1
|
Al-Mohaimeed AM, El-Tohamy MF, Ali MGH, Habib NM, Abdelwahab NS, Abdelrahman MM, Mahmoud HM, Emam AA. Investigating the stability of a cerebral vasodilator drug using chromatographic methods: Evaluation of methods' practicality and environmental aspects. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1249:124371. [PMID: 39566274 DOI: 10.1016/j.jchromb.2024.124371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
A vinca alkaloid; vinburnine (VNB) is utilized as an effective vasodilator. As a cyclic amide-containing drug, it is likely susceptible to hydrolytic degradation. This study examined the degradation profile of VNB, findings indicated that VNB undergoes degradation solely in the presence of alkali, generating a carboxylic acid derivative (DEG). The present study aimed to design and apply green TLC-densitometric and RP-HPLC assays for concurrently measuring VNB and its degradation product for the first time. TLC-densitometric assay was carried out on silica gel 60 F254 TLC plates and a developing system of ethyl acetate: methanol: triethylamine (6:4:0.05, by volume) and detection at 230 nm. RP-HPLC method depended on a C8 column and a mixture of methanol: water (95:5, v/v). The rate of flow was 1 mL/min and UV detection at 230 nm. The proposed assays were used for prediction of the degradation behavior of VNB under the mentioned conditions and then applied for quantitation of VNB in its commercially available capsules. Four distinct metric approaches; National Environmental Method Index (NEMI), Analytical Eco-Scale, Green Analytical Procedure Index (GAPI), and Blue Applicability Grade Index (BAGI) were utilized to assess the chromatographic method's ecological effect. Findings obtained from the provided methodologies were contrasted statistically with the stated HPLC method using Student's t and F-tests. The analysis revealed that there were no significant differences between them. The established methods were verified in accordance with the recommendations of the International Council for Harmonization (ICH), and all the outcomes were deemed to fall within the permissible limit.
Collapse
Affiliation(s)
- Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Maha F El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Mohamed G H Ali
- Université du Québec, INRS-Centre Armand Frappier Santé et Biotechnologie, 531 Boulevard des Prairies, Laval, QC, Canada
| | - Neven M Habib
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmed Hegazy St., Beni-Suef 62514, Egypt
| | - Nada S Abdelwahab
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmed Hegazy St., Beni-Suef 62514, Egypt
| | - Maha M Abdelrahman
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmed Hegazy St., Beni-Suef 62514, Egypt.
| | - Hamada M Mahmoud
- Zoology Department-Faculty of Sciences, Beni-Suef University, Egypt
| | - Aml A Emam
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmed Hegazy St., Beni-Suef 62514, Egypt
| |
Collapse
|
2
|
Dong ZC, Shi Y, Liu LJ, Feng TT, Zhou Y, Pan BW. Synthesis and pharmacological activity of vinpocetine derivatives. RSC Adv 2024; 14:7981-7991. [PMID: 38454939 PMCID: PMC10918451 DOI: 10.1039/d3ra07325d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Vinpocetine and its derivatives were extensively employed in the treatment of ischemic stroke, serving as effective cerebrovascular vasodilators. They could also be utilized for neuroprotection, anti-inflammatory purposes, anti-aging interventions, insomnia treatment, and antidepressant effects. However, due to issues such as hepatic first-pass effect, low bioavailability, and poor patient compliance with multiple dosing, the secondary development of Vinpocetine to address these limitations became a prominent area of research. Five primary methodologies were employed for the synthesis of Vinpocetine derivatives. These included substitution on the A ring to modify the 14-ester group, alteration of the 16-ethyl group, simplification of the D and E rings, and modification of the conformation of Vinpocetine. This paper summarized the current synthesis and activity studies of Vinpocetine and its derivatives, with the aim of providing a reference for the discovery of more potent derivatives of Vinpocetine.
