy and immunoprecipitation assays were carried out to test whether monastrol disrupted the fascin-tubulin interaction. This study reports, for the first time, the in vitro and in vivo anti-invasive properties of monastrol in colorectal tumor cells. The number and types of interactions suggest potential binding of monastrol across actin and tubulin sites on fascin, which could be valuable for the development of antitumor therapies.
Collapse
Affiliation(s)
| | | | - Ángel Bernabé-García
- Regeneración, Oncología Molecular y TGF-ß. IMIB-Arrixaca, Carretera Madrid-Cartagena, El Palmar 30120, Spain
| | - Manuel Bernabé-García
- Research group "Telomerasa, Envejecimiento y Cáncer", CIBERER, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - Priscila Campioni-Rodrigues
- ECM and Hypoxia research unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7C, FI-90014, Oulu, Finland; Microelectronic Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, FI-90570, Oulu, Finland
| | - Alejandro Rodríguez-Martínez
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada 18071, Spain; Structural Bioinformatics and High-Performance Computing (BIO-HPC) Research Group, Universidad Católica de Murcia (UCAM), Guadalupe, Spain
| | - Irene Luque
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada 18071, Spain
| | - Tuula Salo
- Oral Medicine and Pathology, Research Unit of Population Health, University of Oulu, Finland; Medical Research Center and Oulu University Hospital, Aapistie 3, Oulu FI-90220, Finland; Department of Oral and Maxillofacial Diseases, University of Helsinki, Haartmaninkatu 8, Helsinki FI-0014, Finland; Translational Immunology Research Program (TRIMM) and iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland; Department of Pathology, Helsinki University Hospital, Helsinki, Finland
| | - Alfonso Pérez-Garrido
- Structural Bioinformatics and High-Performance Computing (BIO-HPC) Research Group, Universidad Católica de Murcia (UCAM), Guadalupe, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing (BIO-HPC) Research Group, Universidad Católica de Murcia (UCAM), Guadalupe, Spain
| | - María Luisa Cayuela
- Research group "Telomerasa, Envejecimiento y Cáncer", CIBERER, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - Ginés Luengo-Gil
- Health Sciences Faculty, Universidad Católica de Murcia (UCAM), Guadalupe, Spain; Pathology and Clinical Analysis Department, Group of Molecular Pathology and Pharmacogenetics, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, Cartagena, Spain
| | - Enrico Luchinat
- CERM - Magnetic Resonance Center and Dipartimento di Chimica, Università degli Studi di Firenze, Via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine - CIRMMP, Via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy
| | | | - Tommaso Staderini
- CERM - Magnetic Resonance Center and Dipartimento di Chimica, Università degli Studi di Firenze, Via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Francisco José Nicolás
- Regeneración, Oncología Molecular y TGF-ß. IMIB-Arrixaca, Carretera Madrid-Cartagena, El Palmar 30120, Spain
| | - Pablo Conesa-Zamora
- Health Sciences Faculty, Universidad Católica de Murcia (UCAM), Guadalupe, Spain; Pathology and Clinical Analysis Department, Group of Molecular Pathology and Pharmacogenetics, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, Cartagena, Spain.
| |
Collapse
|
7
|
Shan P, Ye T, Tang YD, Song H, Wang C, Zhu K, Yang F, Zhang SL, Su PW, Gao S, Zhang H. First total synthesis, antitumor evaluation and target identification of mornaphthoate E: A new tubulin inhibitor template acting on PI3K/Akt signaling pathway. Acta Pharm Sin B 2024; 14:2177-2193. [PMID: 38799630 PMCID: PMC11120283 DOI: 10.1016/j.apsb.2024.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 05/29/2024] Open
Abstract
Mornaphthoate E (MPE) is a prenylated naphthoic acid methyl ester isolated from the roots of a famous Chinese medicinal plant Morinda officinalis and shows remarkable cytotoxicity against several human tumor cell lines. In the current project, the first total synthesis of (±)-MPE was achieved in seven steps and 5.6% overall yield. Then the in vitro anti-tumor activity of MPE was first assessed for both enantiomers in two breast cancer cells, with the levoisomer exerting slightly better potency. The in vivo anti-tumor effect was further verified by applying the racemate in an orthotopic autograft mouse model. Notably, MPE exerted promising anti-metastasis activity both in vitro and in vivo and showed no obvious toxicity on mice at the therapeutic dosage. Mechanistic investigations demonstrated that MPE acted as a tubulin polymerization stabilizer and disturbed the dynamic equilibrium of microtubules via regulating PI3K/Akt signaling. In conclusion, our work has provided a new chemical template for the future design and development of next-generation tubulin-targeting chemotherapies.
Collapse
Affiliation(s)
- Peipei Shan
- Institute of Translational Medicine, the Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Tao Ye
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ying-De Tang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hui Song
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Chao Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kongkai Zhu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Feifei Yang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Shi-Lei Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215127, China
| | - Pei-Wen Su
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Shuanhu Gao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
8
|
Olmedo DA, Vasquez Y, Morán JA, De León EG, Caballero-George C, Solís PN. Understanding the Artemia Salina (Brine Shrimp) Test: Pharmacological Significance and Global Impact. Comb Chem High Throughput Screen 2024; 27:545-554. [PMID: 37403396 DOI: 10.2174/1386207326666230703095928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND The microplate benchtop brine shrimp test (BST) has been widely used for screening and bio-guided isolation of many active compounds, including natural products. Although the interpretation given to the results appears dissimilar, our findings suggest a correlation between positive results with a specific mechanism of action. OBJECTIVE This study aimed to evaluate drugs belonging to fifteen pharmacological categories having diverse mechanisms of action and carry out a bibliometric analysis of over 700 citations related to microwell BST. METHODS Test compounds were evaluated in a serial dilution on the microwell BST using healthy nauplii of Artemia salina and after 24 hrs of exposition, the number of alive and dead nauplii was determined, and the LC50 was estimated. A metric study regarding the citations of the BST miniaturized method, sorted by type of documents cited, contributing country, and interpretation of results was conducted on 706 selected citations found in Google Scholar. RESULTS Out of 206 drugs tested belonging to fifteen pharmacological categories, twenty-six showed LC50 values <100 μM, most of them belonging to the category of antineoplastic drugs; compounds with different therapeutical uses were found to be cytotoxic as well. A bibliometric analysis showed 706 documents citing the miniaturized BST; 78% of them belonged to academic laboratories from developing countries located on all continents, 63% interpreted their results as cytotoxic activity and 35% indicated general toxicity assessment. CONCLUSION BST is a simple, affordable, benchtop assay, capable of detecting cytotoxic drugs with specific mechanisms of action, such as protein synthesis inhibition, antimitotic, DNA binding, topoisomerase I inhibitors, and caspases cascade interfering drugs. The microwell BST is a technique that is used worldwide for the bio-guided isolation of cytotoxic compounds from different sources.
Collapse
Affiliation(s)
- Dionisio A Olmedo
- Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de Farmacia, Universidad de Panamá, Estafeta de Correos, 0824-00172, Panamá, Panamá
| | - Yelkaira Vasquez
- Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de Farmacia, Universidad de Panamá, Estafeta de Correos, 0824-00172, Panamá, Panamá
| | - Juan Antonio Morán
- Departamento de Farmacología, Facultad de Medicina, Universidad de Panamá, Panama
| | | | - Catherina Caballero-George
- Centre of Innovation and Technology Transfer, Institute of Scientific Research and High Technology Services (INDICASAT-AIP), Building 208, City of Knowledge, Panama
| | - Pablo N Solís
- Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de Farmacia, Universidad de Panamá, Estafeta de Correos, 0824-00172, Panamá, Panamá
| |
Collapse
|
9
|
Kawakami R, Hiraide T, Watanabe K, Miyamoto S, Hira K, Komatsu K, Ishigaki H, Sakaguchi K, Maekawa M, Yamashita K, Fukuda T, Miyairi I, Ogata T, Saitsu H. RNA sequencing and target long-read sequencing reveal an intronic transposon insertion causing aberrant splicing. J Hum Genet 2024; 69:91-99. [PMID: 38102195 DOI: 10.1038/s10038-023-01211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
More than half of cases with suspected genetic disorders remain unsolved by genetic analysis using short-read sequencing such as exome sequencing (ES) and genome sequencing (GS). RNA sequencing (RNA-seq) and long-read sequencing (LRS) are useful for interpretation of candidate variants and detection of structural variants containing repeat sequences, respectively. Recently, adaptive sampling on nanopore sequencers enables target LRS more easily. Here, we present a Japanese girl with premature chromatid separation (PCS)/mosaic variegated aneuploidy (MVA) syndrome. ES detected a known pathogenic maternal heterozygous variant (c.1402-5A>G) in intron 10 of BUB1B (NM_001211.6), a known responsive gene for PCS/MVA syndrome with autosomal recessive inheritance. Minigene splicing assay revealed that almost all transcripts from the c.1402-5G allele have mis-splicing with 4-bp insertion. GS could not detect another pathogenic variant, while RNA-seq revealed abnormal reads in intron 2. To extensively explore variants in intron 2, we performed adaptive sampling and identified a paternal 3.0 kb insertion. Consensus sequence of 16 reads spanning the insertion showed that the insertion consists of Alu and SVA elements. Realignment of RNA-seq reads to the new reference sequence containing the insertion revealed that 16 reads have 5' splice site within the insertion and 3' splice site at exon 3, demonstrating causal relationship between the insertion and aberrant splicing. In addition, immunoblotting showed severely diminished BUB1B protein level in patient derived cells. These data suggest that detection of transcriptomic abnormalities by RNA-seq can be a clue for identifying pathogenic variants, and determination of insert sequences is one of merits of LRS.
Collapse
Affiliation(s)
- Ryota Kawakami
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takuya Hiraide
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Watanabe
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Sachiko Miyamoto
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kota Hira
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuyuki Komatsu
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidetoshi Ishigaki
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kimiyoshi Sakaguchi
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Keita Yamashita
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tokiko Fukuda
- Department of Hamamatsu Child Health and Developmental Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Isao Miyairi
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ogata
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
10
|
Alves MG, Cabral LGS, Totti PGF, Azarias FR, Pomini KT, Rici REG, Laiso RAN, Maria DA. 2-Aminoethyl Dihydrogen Phosphate (2-AEH2P) Associated with Cell Metabolism-Modulating Drugs Presents a Synergistic and Pro-Apoptotic Effect in an In Vitro Model of the Ascitic Ehrlich Tumor. Biomedicines 2024; 12:109. [PMID: 38255214 PMCID: PMC10813795 DOI: 10.3390/biomedicines12010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
The progression and maintenance of cancer characteristics are associated with cellular components linked to the tumor and non-cellular components with pro-tumoral properties. Pharmacological association with antagonists of the cellular components of the tumor, such as anti- and pro-apoptotic drugs, represents a novel adjuvant strategy. In this study, the antiproliferative, pro-apoptotic, and pharmacological effects of the combination of monophosphoester 2-AEH2P with Simvastatin, Coenzyme Q10, the chemotherapeutic drug paclitaxel, and colony-stimulating factor (GM-CSF) were evaluated. Tests were conducted to determine cytotoxic activity using the MTT method, cell cycle phases, and fragmented DNA by flow cytometry, mitochondrial membrane potential, expression of cell markers Bcl2, TNF-α/DR-4, Cytochrome c, caspase 3, and P53, and analysis of drug combination profiles using Synergy Finder 2.0 Software. The results showed a synergistic effect among the combinations, compared to individual treatments with the monophosphoester and other drugs. In addition, there was modulation of marker expression, indicating a pro-apoptotic and immunomodulatory effect of 2-AEH2P. Pharmacological analysis revealed that tumor cells treated with GM-CSF + 2-AEH2P exhibited a synergistic effect, while groups of tumor cells treated with paclitaxel, Coenzyme Q10, and Simvastatin showed additive effects. Furthermore, treatment with the paclitaxel + 2-AEH2P combination (12 h) resulted in a significant reduction in mitochondrial membrane potential. Pharmacological combinations for normal cells did not exhibit deleterious effects compared to mammary carcinomatosis tumor (EAT) cells.
