1
|
Preisendörfer S, Ishikawa Y, Hennen E, Winklmeier S, Schupp JC, Knüppel L, Fernandez IE, Binzenhöfer L, Flatley A, Juan-Guardela BM, Ruppert C, Guenther A, Frankenberger M, Hatz RA, Kneidinger N, Behr J, Feederle R, Schepers A, Hilgendorff A, Kaminski N, Meinl E, Bächinger HP, Eickelberg O, Staab-Weijnitz CA. FK506-Binding Protein 11 Is a Novel Plasma Cell-Specific Antibody Folding Catalyst with Increased Expression in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:1341. [PMID: 35456020 PMCID: PMC9027113 DOI: 10.3390/cells11081341] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Antibodies are central effectors of the adaptive immune response, widespread used therapeutics, but also potentially disease-causing biomolecules. Antibody folding catalysts in the plasma cell are incompletely defined. Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease with increasingly recognized autoimmune features. We found elevated expression of FK506-binding protein 11 (FKBP11) in IPF lungs where FKBP11 specifically localized to antibody-producing plasma cells. Suggesting a general role in plasma cells, plasma cell-specific FKBP11 expression was equally observed in lymphatic tissues, and in vitro B cell to plasma cell differentiation was accompanied by induction of FKBP11 expression. Recombinant human FKBP11 was able to refold IgG antibody in vitro and inhibited by FK506, strongly supporting a function as antibody peptidyl-prolyl cis-trans isomerase. Induction of ER stress in cell lines demonstrated induction of FKBP11 in the context of the unfolded protein response in an X-box-binding protein 1 (XBP1)-dependent manner. While deficiency of FKBP11 increased susceptibility to ER stress-mediated cell death in an alveolar epithelial cell line, FKBP11 knockdown in an antibody-producing hybridoma cell line neither induced cell death nor decreased expression or secretion of IgG antibody. Similarly, antibody secretion by the same hybridoma cell line was not affected by knockdown of the established antibody peptidyl-prolyl isomerase cyclophilin B. The results are consistent with FKBP11 as a novel XBP1-regulated antibody peptidyl-prolyl cis-trans isomerase and indicate significant redundancy in the ER-resident folding machinery of antibody-producing hybridoma cells.
Collapse
Affiliation(s)
- Stefan Preisendörfer
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Yoshihiro Ishikawa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; (Y.I.); (H.P.B.)
| | - Elisabeth Hennen
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Stephan Winklmeier
- Institute of Clinical Neuroimmunology, Biomedical Center and LMU Klinikum, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (S.W.); (E.M.)
| | - Jonas C. Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (J.C.S.); (B.M.J.-G.); (N.K.)
- Department of Respiratory Medicine, Hannover Medical School, Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Larissa Knüppel
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Isis E. Fernandez
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
- Department of Medicine V, LMU Klinikum, Ludwig-Maximilians-Universität München, Member of the German Center of Lung Research (DZL), 81377 Munich, Germany; (N.K.); (J.B.)
| | - Leonhard Binzenhöfer
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, 85764 Neuherberg, Germany; (A.F.); (R.F.); (A.S.)
| | - Brenda M. Juan-Guardela
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (J.C.S.); (B.M.J.-G.); (N.K.)
| | - Clemens Ruppert
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), 35392 Giessen, Germany; (C.R.); (A.G.)
| | - Andreas Guenther
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), 35392 Giessen, Germany; (C.R.); (A.G.)
| | - Marion Frankenberger
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Rudolf A. Hatz
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, LMU Klinikum, Ludwig-Maximilians-Universität München, 81377 Munich, Germany;
- Asklepios Fachkliniken München-Gauting, 82131 Gauting, Germany
| | - Nikolaus Kneidinger
- Department of Medicine V, LMU Klinikum, Ludwig-Maximilians-Universität München, Member of the German Center of Lung Research (DZL), 81377 Munich, Germany; (N.K.); (J.B.)
| | - Jürgen Behr
- Department of Medicine V, LMU Klinikum, Ludwig-Maximilians-Universität München, Member of the German Center of Lung Research (DZL), 81377 Munich, Germany; (N.K.); (J.B.)
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, 85764 Neuherberg, Germany; (A.F.); (R.F.); (A.S.)
| | - Aloys Schepers
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, 85764 Neuherberg, Germany; (A.F.); (R.F.); (A.S.)
| | - Anne Hilgendorff
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (J.C.S.); (B.M.J.-G.); (N.K.)
