1
|
Barranco MM, Zecchinati F, Perdomo VG, Habib MJ, Rico MJ, Rozados VR, Salazar M, Fusini ME, Scharovsky OG, Villanueva SSM, Mainetti LE, García F. Intestinal ABC transporters: Influence on the metronomic cyclophosphamide-induced toxic effect in an obese mouse mammary cancer model. Toxicol Appl Pharmacol 2024; 492:117130. [PMID: 39426530 DOI: 10.1016/j.taap.2024.117130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Metronomic chemotherapy (MCT) is a cancer therapeutic approach characterized by low dose drug chronic administration and limited or null toxicity. Obesity-induced metabolic alterations worsen cancer prognosis and influence the intestinal biochemical barrier, altering the Multidrug resistance-associated protein 2 (Mrp2) and Multidrug resistance protein-1 (Mdr-1), efflux pumps that transport chemotherapeutic drugs. Obesity and cancer are frequent co-morbidities; thus, our aim was to evaluate the effectiveness and toxicity of MCT with cyclophosphamide (Cy) in obese mice with metabolic alterations bearing a mammary adenocarcinoma. Simultaneously, the expression and activities of intestinal Mrp2 and Mdr-1 were assessed. CBi male mice, were fed with chow diet (C) or diet with 40 % of fat (HFD). After 16 weeks, metabolic alterations were confirmed by biochemical and morphological parameters. At that time-point, HFD group showed decreased expressions of Mrp2 mRNA (53 %) as well as Mdr-1a and Mdr-1b (42 % and 59 %, respectively), compared to C (P < 0.05). This result correlated with decreased intestinal Mrp2 and Mdr-1 efflux activities (64 % and 45 %, respectively), compared to C (P < 0.05). Ultimately, mice were challenged with M-406 mammary adenocarcinoma; when the tumor was palpable, mice were distributed into 4 groups. The % inhibition of tumor growth with Cy (30 mg/kg/day) in C + Cy was higher than that of HFD + Cy (P = 0.052). Besides, it was observed a 21 % diminution in body weight and leukopenia in the HFD + Cy group. Conclusion: Obesity-induced metabolic alterations impair intestinal Mrp2 and Mdr-1 functions, bringing about increments in Cy absorption, leading to toxicity; in addition, the antitumor effectiveness of MCT decreased in obese animals.
Collapse
MESH Headings
- Animals
- Cyclophosphamide/toxicity
- Mice
- Obesity/metabolism
- Male
- Female
- Administration, Metronomic
- Multidrug Resistance-Associated Protein 2
- Antineoplastic Agents, Alkylating/toxicity
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/chemically induced
- Mice, Obese
- Multidrug Resistance-Associated Proteins/metabolism
- Multidrug Resistance-Associated Proteins/genetics
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Adenocarcinoma/pathology
- Adenocarcinoma/drug therapy
- Adenocarcinoma/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP-Binding Cassette Transporters/metabolism
- ATP-Binding Cassette Transporters/genetics
- Diet, High-Fat
Collapse
Affiliation(s)
- María Manuela Barranco
- Laboratorio de Fisiología Metabólica, Facultad de Ciencias Médicas, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina.; CONICET-Rosario. Rosario, Santa Fe, Argentina
| | - Felipe Zecchinati
- CONICET-Rosario. Rosario, Santa Fe, Argentina.; Instituto de Fisiología Experimental-CONICET. Rosario, Santa Fe, Argentina
| | - Virginia Gabriela Perdomo
- CONICET-Rosario. Rosario, Santa Fe, Argentina.; Facultad de Ciencias Bioquímicas y Farmacéuticas-Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina
| | - Martín José Habib
- Laboratorio de Fisiología Metabólica, Facultad de Ciencias Médicas, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina
| | - María José Rico
- CONICET-Rosario. Rosario, Santa Fe, Argentina.; Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina
| | - Viviana Rosa Rozados
- CONICET-Rosario. Rosario, Santa Fe, Argentina.; Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina
| | - Mario Salazar
- CONICET-Rosario. Rosario, Santa Fe, Argentina.; Laboratorio de Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina
| | - Matías Ezequiel Fusini
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina
| | - Olga Graciela Scharovsky
- CONICET-Rosario. Rosario, Santa Fe, Argentina.; Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina.; CIC-UNR, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina
| | | | - Leandro Ernesto Mainetti
- CONICET-Rosario. Rosario, Santa Fe, Argentina.; Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina
| | - Fabiana García
- Laboratorio de Fisiología Metabólica, Facultad de Ciencias Médicas, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina.; CONICET-Rosario. Rosario, Santa Fe, Argentina..
| |
Collapse
|
2
|
Abdelrady YA, Thabet HS, Sayed AM. The future of metronomic chemotherapy: experimental and computational approaches of drug repurposing. Pharmacol Rep 2024:10.1007/s43440-024-00662-w. [PMID: 39432183 DOI: 10.1007/s43440-024-00662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Metronomic chemotherapy (MC), long-term continuous administration of anticancer drugs, is gaining attention as an alternative to the traditional maximum tolerated dose (MTD) chemotherapy. By combining MC with other treatments, the therapeutic efficacy is enhanced while minimizing toxicity. MC employs multiple mechanisms, making it a versatile approach against various cancers. However, drug resistance limits the long-term effectiveness of MC, necessitating ongoing development of anticancer drugs. Traditional drug discovery is lengthy and costly due to processes like target protein identification, virtual screening, lead optimization, and safety and efficacy evaluations. Drug repurposing (DR), which screens FDA-approved drugs for new uses, is emerging as a cost-effective alternative. Both experimental and computational methods, such as protein binding assays, in vitro cytotoxicity tests, structure-based screening, and several types of association analyses (Similarity-Based, Network-Based, and Target Gene), along with retrospective clinical analyses, are employed for virtual screening. This review covers the mechanisms of MC, its application in various cancers, DR strategies, examples of repurposed drugs, and the associated challenges and future directions.
Collapse
Affiliation(s)
- Yousef A Abdelrady
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Hayam S Thabet
- Microbiology Department, Faculty of Veterinary Medicine, Assiut University, Asyut, 71526, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Asyut, 71516, Egypt
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Flausino LE, Ferreira IN, Tuan WJ, Estevez-Diz MDP, Chammas R. Association of COX-inhibitors with cancer patients' survival under chemotherapy and radiotherapy regimens: a real-world data retrospective cohort analysis. Front Oncol 2024; 14:1433497. [PMID: 39346725 PMCID: PMC11427433 DOI: 10.3389/fonc.2024.1433497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction We conducted an extensive, sex-oriented real-world data analysis to explore the impact and safety of non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors (coxibs) on cancer treatment outcomes. This is particularly relevant given the role of the COX-2/PGE2 pathway in tumor cell resistance to chemotherapy and radiotherapy. Methods The study applied a retrospective cohort design utilizing the TriNetX research database consisting of patients receiving cancer treatment in 2008-2022. The treated cohorts included patients who were prescribed with coxibs, aspirin or ibuprofen, while individuals in the control cohort did not receive these medicines during their cancer treatment. A 1:1 propensity score matching technique was used to balance the baseline characteristics in the treated and control cohorts. Then, Cox proportional hazards regression and logistic regression were applied to assess the mortality and morbidity risks among patient cohorts in a 5-year follow-up period. Results Use of coxibs (HR, 0.825; 95% CI 0.792-0.859 in females and HR, 0.884; 95% CI 0.848-0.921 in males) and ibuprofen (HR, 0.924; 95% CI 0.903-0.945 in females and HR, 0.940; 95% CI 0.917-0.963 in males) were associated with improved survival. Female cancer patients receiving aspirin presented increased mortality (HR, 1.078; 95% CI 1.060-1.097), while male cancer patients also had improved survival when receiving aspirin (HR, 0.966; 95% CI 0.951-0.980). Cancer subtype specific analysis suggests coxibs and ibuprofen correlated with survival, though ibuprofen and aspirin increased emergency department visits' risk. Secondary analyses, despite limited by small cohort sizes, suggest that COX inhibition post-cancer diagnosis may benefit patients with specific cancer subtypes. Discussion Selective COX-2 inhibition significantly reduced mortality and emergency department visit rates. Further clinical trials are needed to determine the optimal conditions for indication of coxibs as anti-inflammatory adjuvants in cancer treatment.
