1
|
Bazsó A, Szodoray P, Shoenfeld Y, Kiss E. Biomarkers reflecting the pathogenesis, clinical manifestations, and guide therapeutic approach in systemic sclerosis: a narrative review. Clin Rheumatol 2024; 43:3055-3072. [PMID: 39210206 PMCID: PMC11442557 DOI: 10.1007/s10067-024-07123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Systemic sclerosis (SSc) is a progressive autoimmune disorder that mainly affects the skin. There are other clinical manifestations as renal, pulmonary, cardiovascular, and gastrointestinal tract involvements. Based on the skin involvement there are two subtypes of SSc, as limited cutaneous SSc (lSSc) which involves the acral part of the body and diffuse cutaneous SSc (dSSc) resulting in significant skin thickening of the body. Despite of the extensive research the pathomechanism is not fully clarified, how Ssc develops, moreover identifying biomarkers to predict the clinical outcome and prognosis still remains challenging. Circulating biomarkers can be crucial to define the diagnosis, to predict the prognosis and monitor the clinical course. However, only some patients are responsive to the therapy in SSc, and there is a need to reach the ideal therapy for any individual to prevent or slow down the progression in early stages of the disease. In this narrative review, our purpose was to summarize the potential biomarkers in Ssc, describe their role in the diagnosis, pathomechanism, clinical course, organ manifestations, as well as the response to the therapy. Biomarkers assessment aids in the evaluation of disease progression, and disease outcome.
Collapse
Affiliation(s)
- Anna Bazsó
- Department of Clinical Immunology, Adult and Paediatric Rheumatology, National Institute of Locomotor System Disorders and Disabilities, Budapest, Hungary.
| | - Péter Szodoray
- Department of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Yehuda Shoenfeld
- Reichmann University, Herzelia, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, 5265601, Tel-Hashomer, Israel
| | - Emese Kiss
- Department of Clinical Immunology, Adult and Paediatric Rheumatology, National Institute of Locomotor System Disorders and Disabilities, Budapest, Hungary
- Division of Locomotor System and Rheumatology Prevention, Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Benfaremo D, Agarbati S, Mozzicafreddo M, Paolini C, Svegliati S, Moroncini G. Skin Gene Expression Profiles in Systemic Sclerosis: From Clinical Stratification to Precision Medicine. Int J Mol Sci 2023; 24:12548. [PMID: 37628728 PMCID: PMC10454358 DOI: 10.3390/ijms241612548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Systemic sclerosis, also known as scleroderma or SSc, is a condition characterized by significant heterogeneity in clinical presentation, disease progression, and response to treatment. Consequently, the design of clinical trials to successfully identify effective therapeutic interventions poses a major challenge. Recent advancements in skin molecular profiling technologies and stratification techniques have enabled the identification of patient subgroups that may be relevant for personalized treatment approaches. This narrative review aims at providing an overview of the current status of skin gene expression analysis using computational biology approaches and highlights the benefits of stratifying patients upon their skin gene signatures. Such stratification has the potential to lead toward a precision medicine approach in the management of SSc.
Collapse
Affiliation(s)
- Devis Benfaremo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
| | - Matteo Mozzicafreddo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
| | - Chiara Paolini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
| | - Silvia Svegliati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| | - Gianluca Moroncini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| |
Collapse
|
3
|
Kim S, Park HJ, Lee SI. The Microbiome in Systemic Sclerosis: Pathophysiology and Therapeutic Potential. Int J Mol Sci 2022; 23:ijms232416154. [PMID: 36555792 PMCID: PMC9853331 DOI: 10.3390/ijms232416154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune disease with unknown etiology characterized by multi-organ fibrosis. Despite substantial investigation on SSc-related cellular and molecular mechanisms, effective therapies are still lacking. The skin, lungs, and gut are the most affected organs in SSc, which act as physical barriers and constantly communicate with colonized microbiota. Recent reports have documented a unique microbiome signature, which may be the pathogenic trigger or driver of SSc. Since gut microbiota influences the efficacy and toxicity of oral drugs, evaluating drug-microbiota interactions has become an area of interest in disease treatment. The existing evidence highlights the potential of the microbial challenge as a novel therapeutic option in SSc. In this review, we have summarized the current knowledge about molecular mechanisms of SSc and highlighted the underlying role of the microbiome in SSc pathogenesis. We have also discussed the latest therapeutic interventions using microbiomes in SSc, including drug-microbiota interactions and animal disease models. This review aims to elucidate the pathophysiological connection and therapeutic potential of the microbiome in SSc. Insights into the microbiome will significantly improve our understanding of etiopathogenesis and developing therapeutics for SSc.
Collapse
|
4
|
Dai B, Ding L, Zhao L, Zhu H, Luo H. Contributions of Immune Cells and Stromal Cells to the Pathogenesis of Systemic Sclerosis: Recent Insights. Front Pharmacol 2022; 13:826839. [PMID: 35185577 PMCID: PMC8852243 DOI: 10.3389/fphar.2022.826839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
Systemic sclerosis (SSc) is a multisystem rheumatic disease characterized by vascular dysfunction, autoimmune abnormalities, and progressive organ fibrosis. A series of studies in SSc patients and fibrotic models suggest that immune cells, fibroblasts, and endothelial cells participate in inflammation and aberrant tissue repair. Furthermore, the growing number of studies on single-cell RNA sequencing (scRNA-seq) technology in SSc elaborate on the transcriptomics and heterogeneities of these cell subsets significantly. In this review, we summarize the current knowledge regarding immune cells and stromal cells in SSc patients and discuss their potential roles in SSc pathogenesis, focusing on recent advances in the new subtypes by scRNA-seq.