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and LMU Klinikum, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (S.W.); (E.M.)
| | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; (Y.I.); (H.P.B.)
| | - Oliver Eickelberg
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Claudia A. Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| |
Collapse
|
2
|
Singh A, Behl T, Sehgal A, Singh S, Sharma N, Naved T, Bhatia S, Al-Harrasi A, Chakrabarti P, Aleya L, Vargas-De-La-Cruz C, Bungau S. Mechanistic insights into the role of B cells in rheumatoid arthritis. Int Immunopharmacol 2021; 99:108078. [PMID: 34426116 DOI: 10.1016/j.intimp.2021.108078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease epitomized by severe inflammation that induces tendon, cartilage, and bone damage over time. Although different types of cells undertake pathogenic functions in RA, the B cell's significant involvement has increasingly been known following the development of rheumatoid factor and it has been re-emphasized in recent years. Therefore, the rheumatoid factors and anti-cyclic citrullinated peptide antibodies are well-known indications of infection and clinical manifestations, and that they can precede the development of illness by several years. The emergence of rituximab a B cell reducing chimeric antidote in 1997 and 1998 transformed B-cell-targeted therapy for inflammatory disorder from a research hypothesis to a functional fact. Ever since, several autoantibody-related conditions were addressed, including the more intriguing indications of effectiveness seen in rheumatoid arthritis patients. Numerous types of B-cell-targeted compounds are currently being researched. From the beginning, one of the primary goals of B-cell therapy was to reinstate some kind of immune tolerance. While B cells have long been recognized as essential autoantibody producers, certain antibody-independent functions and usefulness as a key targeted therapy were not recognized until recently. The knowledge of B cells' diverse physical and pathogenic roles in autoimmune diseases is growing. As a result, the number of successful agents targeting the B cell complex is becoming more ubiquitous. Therefore, in this article, we explore fresh perspectives upon the roles of B cells in arthritis treatment, as well as new evidence regarding the effectiveness of B lymphocytes reduction and the therapeutic outcome of biological markers.
Collapse
Affiliation(s)
- Anuja Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tanveer Naved
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | | | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, France
| | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Ensenanza e Investigacion en Bacteriologia Alimentaria, Universidad Nacinol Mayor de San Marcos, Lima, Peru; E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, Peru
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
3
|
Garcia-Garcia J, Díaz-Maroto I, Martínez-Martín A, Pardal-Fernández JM, Segura T. A series of patients with refractory myasthenia gravis. Neurologia 2020; 38:S0213-4853(20)30293-0. [PMID: 33172684 DOI: 10.1016/j.nrl.2020.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/15/2020] [Accepted: 08/26/2020] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Advances in the treatment of myasthenia gravis (MG) have improved quality of life and prognosis for the majority of patients. However, 10%-20% of patients present refractory MG, with frequent relapses and significant functional limitations. PATIENTS AND METHODS Patients with refractory MG were selected from a cohort of patients diagnosed with MG between January 2008 and June 2019. Refractory MG was defined as lack of response to treatment with prednisone and at least 2 immunosuppressants, inability to withdraw treatment without relapse in the last 12 months, or intolerance to treatment with severe adverse reactions. RESULTS We identified 84 patients with MG, 11 of whom (13%) met criteria for refractory MG. Mean (standard deviation) age was 47 (18) years; 64% of patients with refractory MG had early-onset generalised myasthenia (as compared to 22% in the group of patients with MG; P<.01), with a higher proportion of women in this group (P<.01). Disease severity at diagnosis and at the time of data analysis was higher among patients with refractory MG, who presented more relapses during follow-up. Logistic regression analysis revealed an independent association between refractory MG and the number of severe relapses. CONCLUSIONS The percentage of patients with refractory MG in our series (13%) is similar to those reported in previous studies; these patients were often women and presented early onset, severe forms of onset, and repeated relapses requiring hospital admission during follow-up.
Collapse
Affiliation(s)
- J Garcia-Garcia
- Servicio de Neurología, Complejo Hospitalario Universitario de Albacete, Albacete, España.