Collapse
Affiliation(s)
- Zhang Chao Dong
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Yang Shi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Li Juan Liu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Ting Ting Feng
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Bo Wen Pan
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| |
Collapse
|
3
|
Xu JW, Xu X, Ling Y, Wang YC, Huang YJ, Yang JZ, Wang JY, Shen X. Vincamine as an agonist of G-protein-coupled receptor 40 effectively ameliorates diabetic peripheral neuropathy in mice. Acta Pharmacol Sin 2023; 44:2388-2403. [PMID: 37580494 PMCID: PMC10692181 DOI: 10.1038/s41401-023-01135-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 07/09/2023] [Indexed: 08/16/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, which has yet no curable medication. Neuroinflammation and mitochondrial dysfunction are tightly linked to DPN pathology. G-protein-coupled receptor 40 (GPR40) is predominantly expressed in pancreatic β-cells, but also in spinal dorsal horn and dorsal root ganglion (DRG) neurons, regulating neuropathic pain. We previously have reported that vincamine (Vin), a monoterpenoid indole alkaloid extracted from Madagascar periwinkle, is a GPR40 agonist. In this study, we evaluated the therapeutic potential of Vin in ameliorating the DPN-like pathology in diabetic mice. Both STZ-induced type 1 (T1DM) and db/db type 2 diabetic (T2DM) mice were used to establish late-stage DPN model (DPN mice), which were administered Vin (30 mg·kg-1·d-1, i.p.) for 4 weeks. We showed that Vin administration did not lower blood glucose levels, but significantly ameliorated neurological dysfunctions in DPN mice. Vin administration improved the blood flow velocities and blood perfusion areas of foot pads and sciatic nerve tissues in DPN mice. We demonstrated that Vin administration protected against sciatic nerve myelin sheath injury and ameliorated foot skin intraepidermal nerve fiber (IENF) density impairment in DPN mice. Moreover, Vin suppressed NLRP3 inflammasome activation through either β-Arrestin2 or β-Arrestin2/IκBα/NF-κB signaling, improved mitochondrial dysfunction through CaMKKβ/AMPK/SIRT1/PGC-1α signaling and alleviated oxidative stress through Nrf2 signaling in the sciatic nerve tissues of DPN mice and LPS/ATP-treated RSC96 cells. All the above-mentioned beneficial effects of Vin were abolished by GPR40-specific knockdown in dorsal root ganglia and sciatic nerve tissues. Together, these results support that pharmacological activation of GPR40 as a promising therapeutic strategy for DPN and highlight the potential of Vin in the treatment of this disease.
Collapse
Affiliation(s)
- Jia-Wen Xu
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xu Xu
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yun Ling
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan-Chun Wang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu-Jie Huang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan-Zhen Yang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia-Ying Wang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing, 210023, China.
| |
Collapse
|
4
|
Zhao T, Zhou Z, Zhao S, Wan H, Li H, Hou J, Wang J, Qian M, Shen X. Vincamine as an agonist of G protein-coupled receptor 40 effectively ameliorates pulmonary fibrosis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154919. [PMID: 37392673 DOI: 10.1016/j.phymed.2023.154919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/27/2023] [Accepted: 06/04/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is an irreversible and fatal lung disease with limited therapeutic options. G protein-coupled receptor 40 (GPR40) has been developed as a promising therapeutic target for metabolic disorders and functions potently in varied pathological and physiological processes. Vincamine (Vin) is a monoterpenoid indole alkaloid originated from Madagascar periwinkle and was reported as a GPR40 agonist in our previous work. PURPOSE Here, we aimed to clarify the role of GPR40 in PF pathogenesis by using the determined GPR40 agonist Vin as a probe and explore the potential of Vin in ameliorating PF in mice. METHODS Pulmonary GPR40 expression alterations were assessed in both PF patients and bleomycin-induced PF mice (PF mice). Vin was used to evaluate the therapeutic potential of GPR40 activation for PF and the underlying mechanism was intensively investigated by assays against GPR40 knockout (Ffar1-/-) mice and the cells transfected with si-GPR40 in vitro. RESULTS Pulmonary GPR40 expression level was highly downregulated in PF patients and PF mice. Pulmonary GPR40 deletion (Ffar1-/-) exacerbated pulmonary fibrosis as evidenced by the increases in mortality, dysfunctional lung index, activated myofibroblasts and extracellular matrix (ECM) deposition in PF mice. Vin-mediated pulmonary GPR40 activation ameliorated PF-like pathology in mice. Mechanistically, Vin suppressed ECM deposition by GPR40/β-arrestin2/SMAD3 pathway, repressed inflammatory response by GPR40/NF-κB/NLRP3 pathway and inhibited angiogenesis by decreasing GPR40-mediated vascular endothelial growth factor (VEGF) expression in the region of interface to normal parenchyma in pulmonary fibrotic tissues of mice. CONCLUSION Pulmonary GPR40 activation shows promise as a therapeutic strategy for PF and Vin exhibits high potential in treating this disease.