Collapse
Affiliation(s)
- Bingying Dai
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Liqing Ding
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Lijuan Zhao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- *Correspondence: Honglin Zhu, ; Hui Luo,
| | - Hui Luo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- *Correspondence: Honglin Zhu, ; Hui Luo,
| |
Collapse
|
5
|
Orvain C, Cauvet A, Prudent A, Guignabert C, Thuillet R, Ottaviani M, Tu L, Duhalde F, Nicco C, Batteux F, Avouac J, Wang N, Seaberg MA, Dillon SR, Allanore Y. Acazicolcept (ALPN-101), a dual ICOS/CD28 antagonist, demonstrates efficacy in systemic sclerosis preclinical mouse models. Arthritis Res Ther 2022; 24:13. [PMID: 34986869 PMCID: PMC8728910 DOI: 10.1186/s13075-021-02709-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
Background Uncontrolled immune response with T cell activation has a key role in the pathogenesis of systemic sclerosis (SSc), a disorder that is characterized by generalized fibrosis affecting particularly the lungs and skin. Costimulatory molecules are key players during immune activation, and recent evidence supports a role of CD28 and ICOS in the development of fibrosis. We herein investigated the efficacy of acazicolcept (ALPN-101), a dual ICOS/CD28 antagonist, in two complementary SSc-related mouse models recapitulating skin fibrosis, interstitial lung disease, and pulmonary hypertension. Methods Expression of circulating soluble ICOS and skin-expressed ICOS was investigated in SSc patients. Thereafter, acazicolcept was evaluated in the hypochlorous acid (HOCL)-induced dermal fibrosis mouse model and in the Fra-2 transgenic (Tg) mouse model. In each model, mice received 400 μg of acazicolcept or a molar-matched dose of an Fc control protein twice a week for 6 weeks. After 6 weeks, skin and lung were evaluated. Results ICOS was significantly increased in the sera from SSc patients and in SSc skin biopsies as compared to samples from healthy controls. Similar body weight changes were observed between Fc control and acazicolcept groups in both HOCL and Fra-2 Tg mice suggesting a good tolerance of acazicolcept treatment. In mice challenged with HOCL, acazicolcept induced a significant decrease in dermal thickness, collagen content, myofibroblast number, and inflammatory infiltrates characterized by B cells, T cells, neutrophils, and macrophages. In the Fra-2 Tg mouse model, acazicolcept treatment reduced lung collagen content, fibrillar collagen, histological fibrosis score, and right ventricular systolic pressure (RVSP). A reduction in frequency of CD4+ and T effector memory cells and an increase in the percentage of CD4+ T naïve cells in spleen and lung of acazicolcept-treated Fra-2 Tg mice was observed as compared to Fc control-treated Fra-2 Tg mice. Moreover, acazicolcept reduced CD69 and PD-1 expression on CD4+ T cells from the spleen and the lung. Target engagement by acazicolcept was demonstrated by blockade of CD28 and ICOS detection by flow cytometry in treated mice. Conclusions Our results confirm the importance of costimulatory molecules in inflammatory-driven fibrosis. Our data highlight a key role of ICOS and CD28 in SSc. Using complementary models, we demonstrated that dual ICOS/CD28 blockade by acazicolcept decreased dermal and pulmonary fibrosis and alleviated pulmonary hypertension. These results pave the way for subsequent research on ICOS/CD28-targeted therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02709-2.
Collapse
Affiliation(s)
- Cindy Orvain
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Anne Cauvet
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Alexis Prudent
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Raphaël Thuillet
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Mina Ottaviani
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Ly Tu
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Fanny Duhalde
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Carole Nicco
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Frédéric Batteux
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, Service d'immunologie biologique (Professeur Batteux), Paris, France
| | - Jérôme Avouac
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital 27 rue du Faubourg Saint-Jacques, Cochin, 75014, Paris, France
| | | | | | | | - Yannick Allanore
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital 27 rue du Faubourg Saint-Jacques, Cochin, 75014, Paris, France.