| | - I Díaz-Maroto
- Servicio de Neurología, Complejo Hospitalario Universitario de Albacete, Albacete, España
| | - A Martínez-Martín
- Servicio de Neurología, Complejo Hospitalario Universitario de Albacete, Albacete, España
| | - J M Pardal-Fernández
- Servicio de Neurofisiología Clínica, Complejo Hospitalario Universitario de Albacete, Albacete, España
| | - T Segura
- Servicio de Neurología, Complejo Hospitalario Universitario de Albacete, Albacete, España
| |
Collapse
|
4
|
Generation of a canine anti-canine CD20 antibody for canine lymphoma treatment. Sci Rep 2020; 10:11476. [PMID: 32651429 PMCID: PMC7351721 DOI: 10.1038/s41598-020-68470-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Lymphoma is the most common hematological cancer in dogs. Canine diffuse large B cell lymphoma shows a relatively good response to treatment with multi-agent cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) chemotherapy; however, the 2-year survival rate is as low as 20%. For human B cell type lymphoma, the anti-CD20 chimeric antibody, rituximab, was developed two decades ago. The combination of rituximab and CHOP chemotherapy was highly successful in improving patient prognosis. However, no anti-canine CD20 antibody is available for the treatment of canine lymphoma. During this study, a rat anti-canine CD20 monoclonal antibody was established. We also generated a rat-canine chimeric antibody against canine CD20 designed for clinical application. This chimeric antibody (4E1-7-B) showed in vitro antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against the canine B cell lymphoma cell line CLBL-1. Moreover, to obtain stronger ADCC activity, a defucosylated 4E1-7-B antibody (4E1-7-B_f) was also generated, and it showed tenfold stronger ADCC activity compared with 4E1-7-B. 4E1-7-B_f as well as 4E1-7-B suppressed the growth of CLBL-1 tumors in an immunodeficient xenotransplant mouse model. Finally, a single administration of 4E1-7-B_f induced considerable peripheral B cell depletion in healthy beagles. Thus, 4E1-7-B_f is a good antibody drug candidate for canine B cell type lymphoma.
Collapse
|
5
|
Souto EB, Lima B, Campos JR, Martins-Gomes C, Souto SB, Silva AM. Myasthenia gravis: State of the art and new therapeutic strategies. J Neuroimmunol 2019; 337:577080. [PMID: 31670062 DOI: 10.1016/j.jneuroim.2019.577080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022]
Abstract
Myasthenia Gravis (MG) - an autoimmune neuromuscular disease - is known by the production of autoantibodies against components of the neuromuscular junction mainly to the acetylcholine receptor, which cause the destruction and compromises the synaptic transmission. This disease is characterized by fluctuating and fatigable muscle weakness, becoming more intensive with activity, but with an improvement under resting. There are many therapeutic strategies used to alleviate MG symptoms, either by improving the transmission of the nerve impulse or by ameliorating autoimmune reactions with e.g. steroids, immunosuppressant drugs, or monoclonal antibodies (rituximab and eculizumab). Many breakthroughs in the discovery of new therapeutic targets have been reported, but MG remains to be a chronic disease where the symptoms are kept in the majority of patients. In this review, we discuss the different therapeutic strategies that have been used over the years to alleviate MG symptoms, as well as innovative therapeutic approaches currently under study.
Collapse
Affiliation(s)
- Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Bernardo Lima
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Joana R Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Carlos Martins-Gomes
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Selma B Souto
- Department of Endocrinology of S. João Hospital, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Amélia M Silva
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| |
Collapse
|
6
|
Gallagher S, Turman S, Lekstrom K, Wilson S, Herbst R, Wang Y. CD47 limits antibody dependent phagocytosis against non-malignant B cells. Mol Immunol 2017; 85:57-65. [PMID: 28208074 DOI: 10.1016/j.molimm.2017.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 01/21/2023]
Abstract
Recent studies have demonstrated the importance of CD47 in protecting malignant B cells from antibody dependent cellular phagocytosis (ADCP). Combined treatment of anti-CD47 and -CD20 antibodies synergistically augment elimination of tumor B cells in xenograft mouse models. This has led to the development of novel reagents that can potentially enhance killing of malignant B cells in patients. B cell depleting therapy is also a promising treatment for autoimmune patients. In the current study, we aimed to investigate whether or not CD47 protects non-malignant B cells from ADCP. We show that CD47 is expressed on all B cells in mice, with the highest level on plasma cells in bone marrow and spleen. Although its expression is dispensable for B cell development in mice, CD47 on B cells limits antibody mediated phagocytosis. B cell depletion following in vivo anti-CD19 treatment is more efficient in CD47-/- mice than in wild type mice. In vitro, both naïve and activated B cells from CD47-/- mice are more sensitive to ADCP than wild type B cells. Lastly, we show in an ADCP assay that blocking CD47 can enhance anti-CD19 antibody mediated phagocytosis of wild type B cells. These results suggest that in addition to its already demonstrated benefit in cancer, targeting CD47 may be used as an adjunct in combination with B cell depletion antibodies for treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Sandra Gallagher
- Department of Oncology Research, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Sean Turman
- Department of Oncology Research, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Kristen Lekstrom
- Department of Protein Science, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Susan Wilson
- Department of Protein Science, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Ronald Herbst
- Department of Oncology Research, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Yue Wang
- Department of Oncology Research, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA.