Collapse
Affiliation(s)
- Lucas E. Flausino
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Isabella N. Ferreira
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Wen-Jan Tuan
- Department of Family and Community Medicine, and Public Health Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Maria Del Pilar Estevez-Diz
- Division of Clinical Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Mecca M, Picerno S, Cortellino S. The Killer's Web: Interconnection between Inflammation, Epigenetics and Nutrition in Cancer. Int J Mol Sci 2024; 25:2750. [PMID: 38473997 DOI: 10.3390/ijms25052750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammation is a key contributor to both the initiation and progression of tumors, and it can be triggered by genetic instability within tumors, as well as by lifestyle and dietary factors. The inflammatory response plays a critical role in the genetic and epigenetic reprogramming of tumor cells, as well as in the cells that comprise the tumor microenvironment. Cells in the microenvironment acquire a phenotype that promotes immune evasion, progression, and metastasis. We will review the mechanisms and pathways involved in the interaction between tumors, inflammation, and nutrition, the limitations of current therapies, and discuss potential future therapeutic approaches.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Simona Picerno
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Salvatore Cortellino
- Laboratory of Preclinical and Translational Research, Responsible Research Hospital, 86100 Campobasso, CB, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, 80138 Naples, NA, Italy
- S.H.R.O. Italia Foundation ETS, 10060 Candiolo, TO, Italy
| |
Collapse
|
5
|
Rodrigues P, Bangali H, Hammoud A, Mustafa YF, Al-Hetty HRAK, Alkhafaji AT, Deorari MM, Al-Taee MM, Zabibah RS, Alsalamy A. COX 2-inhibitors; a thorough and updated survey into combinational therapies in cancers. Med Oncol 2024; 41:41. [PMID: 38165473 DOI: 10.1007/s12032-023-02256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024]
Abstract
Cyclooxygenase (COX) enzymes are pivotal in inflammation and cancer development. COX-2, in particular, has been implicated in tumor growth, angiogenesis, and immune evasion. Recently, COX-2 inhibitors have arisen as potential therapeutic agents in cancer treatment. In addition, combining COX inhibitors with other treatment modalities has demonstrated the potential to improve therapeutic efficacy. This review aims to investigate the effects of COX inhibition, both alone and in combination with other methods, on signaling pathways and carcinogenesis in various cancers. In this study, a literature search of all major academic databases was conducted (PubMed, Scholar google), including the leading research on the mechanisms of COX-2, COX-2 inhibitors, monotherapy with COX-2 inhibitors, and combining COX-2-inhibitors with chemotherapeutic agents in tumors. The study encompasses preclinical and clinical evidence, highlighting the positive findings and the potential implications for clinical practice. According to preclinical studies, multiple signaling pathways implicated in tumor cell proliferation, survival, invasion, and metastasis can be suppressed by inhibiting COX. In addition, combining COX inhibitors with chemotherapy drugs, targeted therapies, immunotherapies, and miRNA-based approaches has enhanced anti-tumor activity. These results suggest that combination therapy has the potential to overcome resistance mechanisms and improve treatment outcomes. However, caution must be exercised when selecting and administering combination regimens. Not all combinations of COX-2 inhibitors with other drugs result in synergistic effects; some may even have unfavorable interactions. Therefore, personalized approaches that consider the specific characteristics of the cancer and the medications involved are crucial for optimizing therapeutic strategies. In conclusion, as monotherapy or combined with other methods, COX inhibition bears promise in modulating signaling pathways and inhibiting carcinogenesis in various cancers. Additional studies and well-designed clinical trials are required to completely elucidate the efficacy of COX inhibition and combination therapy in enhancing cancer treatment outcomes. This narrative review study provides a detailed summary of COX-2 monotherapy and combination targeted therapy in cancer treatment.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Asir-Abha, Kingdom of Saudi Arabia
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Asir-Abha, Kingdom of Saudi Arabia
| | - Ahmad Hammoud
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russia.
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Mubarak Al-Abdullah, Kuwait.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | | | - Maha Medha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Rahman S Zabibah
- College of Medical Technique, the Islamic University, Najaf, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| |
Collapse
|
6
|
Bravetti G, Falvo P, Talarico G, Orecchioni S, Bertolini F. Metronomic chemotherapy, dampening of immunosuppressive cells, antigen presenting cell activation, and T cells. A quartet against refractoriness and resistance to checkpoint inhibitors. Cancer Lett 2023; 577:216441. [PMID: 37806515 DOI: 10.1016/j.canlet.2023.216441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Chemotherapeutic agents have profound effects on cancer, stroma and immune cells that - in most cases - depend upon the dosage and schedule of administration. Preclinical and clinical studies summarized and discussed in the present review have demonstrated that maximum tolerable dosage (MTD) vs low-dosage, continuous (metronomic) administration of most chemotherapeutics have polarized effects on immune cells. In particular, metronomic schedules might be associated - among others effects - with activation of antigen presenting cells and generation of new T cell clones to enhance the activity of several types of immunotherapies. Ongoing and planned clinical trials in different types of cancer will confirm or dismiss this hypothesis and provide candidate biomarker data for the selection of patients who are likely to benefit from these combinatorial strategies.
Collapse
Affiliation(s)
- Giulia Bravetti
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20137, Milan, Italy; Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Paolo Falvo
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20137, Milan, Italy; Medical University of Vienna, (MUW), Borschkegasse 8A 1090, Wien, Austria
| | - Giovanna Talarico
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20137, Milan, Italy; Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20137, Milan, Italy; Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20137, Milan, Italy; Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy.
| |
Collapse
|
7
|
Bąk U, Krupa A. Challenges and Opportunities for Celecoxib Repurposing. Pharm Res 2023; 40:2329-2345. [PMID: 37552383 PMCID: PMC10661717 DOI: 10.1007/s11095-023-03571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Drug repositioning, also known as drug repurposing, reprofiling, or rediscovery, is considered to be one of the most promising strategies to accelerate the development of new original drug products. Multiple examples of successful rediscovery or therapeutic switching of old molecules that did not show clinical benefits or safety in initial trials encourage the following of the discovery of new therapeutic pathways for them. This review summarizes the efforts that have been made, mostly over the last decade, to identify new therapeutic targets for celecoxib. To achieve this goal, records gathered in MEDLINE PubMed and Scopus databases along with the registry of clinical trials by the US National Library of Medicine at the U.S. National Institutes of Health were explored. Since celecoxib is a non-steroidal anti-inflammatory drug that represents the class of selective COX-2 inhibitors (coxibs), its clinical potential in metronomic cancer therapy, the treatment of mental disorders, or infectious diseases has been discussed. In the end, the perspective of a formulator, facing various challenges related to unfavorable physicochemical properties of celecoxib upon the development of new oral dosage forms, long-acting injectables, and topical formulations, including the latest trends in the pharmaceutical technology, such as the application of mesoporous carriers, biodegradable microparticles, lipid-based nanosystems, or spanlastics, was presented.
Collapse
Affiliation(s)
- Urszula Bąk
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Cracow, Poland
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Cracow, Poland.
| |
Collapse
|
8
|
Thiruchenthooran V, Sánchez-López E, Gliszczyńska A. Perspectives of the Application of Non-Steroidal Anti-Inflammatory Drugs in Cancer Therapy: Attempts to Overcome Their Unfavorable Side Effects. Cancers (Basel) 2023; 15:cancers15020475. [PMID: 36672424 PMCID: PMC9856583 DOI: 10.3390/cancers15020475] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) express anti-tumoral activity mainly by blocking cyclooxygenase-2 involved in the synthesis of prostaglandins. Therefore, in the last few decades, many have attempted to explore the possibilities of applying this group of drugs as effective agents for the inhibition of neoplastic processes. This review summarizes the evidence presented in the literature regarding the anti-tumoral actions of NSAIDs used as monotherapies as well as in combination with conventional chemotherapeutics and natural products. In several clinical trials, it was proven that combinations of NSAIDs and chemotherapeutic drugs (CTDs) were able to obtain suitable results. The combination with phospholipids may resolve the adverse effects of NSAIDs and deliver derivatives with increased antitumor activity, whereas hybrids with terpenoids exhibit superior activity against their parent drugs or physical mixtures. Therefore, the application of NSAIDs in cancer therapy seems to be still an open chapter and requires deep and careful evaluation. The literature's data indicate the possibilities of re-purposing anti-inflammatory drugs currently approved for cancer treatments.
Collapse
Affiliation(s)
- Vaikunthavasan Thiruchenthooran
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
- Correspondence: (E.S.-L.); or (A.G.)
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence: (E.S.-L.); or (A.G.)
| |
Collapse
|
9
|
Cazzaniga ME, Capici S, Cordani N, Cogliati V, Pepe FF, Riva F, Cerrito MG. Metronomic Chemotherapy for Metastatic Breast Cancer Treatment: Clinical and Preclinical Data between Lights and Shadows. J Clin Med 2022; 11:4710. [PMID: 36012949 PMCID: PMC9410269 DOI: 10.3390/jcm11164710] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Metronomic chemotherapy (mCHT), defined as continuous administration of low-dose chemotherapeutic agents with no or short regular treatment-free intervals, was first introduced to the clinic in international guidelines in 2017, and, since then, has become one of the available strategies for the treatment of advanced breast cancer (ABC). Despite recent successes, many unsolved practical and theoretical issues remain to be addressed. The present review aims to identify the "lights and shadows" of mCHT in preclinical and clinical settings. In the preclinical setting, several findings indicate that one of the most noticeable effects of mCHT is on the tumor microenvironment, which, over the last twenty years, has been demonstrated to be pivotal in supporting tumor cell survival and proliferation. On the other hand, the direct effects on tumor cells have been less well-defined. In addition, critical items to be addressed are the lack of definition of an optimal biological dose (OBD), the method of administration of metronomic schedules, and the recognition and validation of predictive biomarkers. In the clinical context-where mCHT has mainly been used in a metastatic setting-low toxicity is the most well-recognised light of mCHT, whereas the type of study design, the absence of randomised trials and uncertainty in terms of doses and drugs remain among the shadows. In conclusion, growing evidence indicates that mCHT is a suitable treatment option for selected metastatic breast cancer (MBC) patients. Moreover, given its multimodal mechanisms of action, its addition to immunological and targeted therapies might represent a promising new approach to the treatment of MBC. More preclinical data are needed in this regard, which can only be obtained through support for translational research as the key link between basic science and patient care.