| |
Collapse
|
6
|
Moura CA, Torres V, de Assis LH, Moura FR, Moura CG. Systemic Sclerosis, Polycythemia Vera, and JAK Pathway: Coincidence or Correlation? J Clin Rheumatol 2021; 27:S517-S519. [PMID: 31483350 DOI: 10.1097/rhu.0000000000001136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Szabo I, Muntean L, Crisan T, Rednic V, Sirbe C, Rednic S. Novel Concepts in Systemic Sclerosis Pathogenesis: Role for miRNAs. Biomedicines 2021; 9:biomedicines9101471. [PMID: 34680587 PMCID: PMC8533248 DOI: 10.3390/biomedicines9101471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease with heterogeneous clinical phenotypes. It is characterized by the pathogenic triad: microangiopathy, immune dysfunction, and fibrosis. Epigenetic mechanisms modulate gene expression without interfering with the DNA sequence. Epigenetic marks may be reversible and their differential response to external stimuli could explain the protean clinical manifestations of SSc while offering the opportunity of targeted drug development. Small, non-coding RNA sequences (miRNAs) have demonstrated complex interactions between vasculature, immune activation, and extracellular matrices. Distinct miRNA profiles were identified in SSc skin specimens and blood samples containing a wide variety of dysregulated miRNAs. Their target genes are mainly involved in profibrotic pathways, but new lines of evidence also confirm their participation in impaired angiogenesis and aberrant immune responses. Research approaches focusing on earlier stages of the disease and on differential miRNA expression in various tissues could bring novel insights into SSc pathogenesis and validate the clinical utility of miRNAs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Iulia Szabo
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
| | - Laura Muntean
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
- Department of Rheumatology, County Emergency Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
- Correspondence:
| | - Tania Crisan
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania;
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Voicu Rednic
- Department of Gastroenterology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania;
- Department of Gastroenterology II, “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 400000 Cluj-Napoca, Romania
| | - Claudia Sirbe
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
| | - Simona Rednic
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
- Department of Rheumatology, County Emergency Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Wang Q, Zhang M, Zhai M, Li Z. Cerebral infarction caused by systemic sclerosis: a case report. J Int Med Res 2021; 49:3000605211044045. [PMID: 34510957 PMCID: PMC8442488 DOI: 10.1177/03000605211044045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Systemic sclerosis, also known as scleroderma, is a rare multisystem autoimmune disease characterized by vascular lesions caused by collagen deposition in the skin and viscera and damage to the endothelium. Endothelial injury and microvascular occlusion result in Raynaud's phenomenon, finger ischemia, pulmonary hypertension, and scleroderma renal crisis. Scleroderma itself is a rare disease with an incidence ranging from 0.1 to 14 per 100,000 people in the general population. Cerebral involvement is not considered a common manifestation of systemic sclerosis, although studies have shown that the brain can be involved. Therefore, to deepen the understanding of this disease, we herein report a case of cerebral infarction associated with systemic sclerosis.
Collapse
Affiliation(s)
- Qingqing Wang
- The Affiliated Fuyang Hospital of Bengbu Medical College, Fuyang City, Anhui Province, China.,Department of Neurology, Fuyang People's Hospital, Fuyang City, Anhui Province, China
| | - Mengen Zhang
- Department of Neurology, Fuyang People's Hospital, Fuyang City, Anhui Province, China
| | - Mingfeng Zhai
- Department of Neurology, Fuyang People's Hospital, Fuyang City, Anhui Province, China
| | - Zongyou Li
- The Affiliated Fuyang Hospital of Bengbu Medical College, Fuyang City, Anhui Province, China.,Department of Neurology, Fuyang People's Hospital, Fuyang City, Anhui Province, China
| |
Collapse
|
9
|
Abstract
From the clinical standpoint, systemic sclerosis (SSc) is characterized by skin and internal organ fibrosis, diffuse fibroproliferative vascular modifications, and autoimmunity. Clinical presentation and course are highly heterogenous and life expectancy variably affected mostly dependent on lung and heart involvement. SSc touches more women than men with differences in disease severity and environmental exposure. Pathogenetic events originate from altered homeostasis favored by genetic predisposition, environmental cues and a variety of endogenous and exogenous triggers. Epigenetic modifications modulate SSc pathogenesis which strikingly associate profound immune-inflammatory dysregulation, abnormal endothelial cell behavior, and cell trans-differentiation into myofibroblasts. SSc myofibroblasts show enhanced survival and enhanced extracellular matrix deposition presenting altered structure and altered physicochemical properties. Additional cell types of likely pathogenic importance are pericytes, platelets, and keratinocytes in conjunction with their relationship with vessel wall cells and fibroblasts. In SSc, the profibrotic milieu is favored by cell signaling initiated in the one hand by transforming growth factor-beta and related cytokines and in the other hand by innate and adaptive type 2 immune responses. Radical oxygen species and invariant receptors sensing danger participate to altered cell behavior. Conventional and SSc-specific T cell subsets modulate both fibroblasts as well as endothelial cell dysfunction. Beside autoantibodies directed against ubiquitous antigens important for enhanced clinical classification, antigen-specific agonistic autoantibodies may have a pathogenic role. Recent studies based on single-cell RNAseq and multi-omics approaches are revealing unforeseen heterogeneity in SSc cell differentiation and functional states. Advances in system biology applied to the wealth of data generated by unbiased screening are allowing to subgroup patients based on distinct pathogenic mechanisms. Deciphering heterogeneity in pathogenic mechanisms will pave the way to highly needed personalized therapeutic approaches.
Collapse
|
10
|
Gao Y, Dunlap G, Elahee M, Rao DA. Patterns of T-Cell Phenotypes in Rheumatic Diseases From Single-Cell Studies of Tissue. ACR Open Rheumatol 2021; 3:601-613. [PMID: 34255929 PMCID: PMC8449042 DOI: 10.1002/acr2.11296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
High-dimensional analyses of tissue samples from patients with rheumatic diseases are providing increasingly detailed descriptions of the immune cell populations that infiltrate tissues in different rheumatic diseases. Here we review key observations emerging from high-dimensional analyses of T cells within tissues in different rheumatic diseases, highlighting common themes across diseases as well as distinguishing features. Single-cell RNA sequencing analyses capture several dimensions of T-cell states, yet surprisingly, these analyses generally have not demonstrated distinct clusters of paradigmatic T-cell effector subsets, such as T helper (Th) 1, Th2, and Th17 cells. Rather, global transcriptomics robustly identify both proliferating T cells and regulatory T cells and have also helped to reveal new effector subsets in inflamed tissues, including T peripheral helper cells and granzyme K+ T cells. Further characterization of the T-cell populations that accumulate within target tissues should enable more precise targeting of biologic therapies and accelerate development of more specific biomarkers to track activity of relevant immune pathways in patients with rheumatic diseases.
