1
|
Lee SM, Hewish M, Ahmed S, Papadatos-Pastos D, Karapanagiotou E, Blackhall F, Ford A, Young R, Garcia A, Arora A, Hollingdale A, Ahmad T, Forster M, Greystoke A, Bremner F, Rudd R, Farrelly L, Vaja S, Hackshaw A. Hydroxychloroquine in combination with platinum doublet chemotherapy as first-line treatment for extensive-stage small cell lung cancer (Study 15): A randomised phase II multicentre trial. Eur J Cancer 2025; 215:115162. [PMID: 39693892 DOI: 10.1016/j.ejca.2024.115162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Most patients with small-cell lung cancer (SCLC) present with extensive-stage (ES) disease and have a poor prognosis despite achieving high initial response rates to platinum-based doublet chemotherapy. This study evaluated whether adding hydroxychloroquine (HCQ) to chemotherapy could improve outcomes. METHODS This was a randomised multicentre phase II trial. Eligible patients had untreated ES-SCLC, a performance status 0-2 and measurable disease. Patients were randomly assigned (1:1 ratio) to HCQ (400 mg orally twice daily) plus carboplatin-gemcitabine or carboplatin-etoposide alone. Chemotherapy was administered for up to six cycles, with HCQ given concurrently and then as single agent for up to 30 months. Primary endpoint was PFS, aiming for a hazard ratio (HR) of 0.70. RESULTS 72 patients were randomised (36 HCQ+chemotherapy and 36 chemotherapy alone). Median HCQ treatment duration was 4.4 months. HCQ did not improve PFS (HR 1·12 95 %CI 0·69-1.84; p = 0·64), with a median of 5.7 months (HCQ+chemotherapy) versus 6.2 months (chemotherapy). The corresponding median OS were 8.9 and 10.2 months (HR 0.83, 95 %CI 0.48-1.45, p = 0.52). Fewer patients in the HCQ arm completed four cycles of chemotherapy due to adverse events (64 % vs. 81 %). Grade ≥ 3 adverse events were higher in the HCQ+chemotherapy arm (83.3 % vs. 27.8 %), primarily anaemia, neutropenia, and thrombocytopenia, partly due to the initially higher gemcitabine dose used CONCLUSIONS: Combining HCQ with platinum doublet chemotherapy did not improve PFS or OS outcomes for ES-SCLC, resulting in more patients stopping chemotherapy due to increased adverse events. When considered alongside other randomised studies of HCQ in cancer, the evidence collectively indicates a limited role for HCQ as a therapeutic option.
Collapse
Affiliation(s)
- Siow Ming Lee
- University College London Hospitals NHS Foundation Trust, CRUK Lung Cancer Centre of Excellence and UCL Cancer Institute, London, UK; The London Lung Cancer Group, UK; Cancer Research UK & UCL Cancer Trials Centre, UCL, London, UK.
| | | | - Samreen Ahmed
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Dionysis Papadatos-Pastos
- University College London Hospitals NHS Foundation Trust, CRUK Lung Cancer Centre of Excellence and UCL Cancer Institute, London, UK; Princess Alexandra Hospital, Harlow, UK
| | | | | | - Amy Ford
- Royal Lancaster Infirmary/ Furness General Hospital, Lancaster, UK
| | | | | | | | | | - Tanya Ahmad
- University College London Hospitals NHS Foundation Trust, CRUK Lung Cancer Centre of Excellence and UCL Cancer Institute, London, UK
| | - Martin Forster
- University College London Hospitals NHS Foundation Trust, CRUK Lung Cancer Centre of Excellence and UCL Cancer Institute, London, UK
| | | | | | | | - Laura Farrelly
- Cancer Research UK & UCL Cancer Trials Centre, UCL, London, UK
| | - Simran Vaja
- Cancer Research UK & UCL Cancer Trials Centre, UCL, London, UK
| | - Allan Hackshaw
- Cancer Research UK & UCL Cancer Trials Centre, UCL, London, UK
| |
Collapse
|
2
|
Skrzeszewski M, Maciejewska M, Kobza D, Gawrylak A, Kieda C, Waś H. Risk factors of using late-autophagy inhibitors: Aspects to consider when combined with anticancer therapies. Biochem Pharmacol 2024; 225:116277. [PMID: 38740222 DOI: 10.1016/j.bcp.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Cancer resistance to therapy is still an unsolved scientific and clinical problem. In 2022, the hallmarks of cancer have been expanded to include four new features, including cellular senescence. Therapy-induced senescence (TIS) is a stressor-based response to conventional treatment methods, e.g. chemo- and radiotherapy, but also to non-conventional targeted therapies. Since TIS reinforces resistance in cancers, new strategies for sensitizing cancer cells to therapy are being adopted. These include macroautophagy as a potential target for inhibition due to its potential cytoprotective role in many cancers. The mechanism of late-stage autophagy inhibitors is based on blockage of autophagolysosome formation or an increase in lysosomal pH, resulting in disrupted cargo degradation. Such inhibitors are relevant candidates for increasing anticancer therapy effectiveness. In particular, 4-aminoquoline derivatives: chloroquine/hydroxychloroquine (CQ/HCQ) have been tested in multiple clinical trials in combination with senescence-inducing anti-cancer drugs. In this review, we summarize the properties of selected late-autophagy inhibitors and their role in the regulation of autophagy and senescent cell phenotype in vitro and in vivo models of cancer as well as treatment response in clinical trials on oncological patients. Additionally, we point out that, although these compounds increase the effectiveness of treatment in some cases, their practical usage might be hindered due to systemic toxicity, hypoxic environment, dose- ant time-dependent inhibitory effects, as well as a possible contribution to escaping from TIS.
Collapse
Affiliation(s)
- Maciej Skrzeszewski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, Poland
| | - Monika Maciejewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland
| | - Dagmara Kobza
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; School of Chemistry, University of Leeds, Leeds, UK
| | - Aleksandra Gawrylak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Centre for Molecular Biophysics, UPR CNRS 4301, Orléans, France; Department of Molecular and Translational Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Halina Waś
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland.
| |
Collapse
|
3
|
Fatemi N, Karimpour M, Bahrami H, Zali MR, Chaleshi V, Riccio A, Nazemalhosseini-Mojarad E, Totonchi M. Current trends and future prospects of drug repositioning in gastrointestinal oncology. Front Pharmacol 2024; 14:1329244. [PMID: 38239190 PMCID: PMC10794567 DOI: 10.3389/fphar.2023.1329244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Gastrointestinal (GI) cancers comprise a significant number of cancer cases worldwide and contribute to a high percentage of cancer-related deaths. To improve survival rates of GI cancer patients, it is important to find and implement more effective therapeutic strategies with better prognoses and fewer side effects. The development of new drugs can be a lengthy and expensive process, often involving clinical trials that may fail in the early stages. One strategy to address these challenges is drug repurposing (DR). Drug repurposing is a developmental strategy that involves using existing drugs approved for other diseases and leveraging their safety and pharmacological data to explore their potential use in treating different diseases. In this paper, we outline the existing therapeutic strategies and challenges associated with GI cancers and explore DR as a promising alternative approach. We have presented an extensive review of different DR methodologies, research efforts and examples of repurposed drugs within various GI cancer types, such as colorectal, pancreatic and liver cancers. Our aim is to provide a comprehensive overview of employing the DR approach in GI cancers to inform future research endeavors and clinical trials in this field.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Karimpour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoda Bahrami
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
4
|
Gustafson DL, Viola LO, Towers CG, Das S, Duval DL, Van Eaton KM. Sensitivity of osteosarcoma cell lines to autophagy inhibition as determined by pharmacologic and genetic manipulation. Vet Comp Oncol 2023; 21:726-738. [PMID: 37724007 PMCID: PMC11470750 DOI: 10.1111/vco.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/05/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023]
Abstract
Pharmacologic inhibition of autophagy can be achieved using lysosomotropic agents such as hydroxychloroquine (HCQ) that interfere with fusion of the autophagosome to the lysosome thus preventing completion of the recycling process. The goal of the present study is to determine the sensitivity of eight canine (cOSA) and four human (hOSA) osteosarcoma tumour cell lines to antiproliferative and cytotoxic effects of lysosomal autophagy inhibitors, and to compare these results to the autophagy-dependence measured using a CRISPR/Cas9 live-cell imaging assay in OSA and other tumour cell lines. Antiproliferative and cytotoxic response to HCQ and Lys05 was determined using live cell imaging and YOYO-1 staining. CRISPR/Cas9 live cell imaging screen was done using species specific guide RNA's and transfection of reagents into cells. Response to autophagy core genes was compared to response to an essential (PCNA) and non-essential (FOXO3A) gene. cOSA and hOSA cell lines showed similar antiproliferative and cytotoxic responses to HCQ and Lys05 with median lethal dose (Dm ) values ranging from 4.6-15.8 μM and 2.1-5.1 μM for measures of anti-proliferative response, respectively. A relationship was observed between antiproliferative responses to HCQ and Lys05 and VPS34 CRISPR score with Dm values correlating with VPS34 response (r = 0.968 and 0.887) in a species independent manner. The results show that a subset of cOSA and hOSA cell lines are autophagy-dependent and sensitive to HCQ at pharmacologically-relevant exposures.
Collapse
Affiliation(s)
- Daniel L. Gustafson
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Developmental Therapeutics Program, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Lindsey O. Viola
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| | - Christina G. Towers
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Sciences, La Jolla, California, USA
| | - Sunetra Das
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| | - Dawn L. Duval
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Developmental Therapeutics Program, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Kristen M. Van Eaton
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
5
|
Koh Y, Kim H, Joo SY, Song S, Choi YH, Kim HR, Moon B, Byun J, Hong J, Shin DY, Park S, Lee KH, Lee KT, Lee JK, Park D, Lee SH, Jang JY, Lee H, Kim JA, Yoon SS, Park JK. Genetic assessment of pathogenic germline alterations in lysosomal genes among Asian patients with pancreatic ductal adenocarcinoma. J Transl Med 2023; 21:730. [PMID: 37848935 PMCID: PMC10580633 DOI: 10.1186/s12967-023-04549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Lysosomes are closely linked to autophagic activity, which plays a vital role in pancreatic ductal adenocarcinoma (PDAC) biology. The survival of PDAC patients is still poor, and the identification of novel genetic factors for prognosis and treatment is highly required to prevent PDAC-related deaths. This study investigated the germline variants related to lysosomal dysfunction in patients with PDAC and to analyze whether they contribute to the development of PDAC. METHODS The germline putative pathogenic variants (PPV) in genes involved in lysosomal storage disease (LSD) was compared between patients with PDAC (n = 418) and healthy controls (n = 845) using targeted panel and whole-exome sequencing. Furthermore, pancreatic organoids from wild-type and KrasG12D mice were used to evaluate the effect of lysosomal dysfunction on PDAC development. RNA sequencing (RNA-seq) analysis was performed with established PDAC patient-derived organoids (PDOs) according to the PPV status. RESULTS The PPV in LSD-related genes was higher in patients with PDAC than in healthy controls (8.13 vs. 4.26%, Log2 OR = 1.65, P = 3.08 × 10-3). The PPV carriers of LSD-related genes with PDAC were significantly younger than the non-carriers (mean age 61.5 vs. 65.3 years, P = 0.031). We further studied a variant of the lysosomal enzyme, galactosylceramidase (GALC), which was the most frequently detected LSD variant in our cohort. Autophagolysosomal activity was hampered when GALC was downregulated, which was accompanied by paradoxically elevated autophagic flux. Furthermore, the number of proliferating Ki-67+ cells increased significantly in pancreatic organoids derived from Galc knockout KrasG12D mice. Moreover, GALC PPV carriers tended to show drug resistance in both PDAC cell line and PDAC PDO, and RNA-seq analysis revealed that various metabolism and gene repair pathways were upregulated in PDAC PDOs harboring a GALC variant. CONCLUSIONS Genetically defined lysosomal dysfunction is frequently observed in patients with young-onset PDAC. This might contribute to PDAC development by altering metabolism and impairing autophagolysosomal activity, which could be potentially implicated in therapeutic applications for PDAC.