Collapse
Affiliation(s)
- Tong Zhao
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiruo Zhou
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shimei Zhao
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huiqi Wan
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Honglin Li
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiwei Hou
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
| | - Jiaying Wang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 210023, China
| | - Minyi Qian
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 210023, China.
| |
Collapse
|
5
|
Sanz FJ, Solana-Manrique C, Paricio N. Disease-Modifying Effects of Vincamine Supplementation in Drosophila and Human Cell Models of Parkinson's Disease Based on DJ-1 Deficiency. ACS Chem Neurosci 2023. [PMID: 37289979 DOI: 10.1021/acschemneuro.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative disorder caused by the selective loss of dopaminergic neurons in the substantia nigra pars compacta. Current therapies are only symptomatic and are not able to stop or delay its progression. In order to search for new and more effective therapies, our group carried out a high-throughput screening assay, identifying several candidate compounds that are able to improve locomotor ability in DJ-1β mutant flies (a Drosophila model of familial PD) and reduce oxidative stress (OS)-induced lethality in DJ-1-deficient SH-SY5Y human cells. One of them was vincamine (VIN), a natural alkaloid obtained from the leaves of Vinca minor. Our results showed that VIN is able to suppress PD-related phenotypes in both Drosophila and human cell PD models. Specifically, VIN reduced OS levels in PD model flies. Besides, VIN diminished OS-induced lethality by decreasing apoptosis, increased mitochondrial viability, and reduced OS levels in DJ-1-deficient human cells. In addition, our results show that VIN might be exerting its beneficial role, at least partially, by the inhibition of voltage-gated sodium channels. Therefore, we propose that these channels might be a promising target in the search for new compounds to treat PD and that VIN represents a potential therapeutic treatment for the disease.
Collapse
Affiliation(s)
- Francisco José Sanz
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot 46100, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot 46100, Spain
| | - Cristina Solana-Manrique
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot 46100, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot 46100, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de La Salud, Universidad Europea de Valencia, Valencia 46010, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot 46100, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot 46100, Spain
| |
Collapse
|
6
|
Yang HT, Zhou SQ, Chen DM, Hu ZJ, Qiang XQ, Song XQ, Tan S, Jiang WH, Sun YQ, Miao CB. Copper-Catalyzed Annulation of O-Acyl Oximes with Cyclic 1,3-Diones for the Synthesis of 7,8-Dihydroindolizin-5(6 H)-ones and Cyclohexanone-Fused Furans. Org Lett 2023; 25:838-842. [PMID: 36705486 DOI: 10.1021/acs.orglett.3c00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A copper-catalyzed annulation of O-acyl oximes with cyclic 1,3-diones has been developed for the concise synthesis of 7,8-dihydroindolizin-5(6H)-ones and cyclohexanone-fused furans through the substituent-controlled selective radical coupling process. 2-Alkyl cyclic 1,3-diones undergo C-C radical coupling, while 2-unsubstituted cyclic 1,3-diones undergo C-O radical coupling.
Collapse
Affiliation(s)
- Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Su-Qing Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Dan-Mei Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Zi-Jun Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xiao-Qi Qiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xiao-Qing Song
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Sheng Tan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wei-Hua Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Yong-Qiang Sun
- Changzhou Siyao Pharmaceuticals Co., Ltd., Changzhou, Jiangsu 213018, P. R. China
| | - Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
7
|
Hu W, Yan G, Ding Q, Cai J, Zhang Z, Zhao Z, Lei H, Zhu YZ. Update of Indoles: Promising molecules for ameliorating metabolic diseases. Biomed Pharmacother 2022; 150:112957. [PMID: 35462330 DOI: 10.1016/j.biopha.2022.112957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Obesity and metabolic disorders have gradually become public health-threatening problems. The metabolic disorder is a cluster of complex metabolic abnormalities which are featured by dysfunction in glucose and lipid metabolism, and results from the increasing prevalence of visceral obesity. With the core driving factor of insulin resistance, metabolic disorder mainly includes type 2 diabetes mellitus (T2DM), micro and macro-vascular diseases, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and the dysfunction of gut microbiota. Strategies and