| |
Collapse
|
7
|
B Lymphocytes in Multiple Sclerosis: Bregs and BTLA/CD272 Expressing-CD19+ Lymphocytes Modulate Disease Severity. Sci Rep 2016; 6:29699. [PMID: 27412504 PMCID: PMC4944189 DOI: 10.1038/srep29699] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/23/2016] [Indexed: 01/18/2023] Open
Abstract
B lymphocytes contribute to the pathogenesis of Multiple Sclerosis (MS) by secreting antibodies and producing cytokines. This latter function was analyzed in myelin olygodendrocyte protein (MOG)-stimulated CD19+ B lymphocytes of 71 MS patients with different disease phenotypes and 40 age-and sex-matched healthy controls (HC). Results showed that: 1) CD19+/TNFα+, CD19+/IL-12+ and CD19+/IFNγ+ lymphocytes are significantly increased in primary progressive (PP) compared to secondary progressive (SP), relapsing-remitting (RR), benign (BE) MS and HC; 2) CD19+/IL-6+ lymphocytes are significantly increased in PP, SP and RR compared to BEMS and HC; and 3) CD19+/IL-13+, CD19+/IL-10+, and CD19+/IL-10+/TGFβ+ (Bregs) B lymphocytes are reduced overall in MS patients compared to HC. B cells expressing BTLA, a receptor whose binding to HVEM inhibits TcR-initiated cytokine production, as well as CD19+/BTLA+/IL-10+ cells were also significantly overall reduced in MS patients compared to HC. Analyses performed in RRMS showed that fingolimod-induced disease remission is associated with a significant increase in Bregs, CD19+/BTLA+, and CD19+/BTLA+/IL-10+ B lymphocytes. B lymphocytes participate to the pathogenesis of MS via the secretion of functionally-diverse cytokines that might play a role in determining disease phenotypes. The impairment of Bregs and CD19+/BTLA+ cells, in particular, could play an important pathogenic role in MS.
Collapse
|
8
|
Sack U, Boldt A, Mallouk N, Gruber R, Krenn V, Berger-Depincé AE, Conrad K, Tarnok A, Lambert C, Reinhold D, Fricke S. Cellular analyses in the monitoring of autoimmune diseases. Autoimmun Rev 2016; 15:883-9. [PMID: 27392502 DOI: 10.1016/j.autrev.2016.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/05/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Ulrich Sack
- Universitätsklinikum Leipzig, Department für Diagnostik, Institut für Klinische Immunologie, Johannisallee 30, 04103, Leipzig, Germany.
| | - Andreas Boldt
- Universitätsklinikum Leipzig, Department für Diagnostik, Institut für Klinische Immunologie, Johannisallee 30, 04103, Leipzig, Germany.
| | - Nora Mallouk
- URCIP, CHU Saint-Etienne, Hôpital Nord, 42055 Saint-Etienne Cedex 02, France.
| | - Rudolf Gruber
- Institut für Labormedizin, Mikrobiologie und Krankenhaushygiene, Krankenhaus Barmherzige Brüder Regensburg, Prüfeninger Straße 86, 93049, Regensburg, Germany.
| | - Veit Krenn
- Medizinisches Versorgungszentrum für Histologie, Zytologie und Molekulare Diagnostik Trier, Max-Planck-Str. 5, 54296, Trier, Germany.
| | | | - Karsten Conrad
- Institut für Immunologie, Medizinische Fakultät "Carl Gustav Carus" der Technischen Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Attila Tarnok
- Universitätsklinikum Leipzig, Department für Diagnostik, Institut für Klinische Immunologie, Johannisallee 30, 04103, Leipzig, Germany.
| | - Claude Lambert
- Immunology laboratory, Pole de Biologie-Pathologie, University Hospital. CNRS UMR5307 Labo Georges Friedel (LGF); 42055 Saint-Etienne Cedex 02, France.
| | - Dirk Reinhold
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Molekulare und Klinische Immunologie, Leipziger Straße 44, 39120, Magdeburg, Germany.
| | - Stephan Fricke
- Fraunhofer Institut für Zelltherapie und Immunologie, Perlickstraße 1, 04103, Leipzig, Germany.