Collapse
Affiliation(s)
- Yidan Gao
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Garrett Dunlap
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mehreen Elahee
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Deepak A Rao
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Gaydosik AM, Tabib T, Domsic R, Khanna D, Lafyatis R, Fuschiotti P. Single-cell transcriptome analysis identifies skin-specific T-cell responses in systemic sclerosis. Ann Rheum Dis 2021; 80:1453-1460. [PMID: 34031030 DOI: 10.1136/annrheumdis-2021-220209] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Although T cells have been implicated in the pathogenesis of systemic sclerosis (SSc), a comprehensive study of T-cell-mediated immune responses in the affected skin of patients with progressive SSc is lacking. Droplet-based single-cell transcriptome analysis of SSc skin biopsies opens avenues for dissecting patient-specific T-cell heterogeneity, providing a basis for identifying novel gene expression related to functional pathways associated with severity of SSc skin disease. METHODS Single-cell RNA sequencing was performed by droplet-based sequencing (10x Genomics), focusing on 3729 CD3+ lymphocytes (867 cells from normal and 2862 cells from SSc skin samples) from skin biopsies of 27 patients with active SSc and 10 healthy donors. Confocal immunofluorescence microscopy of progressive SSc skin samples validated transcriptional results and visualised spatial localisations of T-cell subsets. RESULTS We identified several subsets of recirculating and tissue-resident T cells in healthy and SSc skin that were associated with distinct signalling pathways. While most clusters shared a common gene expression signature between patients and controls, we identified a unique cluster of recirculating CXCL13+ T cells in SSc skin which expressed a T helper follicular-like gene expression signature and that appears to be poised to promote B-cell responses within the inflamed skin of patients. CONCLUSIONS Current available therapies to reverse or even slow progression of SSc lead to broad killing of immune cells and consequent toxicities, including death. Identifying the precise immune mechanism(s) driving SSc pathogenesis could lead to innovative therapies that selectively target the aberrant immune response, resulting in better efficacy and less toxicity.
Collapse
Affiliation(s)
- Alyxzandria M Gaydosik
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robyn Domsic
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dinesh Khanna
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrizia Fuschiotti
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Mesenchymal stromal cells for systemic sclerosis treatment. Autoimmun Rev 2021; 20:102755. [PMID: 33476823 DOI: 10.1016/j.autrev.2021.102755] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Systemic sclerosis (SSc) is a rare chronic autoimmune disease characterized by vasculopathy, dysregulation of innate and adaptive immune responses, and progressive fibrosis. SSc remains an orphan disease, with high morbity and mortality in SSc patients. The mesenchymal stromal cells (MSC) demonstrate in vitro and in vivo pro-angiogenic, immuno-suppressive, and anti-fibrotic properties and appear as a promising stem cell therapy type, that may target the key pathological features of SSc disease. This review aims to summarize acquired knowledge in the field of :1) MSC definition and in vitro and in vivo functional properties, which vary according to the donor type (allogeneic or autologous), the tissue sources (bone marrow, adipose tissue or umbilical cord) or inflammatory micro-environment in the recipient; 2) preclinical studies in various SSc animal models , which showed reduction in skin and lung fibrosis after MSC infusion; 3) first clinical trials in human, with safety and early efficacy results reported in SSc patients or currently tested in several ongoing clinical trials.
Collapse
|
13
|
Talotta R. The rationale for targeting the JAK/STAT pathway in scleroderma-associated interstitial lung disease. Immunotherapy 2020; 13:241-256. [PMID: 33410346 DOI: 10.2217/imt-2020-0270] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The etiopathogenesis of systemic sclerosis (SSc)-associated interstitial lung disease (ILD) is still debated and no therapeutic options have proved fully effective to date. The intracellular Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is highly conserved among either immune or nonimmune cells and involved in inflammation and fibrosis. Evidence from preclinical studies shows that the JAK/STAT signaling cascade has a crucial role in the differentiation of autoreactive cells as well as in the extracellular matrix remodeling that occurs in SSc. Therefore, it is likely that the use of oral small molecule JAK-inhibitors, especially if prescribed early, may prevent or slow the progression of SSc-associated ILD, but few clinical studies currently support this hypothesis.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical & Experimental Medicine, Rheumatology Unit, University of Messina, University Hospital 'Gaetano Martino', via Consolare Valeria 1, 98100, Messina, Italy
| |
Collapse
|
14
|
Shi X, Liu Q, Zhao H, Lu J, Huang Y, Ma Y, Xia J, Liu M, Tu W, Jin L, Wang J, Zhao Y, Wu W. Increased expression of GAB1 promotes inflammation and fibrosis in systemic sclerosis. Exp Dermatol 2020; 28:1313-1320. [PMID: 31505074 DOI: 10.1111/exd.14033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease mainly characterized by persistent inflammation and fibrosis. The receptor tyrosine kinase (RTK) signal pathway plays an important role in the process of SSc, and Grb2-associated binding protein (GAB) is crucial in activating RTK signalling. A previous study found elevated levels of GAB1 in bleomycin (BLM)-induced fibrotic lungs, but the effects of GAB1 in SSc remain unclear. Our aim was to investigate whether GAB1 was dysregulated and its potential role in SSc. Compared with healthy donors, we found GAB1 expression was 1.6-fold higher in peripheral blood mononuclear cells (PBMC), 2.5-fold higher in CD4 + T cells, and 2-fold higher in skin from of SSc patients (P < .01). At the same time, the levels of type one collagen (COLI) were also significantly increased (1.8-fold higher) in SSc skin. Additionally, BLM-induced SSc mice showed mRNA levels of Gab1 2-fold higher than saline-treated controls, and Gab1 expression correlated positively with collagen content. A further in vitro study showed silencing of GAB1 suppressed inflammatory gene expression in TNF-α induced fibroblasts. Additionally, GAB1 deficiency prominently inhibited cell proliferation and reduced COLI protein levels in TGF-β induced fibroblasts. Taken together, these data suggest that GAB1 has a relatively high expression rate in SSc, and knockdown of GAB1 may attenuate SSc by stimulating inflammatory and fibrotic processes.