Collapse
Affiliation(s)
- Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyemin Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - So Young Joo
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Seulki Song
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Hoon Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Rae Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byul Moon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jamin Byun
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junshik Hong
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Solip Park
- Structural Biology Department, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Kwang Hyuck Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyu Taek Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Kyun Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Daechan Park
- Department of Molecular Science and Technology, Department of Biological Sciences, Ajou University, Suwon, Republic of Korea
| | - Se-Hoon Lee
- Department of Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin-Young Jang
- Departments of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Hyunsook Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.
| | - Jung-Ae Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea.
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University School of Medicine, Seoul, Republic of Korea.
| | - Joo Kyung Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Wang Y, Fu Y, Lu Y, Chen S, Zhang J, Liu B, Yuan Y. Unravelling the complexity of lncRNAs in autophagy to improve potential cancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188932. [PMID: 37329993 DOI: 10.1016/j.bbcan.2023.188932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Autophagy is well-known as an internal catabolic process that is evolutionarily conserved and performs the key biological function in maintaining cellular homeostasis. It is tightly controlled by several autophagy-related (ATG) proteins, which are closely associated with many types of human cancers. However, what has remained controversial is the janus roles of autophagy in cancer progression. Interestingly, the biological function of long non-coding RNAs (lncRNAs) in autophagy has been gradually understood in different types of human cancers. More recently, numerous studies have demonstrated that several lncRNAs may regulate some ATG proteins and autophagy-related signaling pathways to either activate or inhibit the autophagic process in cancer. Thus, in this review, we summarize the latest advance in the knowledge of the complicated relationships between lncRNAs and autophagy in cancer. Also, the in-depth dissection of the lncRNAs-autophagy-cancers axis involved in this review would shed new light on discovery of more potential cancer biomarkers and therapeutic targets in the future.
Collapse
Affiliation(s)
- Yi Wang
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuqi Fu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yingying Lu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Siwei Chen
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Bo Liu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Yuan
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Chen JL, Wu X, Yin D, Jia XH, Chen X, Gu ZY, Zhu XM. Autophagy inhibitors for cancer therapy: Small molecules and nanomedicines. Pharmacol Ther 2023; 249:108485. [PMID: 37406740 DOI: 10.1016/j.pharmthera.2023.108485] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Autophagy is a conserved process in which the cytosolic materials are degraded and eventually recycled for cellular metabolism to maintain homeostasis. The dichotomous role of autophagy in pathogenesis is complicated. Accumulating reports have suggested that cytoprotective autophagy is responsible for tumor growth and progression. Autophagy inhibitors, such as chloroquine (CQ) and hydroxychloroquine (HCQ), are promising for treating malignancies or overcoming drug resistance in chemotherapy. With the rapid development of nanotechnology, nanomaterials also show autophagy-inhibitory effects or are reported as the carriers delivering autophagy inhibitors. In this review, we summarize the small-molecule compounds and nanomaterials inhibiting autophagic flux as well as the mechanisms involved. The nanocarrier-based drug delivery systems for autophagy inhibitors and their distinct advantages are also described. The progress of autophagy inhibitors for clinical applications is finally introduced, and their future perspectives are discussed.
Collapse
Affiliation(s)
- Jian-Li Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xuan Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Dan Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xiao-Hui Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Ze-Yun Gu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China.
| |
Collapse
|
8
|
Yang J, Liu Y, Liu S. The role of epithelial-mesenchymal transition and autophagy in pancreatic ductal adenocarcinoma invasion. Cell Death Dis 2023; 14:506. [PMID: 37550301 PMCID: PMC10406904 DOI: 10.1038/s41419-023-06032-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Of all pancreatic cancer (PC) cases, approximately 90% are pancreatic ductal adenocarcinoma (PDAC), which progress rapidly due to its high degree of invasiveness and high metastatic potential. Epithelial-mesenchymal transition (EMT) is a prerequisite for cancer cell invasion and spread, and it is mediated by the specific cellular behaviors and the tumor microenvironment. Autophagy has long been a target of cancer therapy, and it has been considered to play a dual and contradictory role, particularly regarding EMT-mediated PDAC invasion. This review discusses the characteristics and the biological role of EMT and autophagy from a cellular perspective, explaining invasion as a survival behavior of PDAC, with the aim of providing novel insights into targeting EMT and autophagy to overcome PDAC invasion.
Collapse
Affiliation(s)
- Jian Yang
- Central Laboratory, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang Province, P.R. China
| | - Ying Liu
- Department of Medical Oncology, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang Province, P.R. China
| | - Shi Liu
- Central Laboratory, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang Province, P.R. China.
| |
Collapse
|
9
|
Mlejnek P. What Is the Significance of Lysosomal-Mediated Resistance to Imatinib? Cells 2023; 12:cells12050709. [PMID: 36899844 PMCID: PMC10000661 DOI: 10.3390/cells12050709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The lysosomal sequestration of hydrophobic weak-base anticancer drugs is one proposed mechanism for the reduced availability of these drugs at target sites, resulting in a marked decrease in cytotoxicity and consequent resistance. While this subject is receiving increasing emphasis, it is so far only in laboratory experiments. Imatinib is a targeted anticancer drug used to treat chronic myeloid leukaemia (CML), gastrointestinal stromal tumours (GISTs), and a number of other malignancies. Its physicochemical properties make it a typical hydrophobic weak-base drug that accumulates in the lysosomes of tumour cells. Further laboratory studies suggest that this might significantly reduce its antitumor efficacy. However, a detailed analysis of published laboratory studies shows that lysosomal accumulation cannot be considered a clearly proven mechanism of resistance to imatinib. Second, more than 20 years of clinical experience with imatinib has revealed a number of resistance mechanisms, none of which is related to its accumulation in lysosomes. This review focuses on the analysis of salient evidence and raises a fundamental question about the significance of lysosomal sequestration of weak-base drugs in general as a possible resistance mechanism both in clinical and laboratory settings.
Collapse
Affiliation(s)
- Petr Mlejnek
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 77515 Olomouc, Czech Republic
| |
Collapse
|
10
|
Chen Y, Meng J, Lu X, Li X, Wang C. Clustering analysis revealed the autophagy classification and potential autophagy regulators' sensitivity of pancreatic cancer based on multi-omics data. Cancer Med 2023; 12:733-746. [PMID: 35684936 PMCID: PMC9844610 DOI: 10.1002/cam4.4932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy and is unresponsive to conventional therapeutic modalities due to its high heterogeneity, expounding the necessity, and priority of searching for effective biomarkers and drugs. Autophagy, as an evolutionarily conserved biological process, is upregulated in PDAC and its regulation is linked to a poor prognosis. Increased autophagy sequestered MHC-I on PDAC cells and weaken the antigen presentation and antitumor immune response, indicating the potential therapeutic strategies of autophagy inhibitors. METHODS By performing 10 state-of-the-art multi-omics clustering algorithms, we constructed a robust PDAC classification model to reveal the autophagy-related genes among different subgroups. OUTCOMES After building a more comprehensive regulating network for potential autophagy regulators exploration, we concluded the top 20 autophagy-related hub genes (GAPDH, MAPK3, RHEB, SQSTM1, EIF2S1, RAB5A, CTSD, MAP1LC3B, RAB7A, RAB11A, FADD, CFKN2A, HSP90AB1, VEGFA, RELA, DDIT3, HSPA5, BCL2L1, BAG3, and ERBB2), six miRNAs, five transcription factors, and five immune infiltrated cells as biomarkers. The drug sensitivity database was screened based on the biomarkers to predict possible drug-targeting signal pathways, hoping to yield novel insights, and promote the progress of the anticancer therapeutic strategy. CONCLUSION We succefully constructed an autophagy-related mRNA/miRNA/TF/Immune cells network based on a 10 state-of art algorithm multi-omics analysis, and screened the drug sensitivity dataset for detecting potential signal pathway which might be possible autophagy modulators' targets.
Collapse
Affiliation(s)
- Yonghao Chen
- Department of GastroenterologyWest China Hospital of Sichuan UniversityChengduSichuanP.R. China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical UniversityHefeiP.R. China
- Institute of UrologyAnhui Medical UniversityHefeiP.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical UniversityHefeiP.R. China
| | - Xiaofan Lu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational PharmacyChina Pharmaceutical UniversityNanjingP.R. China
| | - Xiao Li
- Department of GastroenterologyWest China Hospital of Sichuan UniversityChengduSichuanP.R. China
| | - Chunhui Wang
- Department of GastroenterologyWest China Hospital of Sichuan UniversityChengduSichuanP.R. China
| |
Collapse
|
11
|
Effects of chloroquine and hydroxychloroquine on the sensitivity of pancreatic cancer cells to targeted therapies. Adv Biol Regul 2023; 87:100917. [PMID: 36243652 DOI: 10.1016/j.jbior.2022.100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/20/2022]
Abstract
Approaches to improve pancreatic cancer therapy are essential as this disease has a very bleak outcome. Approximately 80% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). PDAC is a cancer which is difficult to effectively treat as it is often detected late in the disease process. Almost all PDACs (over 90%) have activating mutations in the GTPase gene KRAS. These mutations result in constitutive KRas activation and the mobilization of downstream pathways such as the Raf/MEK/ERK pathway. Small molecule inhibitors of key components of the KRas/Raf/MEK/ERK pathways as well as monoclonal antibodies (MoAbs) specific for upstream growth factor receptors such insulin like growth factor-1 receptor (IGF1-R) and epidermal growth factor receptors (EGFRs) have been developed and have been evaluated in clinical trials. An additional key regulatory gene frequently mutated (∼75%) in PDAC is the TP53 tumor suppressor gene which controls the transcription of multiple genes involved in cell cycle progression, apoptosis, metabolism, cancer progression and other growth regulatory processes. Small molecule mutant TP53 reactivators have been developed which alter the structure of mutant TP53 protein and restore some of its antiproliferative activities. Some mutant TP53 reactivators have been examined in clinical trials with patients with mutant TP53 genes. Inhibitors to the TP53 negative regulator Mouse Double Minute 2 (MDM2) have been developed and analyzed in clinical trials. Chloroquine and hydroxychloroquine are established anti-malarial and anti-inflammatory drugs that also prevent the induction of autophagy which can have effects on cancer survival. Chloroquine and hydroxychloroquine have also been examined in various clinical trials. Recent studies are suggesting effective treatment of PDAC patients may require chemotherapy as well as targeting multiple pathways and biochemical processes.
Collapse
|
12
|
Troumpoukis D, Papadimitropoulou A, Charalampous C, Kogionou P, Palamaris K, Sarantis P, Serafimidis I. Targeting autophagy in pancreatic cancer: The cancer stem cell perspective. Front Oncol 2022; 12:1049436. [PMID: 36505808 PMCID: PMC9730023 DOI: 10.3389/fonc.2022.1049436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer is currently the seventh leading cause of cancer-related deaths worldwide, with the estimated death toll approaching half a million annually. Pancreatic ductal adenocarcinoma (PDAC) is the most common (>90% of cases) and most aggressive form of pancreatic cancer, with extremely poor prognosis and very low survival rates. PDAC is initiated by genetic alterations, usually in the oncogene KRAS and tumor suppressors CDKN2A, TP53 and SMAD4, which in turn affect a number of downstream signaling pathways that regulate important cellular processes. One of the processes critically altered is autophagy, the mechanism by which cells clear away and recycle impaired or dysfunctional organelles, protein aggregates and other unwanted components, in order to achieve homeostasis. Autophagy plays conflicting roles in PDAC and has been shown to act both as a positive effector, promoting the survival of pancreatic tumor-initiating cells, and as a negative effector, increasing cytotoxicity in uncontrollably expanding cells. Recent findings have highlighted the importance of cancer stem cells in PDAC initiation, progression and metastasis. Pancreatic cancer stem cells (PaCSCs) comprise a small subpopulation of the pancreatic tumor, characterized by cellular plasticity and the ability to self-renew, and autophagy has been recognised as a key process in PaCSC maintenance and function, simultaneously suggesting new strategies to achieve their selective elimination. In this review we evaluate recent literature that links autophagy with PaCSCs and PDAC, focusing our discussion on the therapeutic implications of pharmacologically targeting autophagy in PaCSCs, as a means to treat PDAC.