Collapse
Affiliation(s)
- Monique G. Alves
- Development and Innovation Laboratory, Butantan Institute, São Paulo 05359-900, Brazil; (L.G.S.C.); (F.R.A.)
- Graduate Program in Medical Sciences, College of Medicine, University of São Paulo, São Paulo 05508-220, Brazil
| | - Laertty G. S. Cabral
- Development and Innovation Laboratory, Butantan Institute, São Paulo 05359-900, Brazil; (L.G.S.C.); (F.R.A.)
- Graduate Program in Medical Sciences, College of Medicine, University of São Paulo, São Paulo 05508-220, Brazil
| | - Paulo G. F. Totti
- Graduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil (R.E.G.R.)
| | - Felipe R. Azarias
- Development and Innovation Laboratory, Butantan Institute, São Paulo 05359-900, Brazil; (L.G.S.C.); (F.R.A.)
| | - Karine T. Pomini
- Graduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil (R.E.G.R.)
| | - Rose E. G. Rici
- Graduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil (R.E.G.R.)
- Graduate Program in Anatomy of Domestic and Wild Animals, College of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-220, Brazil
| | - Rosa A. N. Laiso
- Development and Innovation Laboratory, Butantan Institute, São Paulo 05359-900, Brazil; (L.G.S.C.); (F.R.A.)
| | - Durvanei A. Maria
- Development and Innovation Laboratory, Butantan Institute, São Paulo 05359-900, Brazil; (L.G.S.C.); (F.R.A.)
- Graduate Program in Medical Sciences, College of Medicine, University of São Paulo, São Paulo 05508-220, Brazil
| |
Collapse
|
11
|
Lee H, Horbath A, Kondiparthi L, Meena JK, Lei G, Dasgupta S, Liu X, Zhuang L, Koppula P, Li M, Mahmud I, Wei B, Lorenzi PL, Keyomarsi K, Poyurovsky MV, Olszewski K, Gan B. Cell cycle arrest induces lipid droplet formation and confers ferroptosis resistance. Nat Commun 2024; 15:79. [PMID: 38167301 PMCID: PMC10761718 DOI: 10.1038/s41467-023-44412-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
How cells coordinate cell cycling with cell survival and death remains incompletely understood. Here, we show that cell cycle arrest has a potent suppressive effect on ferroptosis, a form of regulated cell death induced by overwhelming lipid peroxidation at cellular membranes. Mechanistically, cell cycle arrest induces diacylglycerol acyltransferase (DGAT)-dependent lipid droplet formation to sequester excessive polyunsaturated fatty acids (PUFAs) that accumulate in arrested cells in triacylglycerols (TAGs), resulting in ferroptosis suppression. Consequently, DGAT inhibition orchestrates a reshuffling of PUFAs from TAGs to phospholipids and re-sensitizes arrested cells to ferroptosis. We show that some slow-cycling antimitotic drug-resistant cancer cells, such as 5-fluorouracil-resistant cells, have accumulation of lipid droplets and that combined treatment with ferroptosis inducers and DGAT inhibitors effectively suppresses the growth of 5-fluorouracil-resistant tumors by inducing ferroptosis. Together, these results reveal a role for cell cycle arrest in driving ferroptosis resistance and suggest a ferroptosis-inducing therapeutic strategy to target slow-cycling therapy-resistant cancers.
Collapse
Affiliation(s)
- Hyemin Lee
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Amber Horbath
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lavanya Kondiparthi
- Kadmon Corporation, New York, NY, 10016, USA
- Sanofi US, Cambridge, MA, 02139, USA
| | - Jitendra Kumar Meena
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Guang Lei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shayani Dasgupta
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pranavi Koppula
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Mi Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Iqbal Mahmud
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bo Wei
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Masha V Poyurovsky
- Kadmon Corporation, New York, NY, 10016, USA
- PMV Pharmaceuticals, Princeton, NJ, 08540, USA
| | - Kellen Olszewski
- Kadmon Corporation, New York, NY, 10016, USA
- Carl Icahn Labs, Princeton University, Princeton, NJ, 08544, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Lee CY, The M, Meng C, Bayer FP, Putzker K, Müller J, Streubel J, Woortman J, Sakhteman A, Resch M, Schneider A, Wilhelm S, Kuster B. Illuminating phenotypic drug responses of sarcoma cells to kinase inhibitors by phosphoproteomics. Mol Syst Biol 2024; 20:28-55. [PMID: 38177929 PMCID: PMC10883282 DOI: 10.1038/s44320-023-00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Kinase inhibitors (KIs) are important cancer drugs but often feature polypharmacology that is molecularly not understood. This disconnect is particularly apparent in cancer entities such as sarcomas for which the oncogenic drivers are often not clear. To investigate more systematically how the cellular proteotypes of sarcoma cells shape their response to molecularly targeted drugs, we profiled the proteomes and phosphoproteomes of 17 sarcoma cell lines and screened the same against 150 cancer drugs. The resulting 2550 phenotypic profiles revealed distinct drug responses and the cellular activity landscapes derived from deep (phospho)proteomes (9-10,000 proteins and 10-27,000 phosphorylation sites per cell line) enabled several lines of analysis. For instance, connecting the (phospho)proteomic data with drug responses revealed known and novel mechanisms of action (MoAs) of KIs and identified markers of drug sensitivity or resistance. All data is publicly accessible via an interactive web application that enables exploration of this rich molecular resource for a better understanding of active signalling pathways in sarcoma cells, identifying treatment response predictors and revealing novel MoA of clinical KIs.
Collapse
Affiliation(s)
- Chien-Yun Lee
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Matthew The
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Chen Meng
- Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany
| | - Florian P Bayer
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Kerstin Putzker
- Chemical Biology Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Julian Müller
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Johanna Streubel
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Julia Woortman
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Amirhossein Sakhteman
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Moritz Resch
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Annika Schneider
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Stephanie Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.
- Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany.
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
13
|
Bae HR, Kim EJ, Ahn YC, Cho JH, Son CG, Lee NH. Efficacy of Moxibustion for Cancer-Related Fatigue in Patients with Breast Cancer: A Systematic Review and Meta-Analysis. Integr Cancer Ther 2024; 23:15347354241233226. [PMID: 38372234 PMCID: PMC10878217 DOI: 10.1177/15347354241233226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/30/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
INTRODUCTION Breast cancer is the most commonly diagnosed cancer worldwide, and most patients experience fatigue. However, there are no effective treatments for cancer-related fatigue (CRF). Several randomized controlled trials (RCTs) have suggested that moxibustion improves CRF. We conducted a systematic review and meta-analysis to compare the differences in fatigue scale scores, quality of life, and clinical efficacy in patients with breast cancer who developed CRF and did versus did not receive moxibustion. METHODS RCTs were searched in 7 databases using a standardized search method from database inception to March 2023, and RCTs that met the inclusion criteria were selected. RESULTS Among 1337 initially identified RCTs, 10 RCTs involving 744 participants were selected for this study. The meta-analysis involved assessment of the revised Piper Fatigue Scale scores, Cancer Fatigue Scale scores, Karnofsky Performance Scale scores, Athens Insomnia Scale scores, clinical efficacy, and Qi deficiency syndrome scale scores. Compared with the control, moxibustion was associated with significantly better Piper Fatigue Scale scores (P < 0.0001), quality of life [Karnofsky Performance Scale scores (P < 0.0001)], clinical efficacy (P = 0.0007), and Qi deficiency syndrome scale scores (P = 0.02). CONCLUSIONS Moxibustion improves CRF in patients with breast cancer. The efficacy of moxibustion should be further examined by high-quality studies in various countries with patients subdivided by their breast cancer treatment status. REGISTRATION PROSPERO ID: CRD42023451292.
Collapse
Affiliation(s)
- Hye-Ri Bae
- East-West Cancer Center, Cheonan Korean Medical Hospital, Daejeon University, Cheonan, Republic of Korea
| | - Eun-Ji Kim
- East-West Cancer Center, Cheonan Korean Medical Hospital, Daejeon University, Cheonan, Republic of Korea
| | - Yo-Chan Ahn
- Department of Health Service Management, Daejeon University, Daejeon, Republic of Korea
| | - Jung-Hyo Cho
- East-West Cancer Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Chang-Gue Son
- East-West Cancer Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Nam-Hun Lee
- East-West Cancer Center, Cheonan Korean Medical Hospital, Daejeon University, Cheonan, Republic of Korea
| |
Collapse
|
14
|
Horgan MJ, Zell L, Siewert B, Stuppner H, Schuster D, Temml V. Identification of Novel β-Tubulin Inhibitors Using a Combined In Silico/ In Vitro Approach. J Chem Inf Model 2023; 63:6396-6411. [PMID: 37774242 PMCID: PMC10598795 DOI: 10.1021/acs.jcim.3c00939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 10/01/2023]
Abstract
Due to their potential as leads for various therapeutic applications, including as antimitotic and antiparasitic agents, the development of tubulin inhibitors offers promise for drug discovery. In this study, an in silico pharmacophore-based virtual screening approach targeting the colchicine binding site of β-tubulin was employed. Several structure- and ligand-based models for known tubulin inhibitors were generated. Compound databases were virtually screened against the models, and prioritized hits from the SPECS compound library were tested in an in vitro tubulin polymerization inhibition assay for their experimental validation. Out of the 41 SPECS compounds tested, 11 were active tubulin polymerization inhibitors, leading to a prospective true positive hit rate of 26.8%. Two novel inhibitors displayed IC50 values in the range of colchicine. The most potent of which was a novel acetamide-bridged benzodiazepine/benzimidazole derivative with an IC50 = 2.9 μM. The screening workflow led to the identification of diverse inhibitors active at the tubulin colchicine binding site. Thus, the pharmacophore models show promise as valuable tools for the discovery of compounds and as potential leads for the development of cancer therapeutic agents.