therapeutic attention are demanded to decrease the high risk of metabolic diseases, from lifestyle changes to drug treatment, especially herbal medicines. Indole is a parent substance of numerous bioactive compounds, and itself can be produced by tryptophan catabolism to stimulate glucagon-like peptide-1 (GLP-1) secretion and inhibit the development of obesity. In addition, in heterocycles drug discovery, the indole scaffold is primarily found in natural compounds with versatile biological activity and plays a prominent role in drug molecules synthesis. In recent decades, plenty of natural or synthesized indole deriviatives have been investigated and elucidated to exert effects on regulating glucose hemeostasis and lipd metabolism. The aim of this review is to trace and emphasize the compounds containing indole scaffold that possess immense potency on preventing metabolic disorders, particularly T2DM, obesity and NAFLD, along with the underlying molecular mechanisms, therefore facilitate a better comprehension of their druggability and application in metabolic diseases.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Guanyu Yan
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Zhongyi Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Heping Lei
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China; Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Patel JP, Spiller SE, Barker ED. Drug penetration in pediatric brain tumors: Challenges and opportunities. Pediatr Blood Cancer 2021; 68:e28983. [PMID: 33719183 DOI: 10.1002/pbc.28983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/23/2022]
Abstract
Larger clinical trial enrollments and a greater understanding of biological heterogeneity have led to improved survival rates for children diagnosed with brain tumors in the last 50 years. However, reducing long-term morbidities and improving survival rates of high-risk tumors remain major challenges. Chemotherapy can reduce tumor burden, but effective drug penetration at the tumor site is limited by barriers in the route of drug administration and within the tumor microenvironment. Bioavailability of drugs is impeded by the blood-brain barrier, plasma protein binding, and structural components by the tumor including the matrix and vasculature contributing to increased interstitial fluid pressure, hypoxia, and acidity. Designing drug delivery systems to circumvent these barriers could lead to improved drug penetration at the tumor site and reduce adverse systemic side effects. In this review, we expand on how systemic and local barriers limit drug penetration and present potential methods to enhance drug penetration in pediatric brain tumors.
Collapse
Affiliation(s)
- Jenny P Patel
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee at Knoxville, Knoxville, Tennessee
| | - Susan E Spiller
- Pediatric Hematology/Oncology, East Tennessee Children's Hospital, Knoxville, Tennessee
| | - Elizabeth D Barker
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee at Knoxville, Knoxville, Tennessee
| |
Collapse
|
9
|
Abdelwhab NS, Emam AA, Habib NM, Mahmoud HM, Abdelrahman MM. Evaluation of vinburnine in pharmaceuticals by smart spectrophotometric methods; full stability study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119209. [PMID: 33234476 DOI: 10.1016/j.saa.2020.119209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Vinburnine (VNB) is a vinca alkaloid used as a vasodilator to enhance cerebral circulatory insufficiency. It is a cyclic amide containing drug which is expected to be sensitive to hydrolytic degradation. The degradation profile of VNB was studied in this work following ICH recommendations for stability study. The drug was sensitive only to degradation with NaOH with the formation of the carboxylic acid derivative, identified by IR and 1H NMR analyses as 2-((1S,12bS)-1-ethyl-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a] quinolizin-1-yl) acetic acid, (DEG). In this study five simple, smart and univariate stability indicating spectrophotometric methods were developed and validated for simultaneous determination of VNB and DEG for the first time. The developed methods include; Dual Wavelength Method (DWM), Dual Wavelength Resolution Method (DWRM), Factorized Absorbance Difference Method (FADM), Advanced Absorbance Subtraction Method (AASM), and Derivative Amplitude Factor Method (DAFM). These methods were capable of determination of VNB and DEG over the ranges of 1-30 and 3-50 µg/mL, respectively. The proposed methods were simple, smart, specific, and could be applied for analyzing synthetic mixtures of VNB and DEG and were successfully applied for determination of the drug in commercially available capsules. The obtained results of these methods were statistically compared with the reported HPLC one using student's-t and F- tests, where no significant difference was observed. Validation of the developed methods was applied according to ICH recommendations and all the results were within the acceptable limits.