Collapse
Affiliation(s)
- Dimitrios Troumpoukis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Chrysanthi Charalampous
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Paraskevi Kogionou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Kostas Palamaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Serafimidis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece,*Correspondence: Ioannis Serafimidis,
| |
Collapse
|
13
|
Yao J, Ma C, Feng K, Tan G, Wen Q. Focusing on the Role of Natural Products in Overcoming Cancer Drug Resistance: An Autophagy-Based Perspective. Biomolecules 2022; 12:1565. [PMID: 36358919 PMCID: PMC9687214 DOI: 10.3390/biom12111565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 10/15/2023] Open
Abstract
Autophagy is a critical cellular adaptive response in tumor formation. Nutritional deficiency and hypoxia exacerbate autophagic flux in established malignancies, promoting tumor cell proliferation, migration, metastasis, and resistance to therapeutic interventions. Pro-survival autophagy inhibition may be a promising treatment option for advanced cancer. Furthermore, excessive or persistent autophagy is cytotoxic, resulting in tumor cell death. Targeted autophagy activation has also shown significant promise in the fight against tumor drug resistance. Several research groups have examined the ability of natural products (NPs) such as alkaloids, terpenoids, polyphenols, and anthraquinones to serve as autophagy inhibitors or activators. The data support the capacity of NPs that promote lethal autophagy or inhibit pro-survival autophagy from being employed against tumor drug resistance. This paper discusses the potential applications of NPs that regulate autophagy in the fight against tumor drug resistance, some limitations of the current studies, and future research needs and priorities.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Chi Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Kaixuan Feng
- Department of Anesthesiology, The Affiliated Xinhua Hospital of Dalian University, Dalian 116021, China
| | - Guang Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
14
|
Novel 7-Chloro-(4-thioalkylquinoline) Derivatives: Synthesis and Antiproliferative Activity through Inducing Apoptosis and DNA/RNA Damage. Pharmaceuticals (Basel) 2022; 15:ph15101234. [PMID: 36297346 PMCID: PMC9607427 DOI: 10.3390/ph15101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
A series of 78 synthetic 7-chloro-(4-thioalkylquinoline) derivatives were investigated for cytotoxic activity against eight human cancer as well as 4 non-tumor cell lines. The results showed, with some exceptions, that sulfanyl 5-40 and sulfinyl 41-62 derivatives exhibited lower cytotoxicity for cancer cell lines than those of well-described sulfonyl N-oxide derivatives 63-82. As for compound 81, the most pronounced selectivity (compared against BJ and MRC-5 cells) was observed for human cancer cells from HCT116 (human colorectal cancer with wild-type p53) and HCT116p53-/- (human colorectal cancer with deleted p53), as well as leukemia cell lines (CCRF-CEM, CEM-DNR, K562, and K562-TAX), lung (A549), and osteosarcoma cells (U2OS). A good selectivity was also detected for compounds 73 and 74 for leukemic and colorectal (with and without p53 deletion) cancer cells (compared to MRC-5). At higher concentrations (5 × IC50) against the CCRF-CEM cancer cell line, we observe the accumulation of the cells in the G0/G1 cell phase, inhibition of DNA and RNA synthesis, and induction of apoptosis. In addition, X-ray data for compound 15 is being reported. These results provide useful scientific data for the development of 4-thioalkylquinoline derivatives as a new class of anticancer candidates.
Collapse
|
15
|
Sanati M, Binabaj MM, Ahmadi SS, Aminyavari S, Javid H, Mollazadeh H, Bibak B, Mohtashami E, Jamialahmadi T, Afshari AR, Sahebkar A. Recent advances in glioblastoma multiforme therapy: A focus on autophagy regulation. Biomed Pharmacother 2022; 155:113740. [PMID: 36166963 DOI: 10.1016/j.biopha.2022.113740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
Despite conventional treatment options including chemoradiation, patients with the most aggressive primary brain tumor, glioblastoma multiforme (GBM), experience an average survival time of less than 15 months. Regarding the malignant nature of GBM, extensive research and discovery of novel treatments are urgently required to improve the patients' prognosis. Autophagy, a crucial physiological pathway for the degradation and recycling of cell components, is one of the exciting targets of GBM studies. Interventions aimed at autophagy activation or inhibition have been explored as potential GBM therapeutics. This review, which delves into therapeutic techniques to block or activate autophagy in preclinical and clinical research, aims to expand our understanding of available therapies battling GBM.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seyed Sajad Ahmadi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Ding H, Wang G, Yu Z, Sun H, Wang L. Role of interferon-gamma (IFN-γ) and IFN-γ receptor 1/2 (IFNγR1/2) in regulation of immunity, infection, and cancer development: IFN-γ-dependent or independent pathway. Biomed Pharmacother 2022; 155:113683. [PMID: 36095965 DOI: 10.1016/j.biopha.2022.113683] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022] Open
Abstract
IFN-γ, a soluble cytokine being produced by T lymphocytes, macrophages, mucosal epithelial cells, or natural killer cells, is able to bind to the IFN-γ receptor (IFNγR) and in turn activate the Janus kinase (JAK)-signal transducer and transcription protein (STAT) pathway and induce expression of IFN-γ-stimulated genes. IFN-γ is critical for innate and adaptive immunity and aberrant IFN-γ expression and functions have been associated with different human diseases. However, the IFN-γ/IFNγR signaling could be a double-edged sword in cancer development because the tissue microenvironments could determine its anti- or pro-tumorigenic activities. The IFNγR protein consists of two IFNγR1 and IFNγR2 chains, subunits of which play different roles under certain conditions. This review assessed IFNγR polymorphisms, expression and functions in development and progression of various human diseases in an IFN-γ-dependent or independent manner. This review also discussed tumor microenvironment, microbial infection, and vital molecules in the IFN-γ upstream signaling that might regulate IFNγR expression, drug resistance, and druggable strategy, to provide evidence for further application of IFNγR.
Collapse
Affiliation(s)
- Huihui Ding
- School of Pharmacy, Shandong First Medical University, Jinan, Shandong, China.
| | - Gongfu Wang
- Center for Drug Evaluation, China Food and Drug Administration (CFDA), Beijing, China.
| | - Zhen Yu
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Huimin Sun
- School of Pharmacy, Shandong First Medical University, Jinan, Shandong, China.
| | - Lu Wang
- School of Pharmacy, Shandong First Medical University, Jinan, Shandong, China; Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
17
|
Yamamoto K, Iwadate D, Kato H, Nakai Y, Tateishi K, Fujishiro M. Targeting autophagy as a therapeutic strategy against pancreatic cancer. J Gastroenterol 2022; 57:603-618. [PMID: 35727403 PMCID: PMC9392712 DOI: 10.1007/s00535-022-01889-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023]
Abstract
Macroautophagy (hereafter autophagy) is a catabolic process through which cytosolic components are captured in the autophagosome and degraded in the lysosome. Autophagy plays two major roles: nutrient recycling under starvation or stress conditions and maintenance of cellular homeostasis by removing the damaged organelles or protein aggregates. In established cancer cells, autophagy-mediated nutrient recycling promotes tumor progression, whereas in normal/premalignant cells, autophagy suppresses tumor initiation by eliminating the oncogenic/harmful molecules. Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is refractory to most currently available treatment modalities, including immune checkpoint blockade and molecular-targeted therapy. One prominent feature of PDAC is its constitutively active and elevated autophagy-lysosome function, which enables PDAC to thrive in its nutrient-scarce tumor microenvironment. In addition to metabolic support, autophagy promotes PDAC progression in a metabolism-independent manner by conferring resistance to therapeutic treatment or facilitating immune evasion. Besides to cell-autonomous autophagy in cancer cells, host autophagy (autophagy in non-cancer cells) supports PDAC progression, further highlighting autophagy as a promising therapeutic target in PDAC. Based on a growing list of compelling preclinical evidence, there are numerous ongoing clinical trials targeting the autophagy-lysosome pathway in PDAC. Given the multifaceted and context-dependent roles of autophagy in both cancer cells and normal host cells, a deeper understanding of the mechanisms underlying the tumor-promoting roles of autophagy as well as of the consequences of autophagy inhibition is necessary for the development of autophagy inhibition-based therapies against PDAC.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Dosuke Iwadate
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroyuki Kato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
18
|
Taucher E, Mykoliuk I, Fediuk M, Smolle-Juettner FM. Autophagy, Oxidative Stress and Cancer Development. Cancers (Basel) 2022; 14:cancers14071637. [PMID: 35406408 PMCID: PMC8996905 DOI: 10.3390/cancers14071637] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Autophagy, as an important cellular repair mechanism, is important for the prevention of several diseases, including metabolic and neurologic disorders, and cancer. Hence, dysfunctional autophagy has been linked to these diseases, and in recent years researchers have tried to outline therapeutic targets in autophagy-related pathways as a treatment. With this review of the literature, we want to give an overview about the connection between oxidative stress, autophagy and cancer. Abstract Autophagy is an important cellular repair mechanism, aiming at sequestering misfolded and dysfunctional proteins and damaged cell organelles. Dysfunctions in the autophagy process have been linked to several diseases, like infectious and neurodegenerative diseases, type II diabetes mellitus and cancer. Living organisms are constantly subjected to some degree of oxidative stress, mainly induced by reactive oxygen and nitrogen species. It has been shown that autophagy is readily induced by reactive oxygen species (ROS) upon nutrient deprivation. In recent years, research has increasingly focused on outlining novel therapeutic targets related to the autophagy process. With this review of the literature, we want to give an overview about the link between autophagy, oxidative stress and carcinogenesis.
Collapse
Affiliation(s)
- Elisabeth Taucher
- Division of Pulmonology, Department of Internal Medicine, Medical University Graz, 8036 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-12183
| | - Iurii Mykoliuk
- Division of Thoracic Surgery, Department of Surgery, Medical University Graz, 8036 Graz, Austria; (I.M.); (M.F.); (F.-M.S.-J.)
| | - Melanie Fediuk
- Division of Thoracic Surgery, Department of Surgery, Medical University Graz, 8036 Graz, Austria; (I.M.); (M.F.); (F.-M.S.-J.)
| | - Freyja-Maria Smolle-Juettner
- Division of Thoracic Surgery, Department of Surgery, Medical University Graz, 8036 Graz, Austria; (I.M.); (M.F.); (F.-M.S.-J.)
| |
Collapse
|
19
|
Mohsen S, Sobash PT, Algwaiz GF, Nasef N, Al-Zeidaneen SA, Karim NA. Autophagy Agents in Clinical Trials for Cancer Therapy: A Brief Review. Curr Oncol 2022; 29:1695-1708. [PMID: 35323341 PMCID: PMC8946974 DOI: 10.3390/curroncol29030141] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022] Open
Abstract
Autophagy has been of novel interest since it was first demonstrated to have effect in Burkitt's lymphoma. Since that time, the autophagy agents chloroquine and hydroxychloroquine have become the only FDA (Food and Drug Administration)-approved autophagy inhibitors. While not approved for cancer therapy, there are ongoing clinical trials to evaluate their safety and efficacy. Pevonedistat has emerged as a novel inhibitor through the neddylation pathway and is an autophagy activator. This paper summarizes and presents current clinical trials for hydroxychloroquine (HCQ), chloroquine (CQ), and Pevonedistat for the clinician.