Collapse
Affiliation(s)
- Mark James Horgan
- Institute
of Pharmacy/Pharmacognosy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Lukas Zell
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Bianka Siewert
- Institute
of Pharmacy/Pharmacognosy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Hermann Stuppner
- Institute
of Pharmacy/Pharmacognosy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Daniela Schuster
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Veronika Temml
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| |
Collapse
|
15
|
Abualhasan M, Hawash M, Aqel S, Al-Masri M, Mousa A, Issa L. Biological Evaluation of Xanthene and Thioxanthene Derivatives as Antioxidant, Anticancer, and COX Inhibitors. ACS OMEGA 2023; 8:38597-38606. [PMID: 37867642 PMCID: PMC10586285 DOI: 10.1021/acsomega.3c05695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Xanthene and thioxanthene analogues have been investigated for their potential as anticancer and anti-inflammatory agents. Additionally, cysteine analogues have been found to possess antioxidant, anti-inflammatory, and anticancer activities due to their role in cellular redox balance, scavenging of free radicals, and involvement in nucleophilic reactions and enzyme binding sites. In this study, we synthesized a library of tertiary alcohols derived from xanthene and thioxanthene, and further, some of these compounds were coupled with cysteine. The objective of this research was to explore the potential anticancer, antioxidant, and anti-inflammatory activities of the synthesized compounds. The synthesized compounds were subjected to test for anticancer, antioxidant, and anti-inflammatory activities. Results indicated that compound 3 exhibited excellent inhibition activity (IC50 = 9.6 ± 1.1 nM) against colon cancer cells (Caco-2), while compound 2 showed good inhibition activity (IC50 = 161.3 ± 41 nM) against hepatocellular carcinoma (Hep G2) cells. Compound 4 demonstrated potent antioxidant inhibition activity (IC50 = 15.44 ± 6 nM), and compound 7 exhibited potent anti-inflammatory activity with cyclooxygenase-2 (COX-2) inhibition IC50 (4.37 ± 0.78 nM) and high selectivity for COX-2 (3.83). In conclusion, certain synthesized compounds displayed promising anticancer activity and anti-inflammatory effects. Nevertheless, additional research is necessary to create more analogues, develop a more distinct comprehension of the structure-activity relationship (SAR), and perform in vivo experiments to evaluate the pharmacokinetic and pharmacodynamic characteristics of the compounds under examination. Such research may pave the way for the development of novel therapeutic agents with potential applications in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Murad Abualhasan
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, P400 Nablus, Palestine
| | - Mohammed Hawash
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, P400 Nablus, Palestine
| | - Samah Aqel
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, P400 Nablus, Palestine
| | - Motasem Al-Masri
- Department
of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box 7, P400 Nablus, Palestine
| | - Ahmed Mousa
- Department
of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box 7, P400 Nablus, Palestine
| | - Linda Issa
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, P400 Nablus, Palestine
| |
Collapse
|
16
|
Turaga SM, Vishwakarma V, Hembruff SL, Gibbs BK, Sabu P, Puri RV, Pathak HB, Samuel G, Godwin AK. Inducing Mitotic Catastrophe as a Therapeutic Approach to Improve Outcomes in Ewing Sarcoma. Cancers (Basel) 2023; 15:4911. [PMID: 37894278 PMCID: PMC10605681 DOI: 10.3390/cancers15204911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Ewing sarcoma (EWS) is an aggressive pediatric malignancy of the bone and soft tissues in need of novel therapeutic options. To identify potential therapeutic targets, we focused on essential biological pathways that are upregulated by EWS-FLI1, the primary oncogenic driver of EWS, including mitotic proteins such as Aurora kinase A (AURKA) and kinesin family member 15 (KIF15) and its binding partner, targeting protein for Xklp2 (TPX2). KIF15/TPX2 cooperates with KIF11, a key mitotic kinesin essential for mitotic spindle orientation. Given the lack of clinical-grade KIF15/TPX2 inhibitors, we chose to target KIF11 (using SB-743921) in combination with AURKA (using VIC-1911) given that phosphorylation of KIF15S1169 by Aurora A is required for its targeting to the spindle. In vitro, the drug combination demonstrated strong synergy (Bliss score ≥ 10) at nanomolar doses. Colony formation assay revealed significant reduction in plating efficiency (1-3%) and increased percentage accumulation of cells in the G2/M phase with the combination treatment (45-52%) upon cell cycle analysis, indicating mitotic arrest. In vivo studies in EWS xenograft mouse models showed significant tumor reduction and overall effectiveness: drug combination vs. vehicle control (p ≤ 0.01), SB-743921 (p ≤ 0.01) and VIC-1911 (p ≤ 0.05). Kaplan-Meier curves demonstrated superior overall survival with the combination compared to vehicle or monotherapy arms (p ≤ 0.0001).
Collapse
Affiliation(s)
- Soumya M. Turaga
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (S.M.T.); (V.V.); (B.K.G.); (R.V.P.); (H.B.P.)
| | - Vikalp Vishwakarma
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (S.M.T.); (V.V.); (B.K.G.); (R.V.P.); (H.B.P.)
| | - Stacey L. Hembruff
- University of Kansas Cancer Center, Kansas City, KS 66160, USA; (S.L.H.); (P.S.)
| | - Benjamin K. Gibbs
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (S.M.T.); (V.V.); (B.K.G.); (R.V.P.); (H.B.P.)
| | - Priya Sabu
- University of Kansas Cancer Center, Kansas City, KS 66160, USA; (S.L.H.); (P.S.)
- Division of Gynecologic Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Rajni V. Puri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (S.M.T.); (V.V.); (B.K.G.); (R.V.P.); (H.B.P.)
| | - Harsh B. Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (S.M.T.); (V.V.); (B.K.G.); (R.V.P.); (H.B.P.)
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Glenson Samuel
- Division of Pediatric Hematology Oncology and Bone Marrow Transplantation, Children’s Mercy Hospital, Kansas City, MO 64108, USA;
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (S.M.T.); (V.V.); (B.K.G.); (R.V.P.); (H.B.P.)
- University of Kansas Cancer Center, Kansas City, KS 66160, USA; (S.L.H.); (P.S.)
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 3040, Kansas City, KS 66160, USA
| |
Collapse
|
17
|
Borutzki Y, Skos L, Gerner C, Meier‐Menches SM. Exploring the Potential of Metal-Based Candidate Drugs as Modulators of the Cytoskeleton. Chembiochem 2023; 24:e202300178. [PMID: 37345897 PMCID: PMC10946712 DOI: 10.1002/cbic.202300178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
During recent years, accumulating evidence suggested that metal-based candidate drugs are promising modulators of cytoskeletal and cytoskeleton-associated proteins. This was substantiated by the identification and validation of actin, vimentin and plectin as targets of distinct ruthenium(II)- and platinum(II)-based modulators. Despite this, structural information about molecular interaction is scarcely available. Here, we compile the scattered reports about metal-based candidate molecules that influence the cytoskeleton, its associated proteins and explore their potential to interfere in cancer-related processes, including proliferation, invasion and the epithelial-to-mesenchymal transition. Advances in this field depend crucially on determining binding sites and on gaining comprehensive insight into molecular drug-target interactions. These are key steps towards establishing yet elusive structure-activity relationships.
Collapse
Affiliation(s)
- Yasmin Borutzki
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Doctoral School of ChemistryUniversity of Vienna1090ViennaAustria
| | - Lukas Skos
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Doctoral School of ChemistryUniversity of Vienna1090ViennaAustria
| | - Christopher Gerner
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University Vienna1090ViennaAustria
| | - Samuel M. Meier‐Menches
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University Vienna1090ViennaAustria
| |
Collapse
|
18
|
Kowalczyk K, Błauż A, Moscoh Ayine-Tora D, Hartinger CG, Rychlik B, Plażuk D. Design, Synthesis, and Evaluation of Biological Activity of Ferrocene-Ispinesib Hybrids: Impact of a Ferrocenyl Group on the Antiproliferative and Kinesin Spindle Protein Inhibitory Activity. Chemistry 2023; 29:e202300813. [PMID: 37332065 DOI: 10.1002/chem.202300813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
With the aim to combine more than one biologically-active component in a single molecule, derivatives of ispinesib and its (S) analogue were prepared that featured ferrocenyl moieties or bulky organic substituents. Inspired by the strong kinesin spindle protein (KSP) inhibitory activity of ispinesib, the compounds were investigated for their antiproliferative activity. Among these compounds, several derivatives demonstrated significantly higher antiproliferative activity than ispinesib with nanomolar IC50 values against cell lines. Further evaluation indicated that the antiproliferative activity is not directly correlated with their KSP inhibitory activity while docking suggested that several of the derivatives may bind in a manner similar to ispinesib. In order to investigate the mode of action further, cell cycle analysis and reactive oxygen species formation were investigated. The improved antiproliferative activity of the most active compounds may be assigned to synergic effects of various factors such as KSP inhibitory activity due to the ispinesib core and ability to generate ROS and induce mitotic arrest.
Collapse
Affiliation(s)
- Karolina Kowalczyk
- Laboratory of Molecular Spectroscopy, Department of Organic Chemistry Faculty of Chemistry, University of Lodz ul. Tamka 12, 91-403, Łódź, Poland
| | - Andrzej Błauż
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz ul. Pomorska 141/143, 90-236, Łódź, Poland
| | | | - Christian G Hartinger
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Błażej Rychlik
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz ul. Pomorska 141/143, 90-236, Łódź, Poland
| | - Damian Plażuk
- Laboratory of Molecular Spectroscopy, Department of Organic Chemistry Faculty of Chemistry, University of Lodz ul. Tamka 12, 91-403, Łódź, Poland
| |
Collapse
|
19
|
Moghbeli M, Taghehchian N, Akhlaghipour I, Samsami Y, Maharati A. Role of forkhead box proteins in regulation of doxorubicin and paclitaxel responses in tumor cells: A comprehensive review. Int J Biol Macromol 2023; 248:125995. [PMID: 37499722 DOI: 10.1016/j.ijbiomac.2023.125995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Chemotherapy is one of the common first-line therapeutic methods in cancer patients. Despite the significant effects in improving the quality of life and survival of patients, chemo resistance is observed in a significant part of cancer patients, which leads to tumor recurrence and metastasis. Doxorubicin (DOX) and paclitaxel (PTX) are used as the first-line drugs in a wide range of tumors; however, DOX/PTX resistance limits their use in cancer patients. Considering the DOX/PTX side effects in normal tissues, identification of DOX/PTX resistant cancer patients is required to choose the most efficient therapeutic strategy for these patients. Investigating the molecular mechanisms involved in DOX/PTX response can help to improve the prognosis in cancer patients. Several cellular processes such as drug efflux, autophagy, and DNA repair are associated with chemo resistance that can be regulated by transcription factors as the main effectors in signaling pathways. Forkhead box (FOX) family of transcription factor has a key role in regulating cellular processes such as cell differentiation, migration, apoptosis, and proliferation. FOX deregulations have been associated with resistance to chemotherapy in different cancers. Therefore, we discussed the role of FOX protein family in DOX/PTX response. It has been reported that FOX proteins are mainly involved in DOX/PTX response by regulation of drug efflux, autophagy, structural proteins, and signaling pathways such as PI3K/AKT, NF-kb, and JNK. This review is an effective step in introducing the FOX protein family as the reliable prognostic markers and therapeutic targets in cancer patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Negin Taghehchian
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Lewicky JD, Martel AL, Gupta MR, Roy R, Rodriguez GM, Vanderhyden BC, Le HT. Conventional DNA-Damaging Cancer Therapies and Emerging cGAS-STING Activation: A Review and Perspectives Regarding Immunotherapeutic Potential. Cancers (Basel) 2023; 15:4127. [PMID: 37627155 PMCID: PMC10453198 DOI: 10.3390/cancers15164127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Many traditional cancer treatments such as radiation and chemotherapy are known to induce cellular DNA damage as part of their cytotoxic activity. The cGAS-STING signaling axis, a key member of the DNA damage response that acts as a sensor of foreign or aberrant cytosolic DNA, is helping to rationalize the DNA-damaging activity of these treatments and their emerging immunostimulatory capacity. Moreover, cGAS-STING, which is attracting considerable attention for its ability to promote antitumor immune responses, may fundamentally be able to address many of the barriers limiting the success of cancer immunotherapy strategies, including the immunosuppressive tumor microenvironment. Herein, we review the traditional cancer therapies that have been linked with cGAS-STING activation, highlighting their targets with respect to their role and function in the DNA damage response. As part of the review, an emerging "chemoimmunotherapy" concept whereby DNA-damaging agents are used for the indirect activation of STING is discussed as an alternative to the direct molecular agonism strategies that are in development, but have yet to achieve clinical approval. The potential of this approach to address some of the inherent and emerging limitations of cGAS-STING signaling in cancer immunotherapy is also discussed. Ultimately, it is becoming clear that in order to successfully employ the immunotherapeutic potential of the cGAS-STING axis, a balance between its contrasting antitumor and protumor/inflammatory activities will need to be achieved.