| |
Collapse
|
9
|
Guptill JT, Soni M, Meriggioli MN. Current Treatment, Emerging Translational Therapies, and New Therapeutic Targets for Autoimmune Myasthenia Gravis. Neurotherapeutics 2016; 13:118-31. [PMID: 26510558 PMCID: PMC4720661 DOI: 10.1007/s13311-015-0398-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease associated with the production of autoantibodies against 1) the skeletal muscle acetylcholine receptor; 2) muscle-specific kinase, a receptor tyrosine kinase critical for the maintenance of neuromuscular synapses; 3) low-density lipoprotein receptor-related protein 4, an important molecular binding partner for muscle-specific kinase; and 4) other muscle endplate proteins. In addition to the profile of autoantibodies, MG may be classified according the location of the affected muscles (ocular vs generalized), the age of symptom onset, and the nature of thymic pathology. Immunopathologic events leading to the production of autoantibodies differ in the various disease subtypes. Advances in our knowledge of the immunopathogenesis of the subtypes of MG will allow for directed utilization of the ever-growing repertoire of therapeutic agents that target distinct nodes in the immune pathway relevant to the initiation and maintenance of autoimmune disease. In this review, we examine the pathogenesis of MG subtypes, current treatment options, and emerging new treatments and therapeutic targets.
Collapse
Affiliation(s)
- Jeffrey T Guptill
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Madhu Soni
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Matthew N Meriggioli
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
10
|
Nilsson J, Lichtman A, Tedgui A. Atheroprotective immunity and cardiovascular disease: therapeutic opportunities and challenges. J Intern Med 2015; 278:507-19. [PMID: 25659809 DOI: 10.1111/joim.12353] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Emerging knowledge of the role of atheroprotective immune responses in modulating inflammation and tissue repair in atherosclerotic lesions has provided promising opportunities to develop novel therapies directly targeting the disease process in the artery wall. Regulatory T (Treg) cells have a protective role through release of anti-inflammatory cytokines and suppression of autoreactive effector T cells. Studies in experimental animals have shown that blocking the generation or action of Treg cells is associated with more aggressive development of atherosclerosis. Conversely, cell transfer and other approaches to expand Treg cell populations in vivo result in reduced atherosclerosis. There have been relatively few clinical studies of Treg cells and cardiovascular disease, but the available evidence also supports a protective function. These observations have raised hope that it may be possible to develop therapies that act by enforcing the suppressive activities of Treg cells in atherosclerotic lesions. One approach to achieve this goal has been through development of vaccines that stimulate immunological tolerance for plaque antigens. Several pilot vaccines based on LDL-derived antigens have demonstrated promising results in preclinical testing. If such therapies can be shown to be effective also in clinical trials, this could have an important impact on cardiovascular prevention and treatment. Here, we review the current knowledge of the mode of action of atheroprotective immunity and of the ways to stimulate such pathways in experimental settings. The challenges in translating this knowledge into the clinical setting are also discussed within the perspective of the experience of introducing immune-based therapies for other chronic noninfectious diseases.
Collapse
Affiliation(s)
- J Nilsson
- Experimental Cardiovascular Research Unit, Clinical Sciences, Clinical Research Center, Lund University, Lund, Sweden
| | - A Lichtman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - A Tedgui
- INSERM U970, Paris-Cardiovascular Research Center, Paris, France
| |
Collapse
|
11
|
Vazquez MI, Catalan-Dibene J, Zlotnik A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine 2015; 74:318-26. [PMID: 25742773 DOI: 10.1016/j.cyto.2015.02.007] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 12/15/2022]
Abstract
The adaptive immune system consists of two types of lymphocytes: T and B cells. These two lymphocytes originate from a common precursor, yet are fundamentally different with B cells mediating humoral immunity while T cells mediate cell mediated immunity. In cytokine production, naïve T cells produce multiple cytokines upon activation while naïve activated B cells do not. B cells are capable of producing cytokines, but their cytokine production depends on their differentiation state and activation conditions. Hence, unlike T cells that can produce a large amount of cytokines upon activation, B cells require specific differentiation and activation conditions to produce cytokines. Many cytokines act on B cells as well. Here, we discuss several cytokines and their effects on B cells including: Interleukins, IL-7, IL-4, IL-6, IL-10, and Interferons, IFN-α, IFN-β, IFN-γ. These cytokines play important roles in the development, survival, differentiation and/or proliferation of B cells. Certain chemokines also play important roles in B cell function, namely antibody production. As an example, we discuss CCL28, a chemokine that directs the migration of plasma cells to mucosal sites. We conclude with a brief overview of B cells as cytokine producers and their likely functional consequences on the immune response.
Collapse
Affiliation(s)
- Monica I Vazquez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA
| | - Jovani Catalan-Dibene
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA
| | - Albert Zlotnik
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|