Collapse
Affiliation(s)
- Samiha Mohsen
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Philip T. Sobash
- Department of Internal Medicine, White River Health System, Batesville, AR 72501, USA;
| | - Ghada Fahad Algwaiz
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Al Mathar Ash Shamali, Riyadh 11564, Saudi Arabia;
| | - Noor Nasef
- College of Arts and Sciences, The Ohio State University, Columbus, OH 72501, USA;
| | - Safaa Abed Al-Zeidaneen
- Department of Allied Medical Science, Al-Balqa’ Applied University, As-Salt 2PF8+XM, Jordan;
| | - Nagla Abdel Karim
- Department of Hematology and Oncology, Medical College of Georgia, Augusta, GA 30912, USA
| |
Collapse
|
20
|
Reyes-Castellanos G, Abdel Hadi N, Carrier A. Autophagy Contributes to Metabolic Reprogramming and Therapeutic Resistance in Pancreatic Tumors. Cells 2022; 11:426. [PMID: 35159234 PMCID: PMC8834004 DOI: 10.3390/cells11030426] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic reprogramming is a feature of cancers for which recent research has been particularly active, providing numerous insights into the mechanisms involved. It occurs across the entire cancer process, from development to resistance to therapies. Established tumors exhibit dependencies for metabolic pathways, constituting vulnerabilities that can be targeted in the clinic. This knowledge is of particular importance for cancers that are refractory to any therapeutic approach, such as Pancreatic Ductal Adenocarcinoma (PDAC). One of the metabolic pathways dysregulated in PDAC is autophagy, a survival process that feeds the tumor with recycled intracellular components, through both cell-autonomous (in tumor cells) and nonautonomous (from the local and distant environment) mechanisms. Autophagy is elevated in established PDAC tumors, contributing to aberrant proliferation and growth even in a nutrient-poor context. Critical elements link autophagy to PDAC including genetic alterations, mitochondrial metabolism, the tumor microenvironment (TME), and the immune system. Moreover, high autophagic activity in PDAC is markedly related to resistance to current therapies. In this context, combining autophagy inhibition with standard chemotherapy, and/or drugs targeting other vulnerabilities such as metabolic pathways or the immune response, is an ongoing clinical strategy for which there is still much to do through translational and multidisciplinary research.
Collapse
Affiliation(s)
| | | | - Alice Carrier
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Institut Paoli-Calmettes, Aix Marseille Université, F-13009 Marseille, France; (G.R.-C.); (N.A.H.)
| |
Collapse
|
21
|
Raufi AG, Liguori NR, Carlsen L, Parker C, Hernandez Borrero L, Zhang S, Tian X, Louie A, Zhou L, Seyhan AA, El-Deiry WS. Therapeutic Targeting of Autophagy in Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2021; 12:751568. [PMID: 34916936 PMCID: PMC8670090 DOI: 10.3389/fphar.2021.751568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by early metastasis, late detection, and poor prognosis. Progress towards effective therapy has been slow despite significant efforts. Novel treatment approaches are desperately needed and autophagy, an evolutionary conserved process through which proteins and organelles are recycled for use as alternative energy sources, may represent one such target. Although incompletely understood, there is growing evidence suggesting that autophagy may play a role in PDAC carcinogenesis, metastasis, and survival. Early clinical trials involving autophagy inhibiting agents, either alone or in combination with chemotherapy, have been disappointing. Recently, evidence has demonstrated synergy between the MAPK pathway and autophagy inhibitors in PDAC, suggesting a promising therapeutic intervention. In addition, novel agents, such as ONC212, have preclinical activity in pancreatic cancer, in part through autophagy inhibition. We discuss autophagy in PDAC tumorigenesis, metabolism, modulation of the immune response, and preclinical and clinical data with selected autophagy modulators as therapeutics.
Collapse
Affiliation(s)
- Alexander G. Raufi
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- *Correspondence: Wafik S. El-Deiry, ; Alexander G. Raufi,
| | - Nicholas R. Liguori
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Temple University, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Cassandra Parker
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Surgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Liz Hernandez Borrero
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Anna Louie
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Surgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- *Correspondence: Wafik S. El-Deiry, ; Alexander G. Raufi,
| |
Collapse
|
22
|
Chen RJ, Lyu YJ, Chen YY, Lee YC, Pan MH, Ho YS, Wang YJ. Chloroquine Potentiates the Anticancer Effect of Pterostilbene on Pancreatic Cancer by Inhibiting Autophagy and Downregulating the RAGE/STAT3 Pathway. Molecules 2021; 26:molecules26216741. [PMID: 34771150 PMCID: PMC8588513 DOI: 10.3390/molecules26216741] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022] Open
Abstract
The treatment of pancreatic ductal adenocarcinoma (PDAC) remains a huge challenge, because pro-survival signaling pathways—such as the receptor for advanced glycation end products (RAGE)/signal transducer and activator of transcription 3 (STAT3) pathway—are overexpressed in PDAC cells. Moreover, PDAC cells are highly resistant to chemotherapeutic agents because of autophagy induction. Therefore, autophagy and its modulated signaling pathways are attractive targets for developing novel therapeutic strategies for PDAC. Pterostilbene is a stilbenoid chemically related to resveratrol, and has potential for the treatment of cancers. Accordingly, we investigated whether the autophagy inhibitor chloroquine could potentiate the anticancer effect of pterostilbene in the PDAC cell lines MIA PaCa-2 and BxPC-3, as well as in an orthotopic animal model. The results indicated that pterostilbene combined with chloroquine significantly inhibited autophagy, decreased cell viability, and sensitized the cells to pterostilbene-induced apoptosis via downregulation of the RAGE/STAT3 and protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways in PDAC cells. The results of the orthotopic animal model showed that pterostilbene combined with chloroquine significantly inhibited pancreatic cancer growth, delayed tumor quadrupling times, and inhibited autophagy and STAT3 in pancreatic tumors. In summary, the present study suggested the novel therapeutic strategy of pterostilbene combined with chloroquine against the growth of pancreatic ductal adenocarcinoma by inhibiting autophagy and downregulating the RAGE/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan;
| | - Yi-Jhen Lyu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-J.L.); (Y.-Y.C.)
| | - Yu-Ying Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-J.L.); (Y.-Y.C.)
| | - Yen-Chien Lee
- Department of Medical Oncology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan 70043, Taiwan;
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan 70403, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Yuan-Soon Ho
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (Y.-S.H.); (Y.-J.W.); Tel.: +886-2-2736-1661 (ext. 3327) (Y.-S.H.); +886-6-235-3535 (ext. 5804) (Y.-J.W.); Fax: +886-6-275-2484 (Y.-J.W.)
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-J.L.); (Y.-Y.C.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (Y.-S.H.); (Y.-J.W.); Tel.: +886-2-2736-1661 (ext. 3327) (Y.-S.H.); +886-6-235-3535 (ext. 5804) (Y.-J.W.); Fax: +886-6-275-2484 (Y.-J.W.)
| |
Collapse
|
23
|
Heumann T, Azad N. Next-generation immunotherapy for pancreatic ductal adenocarcinoma: navigating pathways of immune resistance. Cancer Metastasis Rev 2021; 40:837-862. [PMID: 34591243 PMCID: PMC9804001 DOI: 10.1007/s10555-021-09981-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023]
Abstract
To date, the use of immune checkpoint inhibitors has proven largely ineffective in patients with advanced pancreatic ductal adenocarcinoma. A combination of low tumor antigenicity, deficits in immune activation along with an exclusive and suppressive tumor microenvironment result in resistance to host defensives. However, a deepening understanding of these immune escape and suppressive mechanisms has led to the discovery of novel molecular targets and treatment strategies that may hold the key to a long-awaited therapeutic breakthrough. In this review, we describe the tumor-intrinsic and microenvironmental barriers to modern immunotherapy, examine novel immune-based and targeted modalities, summarize relevant pre-clinical findings and human experience, and, finally, discuss novel synergistic approaches to overcome immune-resistance in pancreatic cancer. Beyond checkpoint inhibition, immune agonists and anti-tumor vaccines represent promising strategies to stimulate host response via activation and expansion of anti-tumor immune effectors. Off-the-shelf natural killer cell therapies may offer an effective method for bypassing downregulated tumor antigen presentation. In parallel with this, sophisticated targeting of crosstalk between tumor and tumor-associated immune cells may lead to enhanced immune infiltration and survival of anti-tumor lymphocytes. A future multimodal treatment strategy involving immune priming/activation, tumor microenvironment reprogramming, and immune checkpoint blockade may help transform pancreatic cancer into an immunogenic tumor.
Collapse
Affiliation(s)
- Thatcher Heumann
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nilofer Azad
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
Bannoura SF, Uddin MH, Nagasaka M, Fazili F, Al-Hallak MN, Philip PA, El-Rayes B, Azmi AS. Targeting KRAS in pancreatic cancer: new drugs on the horizon. Cancer Metastasis Rev 2021; 40:819-835. [PMID: 34499267 PMCID: PMC8556325 DOI: 10.1007/s10555-021-09990-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Kirsten Rat Sarcoma (KRAS) is a master oncogene involved in cellular proliferation and survival and is the most commonly mutated oncogene in all cancers. Activating KRAS mutations are present in over 90% of pancreatic ductal adenocarcinoma (PDAC) cases and are implicated in tumor initiation and progression. Although KRAS is a critical oncogene, and therefore an important therapeutic target, its therapeutic inhibition has been very challenging, and only recently specific mutant KRAS inhibitors have been discovered. In this review, we discuss the activation of KRAS signaling and the role of mutant KRAS in PDAC development. KRAS has long been considered undruggable, and many drug discovery efforts which focused on indirect targeting have been unsuccessful. We discuss the various efforts for therapeutic targeting of KRAS. Further, we explore the reasons behind these obstacles, novel successful approaches to target mutant KRAS including G12C mutation as well as the mechanisms of resistance.
Collapse
Affiliation(s)
- Sahar F Bannoura
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Misako Nagasaka
- Division of Hematology/Oncology, Department of Medicine, UCI Health, Orange, CA, 92868, USA
| | - Farzeen Fazili
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mohammed Najeeb Al-Hallak
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Bassel El-Rayes
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
25
|
Pappalardo A, Giunta EF, Tirino G, Pompella L, Federico P, Daniele B, De Vita F, Petrillo A. Adjuvant Treatment in Pancreatic Cancer: Shaping the Future of the Curative Setting. Front Oncol 2021; 11:695627. [PMID: 34485130 PMCID: PMC8415474 DOI: 10.3389/fonc.2021.695627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease even in the early stages, despite progresses in surgical and pharmacological treatment in recent years. High potential for metastases is the main cause of therapeutic failure in localized disease, highlighting the current limited knowledge of underlying pathological processes. However, nowadays research is focusing on the search for personalized approaches also in the adjuvant setting for PDAC, by implementing the use of biomarkers and investigating new therapeutic targets. In this context, the aim of this narrative review is to summarize the current treatment scenario and new potential therapeutic approaches in early stage PDAC, from both a preclinical and clinical point of view. Additionally, the review examines the role of target therapies in localized PDAC and the influence of neoadjuvant treatments on survival outcomes.