Collapse
Affiliation(s)
- Jordan D. Lewicky
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada; (J.D.L.); (A.L.M.)
| | - Alexandrine L. Martel
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada; (J.D.L.); (A.L.M.)
| | - Mukul Raj Gupta
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (M.R.G.); (R.R.)
| | - René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (M.R.G.); (R.R.)
| | - Galaxia M. Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Rd., Ottawa, ON K1H 8L6, Canada; (G.M.R.); (B.C.V.)
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON K1H 8M5, Canada
| | - Barbara C. Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Rd., Ottawa, ON K1H 8L6, Canada; (G.M.R.); (B.C.V.)
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON K1H 8M5, Canada
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada; (J.D.L.); (A.L.M.)
- Medicinal Sciences Division, NOSM University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
21
|
Neculai AM, Stanciu G, Mititelu M. Determination of Active Ingredients, Mineral Composition and Antioxidant Properties of Hydroalcoholic Macerates of Vinca minor L. Plant from the Dobrogea Area. Molecules 2023; 28:5667. [PMID: 37570636 PMCID: PMC10419528 DOI: 10.3390/molecules28155667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
In recent decades, new alternative therapies using drugs containing active ingredients of natural origin have been a hot topic for medical research. Based on the confirmed therapeutic potential of the Vinca minor plant, considered in the specialized literature to be of pharmaceutical interest, the purpose of this study is to determine the chemical and mineral composition of the Vinca minor plant grown in the Dobrogea area, with a view to its use in the formulation of dermal preparations. For this purpose, plant materials were collected from the mentioned area and hydroalcoholic macerates of different concentrations were obtained: 40%, 70% and 96% from leaves (F40, F70, F96) and stems (T40, T70, T96) of Vinca minor plant to determine the optimal extraction solvent. The hydroalcoholic macerates were analyzed via the HPLC method for the identification and quantification of the main bioactive compounds, and two methods were used to evaluate their antioxidant properties: the DPPH radical scavenging test and the photochemiluminescence method. HPLC analysis showed the presence of four indole alkaloids: vincamine, 1,2-dehydroaspidospermidine, vincaminoreine and eburnamonine. Vincamine was the alkaloid found in the highest concentration in Vinca leaves (2.459 ± 0.035 mg/100 g d.w.). The antioxidant activity of Vinca minor hydroalcoholic macerates showed values between 737.626-1123.500 mg GAE/100 g d.w (DPPH test) and 77.439-187.817 mg TE/100 g d.w (photochemiluminescence method). The concentrations of toxic metals Cd, Cu, Ni, Pb in dried leaves and stems of Vinca minor, determined by AAS, were below detection limits.
Collapse
Affiliation(s)
- Ana-Maria Neculai
- Department of Biochemistry, Faculty of Medicine, Ovidius University of Constanta, Street Universitatii, No. 1, 900470 Constanta, Romania;
| | - Gabriela Stanciu
- Department of Chemistry and Chemical Engineering, Ovidius University of Constanta, 124 Mamaia Blvd., 900527 Constanta, Romania
| | - Magdalena Mititelu
- Clinical Laboratory and Food Hygiene Department, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 3-6 Traian Vuia Street, 020956 Bucharest, Romania
| |
Collapse
|
22
|
Shrestha A, Hwang SY, Kunwar S, Man Kadayat T, Park S, Liu Y, Jo H, Sheen N, Seo M, Lee ES, Kwon Y. Di-indenopyridines as topoisomerase II-selective anticancer agents: Design, synthesis, and structure-activity relationships. Bioorg Med Chem 2023; 91:117403. [PMID: 37418826 DOI: 10.1016/j.bmc.2023.117403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Topoisomerases are key molecular enzymes responsible for altering DNA topology, thus they have long been considered as attractive targets for novel chemotherapeutic agents. Topoisomerase type II (Topo II) catalytic inhibitors embrace a fresh perspective meant to get beyond drawbacks caused by topo II poisons, such as cardiotoxicity and secondary malignancies. Based on previously reported 5H-indeno[1,2-b]pyridines, here we presented new twenty-three hybrid di-indenopyridines along with their topo I/IIα inhibitory and antiproliferative activity. Most of the prepared 11-phenyl-diindenopyridines showed negligible topo I inhibitory activity, showing selectivity over topo II. Among the series, we finally selected compound 17, which displayed 100 % topo IIα inhibition at 20 μM concentration and comparable antiproliferative activity against the tested cell lines. Through competitive EtBr displacement assay, cleavable complex assay, and comet assay, compound 17 was finally determined as a non-intercalative catalytic topo IIα inhibitor. The findings in this study highlight the significance of phenolic, halophenyl, thienyl, and furyl groups at the 4-position of the indane ring in the design and synthesis of di-indenopyridines as potent catalytic topo IIα inhibitors with remarkable anticancer effects.
Collapse
Affiliation(s)
- Aarajana Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40508, USA
| | - Soo-Yeon Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Surendra Kunwar
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tara Man Kadayat
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40508, USA
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Yi Liu
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hyunji Jo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Naeun Sheen
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Minjung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eung-Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
23
|
Silva JPN, Pinto B, Monteiro L, Silva PMA, Bousbaa H. Combination Therapy as a Promising Way to Fight Oral Cancer. Pharmaceutics 2023; 15:1653. [PMID: 37376101 PMCID: PMC10301495 DOI: 10.3390/pharmaceutics15061653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Oral cancer is a highly aggressive tumor with invasive properties that can lead to metastasis and high mortality rates. Conventional treatment strategies, such as surgery, chemotherapy, and radiation therapy, alone or in combination, are associated with significant side effects. Currently, combination therapy has become the standard practice for the treatment of locally advanced oral cancer, emerging as an effective approach in improving outcomes. In this review, we present an in-depth analysis of the current advancements in combination therapies for oral cancer. The review explores the current therapeutic options and highlights the limitations of monotherapy approaches. It then focuses on combinatorial approaches that target microtubules, as well as various signaling pathway components implicated in oral cancer progression, namely, DNA repair players, the epidermal growth factor receptor, cyclin-dependent kinases, epigenetic readers, and immune checkpoint proteins. The review discusses the rationale behind combining different agents and examines the preclinical and clinical evidence supporting the effectiveness of these combinations, emphasizing their ability to enhance treatment response and overcome drug resistance. Challenges and limitations associated with combination therapy are discussed, including potential toxicity and the need for personalized treatment approaches. A future perspective is also provided to highlight the existing challenges and possible resolutions toward the clinical translation of current oral cancer therapies.
Collapse
Affiliation(s)
- João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Bárbara Pinto
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Luís Monteiro
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| |
Collapse
|
24
|
Nassar R, Thompson L, Fouquerel E. Molecular mechanisms protecting centromeres from self-sabotage and implications for cancer therapy. NAR Cancer 2023; 5:zcad019. [PMID: 37180029 PMCID: PMC10167631 DOI: 10.1093/narcan/zcad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Centromeres play a crucial role in DNA segregation by mediating the cohesion and separation of sister chromatids during cell division. Centromere dysfunction, breakage or compromised centromeric integrity can generate aneuploidies and chromosomal instability, which are cellular features associated with cancer initiation and progression. Maintaining centromere integrity is thus essential for genome stability. However, the centromere itself is prone to DNA breaks, likely due to its intrinsically fragile nature. Centromeres are complex genomic loci that are composed of highly repetitive DNA sequences and secondary structures and require the recruitment and homeostasis of a centromere-associated protein network. The molecular mechanisms engaged to preserve centromere inherent structure and respond to centromeric damage are not fully understood and remain a subject of ongoing research. In this article, we provide a review of the currently known factors that contribute to centromeric dysfunction and the molecular mechanisms that mitigate the impact of centromere damage on genome stability. Finally, we discuss the potential therapeutic strategies that could arise from a deeper understanding of the mechanisms preserving centromere integrity.
Collapse
Affiliation(s)
- Rim Nassar
- UPMC Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
| | - Lily Thompson
- UPMC Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Elise Fouquerel
- UPMC Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
| |
Collapse
|
25
|
Pompei S, Cosentino Lagomarsino M. A fitness trade-off explains the early fate of yeast aneuploids with chromosome gains. Proc Natl Acad Sci U S A 2023; 120:e2211687120. [PMID: 37018197 PMCID: PMC10104565 DOI: 10.1073/pnas.2211687120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/19/2023] [Indexed: 04/06/2023] Open
Abstract
The early development of aneuploidy from an accidental chromosome missegregation shows contrasting effects. On the one hand, it is associated with significant cellular stress and decreased fitness. On the other hand, it often carries a beneficial effect and provides a quick (but typically transient) solution to external stress. These apparently controversial trends emerge in several experimental contexts, particularly in the presence of duplicated chromosomes. However, we lack a mathematical evolutionary modeling framework that comprehensively captures these trends from the mutational dynamics and the trade-offs involved in the early stages of aneuploidy. Here, focusing on chromosome gains, we address this point by introducing a fitness model where a fitness cost of chromosome duplications is contrasted by a fitness advantage from the dosage of specific genes. The model successfully captures the experimentally measured probability of emergence of extra chromosomes in a laboratory evolution setup. Additionally, using phenotypic data collected in rich media, we explored the fitness landscape, finding evidence supporting the existence of a per-gene cost of extra chromosomes. Finally, we show that the substitution dynamics of our model, evaluated in the empirical fitness landscape, explains the relative abundance of duplicated chromosomes observed in yeast population genomics data. These findings lay a firm framework for the understanding of the establishment of newly duplicated chromosomes, providing testable quantitative predictions for future observations.