Collapse
Affiliation(s)
- Xiangguang Shi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Han Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiaying Lu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanyun Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingjing Xia
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Mengguo Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenzhen Tu
- Division of Rheumatology, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Yinhuan Zhao
- Division of Rheumatology, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.,Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
| |
Collapse
|
15
|
Nicola S, Rolla G, Bucca C, Geronazzo G, Ridolfi I, Ferraris A, Fusaro E, Peroni CL, Dughera L, Brussino L. Gastric Juice Expression of Th-17 and T-Reg Related Cytokines in Scleroderma Esophageal Involvement. Cells 2020; 9:E2106. [PMID: 32947843 PMCID: PMC7564480 DOI: 10.3390/cells9092106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is a connective tissue disorder which key feature is a fibrotic process. The role of Endothelin-1 (ET-1) and T-helper (Th)-1 cells in lung and skin fibrosis is well known, although Th17- and Treg-cells were found to be involved. However, no studies analyzed cytokines expression in gastric-juice of SSc patients. Our study aimed to evaluate proinflammatory and profibrotic cytokines in gastric-juice of SSc patients and to investigate their correlations with esophageal dysmotility. METHODS Patients performed upper-gastrointestinal-endoscopy with gastric-juice collection, esophageal manometry and thoracic CT-scan. GM-CSF, ET-1, Th-1 (IFN-γ, IL-1β, TNF-α, IL-2, IL-6, IL-9), Th-17 (IL-17, IL-21, IL-22, IL-23) and T-reg (IL-10, TGF-β) related cytokines were measured in 29 SSc-patients and 20 healthy-controls. RESULTS Patients showed significant lower levels of IL-6, IL-17, IL-22 and ET-1 (p < 0.005) compared with controls. Patients with atrophic gastritis presented significant lower levels of IL-2, IL-9, IL-6, TGF-β, GM-CSF, IL-17 and ET-1 (p < 0.005) compared to patients without gastritis. Increased values of IL-2, IL-9, IL-1β, IL-17, ET-1 and GM-CSF (p < 0.005) were observed in patients with esophageal impairment. This is the first report of cytokines measurement in gastric juice of patients with SSc. The high IL-17 concentrations in gastric-juice of scleroderma patients with esophageal dysmotility support the signature of Th-17 cells in scleroderma esophageal fibrosis.
Collapse
Affiliation(s)
- Stefania Nicola
- Department of Medical Sciences, Allergy and Clinical Immunology Unit, University of Torino & Mauriziano Hospital, 10128 Turin, Italy; (S.N.); (G.R.); (C.B.); (G.G.); (I.R.)
| | - Giovanni Rolla
- Department of Medical Sciences, Allergy and Clinical Immunology Unit, University of Torino & Mauriziano Hospital, 10128 Turin, Italy; (S.N.); (G.R.); (C.B.); (G.G.); (I.R.)
| | - Caterina Bucca
- Department of Medical Sciences, Allergy and Clinical Immunology Unit, University of Torino & Mauriziano Hospital, 10128 Turin, Italy; (S.N.); (G.R.); (C.B.); (G.G.); (I.R.)
| | - Giada Geronazzo
- Department of Medical Sciences, Allergy and Clinical Immunology Unit, University of Torino & Mauriziano Hospital, 10128 Turin, Italy; (S.N.); (G.R.); (C.B.); (G.G.); (I.R.)
| | - Irene Ridolfi
- Department of Medical Sciences, Allergy and Clinical Immunology Unit, University of Torino & Mauriziano Hospital, 10128 Turin, Italy; (S.N.); (G.R.); (C.B.); (G.G.); (I.R.)
| | - Andrea Ferraris
- Division of Diagnostic Imaging, Department of Surgical Sciences, Città della Salute e della Scienza Hospital, University of Turin, 10126 Turin, Italy;
| | - Enrico Fusaro
- Rheumatology Department, Azienda Ospedaliera Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (E.F.); (C.L.P.)
| | - Clara Lisa Peroni
- Rheumatology Department, Azienda Ospedaliera Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (E.F.); (C.L.P.)
| | - Luca Dughera
- Unit of Digestive Motility and Endoscopy, Department of Medicine, Città della Salute e della Scienza, 10126 Turin, Italy;
| | - Luisa Brussino
- Department of Medical Sciences, Allergy and Clinical Immunology Unit, University of Torino & Mauriziano Hospital, 10128 Turin, Italy; (S.N.); (G.R.); (C.B.); (G.G.); (I.R.)