Collapse
Affiliation(s)
- Annalisa Pappalardo
- Medical Oncology Unit, Ospedale del Mare, Naples, Italy
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of study of Campania “L. Vanvitelli”, Naples, Italy
| | - Emilio Francesco Giunta
- Medical Oncology Unit, Ospedale del Mare, Naples, Italy
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of study of Campania “L. Vanvitelli”, Naples, Italy
| | - Giuseppe Tirino
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of study of Campania “L. Vanvitelli”, Naples, Italy
| | - Luca Pompella
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of study of Campania “L. Vanvitelli”, Naples, Italy
| | | | - Bruno Daniele
- Medical Oncology Unit, Ospedale del Mare, Naples, Italy
| | - Ferdinando De Vita
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of study of Campania “L. Vanvitelli”, Naples, Italy
| | - Angelica Petrillo
- Medical Oncology Unit, Ospedale del Mare, Naples, Italy
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of study of Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
26
|
De Lellis L, Veschi S, Tinari N, Mokini Z, Carradori S, Brocco D, Florio R, Grassadonia A, Cama A. Drug Repurposing, an Attractive Strategy in Pancreatic Cancer Treatment: Preclinical and Clinical Updates. Cancers (Basel) 2021; 13:3946. [PMID: 34439102 PMCID: PMC8394389 DOI: 10.3390/cancers13163946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies worldwide, since patients rarely display symptoms until an advanced and unresectable stage of the disease. Current chemotherapy options are unsatisfactory and there is an urgent need for more effective and less toxic drugs to improve the dismal PC therapy. Repurposing of non-oncology drugs in PC treatment represents a very promising therapeutic option and different compounds are currently being considered as candidates for repurposing in the treatment of this tumor. In this review, we provide an update on some of the most promising FDA-approved, non-oncology, repurposed drug candidates that show prominent clinical and preclinical data in pancreatic cancer. We also focus on proposed mechanisms of action and known molecular targets that they modulate in PC. Furthermore, we provide an explorative bioinformatic analysis, which suggests that some of the PC repurposed drug candidates have additional, unexplored, oncology-relevant targets. Finally, we discuss recent developments regarding the immunomodulatory role displayed by some of these drugs, which may expand their potential application in synergy with approved anticancer immunomodulatory agents that are mostly ineffective as single agents in PC.
Collapse
Affiliation(s)
- Laura De Lellis
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Serena Veschi
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (N.T.); (A.G.)
- Center for Advanced Studies and Technology—CAST, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Zhirajr Mokini
- European Society of Anaesthesiology and Intensive Care (ESAIC) Mentorship Programme, ESAIC, 24 Rue des Comédiens, BE-1000 Brussels, Belgium;
| | - Simone Carradori
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Davide Brocco
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Rosalba Florio
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Antonino Grassadonia
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (N.T.); (A.G.)
- Center for Advanced Studies and Technology—CAST, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
- Center for Advanced Studies and Technology—CAST, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
27
|
Wang Y, Qin C, Yang G, Zhao B, Wang W. The role of autophagy in pancreatic cancer progression. Biochim Biophys Acta Rev Cancer 2021; 1876:188592. [PMID: 34274449 DOI: 10.1016/j.bbcan.2021.188592] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
Patients with pancreatic cancer have an abysmal survival rate. The poor prognosis of pancreatic cancer is due to the difficulty of making an early diagnosis, high rate of metastasis, and frequent chemoresistance. In recent years, as a self-regulatory procedure within cells, the effect and mechanism of autophagy have been explored. Dysregulated autophagy serves as a double-edged sword in cancer development in which autophagy inhibits cancer initiation but promotes cancer progression. After tumor formation, activation of autophagy can induce epithelial-mesenchymal transition, regulate metabolism, specifically glutamine usage and the glycolytic process, and mediate drug resistance in pancreatic cancer. Multiple genes, RNA molecules, proteins, and certain drugs exert antitumor effects by inhibiting autophagy-mediated drug resistance. Several clinical trials have combined autophagy inhibitors with chemotherapeutic drugs in pancreatic cancer treatment, some of which have shown promising results. In conclusion, autophagy plays a vital role in pancreatic cancer progression and deserves further study.
Collapse
Affiliation(s)
- Yuanyang Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China.
| | - Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Gang Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Bangbo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Weibin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China.
| |
Collapse
|
28
|
Ferreira PMP, Sousa RWRD, Ferreira JRDO, Militão GCG, Bezerra DP. Chloroquine and hydroxychloroquine in antitumor therapies based on autophagy-related mechanisms. Pharmacol Res 2021; 168:105582. [PMID: 33775862 DOI: 10.1016/j.phrs.2021.105582] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 02/09/2023]
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) are the most common drugs used to relieve acute and chronic inflammatory diseases. In this article, we present a review about the use of CQ and HCQ in antitumor therapies based on autophagy mechanisms. These molecules break/discontinue autophagosome-lysosome fusions in initial phases and enhance antiproliferative action of chemotherapeutics. Their sensitizing effects of chemotherapy when used as an adjuvant option in clinical trials against cancer. However, human related-MDR genes are also under risk to develop chemo or radioresistance because cancer cells have ability to throw 4-aminoquinolines out from digestive vacuoles well. Additionally, they also have antitumor mechanism unrelated to autophagy, including cell death from apoptosis and necroptosis and immunomodulatory/anti-inflammatory properties. However, the link between some anticancer mechanisms, clinical efficacy and pharmacological safety has not yet been fully defined.
Collapse
Affiliation(s)
- Paulo Michel Pinheiro Ferreira
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, 64049-550 Teresina, Brazil.
| | - Rayran Walter Ramos de Sousa
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, 64049-550 Teresina, Brazil
| | | | | | - Daniel Pereira Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ-BA), 40296-710 Salvador, Brazil
| |
Collapse
|
29
|
Rebelo R, Polónia B, Santos LL, Vasconcelos MH, Xavier CPR. Drug Repurposing Opportunities in Pancreatic Ductal Adenocarcinoma. Pharmaceuticals (Basel) 2021; 14:280. [PMID: 33804613 PMCID: PMC8003696 DOI: 10.3390/ph14030280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest tumors worldwide. The diagnosis is often possible only in the latter stages of the disease, with patients already presenting an advanced or metastatic tumor. It is also one of the cancers with poorest prognosis, presenting a five-year survival rate of around 5%. Treatment of PDAC is still a major challenge, with cytotoxic chemotherapy remaining the basis of systemic therapy. However, no major advances have been made recently, and therapeutic options are limited and highly toxic. Thus, novel therapeutic options are urgently needed. Drug repurposing is a strategy for the development of novel treatments using approved or investigational drugs outside the scope of the original clinical indication. Since repurposed drugs have already completed several stages of the drug development process, a broad range of data is already available. Thus, when compared with de novo drug development, drug repurposing is time-efficient, inexpensive and has less risk of failure in future clinical trials. Several repurposing candidates have been investigated in the past years for the treatment of PDAC, as single agents or in combination with conventional chemotherapy. This review gives an overview of the main drugs that have been investigated as repurposing candidates, for the potential treatment of PDAC, in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Rita Rebelo
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Bárbara Polónia
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO—Instituto Português de Oncologia, 4200-072 Porto, Portugal;
- ICBAS—Biomedical Sciences Institute Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - M. Helena Vasconcelos
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4200-135 Porto, Portugal
| | - Cristina P. R. Xavier
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
30
|
Piffoux M, Eriau E, Cassier PA. Autophagy as a therapeutic target in pancreatic cancer. Br J Cancer 2021; 124:333-344. [PMID: 32929194 PMCID: PMC7852577 DOI: 10.1038/s41416-020-01039-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/22/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by early metastasis and resistance to anti-cancer therapy, leading to an overall poor prognosis. Despite continued research efforts, no targeted therapy has yet shown meaningful efficacy in PDAC; mutations in the oncogene KRAS and the tumour suppressor TP53, which are the most common genomic alterations in PDAC, have so far shown poor clinical actionability. Autophagy, a conserved process allowing cells to recycle altered or unused organelles and cellular components, has been shown to be upregulated in PDAC and is implicated in resistance to both cytotoxic chemotherapy and targeted therapy. Autophagy is thus regarded as a potential therapeutic target in PDAC and other cancers. Although the molecular mechanisms of autophagy activation in PDAC are only beginning to emerge, several groups have reported interesting results when combining inhibitors of the extracellular-signal-regulated kinase/mitogen-activated protein kinase pathway and inhibitors of autophagy in models of PDAC and other KRAS-driven cancers. In this article, we review the existing preclinical data regarding the role of autophagy in PDAC, as well as results of relevant clinical trials with agents that modulate autophagy in this cancer.
Collapse
Affiliation(s)
- Max Piffoux
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
- INSERM UMR 1197-Interaction cellules souches-niches: physiologie, tumeurs et réparation tissulaire, Villejuif, France
- Laboratoire matière et systèmes complexes, Université de Paris, Paris, France
| | - Erwan Eriau
- Team 11 « Metabolism, Cancer, Immunity », UMR S1138, Centre de Recherche des Cordeliers, Paris, France
| | - Philippe A Cassier
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France.
- TGFβ and Pancreatic Cancer Lab, UMR INSERM 1052 - CNRS 5286, Centre de Recherche en Cancérologie de LYON (CRCL), Centre Léon Bérard, Lyon, France.
| |
Collapse
|
31
|
Gu Y, Lai S, Dong Y, Fu H, Song L, Chen T, Duan Y, Zhang Z. AZD9291 Resistance Reversal Activity of a pH-Sensitive Nanocarrier Dual-Loaded with Chloroquine and FGFR1 Inhibitor in NSCLC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002922. [PMID: 33511016 PMCID: PMC7816715 DOI: 10.1002/advs.202002922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Indexed: 05/03/2023]
Abstract
AZD9291 can effectively prolong survival of non-small cell lung cancer (NSCLC) patients. Unfortunately, the mechanism of its acquired drug resistance is largely unknown. This study shows that autophagy and fibroblast growth factor receptor 1 signaling pathways are both activated in AZD9291 resistant NSCLC, and inhibition of them, respectively, by chloroquine (CQ) and PD173074 can synergistically reverse AZD9291 resistance. Herein, a coloaded CQ and PD173074 pH-sensitive shell-core nanoparticles CP@NP-cRGD is developed to reverse AZD9291 resistance in NSCLC. CP@NP-cRGD has a high encapsulation rate and stability, and can effectively prevent the degradation of drugs in circulation process. CP@NP-cRGD can target tumor cells by enhanced permeability and retention effect and the cRGD peptide. The pH-sensitive CaP shell can realize lysosome escape and then release drugs successively. The combination of CP@NP-cRGD and AZD9291 significantly induces a higher rate of apoptosis, more G0/G1 phase arrest, and reduces proliferation of resistant cell lines by downregulation of p-ERK1/2 in vitro. CQ in CP@NP-cRGD can block protective autophagy induced by both AZD9291 and PD173074. CP@NP-cRGD combined with AZD9291 shows adequate tumor enrichment, low toxicity, and excellent antitumor effect in nude mice. It provides a novel multifunctional nanoparticle to overcome AZD9291 resistance for potential clinical applications.