Collapse
Affiliation(s)
- Simone Pompei
- IFOM ETS (Ente del Terzo Settore) - The AIRC (Associazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology, Milano20139, Italy
| | - Marco Cosentino Lagomarsino
- IFOM ETS (Ente del Terzo Settore) - The AIRC (Associazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology, Milano20139, Italy
- Dipartimento di Fisica, Università degli Studi di Milano, Milano20133, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Milano, Milano20133, Italy
| |
Collapse
|
26
|
Al Saihati HA, Rabaan AA. Cellular resistance mechanisms in cancer and the new approaches to overcome resistance mechanisms chemotherapy. Saudi Med J 2023; 44:329-344. [PMID: 37062547 PMCID: PMC10153614 DOI: 10.15537/smj.2023.44.4.20220600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Despite major advancements in cancer healing approaches over the last few decades, chemotherapy remains the most popular malignancy treatment. Chemotherapeutic drugs are classified into many kinds based on their mechanism of action. Multidrug resistance (MDR) is responsible for approximately 90% of fatalities in malignancy cases treated with standard chemotherapeutics or innovative targeted medicines. Many innovative prospective anti-cancer medicines displayed high anti-cancer efficacy in a single application. However, combining them with other medications improves cancer treatment efficacy. This supports the belief that a combination of drugs is significantly more effective than a single medicine. Due to the intricacy of MDR processes and the diversity of tumor illnesses, there will rarely be a single medicine that can be utilized to treat all types of cancer. Finding new medications that can reverse MDR in malignancy cells will augment efficacy of chemotherapeutic agents and allow us to treat cancers that are now incurable.
Collapse
Affiliation(s)
- Hajir A. Al Saihati
- From the Department of Clinical Laboratory Science (Al Saihati), Applied Medical College, University of Hafr Al Batin, Hafr Al Batin, and from the Depatment of Molecular Diagnostic Laboratory (Rabaan), Johns Hopkins Aramco Healthcare, Dhahran, Kingdom of Saudi Arabia.
| | - Ali A. Rabaan
- From the Department of Clinical Laboratory Science (Al Saihati), Applied Medical College, University of Hafr Al Batin, Hafr Al Batin, and from the Depatment of Molecular Diagnostic Laboratory (Rabaan), Johns Hopkins Aramco Healthcare, Dhahran, Kingdom of Saudi Arabia.
| |
Collapse
|
27
|
Deregulated Gene Expression Profiles and Regulatory Networks in Adult and Pediatric RUNX1/RUNX1T1-Positive AML Patients. Cancers (Basel) 2023; 15:cancers15061795. [PMID: 36980682 PMCID: PMC10046396 DOI: 10.3390/cancers15061795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous and complex disease concerning molecular aberrations and prognosis. RUNX1/RUNX1T1 is a fusion oncogene that results from the chromosomal translocation t(8;21) and plays a crucial role in AML. However, its impact on the transcriptomic profile of different age groups of AML patients is not completely understood. Here, we investigated the deregulated gene expression (DEG) profiles in adult and pediatric RUNX1/RUNX1T1-positive AML patients, and compared their functions and regulatory networks. We retrospectively analyzed gene expression data from two independent Gene Expression Omnibus (GEO) datasets (GSE37642 and GSE75461) and computed their differentially expressed genes and upstream regulators, using limma, GEO2Enrichr, and X2K. For validation purposes, we used the TCGA-LAML (adult) and TARGET-AML (pediatric) patient cohorts. We also analyzed the protein–protein interaction (PPI) networks, as well as those composed of transcription factors (TF), intermediate proteins, and kinases foreseen to regulate the top deregulated genes in each group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analyses were further performed for the DEGs in each dataset. We found that the top upregulated genes in (both adult and pediatric) RUNX1/RUNX1T1-positive AML patients are enriched in extracellular matrix organization, the cell projection membrane, filopodium membrane, and supramolecular fiber. Our data corroborate that RUNX1/RUNX1T1 reprograms a large transcriptional network to establish and maintain leukemia via intricate PPI interactions and kinase-driven phosphorylation events.
Collapse
|
28
|
Radiosensitization of Breast Cancer Cells with a 2-Methoxyestradiol Analogue Affects DNA Damage and Repair Signaling In Vitro. Int J Mol Sci 2023; 24:ijms24043592. [PMID: 36835001 PMCID: PMC9965329 DOI: 10.3390/ijms24043592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Radiation resistance and radiation-related side effects warrant research into alternative strategies in the application of this modality to cancer treatment. Designed in silico to improve the pharmacokinetics and anti-cancer properties of 2-methoxyestradiol, 2-ethyl-3-O-sulfamoyl-estra-1,3,5(10)16-tetraene (ESE-16) disrupts microtubule dynamics and induces apoptosis. Here, we investigated whether pre-exposure of breast cancer cells to low-dose ESE-16 would affect radiation-induced deoxyribonucleic acid (DNA) damage and the consequent repair pathways. MCF-7, MDA-MB-231, and BT-20 cells were exposed to sub-lethal doses of ESE-16 for 24 h before 8 Gy radiation. Flow cytometric quantification of Annexin V, clonogenic studies, micronuclei quantification, assessment of histone H2AX phosphorylation and Ku70 expression were performed to assess cell viability, DNA damage, and repair pathways, in both directly irradiated cells and cells treated with conditioned medium. A small increase in apoptosis was observed as an early consequence, with significant repercussions on long-term cell survival. Overall, a greater degree of DNA damage was detected. Moreover, initiation of the DNA-damage repair response was delayed, with a subsequent sustained elevation. Radiation-induced bystander effects induced similar pathways and were initiated via intercellular signaling. These results justify further investigation of ESE-16 as a radiation-sensitizing agent since pre-exposure appears to augment the response of tumor cells to radiation.
Collapse
|
29
|
de Almeida LC, Calil FA, Moreno NC, Rezende-Teixeira P, de Moraes LAB, Jimenez PC, Menck CFM, Machado-Neto JA, Costa-Lotufo LV. Exploring pradimicin-IRD antineoplastic mechanisms and related DNA repair pathways. Chem Biol Interact 2023; 371:110342. [PMID: 36634904 DOI: 10.1016/j.cbi.2023.110342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
DNA-targeting agents have a significant clinical use, although toxicity remains an issue that plays against their widespread application. Understanding the mechanism of action and DNA damage response elicited by such compounds might contribute to the improvement of their use in anticancer chemotherapy. In a previous study, our research group characterized a new DNA-targeting agent - pradimicin-IRD. Since DNA-targeting agents and DNA repair are close-related subjects, the present study used in silico-modelling and a transcriptomic approach seeking to characterize the DNA repair pathways activated in HCT 116 cells following pradimicin-IRD treatment. Molecular docking analysis showed pradimicin-IRD as a DNA intercalating agent and a potential inhibitor of DNA-binding proteins. Furthermore, the transcriptomic study highlighted DNA repair functions related to genes modulated by pradimicin-IRD, such as nucleotide excision repair, telomeres maintenance and double-strand break repair. When validating these functions, PCNA protein levels decreased after exposure to pradimicin. Furthermore, molecular docking analysis suggested DNA-pradimicin-PCNA interaction. In addition, hTERT and POLH showed reduced mRNA levels after 6 h of treatment with pradimicin-IRD. Moreover, POLH-deficient cells displayed higher resistance to pradimicin-IRD than POLH-proficient cells and the compound prevented formation of the POLH/DNA complex (molecular docking). Since the modulation of DNA repair genes by pradimicin-IRD is TP53-independent, unlike doxorubicin, dissimilarities between the mechanism of action and the DNA damage response of pradimicin-IRD and doxorubicin open new insights for further studies of pradimicin-IRD as a new antineoplastic compound.
Collapse
Affiliation(s)
- Larissa Costa de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe Antunes Calil
- Ludwig Institute for Cancer Research, School of Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Natália Cestari Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; National Institute of Child Health and Human Development, National Institutes of Health (NIH), USA; Institute of Chemistry, University of Sao Paulo (USP), Brazil
| | - Paula Rezende-Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | - João Agostinho Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
30
|
Liu J, Yang X, Gao S, Wen M, Yu Q. DDX11-AS1 modulates DNA damage repair to enhance paclitaxel resistance of lung adenocarcinoma cells. Pharmacogenomics 2023; 24:163-172. [PMID: 36779347 DOI: 10.2217/pgs-2022-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Aim: To investigate the influence of DDX11-AS1 on paclitaxel (PTX) resistance in lung adenocarcinoma (LUAD). Methods: LncRNA expression and functional enrichment analyses were processed via bioinformatics methods. DDX11-AS1 expression was detected via quantitative real-time PCR. Cell counting kit-8, colony formation, flow cytometry and comet assays were manipulated to measure cell proliferation, apoptosis, cell cycle and DNA damage repair, respectively. Western blot was used to assess DNA damage-related protein expression. Results: DDX11-AS1 was in a high expression status in LUAD, and could promote LUAD cell proliferation and PTX resistance, while suppressing cell apoptosis. DNA damage repairing ability was also modulated by the change of DDX11-AS1 expression. Conclusion: LncRNA DDX11-AS1 promotes DNA damage repair to enhance PTX resistance in LUAD.
Collapse
Affiliation(s)
- Jianhong Liu
- Department of Respiratory Medicine, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua City, Zhejiang Province, 321000, China
| | - Xu Yang
- Department of Respiratory Medicine, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua City, Zhejiang Province, 321000, China
| | - Shasha Gao
- Department of Respiratory Medicine, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua City, Zhejiang Province, 321000, China
| | - Minya Wen
- Department of Laboratory, Jinhua Wenrong Hospital, Jinhua City, Zhejiang Province, 322118, China
| | - Qiong Yu
- Department of Respiratory Medicine, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua City, Zhejiang Province, 321000, China
| |
Collapse
|
31
|
Sri Phani TP, Mannangatti M, Nekkala R, Bellala VM, Bellala RS, Payala V. Oxidative stress in breast cancer after chemotherapy. Bioinformation 2022; 18:1141-1145. [PMID: 37701507 PMCID: PMC10492917 DOI: 10.6026/973206300181141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 09/14/2023] Open
Abstract
It is of interest to evaluate the influence of breast cancer on oxidative stress, liver function tests, renal biomarkers, action of doxorubicin, cyclophosphamide and paclitaxel (AC-T) in the treatment and mechanism over altering the measured markers in breast cancer. Sixty histopathological confirmed cases of female patients suffering with breast carcinoma from the Department of Oncology at Omega Cancer Hospital, Visakhapatnam were included in the study. The investigation was performed in 3 groups: a control group containing 30 healthy females of similar age, 30 breast cancer patients without treatment and 30 patients receiving treatment with anticancer combination drugs AC-T. The venous blood samples from both controls and patients were measured for total antioxidant status (TAS), nitric oxide (NO), malondialdehyde, alanine aminotransferase, aspartate aminotransferase, and blood urea, serum creatinine. One-way ANOVA and Tukey-Kramer multiple comparisons post-test were applied as statistical analysis tools through SPPS software version 20.0. P<0.05 was regarded as significant. According to the findings, higher stages of breast cancer were linked to considerable increase in oxidative stress markers during AC-T treatment. The findings of the study revealed that oxidative stress is linked to breast cancer, and that chemotherapy exacerbates this oxidative stress, causing damage to a variety of cellular targets. Monitoring serum oxidative stress markers may aid in the evaluation of chemotherapy effects in breast cancer patients. According to our findings, AC-T chemotherapy will elevate malondialdehyde, a lipid peroxidation marker, and lowers the total antioxidant status.