| |
Collapse
|
16
|
|
17
|
Vettori S, Barra G, Russo B, Borgia A, Pasquale G, Pellecchia L, Vicedomini L, De Palma R. T-Cell Proapoptotic and Antifibrotic Activity Against Autologous Skin Fibroblasts in vitro Is Associated With IL-17A Axis Upregulation in Systemic Sclerosis. Front Immunol 2020; 11:220. [PMID: 32174912 PMCID: PMC7056890 DOI: 10.3389/fimmu.2020.00220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/27/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Systemic sclerosis (SSc) T cells can induce apoptosis of autologous skin fibroblasts in vitro. Th17 cells have been reported to increase in SSc patients, and interleukin-17A (IL-17A) has a profibrotic function. We used a system based on T-cell-autologous fibroblast co-cultures to further investigate a possible role of IL-17A in SSc. Methods: T cells from diffuse SSc patients were co-cultured with autologous skin fibroblasts. IL17A mRNA was assessed by real-time PCR in co-cultured and control T cells, while IL17RA, CXCL1, CCL2, CCL3, COL1A1, COL3A1, CTGF, TGFBR2, and SMAD3 mRNAs were assessed in co-cultured and control fibroblasts. In subset experiments, co-cultures and control cells were treated with either IL-17A or IL-17A plus anti-IL17 receptor monoclonal antibody (α-IL-17RA mAb). Chemokine and procollagen type I (PCI) production was further investigated at the protein level in cell culture supernatants by multiple suspension immunoassay and sandwich ELISA, respectively. Co-cultured and control fibroblasts were also stained with Annexin V and analyzed by flow cytometry. Results: T cell–fibroblast co-cultures overexpressed IL17A and IL17RA. Furthermore, co-cultured fibroblasts upregulated IL-17A targets CXCL1, CCL2, and CCL3, while COL1A1, COL3A1, CTGF, and two key effectors of the TGF-β signaling, TGFBR2 and SMAD3, were found downregulated. Consistently, chemokine concentrations were increased in co-culture supernatants, while PCI levels were reduced, especially after stimulation with ectopic IL-17A. Finally, simultaneous α-IL-17RA mAb treatment restored PCI levels and reduced fibroblast apoptosis in IL-17A-stimulated co-cultures. Conclusion: These data suggest that IL-17A upregulation might play a role in modulating T cell-mediated antifibrotic and proapoptotic effects in co-cultured autologous skin fibroblasts.
Collapse
Affiliation(s)
- Serena Vettori
- Rheumatology Unit, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giusi Barra
- Clinical Immunology Unit, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Barbara Russo
- Rheumatology Unit, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessia Borgia
- Rheumatology Unit, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Pasquale
- Clinical Immunology Unit, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luciana Pellecchia
- Rheumatology Unit, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Vicedomini
- Rheumatology Unit, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Raffaele De Palma
- Clinical Immunology Unit, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Institute of Protein Biochemistry (IBP-CNR), Naples, Italy
| |
Collapse
|
18
|
Noureldine HA, Nour-Eldine W, Hodroj MH, Noureldine MHA, Taher A, Uthman I. Hematological malignancies in connective tissue diseases. Lupus 2020; 29:225-235. [PMID: 31933408 DOI: 10.1177/0961203319899986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic inflammation has profound tumor-promoting effects. Inflammatory cells are the key players in immunosurveillance against tumors, and immunosuppression is known to increase the risk of tumors. Autoimmune diseases, which manifest as loss of self-tolerance and chronic immune dysregulation, provide a perfect environment for tumor development. Aside from managing the direct inflammatory consequences of autoimmune pathogenesis, cancer risk profiles should be considered as a part of a patient's treatment. In this review, we describe the various associations of malignancies with autoimmune diseases, specifically systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, and Sjögren's syndrome, as well as discuss the mechanisms contributing to the pathogenesis of both disorders.
Collapse
Affiliation(s)
- H A Noureldine
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - W Nour-Eldine
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - M H Hodroj
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - M H A Noureldine
- Johns Hopkins University School of Medicine, Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, Saint Petersburg, USA
| | - A Taher
- Division of Hematology and Medical Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - I Uthman
- Division of Rheumatology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
19
|
Dufour AM, Borowczyk-Michalowska J, Alvarez M, Truchetet ME, Modarressi A, Brembilla NC, Chizzolini C. IL-17A Dissociates Inflammation from Fibrogenesis in Systemic Sclerosis. J Invest Dermatol 2020; 140:103-112.e8. [DOI: 10.1016/j.jid.2019.05.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
|
20
|
Henry TW, Mendoza FA, Jimenez SA. Role of microRNA in the pathogenesis of systemic sclerosis tissue fibrosis and vasculopathy. Autoimmun Rev 2019; 18:102396. [PMID: 31520794 DOI: 10.1016/j.autrev.2019.102396] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Systemic Sclerosis (SSc) pathogenesis involves multiple immunological, vascular and fibroproliferative abnormalities that contribute to a severe and complex clinical picture. Vasculopathy and fibroproliferative alterations are two hallmark pathological processes in SSc that are responsible for the most severe clinical manifestations of the disease and determine its clinical outcome and mortality. However, the pathogenesis of SSc vasculopathy and of the uncontrolled SSc fibrotic process remain incompletely understood. Recent investigations into the molecular pathways involved in these processes have identified an important role for epigenetic processes that contribute to overall disease progression and have emphasized microRNAs (miRNAs) as crucial epigenetic regulators. MiRNAs hold unique potential for elucidating SSc pathogenesis, improving diagnosis and developing effective targeted therapies for the disease. This review examines the important role that miRNAs play in the development and regulation of vascular and fibroproliferative alterations associated with SSc pathogenesis and their possible participation in the establishment of pathogenetic connections between these two processes. This review also emphasizes that further understanding of the involvement of miRNA in SSc fibrosis and vasculopathy will very likely provide novel future research directions and allow for the identification of groundbreaking therapeutic interventions within these processes. MiR-21, miR- 31, and miR-155 are of particular interest owing to their important involvement in both SSc vasculopathy and fibroproliferative alterations.