Collapse
Affiliation(s)
- Yu Gu
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Songtao Lai
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yang Dong
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Liwei Song
- Shanghai Lung Cancer CenterShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Tianxiang Chen
- Shanghai Lung Cancer CenterShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Zhen Zhang
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
32
|
Rai V, Agrawal S. Targets (Metabolic Mediators) of Therapeutic Importance in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:E8502. [PMID: 33198082 PMCID: PMC7697422 DOI: 10.3390/ijms21228502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), an extremely aggressive invasive cancer, is the fourth most common cause of cancer-related death in the United States. The higher mortality in PDAC is often attributed to the inability to detect it until it has reached advanced stages. The major challenge in tackling PDAC is due to its elusive pathology, minimal effectiveness, and resistance to existing therapeutics. The aggressiveness of PDAC is due to the capacity of tumor cells to alter their metabolism, utilize the diverse available fuel sources to adapt and grow in a hypoxic and harsh environment. Therapeutic resistance is due to the presence of thick stroma with poor angiogenesis, thus making drug delivery to tumor cells difficult. Investigating the metabolic mediators and enzymes involved in metabolic reprogramming may lead to the identification of novel therapeutic targets. The metabolic mediators of glucose, glutamine, lipids, nucleotides, amino acids and mitochondrial metabolism have emerged as novel therapeutic targets. Additionally, the role of autophagy, macropinocytosis, lysosomal transport, recycling, amino acid transport, lipid transport, and the role of reactive oxygen species has also been discussed. The role of various pro-inflammatory cytokines and immune cells in the pathogenesis of PDAC and the metabolites involved in the signaling pathways as therapeutic targets have been previously discussed. This review focuses on the therapeutic potential of metabolic mediators in PDAC along with stemness due to metabolic alterations and their therapeutic importance.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Swati Agrawal
- Department of Surgery, Creighton University School of Medicine, Omaha, NE 68178, USA;
| |
Collapse
|
33
|
Zamame Ramirez JA, Romagnoli GG, Kaneno R. Inhibiting autophagy to prevent drug resistance and improve anti-tumor therapy. Life Sci 2020; 265:118745. [PMID: 33186569 DOI: 10.1016/j.lfs.2020.118745] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
Cytotoxic drugs remain the first-line option for cancer therapy but the development of drug-resistance by tumor cells represents a primary obstacle for successful chemotherapy. Autophagy is a physiological mechanism of cell survival efficiently used by tumor cells to avoid cell death and to induce drug-resistance. It is a macromolecular process, in which cells degrade and recycle intracellular substrates and damaged organelles to alleviate cell stress caused by nutritional deprivation, hypoxia, irradiation, and cytotoxic agents, as well. There is evidence that autophagy prevents cancer during the early steps of carcinogenesis, but once transformed, these cells show enhanced autophagy capacity and use it to survive, grow, and facilitate metastasis. Current basic studies and clinical trials show the feasibility of using pharmacological or molecular blockage of autophagy to improve the anticancer therapy efficiency. In this review, we overviewed the pathways and molecular aspects of autophagy, its role in carcinogenesis, and the evidence for its role in cancer adaptation and drug-resistance. Finally, we reviewed the clinical findings on how the autophagy interference helps to improve conventional anticancer therapy.
Collapse
Affiliation(s)
- Jofer Andree Zamame Ramirez
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil; São Paulo State University - UNESP, Department of Pathology, School of Medicine of Botucatu, Botucatu, SP, Brazil
| | - Graziela Gorete Romagnoli
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil; São Paulo State University - UNESP, Department of Pathology, School of Medicine of Botucatu, Botucatu, SP, Brazil; Oeste Paulista University - UNOESTE, Department of Health Sciences, Jaú, SP, Brazil
| | - Ramon Kaneno
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil.
| |
Collapse
|
34
|
Cozzo AJ, Coleman MF, Pearce JB, Pfeil AJ, Etigunta SK, Hursting SD. Dietary Energy Modulation and Autophagy: Exploiting Metabolic Vulnerabilities to Starve Cancer. Front Cell Dev Biol 2020; 8:590192. [PMID: 33224954 PMCID: PMC7674637 DOI: 10.3389/fcell.2020.590192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cells experience unique and dynamic shifts in their metabolic function in order to survive, proliferate, and evade growth inhibition in the resource-scarce tumor microenvironment. Therefore, identification of pharmacological agents with potential to reprogram cancer cell metabolism may improve clinical outcomes in cancer therapy. Cancer cells also often exhibit an increased dependence on the process known as autophagy, both for baseline survival and as a response to stressors such as chemotherapy or a decline in nutrient availability. There is evidence to suggest that this increased dependence on autophagy in cancer cells may be exploitable clinically by combining autophagy modulators with existing chemotherapies. In light of the increased metabolic rate in cancer cells, interest is growing in approaches aimed at "starving" cancer through dietary and pharmacologic interventions that reduce availability of nutrients and pro-growth hormonal signals known to promote cancer progression. Several dietary approaches, including chronic calorie restriction and multiple forms of fasting, have been investigated for their potential anti-cancer benefits, yielding promising results in animal models. Induction of autophagy in response to dietary energy restriction may underlie some of the observed benefit. However, while interventions based on dietary energy restriction have demonstrated safety in clinical trials, uncertainty remains regarding translation to humans as well as feasibility of achieving compliance due to the potential discomfort and weight loss that accompanies dietary restriction. Further induction of autophagy through dietary or pharmacologic metabolic reprogramming interventions may enhance the efficacy of autophagy inhibition in the context of adjuvant or neo-adjuvant chemotherapy. Nonetheless, it remains unclear whether therapeutic agents aimed at autophagy induction, autophagy inhibition, or both are a viable therapeutic strategy for improving cancer outcomes. This review discusses the literature available for the therapeutic potential of these approaches.
Collapse
Affiliation(s)
- Alyssa J Cozzo
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Duke University School of Medicine, Durham, NC, United States
| | - Michael F Coleman
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jane B Pearce
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alexander J Pfeil
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Suhas K Etigunta
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen D Hursting
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| |
Collapse
|
35
|
Alvarez-Meythaler JG, Garcia-Mayea Y, Mir C, Kondoh H, LLeonart ME. Autophagy Takes Center Stage as a Possible Cancer Hallmark. Front Oncol 2020; 10:586069. [PMID: 33194736 PMCID: PMC7643020 DOI: 10.3389/fonc.2020.586069] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide, despite significant advances in cancer research and improvements in anticancer therapies. One of the major obstacles to curing cancer is the difficulty of achieving the complete annihilation of resistant cancer cells. The resistance of cancer cells may not only be due to intrinsic factors or factors acquired during the evolution of the tumor but may also be caused by chemotherapeutic treatment failure. Conversely, autophagy is a conserved cellular process in which intracellular components, such as damaged organelles, aggregated or misfolded proteins and macromolecules, are degraded or recycled to maintain cellular homeostasis. Importantly, autophagy is an essential mechanism that plays a key role in tumor initiation and progression. Depending on the cellular context and microenvironmental conditions, autophagy acts as a double-edged sword, playing a role in inducing apoptosis or promoting cell survival. In this review, we propose several scenarios in which autophagy could contribute to cell survival or cell death. Moreover, a special focus on novel promising targets and therapeutic strategies based on autophagic resistant cells is presented.
Collapse
Affiliation(s)
- Jose G. Alvarez-Meythaler
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Hiroshi Kondoh
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Matilde E. LLeonart
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Spanish Biomedical Research Network Center in Oncology, CIBERONC, Barcelona, Spain
| |
Collapse
|
36
|
Martinez GP, Zabaleta ME, Di Giulio C, Charris JE, Mijares MR. The Role of Chloroquine and Hydroxychloroquine in Immune Regulation and Diseases. Curr Pharm Des 2020; 26:4467-4485. [DOI: 10.2174/1381612826666200707132920] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) are derivatives of the heterocyclic aromatic compound
quinoline. These economical compounds have been used as antimalarial agents for many years. Currently,
they are used as monotherapy or in conjunction with other therapies for the treatment of autoimmune diseases
such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren's syndrome (SS) and antiphospholipid
antibody syndrome (APS). Based on its effects on the modulation of the autophagy process, various
clinical studies suggest that CQ and HCQ could be used in combination with other chemotherapeutics for the
treatment of various types of cancer. Furthermore, the antiviral effects showed against Zika, Chikungunya, and
HIV are due to the annulation of endosomal/lysosomal acidification. Recently, CQ and HCQ were approved for
the U.S. Food and Drug Administration (FDA) for the treatment of infected patients with the coronavirus SARSCoV-
2, causing the disease originated in December 2019, namely COVID-2019. Several mechanisms have been
proposed to explain the pharmacological effects of these drugs: 1) disruption of lysosomal and endosomal pH, 2)
inhibition of protein secretion/expression, 3) inhibition of antigen presentation, 4) decrease of proinflammatory
cytokines, 5) inhibition of autophagy, 6) induction of apoptosis and 7) inhibition of ion channels activation. Thus,
evidence has shown that these structures are leading molecules that can be modified or combined with other
therapeutic agents. In this review, we will discuss the most recent findings in the mechanisms of action of CQ and
HCQ in the immune system, and the use of these antimalarial drugs on diseases.
Collapse
Affiliation(s)
- Gricelis P. Martinez
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| | - Mercedes E. Zabaleta
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| | - Camilo Di Giulio
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| | - Jaime E. Charris
- Organic Synthesis Laboratory, Faculty of Pharmacy, Central University of Venezuela, 47206, Los Chaguaramos 1041-A, Caracas, Venezuela
| | - Michael R. Mijares
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| |
Collapse
|
37
|
Compter I, Eekers DBP, Hoeben A, Rouschop KMA, Reymen B, Ackermans L, Beckervordersantforth J, Bauer NJC, Anten MM, Wesseling P, Postma AA, De Ruysscher D, Lambin P. Chloroquine combined with concurrent radiotherapy and temozolomide for newly diagnosed glioblastoma: a phase IB trial. Autophagy 2020; 17:2604-2612. [PMID: 32866424 PMCID: PMC8496728 DOI: 10.1080/15548627.2020.1816343] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Treatment of glioblastoma xenografts with chloroquine results in macroautophagy/autophagy inhibition, resulting in a reduction of tumor hypoxia and sensitization to radiation. Preclinical data show that EGFRvIII-expressing glioblastoma may benefit most from chloroquine because of autophagy dependency. This study is the first to explore the safety, pharmacokinetics and maximum tolerated dose of chloroquine in combination with radiotherapy and concurrent daily temozolomide in patients with a newly diagnosed glioblastoma. This study is a single-center, open-label, dose-finding phase I trial. Patients received oral chloroquine daily starting one week before the course of chemoradiation (temozolomide 75 mg/m2/d) until the end of radiotherapy (59.4 Gy/33 fractions). Thirteen patients were included in the study (n = 6: 200 mg, n = 3: 300 mg, n = 4: 400 mg chloroquine). A total of 44 adverse events, possibly related to chloroquine, were registered including electrocardiogram QTc prolongation, irreversible blurred vision and nausea/vomiting resulting in cessation of temozolomide or delay of adjuvant cycles. The maximum tolerated dose was 200 mg chloroquine. Median overall survival was 16 months (range 2–32). Median survival was 11.5 months for EGFRvIII- patients and 20 months for EGFRvIII+ patients. A daily dose of 200 mg chloroquine was determined to be the maximum tolerated dose when combined with radiotherapy and concurrent temozolomide for newly diagnosed glioblastoma. Favorable toxicity and promising overall survival support further clinical studies. Abbreviations: AE: adverse events; CQ: chloroquine; DLT: dose-limiting toxicities; EGFR: epidermal growth factor receptor; GBM: glioblastoma; HCQ: hydroxychloroquine; IDH1/2: isocitrate dehydrogenase (NADP(+)) 1/2; MTD: maximum tolerated dose; CTC: National Cancer Institute Common Toxicity Criteria; MGMT: O-6-methylguanine-DNA methyltransferase; OS: overall survival; po qd: per os quaque die; SAE: serious adverse events; TMZ: temozolomide; WHO: World Health Organization
Collapse
Affiliation(s)
- Inge Compter
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Danielle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kasper M A Rouschop
- Department of Radiotherapy, GROW School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Bart Reymen
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Noel J C Bauer
- Department of Ophthalmology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Monique M Anten
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, School for Mental Health and Sciences, Maastricht University Medical Centre+, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Philippe Lambin
- Department of Radiology and Nuclear Medicine, School for Mental Health and Sciences, Maastricht University Medical Centre+, Maastricht University Medical Center, Maastricht, The Netherlands.,The D-Lab & the M-lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
38
|
Song Y, Fields E. Pharmacological Advances of Chloroquine and Hydroxychloroquine: From Antimalarials to Investigative Therapies in COVID-19. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20953648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, numerous existing chemicals have been screened for antiviral potential against the emerging coronavirus severe acute respiratory syndrome coronavirus 2. Chloroquine and hydroxychloroquine, after exhibiting potent in vitro efficacy, have gained tremendous attention. Both therapeutics are derivatives of natural alkaloid quinine and were first synthesized to treat malaria. Thereafter, the pharmaceutical applications of the agents have expanded to many new areas. In this article, the medicinal history and pharmacological activities of chloroquine and hydroxychloroquine are summarized. Antimalarial, anti-inflammatory, antitumor, antiviral properties, and therapeutic potential in the emerging viral infection COVID-19 are discussed. Pharmacokinetics, adverse effects, and toxicities are reviewed.