Collapse
Affiliation(s)
- Tejaswi Pullakanam Sri Phani
- Department of Biochemistry, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research foundation (VMRF-DU), Pondicherry, Tamilnadu, India
| | - Murugan Mannangatti
- Department of Biochemistry, AarupadaiVeedu Medical College and Hospital, Vinayaka Mission's Research foundation (VMRF-DU), Pondicherry, Tamilnadu, India
| | - Ramakrishna Nekkala
- Department of Biochemistry, Gayatri Vidya Parishad Institute of Health Care and Medical Technology, Marikavalasa, Visakhapatnam, Andhra Pradesh, India
| | - Venkata Madhavi Bellala
- Department of Pathology, GITAM Institute of Medical Sciences and Research, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh, India
| | - Ravi Shankar Bellala
- Clinical Oncology Division, Omega Hospital, Visakhapatnam, Andhra Pradesh, India
| | - Vijayalakshmi Payala
- Department of Microbiology, GITAM Institute of Medical Sciences and Research, GITAM Deemed to be University, Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
32
|
Hawash M. Recent Advances of Tubulin Inhibitors Targeting the Colchicine Binding Site for Cancer Therapy. Biomolecules 2022; 12:biom12121843. [PMID: 36551271 PMCID: PMC9776383 DOI: 10.3390/biom12121843] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer accounts for numerous deaths each year, and it is one of the most common causes of death worldwide, despite many breakthroughs in the discovery of novel anticancer candidates. Each new year the FDA approves the use of new drugs for cancer treatments. In the last years, the biological targets of anticancer agents have started to be clearer and one of these main targets is tubulin protein; this protein plays an essential role in cell division, as well as in intracellular transportation. The inhibition of microtubule formation by targeting tubulin protein induces cell death by apoptosis. In the last years, numerous novel structures were designed and synthesized to target tubulin, and this can be achieved by inhibiting the polymerization or depolymerization of the microtubules. In this review article, recent novel compounds that have antiproliferation activities against a panel of cancer cell lines that target tubulin are explored in detail. This review article emphasizes the recent developments of tubulin inhibitors, with insights into their antiproliferative and anti-tubulin activities. A full literature review shows that tubulin inhibitors are associated with properties in the inhibition of cancer cell line viability, inducing apoptosis, and good binding interaction with the colchicine binding site of tubulin. Furthermore, some drugs, such as cabazitaxel and fosbretabulin, have been approved by FDA in the last three years as tubulin inhibitors. The design and development of efficient tubulin inhibitors is progressively becoming a credible solution in treating many species of cancers.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
33
|
Menilli L, Milani C, Reddi E, Moret F. Overview of Nanoparticle-Based Approaches for the Combination of Photodynamic Therapy (PDT) and Chemotherapy at the Preclinical Stage. Cancers (Basel) 2022; 14:cancers14184462. [PMID: 36139623 PMCID: PMC9496990 DOI: 10.3390/cancers14184462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The present review represents the outstanding and promising recent literature reports (2017–2022) on nanoparticle-based formulations developed for anticancer therapy with photodynamic therapy (PDT), photosensitizers, and chemotherapeutics. Besides brief descriptions of chemotherapeutics’ classification and of PDT mechanisms and limitations, several examples of nanosystems endowed with different responsiveness (e.g., acidic pH and reactive oxygen species) and peculiarity (e.g., tumor oxygenation capacity, active tumor targeting, and biomimetic features) are described, and for each drug combination, in vitro and in vivo results on preclinical cancer models are reported. Abstract The widespread diffusion of photodynamic therapy (PDT) as a clinical treatment for solid tumors is mainly limited by the patient’s adverse reaction (skin photosensivity), insufficient light penetration in deeply seated neoplastic lesions, unfavorable photosensitizers (PSs) biodistribution, and photokilling efficiency due to PS aggregation in biological environments. Despite this, recent preclinical studies reported on successful combinatorial regimes of PSs with chemotherapeutics obtained through the drugs encapsulation in multifunctional nanometric delivery systems. The aim of the present review deals with the punctual description of several nanosystems designed not only with the objective of co-transporting a PS and a chemodrug for combination therapy, but also with the goal of improving the therapeutic efficacy by facing the main critical issues of both therapies (side effects, scarce tumor oxygenation and light penetration, premature drug clearance, unspecific biodistribution, etc.). Therefore, particular attention is paid to the description of bio-responsive drugs and nanoparticles (NPs), targeted nanosystems, biomimetic approaches, and upconverting NPs, including analyzing the therapeutic efficacy of the proposed photo-chemotherapeutic regimens in in vitro and in vivo cancer models.
Collapse
Affiliation(s)
- Luca Menilli
- Department of Biology, University of Padova, 35100 Padova, Italy
| | - Celeste Milani
- Department of Biology, University of Padova, 35100 Padova, Italy
- Institute of Organic Synthesis and Photoreactivity, ISOF-CNR, 40129 Bologna, Italy
| | - Elena Reddi
- Department of Biology, University of Padova, 35100 Padova, Italy
- Correspondence: (E.R.); (F.M.)
| | - Francesca Moret
- Department of Biology, University of Padova, 35100 Padova, Italy
- Correspondence: (E.R.); (F.M.)
| |
Collapse
|
34
|
Labbozzetta M, Barreca M, Spanò V, Raimondi MV, Poma P, Notarbartolo M, Barraja P, Montalbano A. Novel insights on [1,2]oxazolo[5,4-e]isoindoles on multidrug resistant acute myeloid leukemia cell line. Drug Dev Res 2022; 83:1331-1341. [PMID: 35749723 PMCID: PMC9540667 DOI: 10.1002/ddr.21962] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 01/22/2023]
Abstract
A series of [1,2]oxazolo[5,4-e]isoindole derivatives was evaluated against HL-60 cell line and its multidrug resistance (MDR) variant, HL-60R, resistant to doxorubicin and to other P-gp substrates by overexpressing the efflux pump. They displayed antiproliferative activities, with IC50 values ranging from 0.02 to 5.5 µM. In particular, the newly synthesized compound 4k produced synergistic effects in terms of cell growth inhibition and cell death induction either in combination with a Vinca alkaloid, Vinblastine, and a Taxane, Paclitaxel in HL-60R cells. The study of the mechanism of action indicated that all compounds showed antimitotic activity through inhibition of tubulin polymerization. Thus, [1,2]oxazoles could represent a valuable tool to overcome MDR mechanism, confirming the potential use of this class of compounds.
Collapse
Affiliation(s)
- Manuela Labbozzetta
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Marilia Barreca
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Virginia Spanò
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Maria Valeria Raimondi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Paola Poma
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Monica Notarbartolo
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Paola Barraja
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Alessandra Montalbano
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| |
Collapse
|
35
|
Malebari AM, Duffy Morales G, Twamley B, Fayne D, Khan MF, McLoughlin EC, O’Boyle NM, Zisterer DM, Meegan MJ. Synthesis, Characterisation and Mechanism of Action of Anticancer 3-Fluoroazetidin-2-ones. Pharmaceuticals (Basel) 2022; 15:1044. [PMID: 36145265 PMCID: PMC9501633 DOI: 10.3390/ph15091044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
The stilbene combretastatin A-4 (CA-4) is a potent microtubule-disrupting agent interacting at the colchicine-binding site of tubulin. In the present work, the synthesis, characterisation and mechanism of action of a series of 3-fluoro and 3,3-difluoro substituted β-lactams as analogues of the tubulin-targeting agent CA-4 are described. The synthesis was achieved by a convenient microwave-assisted Reformatsky reaction and is the first report of 3-fluoro and 3,3-difluoro β-lactams as CA-4 analogues. The β-lactam compounds 3-fluoro-4-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxy phenyl)azetidin-2-one 32 and 3-fluoro-4-(3-fluoro-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one) 33 exhibited potent activity in MCF-7 human breast cancer cells with IC50 values of 0.075 µM and 0.095 µM, respectively, and demonstrated low toxicity in non-cancerous cells. Compound 32 also demonstrated significant antiproliferative activity at nanomolar concentrations in the triple-negative breast cancer cell line Hs578T (IC50 0.033 μM), together with potency in the invasive isogenic subclone Hs578Ts(i)8 (IC50 = 0.065 μM), while 33 was also effective in MDA-MB-231 cells (IC50 0.620 μM). Mechanistic studies demonstrated that 33 inhibited tubulin polymerisation, induced apoptosis in MCF-7 cells, and induced a downregulation in the expression of anti-apoptotic Bcl2 and survivin with corresponding upregulation in the expression of pro-apoptotic Bax. In silico studies indicated the interaction of the compounds with the colchicine-binding site, demonstrating the potential for further developing novel cancer therapeutics as microtubule-targeting agents.