Collapse
Affiliation(s)
- Marina Elena Cazzaniga
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
- Phase 1 Research Centre, ASST Monza, 20900 Monza, Italy
| | - Serena Capici
- Phase 1 Research Centre, ASST Monza, 20900 Monza, Italy
| | - Nicoletta Cordani
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | | | | | | | | |
Collapse
|
10
|
Malik JA, Ahmed S, Jan B, Bender O, Al Hagbani T, Alqarni A, Anwar S. Drugs repurposed: An advanced step towards the treatment of breast cancer and associated challenges. Biomed Pharmacother 2021; 145:112375. [PMID: 34863612 DOI: 10.1016/j.biopha.2021.112375] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/09/2023] Open
Abstract
Breast cancer (BC) is mostly observed in women and is responsible for huge mortality in women subjects globally. Due to the continued development of drug resistance and other contributing factors, the scientific community needs to look for new alternatives, and drug repurposing is one of the best opportunities. Here we light upon the drug repurposing with a major focus on breast cancer. BC is a division of cancer known as the leading cause of death of 2.3 million women globally, with 685,000 fatalities. This number is steadily rising, necessitating the development of a treatment that can extend survival time. All available treatments for BC are very costly as well as show side effects. This unfulfilled requirement of the anti-cancer drugs ignited an enthusiasm for drug repositioning, which means finding out the anti-cancer use of already marketed drugs for other complications. With the advancement in proteomics, genomics, and computational approaches, the drug repurposing process hastens. So many drugs are repurposed for the BC, including alkylating agents, antimetabolite, anthracyclines, an aromatase inhibitor, mTOR, and many more. The drug resistance in breast cancer is rising, so reviewing how the challenges in breast cancer can be combated with drug repurposing. This paper provides the updated information on all the repurposed drugs candidates for breast cancer with the molecular mechanism responsible for their anti-tumor activity. Additionally, all the challenges that occur during the repurposing of the drugs are discussed.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India; Department of Biomedical engineering, Indian Institute of Technology (IIT), Ropar, Punjab, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Bisma Jan
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
| | - Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Aali Alqarni
- Pharmaceutical Chemistry Department, Pharmacology unit, College of Clinical Pharmacy, Al Baha University, Saudi Arabia
| | - Sirajudheen Anwar
- Pharmacology and Toxicology Department, College of Pharmacy, University of Hail, Hail, Saudi Arabia.
| |
Collapse
|
11
|
Downregulation of MMP-9 Enhances the Anti-Migratory Effect of Cyclophosphamide in MDA-MB-231 and MCF-7 Breast Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms222312783. [PMID: 34884588 PMCID: PMC8657655 DOI: 10.3390/ijms222312783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Metastasis is one of the most urgent issues in breast cancer patients. One of the factors necessary in the migration process is the remodeling of the extracellular matrix (ECM). Metalloproteinases (MMPs) can break down the elements of the ECM, which facilitates cell movement. Many highly aggressive tumors are characterized by high levels of MMPs. In the case of breast cancer, the association between MMP-9 and the migration potential and invasiveness of cells has been demonstrated. In addition, reports indicating increased migration of breast cancer cells after the administration of the commonly used cytostatic cyclophosphamide (CP) are particularly disturbing. Hence, our research aimed to assess the effect of CP treatment on MDA-MB-231 and MCF-7 cells and how this response is influenced by the downregulation of the MMP-9 level. The obtained results suggest that CP causes a decrease in the survival of breast cancer cells of various invasiveness, and the downregulation of MMP-9 enhances this effect, mainly by inducing apoptosis. Moreover, in the group of MMP-9 siRNA-transfected CP-treated cells, a more severe reduction in invasion and migration of cells of both lines was observed, as indicated by the migration and invasion transwell assays and Wound healing assay. Hence, we suggest that CP alone may not result in satisfactory therapeutic effects. On the other hand, the use of combination therapy targeting MMP-9, together with the CP, could improve the effectiveness of the treatment. Additionally, we confirmed a relationship between the levels of MMP-9 and cytokeratin 19 (CK19).
Collapse
|
12
|
Taheri A, Rad A, Sadeghi E, Varshosaz J. Comparison of Efficacy and Peripheral Neuropathy of Solvent-based Paclitaxel with Paclitaxel Poliglumex and NK105: A Systematic Review and Metaanalysis. Curr Pharm Des 2021; 27:2041-2055. [PMID: 32940171 DOI: 10.2174/1381612826666200917145551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
Background and Introduction: Peripheral neuropathy is one of the most common dose-limiting side effects of solvent-based paclitaxel. Paclitaxel poliglumex (PPX) and NK105 were developed to overcome the paclitaxel induced peripheral neuropathy. However, the incidence of peripheral neuropathy induced by PPX and NK105 was reported higher than solvent-based paclitaxel, but evidence remains inconsistent. METHODS The article was reported in accordance with PRISMA Guidelines (Registration number: CRD42021245313). We conducted a meta-analysis to compare the incidence and severity of peripheral neuropathy between solvent-based paclitaxel, PPX and NK105 mono-chemotherapy. RESULTS Results revealed that no significant difference exists between the incidence of all grade peripheral neuropathy among the solvent-based paclitaxel, PPX and NK105 treated groups. While, the incidence of high grade peripheral neuropathy induced by NK105 was lower than two other groups. Moreover, the overall survival was not improved in PPX compared with other groups. However, NK105 demonstrated significant longer overall survival in patients with cancer. CONCLUSION Current evidence suggests more attention should be paid to the paclitaxel poliglumex re-formulation.
Collapse
Affiliation(s)
- Azade Taheri
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Rad
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfan Sadeghi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Su NW, Chen YJ. Metronomic Therapy in Oral Squamous Cell Carcinoma. J Clin Med 2021; 10:jcm10132818. [PMID: 34206730 PMCID: PMC8269021 DOI: 10.3390/jcm10132818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Metronomic therapy is characterized by drug administration in a low-dose, repeated, and regular manner without prolonged drug-free interval. The two main anticancer mechanisms of metronomic therapy are antiangiogenesis and immunomodulation, which have been demonstrated in several delicate in vitro and in vivo experiments. In contrast to the traditional maximum tolerated dose (MTD) dosing of chemotherapy, metronomic therapy possesses comparative efficacy but greatlydecreases the incidence and severity of treatment side-effects. Clinical trials of metronomic anticancer treatment have revealed promising results in a variety cancer types and specific patient populations such as the elderly and pediatric malignancies. Oral cavity squamous cell carcinoma (OCSCC) is an important health issue in many areas around the world. Long-term survival is about 50% in locally advanced disease despite having high-intensity treatment combined surgery, radiotherapy, and chemotherapy. In this article, we review and summarize the essence of metronomic therapy and focus on its applications in OCSCC treatment.
Collapse
Affiliation(s)
- Nai-Wen Su
- Department of Internal Medicine, Division of Hematology and Medical Oncology, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City 10449, Taiwan;
- Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, Taipei City 112021, Taiwan
| | - Yu-Jen Chen
- Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, Taipei City 112021, Taiwan
- Department of Radiation Oncology, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City 25160, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-2-2809-4661
| |
Collapse
|
14
|
de Weger VA, Vermunt MAC, Stuurman FE, Burylo AM, Damoiseaux D, Hendrikx JJMA, Sawicki E, Moes JJ, Huitema ADR, Nuijen B, Rosing H, Mergui-Roelvink M, Beijnen JH, Marchetti S. A Phase 1 Dose-Escalation Study of Low-Dose Metronomic Treatment With Novel Oral Paclitaxel Formulations in Combination With Ritonavir in Patients With Advanced Solid Tumors. Clin Pharmacol Drug Dev 2020; 10:607-621. [PMID: 33021083 DOI: 10.1002/cpdd.880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023]
Abstract
ModraPac001 (MP1) and ModraPac005 (MP5) are novel oral paclitaxel formulations that are coadministered with the cytochrome P450 3A4 inhibitor ritonavir (r), enabling daily low-dose metronomic (LDM) treatment. The primary aim of this study was to determine the safety, pharmacokinetics and maximum tolerated dose (MTD) of MP1/r and MP5/r. The second aim was to establish the recommended phase 2 dose (RP2D) as LDM treatment. This was an open-label phase 1 trial. Patients with advanced solid tumors were enrolled according to a classical 3+3 design. After initial employment of the MP1 capsule, the MP5 tablet was introduced. Safety was assessed using the Common Terminology Criteria for Adverse Events version 4.02. Pharmacokinetic sampling was performed on days 1, 2, 8, and 22 for determination of paclitaxel and ritonavir plasma concentrations. In this study, 37 patients were treated with up to twice-daily 30-mg paclitaxel combined with twice-daily 100-mg ritonavir (MP5/r 30-30/100-100) in 9 dose levels. Dose-limiting toxicities were nausea, (febrile) neutropenia, dehydration and vomiting. At the MTD/RP2D of MP5/r 20-20/100-100, the maximum paclitaxel plasma concentration and area under the concentration-time curve until 24 hours were 34.6 ng/mL (coefficient of variation, 79%) and 255 ng • h/mL (coefficient of variation, 62%), respectively. Stable disease was observed as best response in 15 of 31 evaluable patients. Based on these results, LDM therapy with oral paclitaxel coadministrated with ritonavir was considered feasible and safe. The MTD and RP2D were determined as MP5/r 20-20/100-100. Further clinical development of MP5/r as an LDM concept, including potential combination treatment, is warranted.
Collapse
Affiliation(s)
- Vincent A de Weger
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marit A C Vermunt
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frederik E Stuurman
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Artur M Burylo
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - David Damoiseaux
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeroen J M A Hendrikx
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emilia Sawicki
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Modra Pharmaceuticals BV, Amsterdam, The Netherlands
| | - Johannes J Moes
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marja Mergui-Roelvink
- Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Modra Pharmaceuticals BV, Amsterdam, The Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Serena Marchetti
- Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
15
|
McGrowder DA, Miller FG, Nwokocha CR, Anderson MS, Wilson-Clarke C, Vaz K, Anderson-Jackson L, Brown J. Medicinal Herbs Used in Traditional Management of Breast Cancer: Mechanisms of Action. MEDICINES (BASEL, SWITZERLAND) 2020; 7:E47. [PMID: 32823812 PMCID: PMC7460502 DOI: 10.3390/medicines7080047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
Abstract
Background: Breast cancer is one of the principal causes of death among women and there is a pressing need to develop novel and effective anti-cancer agents. Natural plant products have shown promising results as anti-cancer agents. Their effectiveness is reported as decreased toxicity in usage, along with safety and less recurrent resistances compared with hormonal targeting anti-cancer agents. Methods: A literature search was conducted for all English-language literature published prior to June 2020. The search was conducted using electronic databases, including PubMed, Embase, Web of Science, and Cochrane Library. The search strategy included keywords such as breast cancer, herbs, anti-cancer biologically active components, clinical research, chemotherapy drugs amongst others. Results: The literature provides documented evidence of the chemo-preventative and chemotherapeutic properties of Ginseng, garlic (Allium sativum), Black cohosh (Actaea racemose), Tumeric (Curcuma longa), Camellia sinenis (green tea), Echinacea, Arctium (burdock), Flaxseed (Linum usitatissimum) and Black Cumin (Nigella sativa). Conclusions: The nine herbs displayed anti-cancer properties and their outcomes and mechanisms of action include inhibition of cell proliferation, angiogenesis and apoptosis as well as modulation of key intracellular pathways. However, more clinical trials and cohort human studies should be conducted to provide key evidence of their medical benefits.