Collapse
Affiliation(s)
- Nada S Abdelwhab
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmed Hegazy St., Beni-Suef 62514, Egypt
| | - Aml A Emam
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmed Hegazy St., Beni-Suef 62514, Egypt
| | - Neven M Habib
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmed Hegazy St., Beni-Suef 62514, Egypt
| | - Hamada M Mahmoud
- Zoology Department-Faculty of Sciences, Beni-Suef University, Egypt
| | - Maha M Abdelrahman
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmed Hegazy St., Beni-Suef 62514, Egypt
| |
Collapse
|
10
|
Al-Rashed S, Baker A, Ahmad SS, Syed A, Bahkali AH, Elgorban AM, Khan MS. Vincamine, a safe natural alkaloid, represents a novel anticancer agent. Bioorg Chem 2021; 107:104626. [PMID: 33450545 DOI: 10.1016/j.bioorg.2021.104626] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 02/09/2023]
Abstract
Vincamine, a well-known plant alkaloid, has been used as a dietary supplement and as a peripheral vasodilator to combat aging in humans. In this study, for the very first time, we demonstrated that vincamine can function as an anticancer agent in a human alveolar basal epithelial cell line A549 (IC50 = 309.7 μM). The anticancer potential of vincamine in A549 cells was assessed by molecular assays to determine cell viability, generation of intracellular ROS, nuclear condensation, caspase-3 activity and inhibition, and change in mitochondrial membrane potential (ΔΨm). In silico studies predicted that the anti-proliferative potential of vincamine is enhanced by its interaction with the apoptotic protein caspase-3, and that this interaction is driven by two hydrogen bonds and has a high free energy of binding (-5.64 kcal/mol) with an estimated association constant (Ka) of 73.67 μM. We found that vincamine stimulated caspase-3-dependent apoptosis and lowered mitochondrial membrane potential, which ultimately led to cytochrome C release. Vincamine was also found to quench hydroxyl free radicals and deplete iron ions in cancer cells. As a dietary supplement, vincamine is almost non-toxic in BEAS-2B and 3T3-L1 cells. Therefore, we propose that vincamine represents a safe anticancer agent in lung cancer cells. Its role in other cancers has yet to be explored.
Collapse
Affiliation(s)
- Sarah Al-Rashed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow 226026, India
| | - Syed Sayeed Ahmad
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow 226026, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow 226026, India; Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
11
|
Design, synthesis and biological evaluation of vincamine derivatives as potential pancreatic β-cells protective agents for the treatment of type 2 diabetes mellitus. Eur J Med Chem 2019; 188:111976. [PMID: 31918073 DOI: 10.1016/j.ejmech.2019.111976] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/06/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
A series of vincamine derivatives were designed, synthesized and evaluated as pancreatic β-cells protective agents for type 2 diabetes mellitus. Most of the compounds displayed potent pancreatic β-cells protective activities and five derivatives were found to exhibit 20-50-fold higher activities than vincamine. Especially for compounds Vin-C01 and Vin-F03, exhibited a remarkable EC50 value of 0.22 μM and 0.27 μM, respectively. Their pancreatic β-cells protective activities increased approximately 2 times than vincamine. In cell viability assay, compounds Vin-C01 and Vin-F03 could effectively promote β-cell survival and protect β-cells from STZ-induced apoptosis. Further cellular mechanism of action studies demonstrated that their potent β-cells protective activities were achieved by regulating IRS2/PI3K/Akt signaling pathway. The present study evidently showed that compounds Vin-C01 and Vin-F03 were two more potent pancreatic β-cells protective agents compared to vincamine and might serve as promising lead candidates for the treatment of type 2 diabetes mellitus.
Collapse
|
12
|
Vinpocetine inhibits RANKL-induced osteoclastogenesis and attenuates ovariectomy-induced bone loss. Biomed Pharmacother 2019; 123:109769. [PMID: 31846839 DOI: 10.1016/j.biopha.2019.109769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022] Open
Abstract
Osteoporosis is a result of impaired bone formation and/or excessive bone resorption. Osteoclasts are the only cells in the body that have a bone resorption function. Inhibiting osteoclast activity and differentiation is a way to treat osteoporosis. The current pharmacological treatment for osteoporosis has many shortcomings, and more effective treatments are needed. Vinpocetine (Vinp), a derivative of the alkaloid vincamine, has been used to treat cerebrovascular disorders and cognitive impairment for a long time. Vinp inhibits mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB)-dependent inflammatory responses and oxidative damage in which osteoclasts are often involved. However, the effects of Vinp on the regulation of osteoclast activity remain unknown. In this study, we found that Vinp significantly inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclast and F-actin formation and decreased osteoclastic bone resorption in vitro. Vinp also suppressed the expression of osteoclast-specific genes, including NFATc1, c-Fos, tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinase-9 (MMP-9), and cathepsin K (CTSK) at both the mRNA and protein levels. Vinp reduced activation of NF-κB, MAPK, and AKT signaling during osteoclastogenesis and prevented the production of reactive oxygen species with increased nuclear factor erythroid 2-related factor 2, heme oxygenase 1, and NAD(P)H:quinone acceptor oxidoreductase 1 expression. Animal experiments consistently demonstrated that Vinp treatment significantly attenuated ovariectomy-induced bone loss with a decrease in the osteoclast number and decreases in serum levels of RANKL, TRAP, interleukin-1β, and tumor necrosis factor-alpha, as well as increased serum levels of osteoprotegerin. Taken together, our findings reveal that Vinp may be a potential pharmacological choice for preventing and treating osteoporosis.