Collapse
Affiliation(s)
- Azizah M. Malebari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Trinity Biomedical Sciences Institute, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Gabriela Duffy Morales
- Trinity Biomedical Sciences Institute, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Darren Fayne
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Mohemmed Faraz Khan
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Eavan C. McLoughlin
- Trinity Biomedical Sciences Institute, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Niamh M. O’Boyle
- Trinity Biomedical Sciences Institute, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Daniela M. Zisterer
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Mary J. Meegan
- Trinity Biomedical Sciences Institute, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| |
Collapse
|
36
|
Romagnoli R, Oliva P, Prencipe F, Manfredini S, Budassi F, Brancale A, Ferla S, Hamel E, Corallo D, Aveic S, Manfreda L, Mariotto E, Bortolozzi R, Viola G. Design, Synthesis and Biological Investigation of 2-Anilino Triazolopyrimidines as Tubulin Polymerization Inhibitors with Anticancer Activities. Pharmaceuticals (Basel) 2022; 15:1031. [PMID: 36015179 PMCID: PMC9415608 DOI: 10.3390/ph15081031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
A further investigation aiming to generate new potential antitumor agents led us to synthesize a new series of twenty-two compounds characterized by the presence of the 7-(3',4',5'-trimethoxyphenyl)-[1,2,4]triazolo[1,5-a]pyrimidine pharmacophore modified at its 2-position. Among the synthesized compounds, three were significantly more active than the others. These bore the substituents p-toluidino (3d), p-ethylanilino (3h) and 3',4'-dimethylanilino (3f), and these compounds had IC50 values of 30-43, 160-240 and 67-160 nM, respectively, on HeLa, A549 and HT-29 cancer cells. The p-toluidino derivative 3d was the most potent inhibitor of tubulin polymerization (IC50: 0.45 µM) and strongly inhibited the binding of colchicine to tubulin (72% inhibition), with antiproliferative activity superior to CA-4 against A549 and HeLa cancer cell lines. In vitro investigation showed that compound 3d was able to block treated cells in the G2/M phase of the cell cycle and to induce apoptosis following the intrinsic pathway, further confirmed by mitochondrial depolarization and caspase-9 activation. In vivo experiments conducted on the zebrafish model showed good activity of 3d in reducing the mass of a HeLa cell xenograft. These effects occurred at nontoxic concentrations to the animal, indicating that 3d merits further developmental studies.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Oliva
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Filippo Prencipe
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Federica Budassi
- Medicinal Chemistry Department, Integrated Drug Discovery, Aptuit-An Evotec Company, 37135 Verona, Italy
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Salvatore Ferla
- Faculty of Medicine, Health and Life Science, Swansea University Medical School, Grove Building, Swansea University, Swansea SA2 8PP, UK
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Diana Corallo
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Sanja Aveic
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Lorenzo Manfreda
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, 35131 Padova, Italy
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Elena Mariotto
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, 35131 Padova, Italy
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Roberta Bortolozzi
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, 35131 Padova, Italy
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Giampietro Viola
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, 35131 Padova, Italy
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| |
Collapse
|
37
|
Liu X, Lv H, Shen H. Vitamin D enhances the sensitivity of breast cancer cells to the combination therapy of photodynamic therapy and paclitaxel. Tissue Cell 2022; 77:101815. [DOI: 10.1016/j.tice.2022.101815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
|
38
|
Ahmed S, Alam W, Jeandet P, Aschner M, Alsharif KF, Saso L, Khan H. Therapeutic Potential of Marine Peptides in Prostate Cancer: Mechanistic Insights. Mar Drugs 2022; 20:md20080466. [PMID: 35892934 PMCID: PMC9330892 DOI: 10.3390/md20080466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the leading cause of cancer death in men, and its treatment is commonly associated with severe adverse effects. Thus, new treatment modalities are required. In this context, natural compounds have been widely explored for their anti-PCa properties. Aquatic organisms contain numerous potential medications. Anticancer peptides are less toxic to normal cells and provide an efficacious treatment approach via multiple mechanisms, including altered cell viability, apoptosis, cell migration/invasion, suppression of angiogenesis and microtubule balance disturbances. This review sheds light on marine peptides as efficacious and safe therapeutic agents for PCa.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Philippe Jeandet
- Research Unit “Induced Resistance and Plant Bioprotection”, Department of Biology and Biochemistry, Faculty of Sciences, University of Reims, EA 4707-USC INRAe 1488, SFR Condorcet FR CNRS 3417, P.O. Box 1039, CEDEX 02, 51687 Reims, France;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Luciano Saso
- Department of Physiology and Pharmacology, “Vittorio Erspamer” Sapienza University, 00185 Rome, Italy;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
- Correspondence:
| |
Collapse
|
39
|
Alpízar-Pedraza D, Veulens ADLN, Araujo EC, Piloto-Ferrer J, Sánchez-Lamar Á. Microtubules destabilizing agents binding sites in tubulin. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Hargrave SD, Joubert AM, Potter BVL, Dohle W, Marais S, Mercier AE. Cell Fate following Irradiation of MDA-MB-231 and MCF-7 Breast Cancer Cells Pre-Exposed to the Tetrahydroisoquinoline Sulfamate Microtubule Disruptor STX3451. Molecules 2022; 27:3819. [PMID: 35744942 PMCID: PMC9228122 DOI: 10.3390/molecules27123819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
A tetrahydroisoquinoline (THIQ) core is able to mimic the A and B rings of 2-methoxyestradiol (2ME2), an endogenous estrogen metabolite that demonstrates promising anticancer properties primarily by disrupting microtubule dynamic instability parameters, but has very poor pharmaceutical properties that can be improved by sulfamoylation. The non-steroidal THIQ-based microtubule disruptor 2-(3-bromo-4,5-dimethoxybenzyl)-7-methoxy-6-sulfamoyloxy-1,2,3,4-tetrahydroisoquinoline (STX3451), with enhanced pharmacokinetic and pharmacodynamic profiles, was explored for the first time in radiation biology. We investigated whether 24 h pre-treatment with STX3451 could pre-sensitize MCF-7 and MDA-MB-231 breast cancer cells to radiation. This regimen showed a clear increase in cytotoxicity compared to the individual modalities, results that were contiguous in spectrophotometric analysis, flow cytometric quantification of apoptosis induction, clonogenic studies and microscopy techniques. Drug pre-treatment increased radiation-induced DNA damage, with statistically more double-strand (ds) DNA breaks demonstrated. The latter could be due to the induction of a radiation-sensitive metaphase block or the increased levels of reactive oxygen species, both evident after compound exposure. STX3451 pre-exposure may also delay DNA repair mechanisms, as the DNA damage response element ataxia telangiectasia mutated (ATM) was depressed. These in vitro findings may translate into in vivo models, with the ultimate aim of reducing both radiation and drug doses for maximal clinical effect with minimal adverse effects.
Collapse
Affiliation(s)
- Scott D. Hargrave
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (S.D.H.); (A.M.J.); (S.M.)
| | - Anna M. Joubert
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (S.D.H.); (A.M.J.); (S.M.)
| | - Barry V. L. Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK; (B.V.L.P.); (W.D.)
| | - Wolfgang Dohle
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK; (B.V.L.P.); (W.D.)
| | - Sumari Marais
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (S.D.H.); (A.M.J.); (S.M.)
| | - Anne E. Mercier
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (S.D.H.); (A.M.J.); (S.M.)
| |
Collapse
|
41
|
Was H, Borkowska A, Bagues A, Tu L, Liu JYH, Lu Z, Rudd JA, Nurgali K, Abalo R. Mechanisms of Chemotherapy-Induced Neurotoxicity. Front Pharmacol 2022; 13:750507. [PMID: 35418856 PMCID: PMC8996259 DOI: 10.3389/fphar.2022.750507] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Since the first clinical trials conducted after World War II, chemotherapeutic drugs have been extensively used in the clinic as the main cancer treatment either alone or as an adjuvant therapy before and after surgery. Although the use of chemotherapeutic drugs improved the survival of cancer patients, these drugs are notorious for causing many severe side effects that significantly reduce the efficacy of anti-cancer treatment and patients’ quality of life. Many widely used chemotherapy drugs including platinum-based agents, taxanes, vinca alkaloids, proteasome inhibitors, and thalidomide analogs may cause direct and indirect neurotoxicity. In this review we discuss the main effects of chemotherapy on the peripheral and central nervous systems, including neuropathic pain, chemobrain, enteric neuropathy, as well as nausea and emesis. Understanding mechanisms involved in chemotherapy-induced neurotoxicity is crucial for the development of drugs that can protect the nervous system, reduce symptoms experienced by millions of patients, and improve the outcome of the treatment and patients’ quality of life.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ana Bagues
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Longlong Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Julia Y H Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zengbing Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,The Laboratory Animal Services Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Department of Medicine Western Health, University of Melbourne, Melbourne, VIC, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, Alcorcón, Spain.,Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
42
|
Azees PAA, Natarajan S, Amaechi BT, Thajuddin N, Raghavendra VB, Brindhadevi K, Pugazhendhi A. An empirical review on the risk factors, therapeutic strategies and materials at nanoscale for the treatment of oral malignancies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Khazaei Monfared Y, Mahmoudian M, Hoti G, Caldera F, López Nicolás JM, Zakeri-Milani P, Matencio A, Trotta F. Cyclodextrin-Based Nanosponges as Perse Antimicrobial Agents Increase the Activity of Natural Antimicrobial Peptide Nisin. Pharmaceutics 2022; 14:685. [PMID: 35336058 PMCID: PMC8950107 DOI: 10.3390/pharmaceutics14030685] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
At present, antibiotic resistance is considered a real problem. Therefore, for decades scientists have been looking for novel strategies to treat bacterial infections. Nisin Z, an antimicrobial peptide (AMP), can be considered an option, but its usage is mainly limited by the poor stability and short duration of its antimicrobial activity. In this context, cyclodextrin (CD)-based nanosponges (NSs), synthesized using carbonyldiimidazole (CDI) and pyromellitic dianhydride (PMDA), were chosen for nisin Z loading. To determine the minimum inhibitory of nisin Z loaded on CD-NS formulations, agar well diffusion plates were used. Then, the bactericide concentrations of nisin Z loaded on CD-NS formulations were determined against Gram-positive (Staphylococcus aureus) and -negative (Escherichia coli) bacteria, using microdilution brain heart infusion (BHI) and tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). The minimum and bactericide inhibitory values of the nisin complex with NSs were potentially decreased against both bacteria, compared with the nisin-free sample, while the nisin complex with β-CD showed lower antibacterial activity. The antimicrobial effect was also demonstrated by free NSs. Furthermore, the total viable counts (TVCs) antibacterial experiment indicated that the combination of nisin Z in both PMDA and CDI β-CD-based NSs, especially CDI, can provide a better conservative effect on cooked chicken meat. Generally, the present study outcomes suggest that the cross-linked β-CD-based NSs can present their own antimicrobial potency or serve as promising carriers to deliver and enhance the antibacterial action of nisin Z.
Collapse
Affiliation(s)
- Yousef Khazaei Monfared
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (G.H.); (F.C.)
| | - Mohammad Mahmoudian
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran;
| | - Gjylije Hoti
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (G.H.); (F.C.)
| | - Fabrizio Caldera
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (G.H.); (F.C.)
| | - José Manuel López Nicolás
- Unidad Docente de Biología, Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain;
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Centre, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran
| | - Adrián Matencio
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (G.H.); (F.C.)
| | - Francesco Trotta
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (G.H.); (F.C.)
| |
Collapse
|
44
|
Zheng YB, Dong YQ, Si SY, Zhen YS, Gong JH. IMB5476, a novel microtubule inhibitor, induces mitotic catastrophe and overcomes multidrug resistance in tumors. Eur J Pharmacol 2022; 919:174802. [PMID: 35143830 DOI: 10.1016/j.ejphar.2022.174802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
IMB5046 is a nitrobenzoate microtubule inhibitor we reported previously. During screening of its structural analogues, we identified a novel compound IMB5476 with increased aqueous solubility. Here, its antitumor activity and the underlying mechanism were investigated. IMB5476 disrupted microtubule networks in cells and arrested cell cycle at G2/M phase. It inhibited purified tubulin polymerization in vitro. Competition assay indicated that it bound to tubulin at the colchicine pocket. Further experiments proved that it induced cell death by mitotic catastrophe and apoptosis. Notably, it was a poor substrate of P-glycoprotein and exhibited potent cytotoxicity against drug-resistant tumor cells. In addition, IMB5476 could inhibit angiogenesis in vitro. IMB5476 also inhibited the growth of drug-resistant KBV200 xenografts in mice. Conclusively, our data reveal a novel nitrobenzoate microtubule inhibitor with improved aqueous solubility and can overcome multidrug resistance.