Collapse
Affiliation(s)
- Donovan A. McGrowder
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (L.A.-J.); (J.B.)
| | - Fabian G. Miller
- Department of Physical Education, Faculty of Education, The Mico University College, 1A Marescaux Road, Kingston 5, Jamaica;
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica
| | - Chukwuemeka R. Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.R.N.); (C.W.-C.)
| | - Melisa S. Anderson
- School of Allied Health and Wellness, College of Health Sciences, University of Technology, Kingston 7, Jamaica;
| | - Cameil Wilson-Clarke
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.R.N.); (C.W.-C.)
| | - Kurt Vaz
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (L.A.-J.); (J.B.)
| | - Lennox Anderson-Jackson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (L.A.-J.); (J.B.)
| | - Jabari Brown
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (L.A.-J.); (J.B.)
| |
Collapse
|
16
|
Wichmann V, Eigeliene N, Saarenheimo J, Jekunen A. Recent clinical evidence on metronomic dosing in controlled clinical trials: a systematic literature review. Acta Oncol 2020; 59:775-785. [PMID: 32275176 DOI: 10.1080/0284186x.2020.1744719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Metronomic dosing is used to give continuous chemotherapy at low doses. The low doses have minimal side effects and may enable cancer treatment to be remodeled toward the management of chronic disease.Methods: We searched PubMed database to obtain relevant clinical trials studying metronomic chemotherapy (MCT). Our main focus was to find controlled phase II and phase III trials.Results: This systematic review summarizes the results of 91 clinical reports focusing on randomized phase II and phase III clinical studies between 2012 and 2018. During that time, nine randomized phase II and 10 randomized phase III studies were published. In the majority of the studies, MCT was well tolerated, and major side effects were rarely seen. Altogether, 4 phase III studies and 4 randomized phase II studies presented positive results and some clinical benefit.Discussion: Most of the studies did not show significantly improved overall survival or progression-free survival. Typically, the metronomic dosing was explored in a maintenance setup and was added to other agents given within normal high doses, whereas no trial was performed challenging metronomic dosing and best supportive care in later treatment lines. Therefore, there is no definite evidence on the efficacy of single metronomic dosing and firm evidence of metronomic dosing is still missing. There is a need for further confirmation of the usefulness of this approach in clinical practice.
Collapse
Affiliation(s)
- Viktor Wichmann
- Department of Oncology, Vasa Central Hospital, Vaasa, Finland
| | | | - Jatta Saarenheimo
- Department of Pathology, Vasa Central Hospital, Vaasa, Finland
- Department of Biological and Environmental Science, Nano Science Center, University of Jyväskylä, Jyväskylä, Finland
| | - Antti Jekunen
- Department of Oncology, Vasa Central Hospital, Vaasa, Finland
- Department of Oncology and Radiotherapy, University of Turku, Turku, Finland
| |
Collapse
|
17
|
Metronomic chemotherapy for patients with metastatic breast cancer: Review of effectiveness and potential use during pandemics. Cancer Treat Rev 2020; 89:102066. [PMID: 32769038 DOI: 10.1016/j.ctrv.2020.102066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023]
Abstract
Metronomic chemotherapy (M-CT) is defined as dose dense administration of chemotherapy at lower doses than maximum tolerated dose but at shorter free intervals, to obtain a near continuous exposure of cancer cells to those potentially effective drugs. M-CT is a useful strategy to obtain response, overcome resistance and reduce side effects, with low costs. This review will focus on the use of M-CT in advanced breast cancer (ABC). Cytostatic and cytotoxic effect on cancer cells, the anti-angiogenic and the immunomodulatory effects are its main mechanisms of actions. Many clinical trials proved the efficacy and tolerability of different monotherapies and combinations of chemotherapeutic agents administered in metronomic doses and frequencies in ABC. M-CT is a reasonable option for second and later lines of chemotherapy in metastatic breast cancer including those with prior anthracycline or taxane exposure, older patients and patients with comorbidities, and even as first-line in certain groups of patients. The acceptable efficacy and low toxicity of oral metronomic chemotherapy makes it a reasonable option during COVID-19 pandemic as well as in the post-COVID era which is projected to last for some time.
Collapse
|
18
|
Li S, Jiang M, Wang L, Yu S. Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: Recent advancement. Biomed Pharmacother 2020; 129:110389. [PMID: 32540642 DOI: 10.1016/j.biopha.2020.110389] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy with a single chemotherapeutic agent or a combined chemotherapeutic regimen is the clinically standardized treatment for almost all human cancers. Upregulated expression of cyclooxygenase (COX)-2, also known as prostaglandin-endoperoxide synthase (PTGS), is associated with human carcinogenesis and cancer progression and COX-2 inhibitors show antitumor activity in different human cancers. Thus, a combination of chemotherapeutic agents with COX-2 inhibitors has been shown to improve therapeutic effects on human cancers. This review discusses and summarizes recent advances in cancer control and treatment using various antineoplastic drugs combined with COX-2 inhibitors. These combinations showed synergistic antitumor effects. At the gene level, COX-2 inhibitors can reduce inflammatory factors thereby regulating macrophage recruitment for activating the antitumor immune microenvironment; downregulating vascular endothelial growth factor (VEGF) to inhibit tumor angiogenesis; and inhibiting the PI3K/Akt signaling pathway to induce tumor cell apoptosis. In addition, such a combination can reduce toxicity and chemoresistance and enhance radiosensitivity, although COX-2 inhibitors-related cardiotoxicity may potentially affect its use. Further in-depth investigation of these drug combinations is needed to maximize antitumor efficacy and minimize the side effects.
Collapse
Affiliation(s)
- Shuangshuang Li
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Min Jiang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lu Wang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, China.
| | - Shuwen Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, China.
| |
Collapse
|
19
|
Low-dose metronomic chemotherapy as an efficient treatment option in metastatic breast cancer-results of an exploratory case-control study. Breast Cancer Res Treat 2020; 182:389-399. [PMID: 32495001 PMCID: PMC7297707 DOI: 10.1007/s10549-020-05711-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/26/2020] [Indexed: 12/23/2022]
Abstract
Purpose There is growing interest in low-dose metronomic chemotherapy (LDMC) in metastatic breast cancer (MBC). In this retrospective case–control analysis, we compared the efficacy of LDMC and conventional chemotherapy (CCT) in MBC. Methods Each LDMC patient receiving oral cyclophosphamide (CTX) (50 mg daily) and methotrexate (MTX) (2.5 mg every other day) was matched with two controls who received CCT. Age, number of chemotherapy lines and metastatic sites as well as hormone receptor (HR) status were considered as matching criteria. Primary endpoint was disease control rate longer than 24 weeks (DCR). Secondary endpoints were progression-free survival (PFS), duration of response (DoR) and subgroup analyses using the matching criteria. Results 40 cases and 80 controls entered the study. 30.0% patients with LDMC and 22.5% patients with CCT showed DCR (p = 0.380). The median PFS was 12.0 weeks in both groups (p = 0.218) and the median DoR was 31.0 vs. 20.5 weeks (p = 0.383), respectively. Among younger patients, DCR was 40.0% in LDMC vs. 25.0% in the CCT group (p = 0.249). DCR was achieved in 33.3% vs. 26.2% non-heavily pretreated patients (p = 0.568) and in 36.0% vs. 18.0% patients without multiple metastases (p = 0.096), respectively. In the HR-positive group, 30.0% LDMC vs. 28.3% CCT patients showed DCR (p = 1.000). Among triple-negative patients, DCR was achieved in 30.0% LDMC and 5.0% CCT patients (p = 0.095). Conclusions We demonstrated a similar efficacy of LDMC compared to CCT in the treatment of MBC. Thus, LDMC may be a valuable treatment option in selected MBC patients.
Collapse
|
20
|
Tołoczko-Iwaniuk N, Dziemiańczyk-Pakieła D, Nowaszewska BK, Celińska-Janowicz K, Miltyk W. Celecoxib in Cancer Therapy and Prevention - Review. Curr Drug Targets 2020; 20:302-315. [PMID: 30073924 DOI: 10.2174/1389450119666180803121737] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/04/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES It is generally accepted that inflammatory cells found in the tumor microenvironment are involved in the neoplastic process, promoting cell proliferation, survival, and migration. Therefore, administering anti-inflammatory medication in cancer therapy seems to be justified. A potential pathway associated with the aforementioned issue is cyclooxygenase-2 inhibition, particularly as the overexpression of this enzyme has been proven to occur in cancer tissues and is also associated with a poor prognosis in several types of human malignancies. Celecoxib, a COX-2 selective inhibitor, has been utilized for over 20 years, particularly as an anti-inflammatory, analgesic and antipyretic medication. However, to date, its antineoplastic properties have not been sufficiently investigated. In recent years, the number of research studies on the antineoplastic effects of celecoxib has increased considerably. The vast majority of publications refers to preclinical studies attempting to elucidate its mechanisms of action. Clinical trials concerning celecoxib have focused primarily on the treatment of cancers of the colon, breast, lung, prostate, stomach, head and neck, as well as premalignant lesions such as familial adenoma polyposis. In this review article authors attempt to summarise the latest research which has elucidated celecoxib use in the treatment and prevention of cancer. CONCLUSION Both preclinical and clinical studies have demonstrated promising results of the role of celecoxib in the treatment and prevention of cancer - the best outcome was observed in colon, breast, prostate and head and neck cancers. However, more clinical trials providing real evidence-based clinical advances of celecoxib use are needed.