Collapse
|
13
|
Involvement of Nrf2/HO-1 antioxidant signaling and NF-κB inflammatory response in the potential protective effects of vincamine against methotrexate-induced nephrotoxicity in rats: cross talk between nephrotoxicity and neurotoxicity. Arch Toxicol 2019; 93:1417-1431. [DOI: 10.1007/s00204-019-02429-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/04/2019] [Indexed: 10/26/2022]
|
14
|
Du T, Yang L, Xu X, Shi X, Xu X, Lu J, Lv J, Huang X, Chen J, Wang H, Ye J, Hu L, Shen X. Vincamine as a GPR40 agonist improves glucose homeostasis in type 2 diabetic mice. J Endocrinol 2019; 240:195-214. [PMID: 30400036 DOI: 10.1530/joe-18-0432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
Abstract
Vincamine, a monoterpenoid indole alkaloid extracted from the Madagascar periwinkle, is clinically used for the treatment of cardio-cerebrovascular diseases, while also treated as a dietary supplement with nootropic function. Given the neuronal protection of vincamine and the potency of β-cell amelioration in treating type 2 diabetes mellitus (T2DM), we investigated the potential of vincamine in protecting β-cells and ameliorating glucose homeostasis in vitro and in vivo. Interestingly, we found that vincamine could protect INS-832/13 cells function by regulating G-protein-coupled receptor 40 (GPR40)/cAMP/Ca2+/IRS2/PI3K/Akt signaling pathway, while increasing glucose-stimulated insulin secretion (GSIS) by modulating GPR40/cAMP/Ca2+/CaMKII pathway, which reveals a novel mechanism underlying GPR40-mediated cell protection and GSIS in INS-832/13 cells. Moreover, administration of vincamine effectively ameliorated glucose homeostasis in either HFD/STZ or db/db type 2 diabetic mice. To our knowledge, our current work might be the first report on vincamine targeting GPR40 and its potential in the treatment of T2DM.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/prevention & control
- Glucose/metabolism
- Homeostasis/drug effects
- Insulin Secretion/drug effects
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Male
- Mice
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Vasodilator Agents/pharmacology
- Vincamine/pharmacology
Collapse
Affiliation(s)
- Te Du
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Liu Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Xu Xu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaofan Shi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Lu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianlu Lv
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Huang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Heyao Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Jiming Ye
- School of Health and Biomedical Sciences, RMIT University, Victoria, Australia
| | - Lihong Hu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xu Shen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Kim NJ, Baek JH, Lee J, Kim H, Song JK, Chun KH. A PDE1 inhibitor reduces adipogenesis in mice via regulation of lipolysis and adipogenic cell signaling. Exp Mol Med 2019; 51:1-15. [PMID: 30635550 PMCID: PMC6329698 DOI: 10.1038/s12276-018-0198-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 09/03/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
Vinpocetine, a phosphodiesterase (PDE) type-1 inhibitor, increases cAMP and cGMP levels and is currently used for the management of cerebrovascular disorders, such as stroke, cerebral hemorrhage, and cognitive dysfunctions. In this study, we first determined that vinpocetine effectively suppressed adipogenesis and lipid accumulation. However, we questioned which molecular mechanism is involved because the role of PDE in adipogenesis is still controversial. Vinpocetine decreased adipogenic cell signaling, including the phosphorylation of ERK, AKT, JAK2, and STAT3, and adipokine secretion, including IL-6, IL-10, and IFN-α. Interestingly, vinpocetine increased the phosphorylation of HSL, suggesting the induction of the lipolysis pathway. Moreover, vinpocetine increased UCP1 expression via increasing cAMP and PKA phosphorylation. The administration of vinpocetine with a normal-chow diet (NFD) or a high-fat diet (HFD) in mice attenuated body weight gain in mice fed both the NFD and HFD. These effects were larger in the HFD-fed mice, without a difference in food intake. Vinpocetine drastically decreased fat weight and adipocyte cell sizes in gonadal and inguinal white adipose tissues and in the liver in both diet groups. Serum triacylglycerol levels and fasting blood glucose levels were reduced by vinpocetine treatment. This study suggested that vinpocetine prevents