Collapse
Affiliation(s)
- Yan-Bo Zheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yan-Qun Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Yi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong-Su Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Hua Gong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
45
|
Zhao Y, Wang X, Liu Y, Wang HY, Xiang J. The effects of estrogen on targeted cancer therapy drugs. Pharmacol Res 2022; 177:106131. [DOI: 10.1016/j.phrs.2022.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
46
|
Ahmed S, Khan H, Fakhri S, Aschner M, Cheang WS. Therapeutic potential of marine peptides in cervical and ovarian cancers. Mol Cell Biochem 2022; 477:605-619. [PMID: 34855045 DOI: 10.1007/s11010-021-04306-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022]
Abstract
Cervical and ovarian cancers contribute significantly to female morbidity and mortality worldwide. The current standard of treatment, including surgical removal, radiation therapy, and chemotherapy, offers poor outcomes. There are many side effects to traditional chemotherapeutic agents and treatment-resistant types, and often the immune response is depressed. As a result, traditional approaches have evolved to include new alternative remedies, such as natural compounds. Aquatic species provide a rich supply of possible drugs. The potential anti-cancer peptides are less toxic to normal cells and can attenuate multiple drug resistance by providing an efficacious treatment approach. The physiological effects of marine peptides are described in this review focusing on various pathways, such as apoptosis, microtubule balance disturbances, suppression of angiogenesis, cell migration/invasion, and cell viability. The review also highlights the potential role of marine peptides as safe and efficacious therapeutic agent for the treatment of cervical and ovarian cancers.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, 6734667149, Kermanshah, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, China
| |
Collapse
|
47
|
Rozario AM, Duwé S, Elliott C, Hargreaves RB, Moseley GW, Dedecker P, Whelan DR, Bell TDM. Nanoscale characterization of drug-induced microtubule filament dysfunction using super-resolution microscopy. BMC Biol 2021; 19:260. [PMID: 34895240 PMCID: PMC8665533 DOI: 10.1186/s12915-021-01164-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The integrity of microtubule filament networks is essential for the roles in diverse cellular functions, and disruption of its structure or dynamics has been explored as a therapeutic approach to tackle diseases such as cancer. Microtubule-interacting drugs, sometimes referred to as antimitotics, are used in cancer therapy to target and disrupt microtubules. However, due to associated side effects on healthy cells, there is a need to develop safer drug regimens that still retain clinical efficacy. Currently, many questions remain open regarding the extent of effects on cellular physiology of microtubule-interacting drugs at clinically relevant and low doses. Here, we use super-resolution microscopies (single-molecule localization and optical fluctuation based) to reveal the initial microtubule dysfunctions caused by nanomolar concentrations of colcemid. RESULTS We identify previously undetected microtubule (MT) damage caused by clinically relevant doses of colcemid. Short exposure to 30-80 nM colcemid results in aberrant microtubule curvature, with a trend of increased curvature associated to increased doses, and curvatures greater than 2 rad/μm, a value associated with MT breakage. Microtubule fragmentation was detected upon treatment with ≥ 100 nM colcemid. Remarkably, lower doses (< 20 nM after 5 h) led to subtle but significant microtubule architecture remodelling characterized by increased curvature and suppression of microtubule dynamics. CONCLUSIONS Our results support the emerging hypothesis that microtubule-interacting drugs induce non-mitotic effects in cells, and establish a multi-modal imaging assay for detecting and measuring nanoscale microtubule dysfunction. The sub-diffraction visualization of these less severe precursor perturbations compared to the established antimitotic effects of microtubule-interacting drugs offers potential for improved understanding and design of anticancer agents.
Collapse
Affiliation(s)
- Ashley M Rozario
- School of Chemistry, Monash University, Clayton, 3800, Australia
| | - Sam Duwé
- Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Cade Elliott
- School of Chemistry, Monash University, Clayton, 3800, Australia
| | | | - Gregory W Moseley
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, 3800, Australia
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, 3001, Leuven, Belgium
| | - Donna R Whelan
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, 3552, Australia.
| | - Toby D M Bell
- School of Chemistry, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
48
|
Raveendran A, Poilil Surendran S, Ser J, Alam K, Cho H, Jeong YY. Heptamethine Cyanine Dye MHI-148-Mediated Drug Delivery System to Enhance the Anticancer Efficiency of Paclitaxel. Int J Nanomedicine 2021; 16:7169-7180. [PMID: 34707356 PMCID: PMC8545142 DOI: 10.2147/ijn.s325322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction Paclitaxel (PTX) is a conventional chemotherapeutic drug that effectively treats various cancers. The cellular uptake and therapeutic potential of PTX are limited by its slow penetration and low solubility in water. The development of cancer chemotherapy methods is currently facing considerable challenges with respect to the delivery of the drugs, particularly in targeting the tumor site without exerting detrimental effects on the healthy surrounding cells. One possibility for improving the therapeutic potential is through the development of tumor-targeted delivery methods. Methods We successfully synthesized paclitaxel-MHI-148 conjugates (PTX-MHI) by coupling PTX with the tumor-targeting heptamethine cyanine dye MHI-148. Synthesis and purification were characterized using the absorbance spectrum and the results of time-of-flight mass spectrometry. Cellular uptake and cytotoxicity studies were conducted in vitro and in vivo. Results PTX-MHI accumulates in tumor cells but not in normal cells, as observed by in vitro near-infrared fluorescent (NIRF) imaging along with in vivo NIRF imaging and organ biodistribution studies. We observed that MHI-148-conjugated PTX shows greater efficiency in cancer cells than PTX alone, even in the absence of light treatment. PTX-MHI could also be used for specific drug delivery to intracellular compartments, such as the mitochondria and lysosomes of cancer cells, to improve the outcomes of tumor-targeting therapy. Conclusion The results indicated that PTX-MHI-mediated cancer therapy exerts an excellent inhibitory effect on colon carcinoma (HT-29) cell growth with low toxicity in normal fibroblasts (NIH3T3).
Collapse
Affiliation(s)
- Athira Raveendran
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Suchithra Poilil Surendran
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Jinhui Ser
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Khurshed Alam
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hoonsung Cho
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, 58128, Republic of Korea
| |
Collapse
|
49
|
Lu L, Wang Y, Chen J, Li Y, Liang Q, Li F, Zhen C, Xie K. Targeting Mps1 in combination with paclitaxel inhibits osteosarcoma progression by modulating spindle assembly checkpoint and Akt/mTOR signaling. Oncol Lett 2021; 22:797. [PMID: 34584572 PMCID: PMC8461758 DOI: 10.3892/ol.2021.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/29/2021] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents and is characterized by early metastasis and frequent recurrence, which greatly affects patient prognosis and survival rates. However, the treatment of OS, its recurrence and subsequent metastasis is now at a clinical bottleneck. To explore new OS chemotherapeutic targets, investigate new therapeutic strategies and improve patient prognosis and survival rates, the roles of paclitaxel (PTX) and monopolar spindle kinase 1 (Mps1) in OS were investigated using in vivo and in vitro models. Mps1 expression was upregulated in OS samples and associated with patient survival times. Moreover, spindle assembly checkpoint (SAC) activation and upregulation of Akt/mTOR signaling were both positively associated with OS progression. PTX treatment significantly inhibited Mps1 expression, as well as migration of OS cells both in vitro. In addition, the combination of Mps1 knockdown and PTX treatment inhibited OS progression in vivo. Mps1 overexpression inhibited the expression of SAC markers and upregulated Akt and mTOR expression, while Mps1 knockdown had the opposite effect. Cells subjected to combined Mps1 knockdown and PTX treatment exhibited activation of SAC and inhibition of Akt/mTOR signaling compared with Mps1 knockdown or PTX treatment alone. Based on these observations, Mps1 inhibition combined with PTX treatment may represent a potentially effective strategy for the treatment of OS.
Collapse
Affiliation(s)
- Lu Lu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Yuhai Wang
- Academy of Orthopedics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 755000, P.R. China
| | - Jian Chen
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Ye Li
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Qingyang Liang
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Feng Li
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Chuanchuan Zhen
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Kegong Xie
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| |
Collapse
|
50
|
Odell LR, Chau N, Russell CC, Young KA, Gilbert J, Robinson PJ, Sakoff JA, McCluskey A. Pyrimidyn-Based Dynamin Inhibitors as Novel Cytotoxic Agents. ChemMedChem 2021; 17:e202100560. [PMID: 34590434 DOI: 10.1002/cmdc.202100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/28/2021] [Indexed: 11/06/2022]
Abstract
Five focused libraries of pyrimidine-based dynamin GTPase inhibitors, in total 69 compounds were synthesised, and their dynamin inhibition and broad-spectrum cytotoxicity examined. Dynamin plays a crucial role in mitosis, and as such inhibition of dynamin was expected to broadly correlate with the observed cytotoxicity. The pyrimidines synthesised ranged from mono-substituted to trisubstituted. The highest levels of dynamin inhibition were noted with di- and tri- substituted pyrimidines, especially those with pendent amino alkyl chains. Short chains and simple heterocyclic rings reduced dynamin activity. There were three levels of dynamin activity noted: 1-10, 10-25 and 25-60 μM. Screening of these compounds in a panel of cancer cell lines: SW480 (colon), HT29 (colon), SMA (spontaneous murine astrocytoma), MCF-7 (breast), BE2-C (glioblastoma), SJ-G2 (neuroblastoma), MIA (pancreas), A2780 (ovarian), A431 (skin), H460 (lung), U87 (glioblastoma) and DU145 (prostate) cell lines reveal a good correlation between the observed dynamin inhibition and the observed cytotoxicity. The most active analogues (31 a,b) developed returned average GI50 values of 1.0 and 0.78 μM across the twelve cell lines examined. These active analogues were: N2 -(3-dimethylaminopropyl)-N4 -dodecyl-6-methylpyrimidine-2,4-diamine (31 a) and N4 -(3-dimethylaminopropyl)-N2 -dodecyl-6-methylpyrimidine-2,4-diamine (31 b).
Collapse
Affiliation(s)
- Luke R Odell
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Ngoc Chau
- Cell Signalling Unit Children's Medical Research Institute, The University of Sydney, Sydney, 2145 Hawkesbury Road, NSW 2145, Australia
| | - Cecilia C Russell
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Kelly A Young
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Jayne Gilbert
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Edith Street, Waratah, NSW 2298, Australia
| | - Phillip J Robinson
- Cell Signalling Unit Children's Medical Research Institute, The University of Sydney, Sydney, 2145 Hawkesbury Road, NSW 2145, Australia
| | - Jennette A Sakoff
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Edith Street, Waratah, NSW 2298, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| |
Collapse
|