Collapse
Affiliation(s)
- Yang Song
- Department of Pharmacy Services, CHI Franciscan Health, St. Joseph Medical Center, Tacoma, WA, USA
| | - Elise Fields
- Department of Pharmacy Services, CHI Franciscan Health, St. Joseph Medical Center, Tacoma, WA, USA
| |
Collapse
|
39
|
Okamoto S, Miyano K, Kajikawa M, Yamauchi A, Kuribayashi F. The rRNA synthesis inhibitor CX-5461 may induce autophagy that inhibits anticancer drug-induced cell damage to leukemia cells. Biosci Biotechnol Biochem 2020; 84:2319-2326. [PMID: 32799625 DOI: 10.1080/09168451.2020.1801378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Autophagy induced in cancer cells during chemotherapy is classified into two types, which differ depending on the kind of cells or anticancer drugs. The first type of autophagy contributes to the death of cells treated with drugs. In contrast, the second type plays a crucial role in preventing anticancer drug-induced cell damages; the use of an autophagy inhibitor is considered effective in improving the efficacy of chemotherapy. Thus, it is important to determine which type of autophagy is induced during chemotherapy. Here, we showed that a novel inhibitor of RNA polymerase I, suppresses growth, induces cell cycle arrest and promotes apoptosis in leukemia cell lines. The number of apoptotic cells induced by co-treatment with CX-5461 and chloroquine, an autophagy inhibitor, increased compared with CX-5461 alone. Thus, the autophagy which may be induced by CX-5461 was the second type.
Collapse
Affiliation(s)
- Shuichiro Okamoto
- Department of Biochemistry, Kawasaki Medical School , Okayama, Japan
| | - Kei Miyano
- Department of Biochemistry, Kawasaki Medical School , Okayama, Japan
| | - Mizuho Kajikawa
- Laboratory of Microbiology, Showa Pharmaceutical University , Tokyo, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School , Okayama, Japan
| | | |
Collapse
|
40
|
Eloranta K, Cairo S, Liljeström E, Soini T, Kyrönlahti A, Judde JG, Wilson DB, Heikinheimo M, Pihlajoki M. Chloroquine Triggers Cell Death and Inhibits PARPs in Cell Models of Aggressive Hepatoblastoma. Front Oncol 2020; 10:1138. [PMID: 32766148 PMCID: PMC7379510 DOI: 10.3389/fonc.2020.01138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Hepatoblastoma (HB) is the most common pediatric liver malignancy. Despite advances in chemotherapeutic regimens and surgical techniques, the survival of patients with advanced HB remains poor, underscoring the need for new therapeutic approaches. Chloroquine (CQ), a drug used to treat malaria and rheumatologic diseases, has been shown to inhibit the growth and survival of various cancer types. We examined the antineoplastic activity of CQ in cell models of aggressive HB. Methods: Seven human HB cell models, all derived from chemoresistant tumors, were cultured as spheroids in the presence of relevant concentrations of CQ. Morphology, viability, and induction of apoptosis were assessed after 48 and 96 h of CQ treatment. Metabolomic analysis and RT-qPCR based Death Pathway Finder array were used to elucidate the molecular mechanisms underlying the CQ effect in a 2-dimensional cell culture format. Quantitative western blotting was performed to validate findings at the protein level. Results: CQ had a significant dose and time dependent effect on HB cell viability both in spheroids and in 2-dimensional cell cultures. Following CQ treatment HB spheroids exhibited increased caspase 3/7 activity indicating the induction of apoptotic cell death. Metabolomic profiling demonstrated significant decreases in the concentrations of NAD+ and aspartate in CQ treated cells. In further investigations, oxidation of NAD+ decreased as consequence of CQ treatment and NAD+/NADH balance shifted toward NADH. Aspartate supplementation rescued cells from CQ induced cell death. Additionally, downregulated expression of PARP1 and PARP2 was observed. Conclusions: CQ treatment inhibits cell survival in cell models of aggressive HB, presumably by perturbing NAD+ levels, impairing aspartate bioavailability, and inhibiting PARP expression. CQ thus holds potential as a new agent in the management of HB.
Collapse
Affiliation(s)
- Katja Eloranta
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | - Emmi Liljeström
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Tea Soini
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Antti Kyrönlahti
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO, United States.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Markku Heikinheimo
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO, United States
| | - Marjut Pihlajoki
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Hraběta J, Belhajová M, Šubrtová H, Merlos Rodrigo MA, Heger Z, Eckschlager T. Drug Sequestration in Lysosomes as One of the Mechanisms of Chemoresistance of Cancer Cells and the Possibilities of Its Inhibition. Int J Mol Sci 2020; 21:ijms21124392. [PMID: 32575682 PMCID: PMC7352242 DOI: 10.3390/ijms21124392] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Resistance to chemotherapeutics and targeted drugs is one of the main problems in successful cancer therapy. Various mechanisms have been identified to contribute to drug resistance. One of those mechanisms is lysosome-mediated drug resistance. Lysosomes have been shown to trap certain hydrophobic weak base chemotherapeutics, as well as some tyrosine kinase inhibitors, thereby being sequestered away from their intracellular target site. Lysosomal sequestration is in most cases followed by the release of their content from the cell by exocytosis. Lysosomal accumulation of anticancer drugs is caused mainly by ion-trapping, but active transport of certain drugs into lysosomes was also described. Lysosomal low pH, which is necessary for ion-trapping is achieved by the activity of the V-ATPase. This sequestration can be successfully inhibited by lysosomotropic agents and V-ATPase inhibitors in experimental conditions. Clinical trials have been performed only with lysosomotropic drug chloroquine and their results were less successful. The aim of this review is to give an overview of lysosomal sequestration and expression of acidifying enzymes as yet not well known mechanism of cancer cell chemoresistance and about possibilities how to overcome this form of resistance.
Collapse
Affiliation(s)
- Jan Hraběta
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, CZ-150 06 Prague, Czech Republic; (J.H.); (M.B.)
| | - Marie Belhajová
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, CZ-150 06 Prague, Czech Republic; (J.H.); (M.B.)
| | - Hana Šubrtová
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (H.Š.); (M.A.M.R.); (Z.H.)
| | - Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (H.Š.); (M.A.M.R.); (Z.H.)
- Central European Institute of Technologies, Brno University of Technology, CZ-612 00 Brno, Czech Republic
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (H.Š.); (M.A.M.R.); (Z.H.)
- Central European Institute of Technologies, Brno University of Technology, CZ-612 00 Brno, Czech Republic
| | - Tomáš Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, CZ-150 06 Prague, Czech Republic; (J.H.); (M.B.)
- Correspondence: ; Tel.: +420-606-364-730
| |
Collapse
|
42
|
Brazil L, Swampillai AL, Mak KM, Edwards D, Mesiri P, Clifton-Hadley L, Shaffer R, Lewis J, Watts C, Jeffries S, Gkogkou P, Chalmers AJ, Fersht NL, Hackshaw A, Short SC. Hydroxychloroquine and short-course radiotherapy in elderly patients with newly diagnosed high-grade glioma: a randomized phase II trial. Neurooncol Adv 2020; 2:vdaa046. [PMID: 32642699 PMCID: PMC7236384 DOI: 10.1093/noajnl/vdaa046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Effective treatment for patients at least 70 years with newly diagnosed glioblastoma remains challenging and alternatives to conventional cytotoxics are appealing. Autophagy inhibition has shown promising efficacy and safety in small studies of glioblastoma and other cancers. Methods We conducted a randomized phase II trial to compare radiotherapy with or without hydroxychloroquine (2:1 allocation). Patients aged at least 70 years with newly diagnosed high-grade glioma deemed suitable for short-course radiotherapy with an ECOG performance status of 0-1 were included. Radiotherapy treatment consisted of 30 Gy, delivered as 6 fractions given over 2 weeks (5 Gy per fraction). Hydroxychloroquine was given as 200 mg orally b.d. from 7 days prior to radiotherapy until disease progression. The primary endpoint was 1-year overall survival (OS). Secondary endpoints included progression-free survival (PFS), quality of life, and toxicity. Results Fifty-four patients with a median age of 75 were randomized between May 2013 and October 2016. The trial was stopped early in 2016. One-year OS was 20.3% (95% confidence interval [CI] 8.2-36.0) hydroxychloroquine group, and 41.2% (95% CI 18.6-62.6) radiotherapy alone, with a median survival of 7.9 and 11.5 months, respectively. The corresponding 6-month PFS was 35.3% (95% CI 19.3-51.7) and 29.4% (95% CI 10.7-51.1). The outcome in the control arm was better than expected and the excess of deaths in the hydroxychloroquine group appeared unrelated to cancer. There were more grade 3-5 events in the hydroxychloroquine group (60.0%) versus radiotherapy alone (38.9%) without any clear common causation. Conclusions Hydroxychloroquine with short-course radiotherapy did not improve survival compared to radiotherapy alone in elderly patients with glioblastoma.
Collapse
Affiliation(s)
- Lucy Brazil
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Ka Man Mak
- Cancer Research UK and UCL Cancer Trials Centre, London, UK
| | - Darren Edwards
- Cancer Research UK and UCL Cancer Trials Centre, London, UK
| | | | | | | | - Joanne Lewis
- Northern Centre for Cancer Care, Freeman Hospital, Newcastle Upon Tyne Hospitals Trust, Newcastle, UK
| | - Colin Watts
- University of Birmingham/Queen Elizabeth Hospital, Birmingham, UK
| | - Sarah Jeffries
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | | | - Allan Hackshaw
- Cancer Research UK and UCL Cancer Trials Centre, London, UK
| | | |
Collapse
|
43
|
Qin C, Yang G, Yang J, Ren B, Wang H, Chen G, Zhao F, You L, Wang W, Zhao Y. Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol Cancer 2020; 19:50. [PMID: 32122374 PMCID: PMC7053123 DOI: 10.1186/s12943-020-01169-7] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is currently one of the most lethal diseases. In recent years, increasing evidence has shown that reprogrammed metabolism may play a critical role in the carcinogenesis, progression, treatment and prognosis of pancreatic cancer. Affected by internal or external factors, pancreatic cancer cells adopt extensively distinct metabolic processes to meet their demand for growth. Rewired glucose, amino acid and lipid metabolism and metabolic crosstalk within the tumor microenvironment contribute to unlimited pancreatic tumor progression. In addition, the metabolic reprogramming involved in pancreatic cancer resistance is also closely related to chemotherapy, radiotherapy and immunotherapy, and results in a poor prognosis. Reflective of the key role of metabolism, the number of preclinical and clinical trials about metabolism-targeted therapies for pancreatic cancer is increasing. The poor prognosis of pancreatic cancer patients might be largely improved after employing therapies that regulate metabolism. Thus, investigations of metabolism not only benefit the understanding of carcinogenesis and cancer progression but also provide new insights for treatments against pancreatic cancer.
Collapse
Affiliation(s)
- Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Huanyu Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China. .,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, PR China.
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China. .,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China. .,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, PR China.
| |
Collapse
|
44
|
Varisli L, Cen O, Vlahopoulos S. Dissecting pharmacological effects of chloroquine in cancer treatment: interference with inflammatory signaling pathways. Immunology 2020; 159:257-278. [PMID: 31782148 PMCID: PMC7011648 DOI: 10.1111/imm.13160] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Chloroquines are 4-aminoquinoline-based drugs mainly used to treat malaria. At pharmacological concentrations, they have significant effects on tissue homeostasis, targeting diverse signaling pathways in mammalian cells. A key target pathway is autophagy, which regulates macromolecule turnover in the cell. In addition to affecting cellular metabolism and bioenergetic flow equilibrium, autophagy plays a pivotal role at the interface between inflammation and cancer progression. Chloroquines consequently have critical effects in tissue metabolic activity and importantly, in key functions of the immune system. In this article, we will review the work addressing the role of chloroquines in the homeostasis of mammalian tissue, and the potential strengths and weaknesses concerning their use in cancer therapy.