Collapse
Affiliation(s)
- Natalia Tołoczko-Iwaniuk
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Mickiewicza 2D Street, 15-222 Bialystok, Poland
| | - Dorota Dziemiańczyk-Pakieła
- Department of Maxillofacial and Plastic Surgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-404 Bialystok, Poland
| | - Beata Klaudia Nowaszewska
- Department of Maxillofacial and Plastic Surgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-404 Bialystok, Poland
| | - Katarzyna Celińska-Janowicz
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Mickiewicza 2D Street, 15-222 Bialystok, Poland
| | - Wojciech Miltyk
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Mickiewicza 2D Street, 15-222 Bialystok, Poland
| |
Collapse
|
21
|
Heng-Maillard MA, Verschuur A, Aschero A, Dabadie A, Jouve E, Chastagner P, Leblond P, Aerts I, De Luca B, André N. SFCE METRO-01 four-drug metronomic regimen phase II trial for pediatric extracranial tumor. Pediatr Blood Cancer 2019; 66:e27693. [PMID: 30920117 DOI: 10.1002/pbc.27693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/27/2019] [Accepted: 02/12/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To investigate the antitumor activity of a four-drug metronomic chemotherapy (MC) regimen in relapsed/progressing pediatric extracranial solid tumors (EST). The primary objective was clinical benefit (complete response /partial response/stable disease [SD]) after two cycles of therapy (four months). METHODS Patients aged ≥4 to 25 years with progressing EST and adequate organ function were eligible. Treatment consisted of an eight-week cycle of oral celecoxib b.i.d., weekly vinblastine, and oral cyclophosphamide for three weeks alternating with oral methotrexate for three weeks, with a two-week rest. The Kepner-Chang two-stage model was used with 10 patients in the first stage. If primary objective was reached in two or more patients, eight additional patients were included according to four groups: neuroblastoma (NBL), soft-tissue sarcoma (STS), bone sarcoma (BS), and miscellaneous (Misc.). RESULTS Forty-four patients were evaluable. The NBL cohort could be expanded to 18 patients: 4 of 18 patients stabilized with MC treatment for 6 (n = 1) and 12 (n = 3) months. In STS, two of seven patients (metastatic hemangioendothelioma and angiosarcoma) had SD for > 2 cycles. One of nine Misc. (metastatic myoepithelial carcinoma) had SD for one year. All patients with BS had progressive disease. One-year progression-free survival of the whole cohort was 6.8% and one-year overall survival was 55.3%. Grade 3 toxicity occurred in 18 patients and grade 4 in 15 patients. The most frequent toxicity was hematologic, predominantly neutropenia. CONCLUSIONS This MC has no activity in BS and limited though interesting activity in NBL with some patients being stable for > 1 year. It is not possible to conclude activity in STS and Misc.
Collapse
Affiliation(s)
| | - Arnauld Verschuur
- Department of Pediatric Oncology, La Timone Children's Hospital, Marseille, France.,Metronomics Global Health Initiative, Marseille, France
| | - Audrey Aschero
- Department of pediatric imaging, La Timone Children's Hospital, Marseille, France
| | - Alexia Dabadie
- Department of pediatric imaging, La Timone Children's Hospital, Marseille, France
| | | | - Pascal Chastagner
- Department of Pediatric Oncology, Children's Hospital, Nancy, France
| | - Pierre Leblond
- Pediatric Oncology Unit, Oscar Lambret Centre, Lille, France
| | | | - Bénédicte De Luca
- Department of Clinical Pharmacy, AP-HM, La Timone Children's Hospital, Marseille, France
| | - Nicolas André
- Department of Pediatric Oncology, La Timone Children's Hospital, Marseille, France.,Metronomics Global Health Initiative, Marseille, France.,SMARTc Unit, Pharmacokinetics Laboratory, CRCM UMR U1068 CNRS UMR 7258 Aix Marseille Université, Marseille, France
| |
Collapse
|
22
|
Immunological consequences of chemotherapy: Single drugs, combination therapies and nanoparticle-based treatments. J Control Release 2019; 305:130-154. [DOI: 10.1016/j.jconrel.2019.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 02/07/2023]
|
23
|
Abstract
Breast cancer has a high incidence worldwide. The results of substantial studis reveal that inflammation plays an important role in the initiation, development, and aggressiveness of many malignancies. The use of celecoxib, a novel NSAID, is repetitively associated with the reduced risk of the occurrence and progression of a number of types of cancer, particularly breast cancer. This observation is also substantiated by various meta-analyses. Clinical trials have been implemented on integration treatment of celecoxib and shown encouraging results. Celecoxib could be treated as a potential candidate for antitumor agent. There are, nonetheless, some unaddressed questions concerning the precise mechanism underlying the anticancer effect of celecoxib as well as its activity against different types of cancer. In this review, we discuss different mechanisms of anticancer effect of celecoxib as well as preclinical/clinical results signifying this beneficial effect.
Collapse
Affiliation(s)
- Jieqing Li
- Department of Breast Surgery, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China.,Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ;
| | - Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ;
| | - Wei Cao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ; .,Department of Nuclear Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jaydutt V Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ; .,David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA, ;
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ; .,David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA, ;
| |
Collapse
|
24
|
Franssen LE, Nijhof IS, Bjorklund CC, Chiu H, Doorn R, van Velzen J, Emmelot M, van Kessel B, Levin MD, Bos GMJ, Broijl A, Klein SK, Koene HR, Bloem AC, Beeker A, Faber LM, van der Spek E, Raymakers R, Sonneveld P, Zweegman S, Lokhorst HM, Thakurta A, Qian X, Mutis T, van de Donk NWCJ. Lenalidomide combined with low-dose cyclophosphamide and prednisone modulates Ikaros and Aiolos in lymphocytes, resulting in immunostimulatory effects in lenalidomide-refractory multiple myeloma patients. Oncotarget 2018; 9:34009-34021. [PMID: 30338042 PMCID: PMC6188055 DOI: 10.18632/oncotarget.26131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/10/2018] [Indexed: 11/25/2022] Open
Abstract
We recently showed that the outcome of multiple myeloma (MM) patients treated in the REPEAT study (evaluation of lenalidomide combined with low-dose cyclophosphamide and prednisone (REP) in lenalidomide-refractory MM) was markedly better than what has been described with cyclophosphamide-prednisone alone. The outcome with REP was not associated with plasma cell Cereblon expression levels, suggesting that the effect of REP treatment may involve mechanisms independent of plasma cell Cereblon-mediated direct anti-tumor activity. We therefore hypothesized that immunomodulatory effects contribute to the anti-MM activity of REP treatment, rather than plasma cell Cereblon-mediated effects. Consequently, we now characterized the effect of REP treatment on immune cell subsets in peripheral blood samples collected on day 1 and 14 of cycle 1, as well as on day 1 of cycle 2. We observed a significant mid-cycle decrease in the Cereblon substrate proteins Ikaros and Aiolos in diverse lymphocyte subsets, which was paralleled by an increase in T-cell activation. These effects were restored to baseline at day one of the second cycle, one week after lenalidomide interruption. In vitro, lenalidomide enhanced peripheral blood mononuclear cell-mediated killing of both lenalidomide-sensitive and lenalidomide-resistant MM cells in a co-culture system. These results indicate that the Cereblon-mediated immunomodulatory properties of lenalidomide are maintained in lenalidomide-refractory MM patients and may contribute to immune-mediated killing of MM cells. Therefore, combining lenalidomide with other drugs can have potent effects through immunomodulation, even in patients considered to be lenalidomide-refractory.
Collapse
Affiliation(s)
- Laurens E Franssen
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Inger S Nijhof
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Chad C Bjorklund
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA
| | - Hsiling Chiu
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA
| | - Ruud Doorn
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen van Velzen
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten Emmelot
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Berris van Kessel
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Gerard M J Bos
- Department of Hematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Annemiek Broijl
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Saskia K Klein
- Department of Internal Medicine, Meander Medical Center, Amersfoort, The Netherlands
| | - Harry R Koene
- Department of Hematology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Andries C Bloem
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aart Beeker
- Department of Internal Medicine, Spaarne Hospital, Hoofddorp, The Netherlands
| | - Laura M Faber
- Department of Internal Medicine, Rode Kruis Hospital, Beverwijk, The Netherlands
| | - Ellen van der Spek
- Department of Internal Medicine, Rijnstate Hospital, Arnhem, The Netherlands
| | - Reinier Raymakers
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
| | - Pieter Sonneveld
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sonja Zweegman
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Henk M Lokhorst
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Anjan Thakurta
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA
| | - Xiaozhong Qian
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA
| | - Tuna Mutis
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
25
|
Natale G, Bocci G. Does metronomic chemotherapy induce tumor angiogenic dormancy? A review of available preclinical and clinical data. Cancer Lett 2018; 432:28-37. [PMID: 29885517 DOI: 10.1016/j.canlet.2018.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/11/2018] [Accepted: 06/03/2018] [Indexed: 02/08/2023]
Abstract
Tumor dormancy is the ability of cancer cells to survive in a non-proliferating state. This condition can depend on three main mechanisms: cell cycle arrest (quiescence or cell dormancy), immunosurveillance (immunologic dormancy), or lack of functional blood vessels (angiogenic dormancy). In particular, under angiogenic dormancy, cancer cell proliferation is counterbalanced by apoptosis owing to poor vascularization, impeding tumor mass expansion beyond a microscopic size, with an asymptomatic and non-metastatic state. Tumor vasculogenic or non-angiogenic switch is essential to promote escape from tumor dormancy, leading to tumor mass proliferation and metastasis. In avascular lesions angiogenesis process results blocked from the equilibrium between pro- and anti-angiogenic factors, such as vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1), respectively. The angiogenic switch mainly depends on the disruption of this balance, in favor of pro-angiogenic factors, and on the recruitment of circulating endothelial progenitors (CEPs) that promote the formation of new blood vessels. Metronomic chemotherapy, the regular intake of doses able to sustain low but active concentrations of chemotherapeutic drugs during protracted time periods, is an encouraging therapeutic approach that has shown to upregulate anti-angiogenic factors such as TSP-1 and decline pro-angiogenic factors such as VEGF, suppressing the proangiogenic cells such as CEPs. In this perspective, metronomic chemotherapy may be one of the available therapeutic approaches capable to modulate favorably the angiogenic tumor dormancy, but further research is essential to better define this particular characteristic.