Collapse
Affiliation(s)
- Tyler W Henry
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia 19107, USA; Sidney Kimmel Medical College, Thomas Jefferson University, USA
| | - Fabian A Mendoza
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, USA; Division of Rheumatology, Department of Medicine, Thomas Jefferson University, USA
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, USA.
| |
Collapse
|
21
|
Cutolo M, Soldano S, Smith V. Pathophysiology of systemic sclerosis: current understanding and new insights. Expert Rev Clin Immunol 2019; 15:753-764. [PMID: 31046487 DOI: 10.1080/1744666x.2019.1614915] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Systemic sclerosis (SSc) is a complex autoimmune connective tissue disease characterized by chronic and progressive tissue and organ fibrosis with broad patient-to-patient variability. Some risk factors are known and include combination of persistent Raynaud's phenomenon, steroid hormone imbalance, selected chemicals, thermal, or other injuries. Endogenous and/or exogenous environmental trigger/risk factors promote epigenetic mechanisms in genetically primed subjects. Disease pathogenesis presents early microvascular changes with endothelial cell dysfunction, followed by the activation of mechanisms promoting their transition into myofibroblasts. A complex autoimmune response, involving innate and adaptive immunity with specific/functional autoantibody production, characterizes the disease. Progressive fibrosis and ischemia involve skin and visceral organs resulting in their irreversible damage/failure. Progenitor circulating cells (monocytes, fibrocytes), together with growth factors and cytokines participate in disease diffusion and evolution. Epigenetic, vascular and immunologic mechanisms implicated in systemic fibrosis, represent major targets for incoming disease modifying therapeutic approaches. Areas covered: This review discusses current understanding and new insights of SSc pathogenesis, through an overview of the most relevant advancements to present aspects and mechanisms involved in disease pathogenesis. Expert opinion: Considering SSc intricacy/heterogeneity, early combination therapy with vasodilators, immunosuppressive and antifibrotic drugs should successfully downregulate the disease progression, especially if started from the beginning.
Collapse
Affiliation(s)
- Maurizio Cutolo
- a Research Laboratory and Academic Unit of Clinical Rheumatology, Department of Internal Medicine , University of Genova, IRCCS San Martino Polyclinic Hospital Genova , Genova , Italy
| | - Stefano Soldano
- a Research Laboratory and Academic Unit of Clinical Rheumatology, Department of Internal Medicine , University of Genova, IRCCS San Martino Polyclinic Hospital Genova , Genova , Italy
| | - Vanessa Smith
- b Department of Internal Medicine , Ghent University , Ghent , Belgium.,c Department of Rheumatology , Ghent University Hospital , Ghent , Belgium.,d Unit for Molecular Immunology and Inflammation , VIB Inflammation Research Center (IRC) , Ghent , Belgium
| |
Collapse
|
22
|
|
23
|
Rezaei R, Aslani S, Dashti N, Jamshidi A, Gharibdoost F, Mahmoudi M. Genetic implications in the pathogenesis of systemic sclerosis. Int J Rheum Dis 2018; 21:1478-1486. [DOI: 10.1111/1756-185x.13344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ramazan Rezaei
- Rheumatology Research Center Tehran University of Medical Sciences Tehran Iran
- Department of Immunology School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Saeed Aslani
- Rheumatology Research Center Tehran University of Medical Sciences Tehran Iran
| | - Navid Dashti
- Rheumatology Research Center Tehran University of Medical Sciences Tehran Iran
- Department of Immunology School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center Tehran University of Medical Sciences Tehran Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center Tehran University of Medical Sciences Tehran Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
24
|
Migalovich Sheikhet H, Villacorta Hidalgo J, Fisch P, Balbir-Gurman A, Braun-Moscovici Y, Bank I. Dysregulated CD25 and Cytokine Expression by γδ T Cells of Systemic Sclerosis Patients Stimulated With Cardiolipin and Zoledronate. Front Immunol 2018; 9:753. [PMID: 29706966 PMCID: PMC5909681 DOI: 10.3389/fimmu.2018.00753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Objectives γδ T cells, a non-conventional innate lymphocyte subset containing cells that can be activated by lipids and phosphoantigens, are abnormally regulated in systemic sclerosis (SSc). To further evaluate the significance of this dysregulation, we compared how exposure to an autoantigenic lipid, cardiolipin (CL), during co-stimulation with an amino-bisphosphonate (zoledronate, zol), affects the activation and cytokine production of SSc and healthy control (HC) γδ T cells. Methods Expression of CD25 on Vγ9+, Vδ1+, and total CD3+ T cells in cultured peripheral blood mononuclear cells (PBMCs), their binding of CD1d tetramers, and the effect of monoclonal antibody (mAb) blockade of CD1d were monitored by flow cytometry after 4 days of in vitro culture. Intracellular production of IFNγ and IL-4 was assessed after overnight culture. Results Percentages of CD25+ among CD3+ and Vδ1+ T cells were elevated significantly in short-term cultured SSc PBMC compared to HC. In SSc but not HC, CL and zol, respectively, suppressed %CD25+ Vγ9+ and Vδ1+ T cells but, when combined, CL + zol significantly activated both subsets in HC and partially reversed inhibition by the individual reagents in SSc. Importantly, Vδ1+ T cells in both SSc and HC were highly reactive with lipid presenting CD1d tetramers, and a CD1d-blocking mAb decreased CL-induced enhancement of %SSc CD25+ Vδ1+ T cells in the presence of zol. %IFNγ+ cells among Vγ9+ T cells of SSc was lower than HC cultured in medium, CL, zol, or CL + zol, whereas %IFNγ+ Vδ1+ T cells was lower only in the presence of CL or CL + zol. %IL-4+ T cells were similar in SSc and HC in all conditions, with the exception of being increased in SSc Vγ9+ T cells in the presence of CL. Conclusion Abnormal functional responses of γδ T cell subsets to stimulation by CL and phosphoantigens in SSc may contribute to fibrosis and immunosuppression, characteristics of this disease.