Collapse
Affiliation(s)
- Lokman Varisli
- Union of Education and Science Workers (EGITIM SEN), Diyarbakir Branch, Diyarbakir, Turkey
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, Turkey
| | - Osman Cen
- Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Natural Sciences, Joliet Jr College, Joliet, IL, USA
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
45
|
Xie L, Xia L, Klaiber U, Sachsenmaier M, Hinz U, Bergmann F, Strobel O, Büchler MW, Neoptolemos JP, Fortunato F, Hackert T. Effects of neoadjuvant FOLFIRINOX and gemcitabine-based chemotherapy on cancer cell survival and death in patients with pancreatic ductal adenocarcinoma. Oncotarget 2019; 10:7276-7287. [PMID: 31921387 PMCID: PMC6944451 DOI: 10.18632/oncotarget.27399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
Background: The progression and response to systemic treatment of cancer is substantially dependent on the balance between cancer cell death (apoptosis and necroptosis) and cancer cell survival (autophagy). Although well characterized in experimental systems, the status of cancer cell survival and cell death in human pancreatic ductal adenocarcinoma (PDAC), especially in response to chemotherapy and different types of chemotherapy is poorly described.
Results: The median (95% confidence interval) survival was 31.6 (24.5–44.5) months after FOLFIRINOX versus 15.8 (2.0–20.5) months after gemcitabine-based therapy (p = 0.039). PDAC tissue autophagy was reduced compared to normal pancreata based on reduced BECLIN-1 expression and LC3-Lamp-2 colocalization, whilst necroptosis (RIP-1) was increased. Neoadjuvant therapy was associated with further reduced autophagy based on p62/SQSTM-1 accumulation, and increased necroptosis (RIP3 and pMLKL) and apoptosis (BAX, cleaved CASPASE-9 and CASPASE-3) markers, increased nuclear p65 (NF-κB) and extracellular HMGB1 expression, with greater CD8+ lymphocyte infiltration. Survival was associated with reduced autophagy and increased apoptosis. Necroptosis (RIP-3, pMLKL) and apoptosis (BAX and cleaved CASPASE-9) markers were higher after FOLFIRINOX than gemcitabine-based treatment.
Patients and methods: Cancer cell autophagy, apoptosis, and necroptosis marker expression was compared in pancreatic tissue samples from 51 subjects, comprising four groups: (1) surgical resection for PDAC after FOLFIRINOX (n = 11), or (2) after gemcitabine-based (n = 14) neoadjuvant therapy, (3) patients undergoing PDAC resection without prior chemotherapy (n = 13), and (4) normal pancreata from 13 organ donors. Marker expression was undertaken using semi-automated immunofluorescence-FACS-like analysis, defining PDAC cells by CK-7+ expression.
Collapse
Affiliation(s)
- Li Xie
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany.,Section Surgical Research, University Clinic, Heidelberg, Germany
| | - Leizhou Xia
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany.,Section Surgical Research, University Clinic, Heidelberg, Germany
| | - Ulla Klaiber
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany
| | - Milena Sachsenmaier
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany
| | - Ulf Hinz
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany
| | - Frank Bergmann
- Institute of Pathology, University Clinic, Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany
| | - John P Neoptolemos
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany.,Section Surgical Research, University Clinic, Heidelberg, Germany
| | - Franco Fortunato
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany.,Section Surgical Research, University Clinic, Heidelberg, Germany.,Co-senior authors
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany.,Co-senior authors
| |
Collapse
|
46
|
Zhang X, Kumstel S, Jiang K, Meng S, Gong P, Vollmar B, Zechner D. LW6 enhances chemosensitivity to gemcitabine and inhibits autophagic flux in pancreatic cancer. J Adv Res 2019; 20:9-21. [PMID: 31193017 PMCID: PMC6514270 DOI: 10.1016/j.jare.2019.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/16/2022] Open
Abstract
LW6 inhibits proliferation and induces cell death in pancreatic cancer cells. LW6 improves the anti-proliferation efficacy of gemcitabine. LW6 enhances gemcitabine-induced cell death. LW6 in combination with gemcitabine decreases tumor weight. LW6 inhibits autophagic flux.
The efficacy of gemcitabine therapy is often insufficient for the treatment of pancreatic cancer. The current study demonstrated that LW6, a chemical inhibitor of hypoxia-inducible factor 1α, is a promising drug for enhancing the chemosensitivity to gemcitabine. LW6 monotherapy and the combination therapy of LW6 plus gemcitabine significantly inhibited cell proliferation and enhanced cell death in pancreatic cancer cells. This combination therapy also significantly reduced the tumor weight in a syngeneic orthotopic pancreatic carcinoma model without causing toxic side effects. In addition, this study provides insight into the mechanism of how LW6 interferes with the pathophysiology of pancreatic cancer. The results revealed that LW6 inhibited autophagic flux, which is defined by the accumulation of microtubule-associated protein 1 light chain 3 (LC3) and p62/SQSTM1. Moreover, these results were verified by the analysis of a tandem RFP-GFP-tagged LC3 protein. Thence, for the first time, these data demonstrate that LW6 enhances the anti-tumor effects of gemcitabine and inhibits autophagic flux. This suggests that the combination therapy of LW6 plus gemcitabine may be a novel therapeutic strategy for pancreatic cancer patients.
Collapse
Affiliation(s)
- Xianbin Zhang
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18059 Rostock, Germany
| | - Simone Kumstel
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18059 Rostock, Germany
| | - Ke Jiang
- Cancer Center, Institute of Cancer Stem Cell, Dalian Medical University, Lvshun South Road 9W, 116044 Dalian, China
| | - Songshu Meng
- Cancer Center, Institute of Cancer Stem Cell, Dalian Medical University, Lvshun South Road 9W, 116044 Dalian, China
| | - Peng Gong
- Department of General Surgery, Shenzhen University General Hospital, Xueyuan Road 1098, 518055 Shenzhen, China
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18059 Rostock, Germany
| | - Dietmar Zechner
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18059 Rostock, Germany
| |
Collapse
|
47
|
Vaziri-Gohar A, Zarei M, Brody JR, Winter JM. Corrigendum: Metabolic Dependencies in Pancreatic Cancer. Front Oncol 2019; 8:672. [PMID: 30805300 PMCID: PMC6371022 DOI: 10.3389/fonc.2018.00672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
[This corrects the article DOI: 10.3389/fonc.2018.00617.].
Collapse
Affiliation(s)
- Ali Vaziri-Gohar
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mahsa Zarei
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jonathan R Brody
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jordan M Winter
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Surgery and Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
48
|
Vaziri-Gohar A, Zarei M, Brody JR, Winter JM. Metabolic Dependencies in Pancreatic Cancer. Front Oncol 2018; 8:617. [PMID: 30631752 PMCID: PMC6315177 DOI: 10.3389/fonc.2018.00617] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a highly lethal cancer with a long-term survival rate under 10%. Available cytotoxic chemotherapies have significant side effects, and only marginal therapeutic efficacy. FDA approved drugs currently used against PDA target DNA metabolism and DNA integrity. However, alternative metabolic targets beyond DNA may prove to be much more effective. PDA cells are forced to live within a particularly severe microenvironment characterized by relative hypovascularity, hypoxia, and nutrient deprivation. Thus, PDA cells must possess biochemical flexibility in order to adapt to austere conditions. A better understanding of the metabolic dependencies required by PDA to survive and thrive within a harsh metabolic milieu could reveal specific metabolic vulnerabilities. These molecular requirements can then be targeted therapeutically, and would likely be associated with a clinically significant therapeutic window since the normal tissue is so well-perfused with an abundant nutrient supply. Recent work has uncovered a number of promising therapeutic targets in the metabolic domain, and clinicians are already translating some of these discoveries to the clinic. In this review, we highlight mitochondria metabolism, non-canonical nutrient acquisition pathways (macropinocytosis and use of pancreatic stellate cell-derived alanine), and redox homeostasis as compelling therapeutic opportunities in the metabolic domain.
Collapse
Affiliation(s)
- Ali Vaziri-Gohar
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mahsa Zarei
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jonathan R. Brody
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jordan M. Winter
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Surgery and Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
49
|
Molejon MI, Swayden M, Fanale D, Bintz J, Gayet O, Soubeyran P, Iovanna J. Chloroquine plays a cell-dependent role in the response to treatment of pancreatic adenocarcinoma. Oncotarget 2018; 9:30837-30846. [PMID: 30112111 PMCID: PMC6089401 DOI: 10.18632/oncotarget.25745] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/23/2018] [Indexed: 12/18/2022] Open
Abstract
In this study, our aim is to assess the role played by autophagy and its inhibition in the different PDAC cellular compartments, and its involvement in chemo-resistance using primary human pancreatic cancer-derived cells (PCC) and Cancer Associated Fibroblasts (CAF). Autophagy flux, as measured by LC3-I and -II in the presence of Chloroquine, showed a variable level in PCC and CAFs. We found no correlation between autophagy level and degree of tumor differentiation. Association of Chloroquine with gemcitabine, 5FU, oxaliplatin, irinotecan and docetaxel revealed that its effect on survival is cell- and drug-dependent in vitro and in vivo. In addition, we demonstrated that autophagy in CAFs can play an important role in sensitizing PDAC to anticancer treatments since its inhibition increased the resistance of PCCs to gemcitabine. In conclusion, this work clearly shows a heterogeneity in the effect of Chloroquine and highlights a role of CAFs autophagy in sensitizing tumors to treatments. It also reveals that the role of autophagy is more complex than expected in PDAC as well as its sensitivity to treatments.
Collapse
Affiliation(s)
- María Inés Molejon
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France.,INCITAP-CONICET (Instituto de Ciencias de la Tierra y Ambientales - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| | - Mirna Swayden
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Jennifer Bintz
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Odile Gayet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Philippe Soubeyran
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
50
|
Marcucci F, Rumio C. How Tumor Cells Choose Between Epithelial-Mesenchymal Transition and Autophagy to Resist Stress-Therapeutic Implications. Front Pharmacol 2018; 9:714. [PMID: 30013478 PMCID: PMC6036460 DOI: 10.3389/fphar.2018.00714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/12/2018] [Indexed: 12/17/2022] Open
Abstract
Tumor cells undergo epithelial-mesenchymal transition (EMT) or macroautophagy (hereafter autophagy) in response to stressors from the microenvironment. EMT ensues when stressors act on tumor cells in the presence of nutrient sufficiency, and mechanistic target of rapamycin (mTOR) appears to be the crucial signaling node for EMT induction. Autophagy, on the other hand, is induced in the presence of nutrient deprivation and/or stressors from the microenvironment with 5' adenosine monophosphate-activated protein kinase (AMPK) playing an important, but not exclusive role, in autophagy induction. Importantly, mTOR and EMT on one hand, and AMPK and autophagy on the other hand, negatively regulate each other. Such regulation occurs at different levels and suggests that, in many instances, these two stress responses are mutually exclusive. Nevertheless, EMT and autophagy are able to interconvert and we suggest that this may depend on spatiotemporal changes in the tumor microenvironment and/or on duration/intensity of the stressor signal(s). Eventually, we propose a three-pronged therapeutic approach aimed at targeting these three major tumor cell populations. First, cytotoxic drugs that act on differentiated and proliferating tumor cells and which, per se, may promote induction of EMT or autophagy in surviving tumor cells. Second, inhibitors of mTOR in order to prevent EMT induction. Third inducers of autophagic cell death (autosis) in order to deplete tumor cells that are constitutively in an autophagic state or are induced to enter an autophagic state in response to antitumor therapy.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|