Collapse
Affiliation(s)
- Gianfranco Natale
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, and Museo di Anatomia Umana ''Filippo Civinini'', Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
| |
Collapse
|
26
|
Krajnak S, Battista M, Brenner W, Almstedt K, Elger T, Heimes AS, Hasenburg A, Schmidt M. Explorative Analysis of Low-Dose Metronomic Chemotherapy with Cyclophosphamide and Methotrexate in a Cohort of Metastatic Breast Cancer Patients. Breast Care (Basel) 2018; 13:272-276. [PMID: 30319329 DOI: 10.1159/000487629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Low-dose metronomic chemotherapy (LDMC) is increasingly used in metastatic breast cancer (MBC). In this retrospective analysis, we examined the therapeutic effects and side effects of LDMC in a cohort of MBC patients. Methods Patients with MBC were included when LDMC with oral cyclophosphamide (CTX) and methotrexate (MTX) was administered between 2009 and 2015. The primary endpoint was disease control rate (DCR) ≥ 24 weeks after the start of LDMC. Secondary endpoints were duration of progression-free survival (PFS), rates of discontinuation due to side effects, and DCR with regard to subgroups. Results Retrospective data of 35 patients were available for this analysis. 31% patients achieved DCR. The median PFS was 12 weeks. 9% of patients discontinued LDMC due to adverse events. DCR was 37% in the first 2 lines and 25% in further lines of therapy. 22% of patients with multiple metastases and 35% with ≤2 different metastatic sites achieved DCR. DCR was achieved in 33% of hormone receptor(HR)-positive patients and 27% of HR-negative patients. Conclusion The DCR of 31% is in line with the results of previous phase II studies. LDMC was well tolerated. Subgroup analysis was not able to identify a group in which LDMC was more efficient.
Collapse
Affiliation(s)
- Slavomir Krajnak
- Department of Gynecology and Obstetrics, University Medical Center Mainz, Mainz, Germany
| | - Marco Battista
- Department of Gynecology and Obstetrics, University Medical Center Mainz, Mainz, Germany
| | - Walburgis Brenner
- Department of Gynecology and Obstetrics, University Medical Center Mainz, Mainz, Germany
| | - Katrin Almstedt
- Department of Gynecology and Obstetrics, University Medical Center Mainz, Mainz, Germany
| | - Tania Elger
- Department of Gynecology and Obstetrics, University Medical Center Mainz, Mainz, Germany
| | - Anne-Sophie Heimes
- Department of Gynecology and Obstetrics, University Medical Center Mainz, Mainz, Germany
| | - Annette Hasenburg
- Department of Gynecology and Obstetrics, University Medical Center Mainz, Mainz, Germany
| | - Marcus Schmidt
- Department of Gynecology and Obstetrics, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
27
|
Clinical trials in older, less fit populations: an unmet need? Lancet Oncol 2018; 19:271-272. [DOI: 10.1016/s1470-2045(18)30084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/21/2022]
|
28
|
Genistein Exposure Interferes with Pharmacokinetics of Celecoxib in SD Male Rats by UPLC-MS/MS. Biochem Res Int 2018; 2017:6510232. [PMID: 29387488 PMCID: PMC5745716 DOI: 10.1155/2017/6510232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/13/2017] [Accepted: 10/25/2017] [Indexed: 12/29/2022] Open
Abstract
Objective To discuss the effects of genistein on the metabolism of celecoxib in vitro and in vivo. Method In vitro, the effects of genistein on the metabolism of celecoxib were studied using rat and human liver microsomes. In vivo, pharmacokinetics of celecoxib was evaluated in rats with or without genistein. Fifteen Sprague-Dawley (SD) rats were randomized into three groups: celecoxib (A group), celecoxib and 50 mg/kg genistein (B group), and celecoxib and 100 mg/kg genistein (C group). Single dose of 33.3 mg/kg celecoxib was orally administered 30 min after genistein ig. At 0.5, 1, 2, 3, 4, 6, 8, 10, 12, and 24 h after celecoxib administration, 300–400 µl blood samples were collected and the concentration of celecoxib was analyzed by ultrahigh-performance liquid chromatography-tandem mass spectrometry system. Result Genistein showed notable inhibitory effects on three microsomes. It affected pharmacokinetics of celecoxib in vivo experiments. Genistein had dramatically ability to suppress CYP2C9∗1 and ∗3. After pretreatment with genistein, AUC and Cmax of the C group were higher than B group. CLz/F of C group was lower than the B group. Conclusion Genistein inhibits the conversion of celecoxib in vitro and in vivo. So, the dosage of celecoxib should be adjusted if it was used associated with genistein.
Collapse
|
29
|
Gulyas M, Mattsson JSM, Lindgren A, Ek L, Lamberg Lundström K, Behndig A, Holmberg E, Micke P, Bergman B. COX-2 expression and effects of celecoxib in addition to standard chemotherapy in advanced non-small cell lung cancer. Acta Oncol 2018; 57:244-250. [PMID: 29140138 DOI: 10.1080/0284186x.2017.1400685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIM Inhibition of cyclooxygenase-2 (COX-2) is proposed as a treatment option in several cancer types. However, in non-small cell lung cancer (NSCLC), phase III trials have failed to demonstrate a benefit of adding COX-2 inhibitors to standard chemotherapy. The aim of this study was to analyze COX-2 expression in tumor and stromal cells as predictive biomarker for COX-2 inhibition. METHODS In a multicenter phase III trial, 316 patients with advanced NSCLC were randomized to receive celecoxib (400 mg b.i.d.) or placebo up to one year in addition to a two-drug platinum-based chemotherapy combination. In a subset of 122 patients, archived tumor tissue was available for immunohistochemical analysis of COX-2 expression in tumor and stromal cells. For each compartment, COX-2 expression was graded as high or low, based on a product score of extension and intensity of positively stained cells. RESULTS An updated analysis of all 316 patients included in the original trial, and of the 122 patients with available tumor tissue, showed no survival differences between the celecoxib and placebo arms (HR 1.01; 95% CI 0.81-1.27 and HR 1.12; 95% CI 0.78-1.61, respectively). High COX-2 scores in tumor (n = 71) or stromal cells (n = 55) was not associated with a superior survival outcome with celecoxib vs. placebo (HR =0.96, 95% CI 0.60-1.54; and HR =1.51; 95% CI 0.86-2.66), and no significant interaction effect between COX-2 score in tumor or stromal cells and celecoxib effect on survival was detected (p = .48 and .25, respectively). CONCLUSIONS In this subgroup analysis of patients with advanced NSCLC treated within the context of a randomized trial, we could not detect any interaction effect of COX-2 expression in tumor or stromal cells and the outcome of celecoxib treatment in addition to standard chemotherapy.
Collapse
Affiliation(s)
- Miklos Gulyas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Andrea Lindgren
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Allergy Centre, Linkoping, Sweden
| | - Lars Ek
- Pulmonary Medicine, Skane University Hospital, Lund, Sweden
| | | | - Annelie Behndig
- Pulmonary Medicine, Norrland University Hospital, Umeå, Sweden
| | - Erik Holmberg
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bengt Bergman
- Department of Respiratory Medicine, Institute of medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
30
|
Fernandes C, Wanderley CWS, Silva CMS, Muniz HA, Teixeira MA, Souza NRP, Cândido AGF, Falcão RB, Souza MHLP, Almeida PRC, Câmara LMC, Lima-Júnior RCP. Role of regulatory T cells in irinotecan-induced intestinal mucositis. Eur J Pharm Sci 2018; 115:158-166. [PMID: 29307857 DOI: 10.1016/j.ejps.2018.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
Abstract
Intestinal mucositis (IM) is a common side effect of irinotecan-based chemotherapy. The involvement of inflammatory mediators, such as TNF-α, IL1-β, IL-18 and IL-33, has been demonstrated. However, the role of adaptive immune system cells, whose activation is partially regulated by these cytokines, is yet unknown. Thus, we investigated the role of regulatory T cells (Tregs) in irinotecan-induced IM. C57BL/6 mice were injected with saline or irinotecan (75mgkg-1, i.p.), once a day for 4days, and euthanized at day 1, 3, 5 or 7 following the first dose of irinotecan. For Treg depletion, the mice were pretreated with a low single dose of cyclophosphamide (100mgkg-1, i.p). Intestinal lamina propria lymphocytes were harvested and purified by Percoll gradient. Treg and Th17 cells were identified by flow cytometry. Blood leukocyte count was obtained and ileum samples were collected for histopathological analysis and myeloperoxidase assay. IM caused an accumulation of Tregs and Th17 cells over time. Treg depletion exacerbated intestinal damage, diarrhea, neutrophil infiltration and animal mortality, despite a reduction in Th17 cell number. The frequency of other Th cells increased and was positively correlated with neutrophil infiltration. Tregs showed a negative correlation with neutrophils and the frequency of non-regulatory Th cells. In conclusion, Tregs are important in the control of intestinal damage induced by irinotecan, and their depletion showed a deleterious effect on IM. Activation of these cells appears to be a compensatory mechanism for intestinal inflammation.