adipocyte differentiation through the inhibition of adipogenesis-associated cell signaling in the early stages of adipogenesis. Moreover, upregulating cAMP levels leads to an increase in lipolysis and UCP1 expression and then inhibits lipid accumulation. Therefore, we suggest that vinpocetine could be an effective agent for treating obesity, as well as improving cognition and cardiovascular function in older individuals. A compound extracted from the periwinkle plant can limit the over-production of fat cells and may be a useful agent for treating obesity. Being overweight is the result of changes in the size and number of fat cells, or adipocytes, in the body. Scientists are searching for molecules that can limit the growth and replication of adipocytes, but many anti-obesity agents found to date have unpleasant side-effects. Kyung-Hee Chun at Yonsei University in Seoul, South Korea and co-workers examined the effects of 502 naturally occuring compounds on adipocyte differentiation in cell culture. One compound called vincamine, which is safely used to treat vascular diseases in the brain, decreased cell signaling pathways involved in adipocyte generation in mice and also lowered fasting blood glucose levels.
Collapse
Affiliation(s)
- Nam-Jun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Jung-Hwan Baek
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - JinAh Lee
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - HyeNa Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.,Tumor Microenvironment Research Branch, Division of Cancer Biology, National Cancer Center, Goyang, Republic of Korea
| | - Jun-Kyu Song
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea. .,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Zafirlukast and vincamine ameliorate tamoxifen-induced oxidative stress and inflammation: Role of the JNK/ERK pathway. Life Sci 2018; 202:78-88. [DOI: 10.1016/j.lfs.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 12/19/2022]
|
17
|
Mustufa MA, Ozen C, Hashmi IA, Aslam A, Baig JA, Yildiz G, Muhammad S, Solangi IB, Ul Hasan Naqvi N, Ozturk M, Ali FI. Synthesis and bio-molecular study of (+)-N-Acetyl-α-amino acid dehydroabietylamine derivative for the selective therapy of hepatocellular carcinoma. BMC Cancer 2016; 16:883. [PMID: 27842576 PMCID: PMC5109647 DOI: 10.1186/s12885-016-2942-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022] Open
Abstract
Background The purpose of present work is to synthesize novel (+)-Dehydroabietylamine derivatives (DAAD) using N-acetyl-α-amino acid conjugates and determine its cytotoxic effects on hepatocellular carcinoma cells. Methods An analytical study was conducted to explore cytotoxic activity of DAAD on hepatocellular carcinoma cell lines. The cytotoxicity effect was recorded using sulforhodamine B technique. Cell cycle analysis was performed using Propidium Iodide (PI) staining. Based on cell morphology, anti growth activity and microarray findings of DAAD2 treatment, Comet assay, Annexin V/PI staining, Immunoperoxidase assay and western blots were performed accoringly. Results Hep3B cells were found to be the most sensitive with IC50 of 2.00 ± 0.4 μM against (+)-N-(N-Acetyl-L-Cysteine)-dehydroabietylamine as DAAD2. In compliance to time dependent morphological changes of low cellular confluence, detachment and rounding of DAAD2 treated cells; noticeable changes in G2/M phase were recorded may be leading to cell cycle cessation. Up-regulation (5folds) of TUBA1A gene in Hep3B cells was determined in microarray experiments. Apoptotic mode of cell death was evaluated using standardized staining procedures including comet assay and annexin V/PI staining, Immuno-peroxidase assay. Using western blotting technique, caspase dependant apoptotic mode of cell death was recorded against Hep3B cell line. Conclusion It is concluded that a novel DAAD2 with IC50 values less than 8 μM can induce massive cell attenuation following caspase dependent apoptotic cell death in Hep3B cells. Moreover, the corelation study indicated that DAAD2 may have vital influence on cell prolifration properties. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2942-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muhammad Ayaz Mustufa
- 5th Floor, PHRC Specialized Research Centre on Child Health, National Institute of Child Health, Karachi, 75500, Pakistan. .,Baqai Institute of Pharmaceutical Sciences (BIPS), Baqai Medical University, Karachi, 74600, Pakistan. .,Department of Molecular, Biology and Genetics, BilGen Genetics and Biotechnology Center, Bilkent University, Ankara, 06800, Turkey.
| | - Cigdem Ozen
- Izmir International Biomedicine and Genome Institute, iBG-izmir, Dokuz Eylül University, 35340, Balcova, Izmir, Turkey
| | - Imran Ali Hashmi
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Afshan Aslam
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Jameel Ahmed Baig
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Gokhan Yildiz
- Department of Medical Biology, Erzincan University Faculty of Medicine, Erzincan, 24100, Turkey
| | - Shoaib Muhammad
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Imam Bakhsh Solangi
- Dr. M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Naim Ul Hasan Naqvi
- Baqai Institute of Pharmaceutical Sciences (BIPS), Baqai Medical University, Karachi, 74600, Pakistan
| | - Mehmet Ozturk
- Izmir International Biomedicine and Genome Institute, iBG-izmir, Dokuz Eylül University, 35340, Balcova, Izmir, Turkey
| | - Firdous Imran Ali
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
18
|
Gunasekara DC, Zheng MM, Mojtahed T, Woods JR, Fandy TE, Riofski MV, Glackin CA, Hassan HE, Kirshner J, Colby DA. 15-Methylene-Eburnamonine Kills Leukemic Stem Cells and Reduces Engraftment in a Humanized Bone Marrow Xenograft Mouse Model of Leukemia. ChemMedChem 2016; 11:2392-2397. [PMID: 27677525 DOI: 10.1002/cmdc.201600334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Indexed: 12/18/2022]
Abstract
Recent studies suggest that leukemia stem cells (LSCs) play a critical role in the initiation, propagation, and relapse of leukemia. Herein we show that (-)-15-methylene-eburnamonine, a derivative of the alkaloid (-)-eburnamonine, is cytotoxic against acute and chronic lymphocytic leukemias (ALL and CLL) and acute myelogenous leukemia (AML). The agent also decreases primary LSC frequency in vitro. The cytotoxic effects appear to be mediated via the oxidative stress pathways. Furthermore, we show that the compound kills AML, ALL, and CLL stem cells. By the use of a novel humanized bone marrow murine model of leukemia (huBM/NSG), it was found to decrease progenitor cell engraftment.
Collapse
Affiliation(s)
- Dilini C Gunasekara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Mary M Zheng
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Tara Mojtahed
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - James R Woods
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Tamer E Fandy
- Department of Pharmaceutical Sciences, Albany College of Pharmacy, Colchester, VT, USA
| | - Mark V Riofski
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Carlotta A Glackin
- Division of Neurosciences, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Hazem E Hassan
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA.,Department of Pharmaceutics and Industrial Pharmacy, Helwan University, Cairo, Egypt
| | | | - David A Colby
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| |
Collapse
|
19
|
The Effect of Vinpocetine on Human Cytochrome P450 Isoenzymes by Using a Cocktail Method. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5017135. [PMID: 27006677 PMCID: PMC4783567 DOI: 10.1155/2016/5017135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/21/2016] [Accepted: 01/31/2016] [Indexed: 11/30/2022]
Abstract
Vinpocetine is a derivative of the alkaloid vincamine, which had been prescribed for chronic cerebral vascular ischemia and acute ischemic stroke or used as a dietary supplement for its several different mechanisms of biological activities. However, information on the cytochrome P450 (CYP) enzyme-mediated drug metabolism has not been previously studied. The present study was performed to investigate the effects of vinpocetine on CYPs activity, and cocktail method was used, respectively. To evaluate the effects of vinpocetine on the activity of human CYP3A4, CYP2C9, CYP2C19, CYP2D6, and CYP2E1, human liver microsomes were utilized to incubate with the mixed CYPs probe substrates and the target components. The results indicate that vinpocetine exhibited weak inhibitory effect on the CYP2C9, where the IC50 value is 68.96 μM, whereas the IC50 values for CYP3A4, CYP2C19, CYP2D6, and CYP2E1 were all over range of 100 μM, which showed that vinpocetine had no apparent inhibitory effects on these CYPs. In conclusion, the results indicated that drugs metabolized by CYP2C9 coadministrated with vinpocetine may require attention or dose adjustment.
Collapse
|