Collapse
Affiliation(s)
- Camila Fernandes
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil.
| | | | | | - Heitor Amorim Muniz
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - Maraiza Alves Teixeira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | | | | | - Renata Brito Falcão
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | | | | | | | | |
Collapse
|
31
|
Liu Y, Gu F, Liang J, Dai X, Wan C, Hong X, Zhang K, Liu L. The efficacy and toxicity profile of metronomic chemotherapy for metastatic breast cancer: A meta-analysis. PLoS One 2017; 12:e0173693. [PMID: 28296916 PMCID: PMC5351982 DOI: 10.1371/journal.pone.0173693] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/26/2017] [Indexed: 01/27/2023] Open
Abstract
Purpose The current meta-analysis aimed to summarize the available evidence for the efficacy and serious adverse events (AEs) associated with use of metronomic chemotherapy (MCT) in patients with metastatic breast cancer (MBC). Method Electronic databases (PubMed, EMBASE database, Web of Knowledge, and the Cochrane database) were systematically searched for articles related to the use of MCT in MBC patients. Eligible studies included clinical trials of MBC patients treated with MCT that presented sufficient data related to tumor response, progression-free survival (PFS), overall survival (OS), and grade 3/4 AEs. A meta-analysis was performed using a random effects model. Results This meta-analysis consists of 22 clinical trials with 1360 patients. The pooled objective response rate and clinical benefit rate of MCT were 34.1% (95% CI 27.4–41.5) and 55.6% (95% CI 49.2–61.9), respectively. The overall 6-month PFS, 12-month OS, and 24-month OS rates were 56.8% (95% CI 48.3–64.9), 70.3% (95% CI 62.6–76.9), and 40.0% (95% CI 30.6–50.2), respectively. The pooled incidence of grade 3/4 AEs was 29.5% (95% CI 21.1–39.5). There was no statistically significant difference observed in any endpoint between subgroups defined by concomitant anti-cancer therapies or chemotherapy regimens. After excluding one controversial study, we observed a trend showing lower toxicity rates with the use of MCT alone compared to use of MCT with other anti-cancer therapies (P = 0.070). Conclusions Metronomic chemotherapy may be effective for use in patients with metastatic breast cancer. MCT used alone is possibly equally effective and less toxic than combination therapies. Well-designed RCTs are needed to obtain more evidence.
Collapse
Affiliation(s)
- Yangyang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feifei Gu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinyan Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomeng Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Perroud HA, Scharovsky OG, Rozados VR, Alasino CM. Clinical response in patients with ovarian cancer treated with metronomic chemotherapy. Ecancermedicalscience 2017; 11:723. [PMID: 28275392 PMCID: PMC5336390 DOI: 10.3332/ecancer.2017.723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer (OC) is the leading cause of death from gynaecological cancer. It is extremely hard to diagnose in the early stages and around 70% of patients present with advanced disease. Metronomic chemotherapy (MCT) is described as the chronic administration of, generally low, equally spaced, doses of chemotherapeutic drugs with therapeutic efficacy and low toxicity. This is an effective and low-cost way to treat several types of tumours, including ovarian cancer. Here, we present six cases of advanced ovarian cancer treated with MCT with low doses of cyclophosphamide, which showed clinical response and stable disease.
Collapse
Affiliation(s)
- Herman Andrés Perroud
- Experimental Oncology Section, Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario, Rosario 2000, Argentina; National Scientific and Technical Research Council (CONICET), Rosario 2000, Argentina.; Italian Hospital of Rosario, Department of Clinical Oncology, Rosario 2000, Argentina
| | - O Graciela Scharovsky
- Experimental Oncology Section, Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario, Rosario 2000, Argentina; National Scientific and Technical Research Council (CONICET), Rosario 2000, Argentina.; Research Council of the National University of Rosario (CIUNR), Rosario 2000, Argentina
| | - Viviana Rosa Rozados
- Experimental Oncology Section, Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario, Rosario 2000, Argentina
| | - Carlos María Alasino
- Italian Hospital of Rosario, Department of Clinical Oncology, Rosario 2000, Argentina; Institute of Oncology of Rosario, Rosario 2000, Argentina
| |
Collapse
|
33
|
Hida K, Kikuchi H, Maishi N, Hida Y. ATP-binding cassette transporters in tumor endothelial cells and resistance to metronomic chemotherapy. Cancer Lett 2017; 400:305-310. [PMID: 28216371 DOI: 10.1016/j.canlet.2017.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 01/05/2023]
Abstract
Drug resistance is a major problem in anticancer therapy. ATP-binding cassette (ABC) transporters have a role in the multidrug resistance. A new regimen of chemotherapy has been proposed, called "metronomic chemotherapy". Metronomic chemotherapy is the frequent, regular administration of drug doses designed to maintain low, but active, concentrations of chemotherapeutic drugs over prolonged periods of time, without causing serious toxicities. Metronomic chemotherapy regimens were developed to optimize the antitumor efficacy of agents that target the tumor vasculature instead of tumor cells, and to reduce toxicity of antineoplastic drugs [1]. Nevertheless, recent studies revealed that ABC transporters are expressed at a higher level in the endothelium in the tumor. To avoid resistance to metronomic anti-angiogenic chemotherapy, ABC transporter inhibition of tumor endothelial cells may be a promising strategy. In this mini-review, we discuss the possible mechanism of resistance to metronomic chemotherapy from the viewpoint of tumor endothelial cell biology, focusing on ABC transporters.
Collapse
Affiliation(s)
- Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan; Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
34
|
Harper A, Blackwood L. Toxicity of metronomic cyclophosphamide chemotherapy in a UK population of cancer-bearing dogs: a retrospective study. J Small Anim Pract 2017; 58:227-230. [DOI: 10.1111/jsap.12635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/20/2016] [Accepted: 11/30/2016] [Indexed: 11/30/2022]
Affiliation(s)
- A. Harper
- Institute of Veterinary Sciences; University of Liverpool; Liverpool Wirral CH64 7TE UK
| | - L. Blackwood
- Institute of Veterinary Sciences; University of Liverpool; Liverpool Wirral CH64 7TE UK
| |
Collapse
|
35
|
Biziota E, Mavroeidis L, Hatzimichael E, Pappas P. Metronomic chemotherapy: A potent macerator of cancer by inducing angiogenesis suppression and antitumor immune activation. Cancer Lett 2016; 400:243-251. [PMID: 28017892 DOI: 10.1016/j.canlet.2016.12.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
Metronomic chemotherapy is a low dosing treatment strategy that attracts growing scientific and clinical interest. It refers to dense and uninterrupted administration of low doses of chemotherapeutic agents (without prolonged drug free intervals) over extended periods of time. Cancer chemotherapy is conventionally given in cycles of maximum tolerated doses (MTD) with the aim of inducing maximum cancer cell apoptosis. In contrast, the primary target of metronomic chemotherapy is the tumor's neovasculature. This is relevant to the emerging concept that tumors exist in a complex microenvironment of cancer cells, stromal cells and supporting vessels. In addition to its anti-angiogenetic properties, metronomic chemotherapy halts tumor growth by activating anti-tumor immunity, thus decreasing the acquired resistance to conventional chemotherapy. Herein, we present a review of the literature that provides a scientific basis for the merits of chemotherapy when administered on a metronomic schedule.
Collapse
Affiliation(s)
- Eirini Biziota
- Department of Medical Oncology, University Hospital of Evros, Alexandroupolis, 68 100, Greece.
| | - Leonidas Mavroeidis
- Department of Pharmacology, Faculty of Medicine, School of Life Sciences, University of Ioannina, Ioannina, 451 10, Greece.
| | | | - Periklis Pappas
- Department of Pharmacology, Faculty of Medicine, School of Life Sciences, University of Ioannina, Ioannina, 451 10, Greece.
| |
Collapse
|
36
|
Rajasekaran T, Ng QS, Tan DSW, Lim WT, Ang MK, Toh CK, Chowbay B, Kanesvaran R, Tan EH. Metronomic chemotherapy: A relook at its basis and rationale. Cancer Lett 2016; 388:328-333. [PMID: 28003122 DOI: 10.1016/j.canlet.2016.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 11/16/2022]
Abstract
Metronomic administration of chemotherapy has long been recognized as having a different biological effect from maximal tolerated dose (MTD) administration. Preclinical studies have demonstrated these differences quite elegantly and many clinical trials have also demonstrated reproducible activity albeit small, in varied solid malignancies even in patients who were heavily pretreated. However, the concept of metronomic chemotherapy has been plagued by lack of a clear definition resulting in the published literature that is rather varied and confusing. There is a need for a definition that is mechanism(s)-based allowing metronomics to be distinguished from standard MTD concept. With significant advances made in understanding cancer biology and biotechnology, it is now possible to attain that goal. What is needed is both a concerted effort and adequate funding to work towards it. This is the only way for the oncology community to determine how metronomic chemotherapy fits in the overall cancer management schema.
Collapse
Affiliation(s)
| | - Quan-Sing Ng
- Division of Medical Oncology, National Cancer Centre, Singapore.
| | | | - Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre, Singapore.
| | - Mei-Kim Ang
- Division of Medical Oncology, National Cancer Centre, Singapore.
| | - Chee-Keong Toh
- Division of Medical Oncology, National Cancer Centre, Singapore.
| | - Balram Chowbay
- Divsion of Medical Sciences, Laboratory of Clinical Pharmacology, National Cancer Centre, Singapore.
| | | | - Eng-Huat Tan
- Division of Medical Oncology, National Cancer Centre, Singapore.
| |
Collapse
|
37
|
Rosé A, André N, Rozados VR, Mainetti LE, Menacho Márquez M, Rico MJ, Schaiquevich P, Villarroel M, Gregianin L, Graupera JM, García WG, Epelman S, Alasino C, Alonso D, Chantada G, Scharovsky OG. Highlights from the 1st Latin American meeting on metronomic chemotherapy and drug repositioning in oncology, 27-28 May, 2016, Rosario, Argentina. Ecancermedicalscience 2016; 10:672. [PMID: 27610198 PMCID: PMC5014555 DOI: 10.3332/ecancer.2016.672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Indexed: 12/22/2022] Open
Abstract
Following previous metronomic meetings in Marseille (2011), Milano (2014), and Mumbai (2016), the first Latin American metronomic meeting was held in the School of Medical Sciences, National University of Rosario, Rosario, Argentina on 27 and 28 of May, 2016. For the first time, clinicians and researchers with experience in the field of metronomics, coming from different countries in Latin America, had the opportunity of presenting and discussing their work. The talks were organised in three main sessions related to experience in the pre-clinical, and clinical (paediatric and adult) areas. The different presentations demonstrated that the fields of metronomic chemotherapy and repurposing drugs in oncology, known as metronomics, constitute a branch of cancer therapy in permanent evolution, which have strong groups working in Latin America, both in the preclinical and the clinical settings including large, adequately designed randomised studies. It was shown that metronomics offers treatments, which, whether they are combined or not with the standard therapeutic approaches, are not only effective but also minimally toxic, with the consequent improvement of the patient’s quality of life, and inexpensive, a feature very important in low resource clinical settings. The potential use of metronomic chemotherapy was proposed as a cost/effective treatment in low-/middle-income countries, for adjuvant therapy in selected tumours. The fundamental role of the governmental agencies and non-governmental alliances, as the Metronomic Global Health Initiative, in supporting this research with public interest was underlined.
Collapse
Affiliation(s)
- Adriana Rosé
- Hospital de Pediatría 'JP Garrahan', Combate de los Pozos 1800, C 1245 AAM, CABA Argentina
| | - Nicolas André
- Inserm UMR_S 911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, 27 Boulevard Jean Moulin, Faculté de Pharmacie, Aix-Marseille Université; Service d'Hématologie & Oncologie Pédiatrique, AP‑HM, 13005 Marseille, France
| | - Viviana R Rozados
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Santa 3100, 2000 Rosario, Argentina
| | - Leandro E Mainetti
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Santa 3100, 2000 Rosario, Argentina
| | - Mauricio Menacho Márquez
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Santa 3100, 2000 Rosario, Argentina
| | - María José Rico
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Santa 3100, 2000 Rosario, Argentina
| | - Paula Schaiquevich
- Unidad de Farmacocinética Clínica, Hospital de Pediatría 'JP Garrahan', Combate de los Pozos 1800, C 1245 AAM, CABA Argentina
| | - Milena Villarroel
- Av Antonio Varas 360, Santiago, Providencia, Región Metropolitana, Chile
| | - Lauro Gregianin
- Hospital de Clínicas de Porto Alegre, Serviço de Oncologia Pediátrica, Rua Ramiro Barcelos, 2350, Petrópolis, Porto Alegre, RS 90670150, Brazil
| | - Jaume Mora Graupera
- Department of Paediatric Haemato-Oncology, Hospital Sant Joan de Déu, Passeig de Sant Joan de Déu, 2, 08950 Esplugues de Llobregat, Barcelona, Spain
| | - Wendy Gómez García
- Hospital Infantil Dr Robert Reid Cabral, Servicio de Hem-Oncología HIRRC, Ave Abraham Lincoln 2, Casi Esq Ave, Independencia, Santo Domingo, Dominican Republic
| | - Sidnei Epelman
- Paediatric Oncology Department, Santa Marcelina Hospital, R Rio Negro, 48, Itaquaquecetuba, São Paulo, SP 08599-280, Brazil
| | - Carlos Alasino
- Instituto de Oncología de Rosario, Córdoba 2457, S2000KZE Rosario, Argentina
| | - Daniel Alonso
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD Bernal, Buenos Aires, Argentina
| | - Guillermo Chantada
- Instituto de Investigaciones, Hospital de Pediatría 'JP Garrahan', Combate de los Pozos 1800, C 1245 AAM, CABA Argentina
| | - O Graciela Scharovsky
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Santa 3100, 2000 Rosario, Argentina
| |
Collapse
|
38
|
Gao JH, Wen SL, Feng S, Yang WJ, Lu YY, Tong H, Liu R, Tang SH, Huang ZY, Tang YM, Yang JH, Xie HQ, Tang CW. Celecoxib and octreotide synergistically ameliorate portal hypertension via inhibition of angiogenesis in cirrhotic rats. Angiogenesis 2016; 19:501-11. [PMID: 27380212 PMCID: PMC5026725 DOI: 10.1007/s10456-016-9522-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/29/2016] [Indexed: 02/05/2023]
Abstract
Abnormal angiogenesis is critical for portal hypertension in cirrhosis. Except for etiological treatment, no efficient medication or regime has been explored to treat the early stage of cirrhosis when angiogenesis is initiated or overwhelming. In this study, we explored an anti-angiogenesis effort through non-cytotoxic drugs octreotide and celecoxib to treat early stage of cirrhotic portal hypertension in an animal model. Peritoneal injection of thioacetamide (TAA) was employed to induce liver cirrhosis in rats. A combination treatment of celecoxib and octreotide was found to relieve liver fibrosis, portal venous pressure, micro-hepatic arterioportal fistulas, intrahepatic and splanchnic angiogenesis. Celecoxib and octreotide exerted their anti-angiogenesis effect via an axis of cyclooxygenase-2/prostaglandin E2/EP-2/somatostatin receptor-2, which consequently down-regulated phosphorylation of extracellular signal-regulated kinase (p-ERK)–hypoxia-inducible factor-1α (HIF-1α)–vascular endothelial growth factor (VEGF) integrated signaling pathways. In conclusions, combination of celecoxib and octreotide synergistically ameliorated liver fibrosis and portal hypertension of the cirrhotic rats induced by TAA via the inhibition of intrahepatic and extrahepatic angiogenesis. The potential mechanisms behind the regimen may due to the inactivation of p-ERK–HIF-1α–VEGF signaling pathway.
Collapse
Affiliation(s)
- Jin-Hang Gao
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shi-Lei Wen
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, People's Republic of China
| | - Shi Feng
- Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, People's Republic of China
| | - Wen-Juan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yao-Yao Lu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Huan Tong
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Rui Liu
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Shi-Hang Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhi-Yin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ying-Mei Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Jin-Hui Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Cheng-Wei Tang
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China. .,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
39
|
Perroud HA, Alasino CM, Rico MJ, Queralt F, Pezzotto SM, Rozados VR, Scharovsky OG. Quality of life in patients with metastatic breast cancer treated with metronomic chemotherapy. Future Oncol 2016; 12:1233-42. [PMID: 26948919 DOI: 10.2217/fon-2016-0075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The objective of the study was to detect changes in quality of life (QoL) in metastatic breast cancer patients treated with metronomic chemotherapy with daily low doses of cyclophosphamide and celecoxib. MATERIAL & METHODS Patients included in a Phase II trial, treated with metronomic cyclophosphamide and celecoxib were included in the QoL study. Assessment of QoL was carried out every 2 months by the Functional Assessment of Cancer Therapy Breast (FACT-B) questionnaire, Brief Pain Inventory and Eastern Cooperative Oncologic Group scale. Data were analyzed at three time points: baseline (BL); middle of treatment (MT); and end of treatment (ET). RESULTS A total of 20 patients were included. All patients were heavily pretreated. Treatment showed a good and safe therapeutic profile. With FACT-B questionnaire, no significant differences were observed during the response period (BL-MT). However, a significant increase was observed in the Emotional well-being and Additional concerns axes, when the last time point was included in the analysis (BL-MT-ET). A significant decrease in the proportion of patients with pain was found when comparing BL with ET (p = 0.046). The assessment with Eastern Cooperative Oncologic Group scale showed that 26.7% (4/15) of the patients improved their functional status and 40% (6/15) showed no changes, while 33.3% (5/10) worsened it. CONCLUSION Patients treated metronomically for several months did not worsen their QoL. A high proportion of patients showed improvement or no changes and there were less patients with pain at the end of the treatment.
Collapse
Affiliation(s)
- Herman A Perroud
- Experimental Oncology Section, Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario, Rosario, Argentina.,National Scientific & Technological Research Council (CONICET), Rosario, Argentina
| | | | - Maria J Rico
- Experimental Oncology Section, Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario, Rosario, Argentina.,National Scientific & Technological Research Council (CONICET), Rosario, Argentina
| | | | - Stella M Pezzotto
- Institute of Immunology, School of Medical Sciences, National University of Rosario, Rosario, Argentina.,Research Council of the National University of Rosario (CIUNR), Rosario, Argentina
| | - Viviana R Rozados
- Experimental Oncology Section, Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario, Rosario, Argentina
| | - O Graciela Scharovsky
- Experimental Oncology Section, Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario, Rosario, Argentina.,Research Council of the National University of Rosario (CIUNR), Rosario, Argentina
| |
Collapse
|