Collapse
Affiliation(s)
| | | | - Paul Fisch
- Department of Clinical Pathology, University of Freiburg Medical Center, Freiburg, Germany
| | - Alexandra Balbir-Gurman
- B. Shine Rheumatology Unit, Rambam Health Care Campus and The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yolanda Braun-Moscovici
- B. Shine Rheumatology Unit, Rambam Health Care Campus and The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ilan Bank
- Laboratory of Immune-Regulation, Sheba Medical Center, Ramat Gan, Israel.,Rheumatology Unit, Tel Aviv University, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Chizzolini C, Dufour AM, Brembilla NC. Is there a role for IL-17 in the pathogenesis of systemic sclerosis? Immunol Lett 2018; 195:61-67. [PMID: 28919455 DOI: 10.1016/j.imlet.2017.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022]
Abstract
In systemic sclerosis (SSc) immuno-inflammatory events are central to disease development. Amongst other mediators of inflammation, interleukin 17 (IL-17) and Th17 cells have been reported to be increased in the peripheral blood and target organs including involved skin in SSc. They participate and amplify inflammatory responses by inducing the production of cytokines such as IL-6, chemokines such as CCL2 and CXCL8 (IL-8), matrix metalloproteinases-1, -2, -9 and the expression of adhesion molecules in stromal cells including fibroblasts and endothelial cells. In this respect, IL-17 and Th17 cells behave paradigmatically as documented in other autoimmune pathological conditions or infectious diseases. In experimental animal models of skin and lung fibrosis, IL-17 indirectly enhances the fibrotic process by favoring further inflammation by recruiting inflammatory cells, by activating and/or stimulating the production of TGF-β and other pro-fibrotic mediators, by inhibiting autophagy. Whether the findings generated in animal models of fibrosis can be translated to human SSc is unproven. Furthermore, it is controversial whether IL-17 directly promotes the transdifferentiation of human fibroblasts into myofibroblasts and enhances collagen production, with most of the available evidence against this possibility. The reductionist approach in which fibroblast in monolayers are cultured in plastic dishes under the influence of IL-17 limits the relevance of these findings. Further in vitro/ex vivo models with human tissues are being developed to investigate the real effect of IL-17 on extracellular matrix deposition, since agents blocking IL-17 are available for the clinic and it will be important to know whether their use in SSc would be beneficial or detrimental.
Collapse
Affiliation(s)
- Carlo Chizzolini
- Immunology & Allergy, University Hospital and School of Medicine, Geneva, Switzerland; Pathology and Immunology, University Hospital and School of Medicine, Geneva, Switzerland.
| | - Aleksandra Maria Dufour
- Immunology & Allergy, University Hospital and School of Medicine, Geneva, Switzerland; Pathology and Immunology, University Hospital and School of Medicine, Geneva, Switzerland.
| | - Nicolò Costantino Brembilla
- Pathology and Immunology, University Hospital and School of Medicine, Geneva, Switzerland; Dermatology, University Hospital and School of Medicine, Geneva, Switzerland.
| |
Collapse
|
26
|
Yang X, Liu C, Fujino M, Yang J, Li XK, Zou H. A modified graft-versus-host-induced model for systemic sclerosis, with pulmonary fibrosis in Rag2-deficient mice. FEBS Open Bio 2017; 7:1316-1327. [PMID: 28904861 PMCID: PMC5586340 DOI: 10.1002/2211-5463.12268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 11/10/2022] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease that results in fibrosis in multiple organs. Various animal models for this disease have been developed, both genetic and induced. One of the induced models, sclerodermatous graft‐versus‐host disease (scl‐GvHD), exhibits the main characteristics of SSc, but involves lethal γ‐irradiation of recipients. We sought to develop a modified scl‐GvHD model. Spleen cells from B10.D2 donor mice were transplanted into immunodeficient Rag‐2 recipients on the BALB/c genetic background. Tissue fibrosis was analyzed at 3 and 9 weeks after transplantation. In addition to serum levels of anti‐Scl‐70 autoantibody and cytokines, tissue inflammation, fibrosis, expression of collagen‐I and α‐smooth muscle actin (α‐SMA), infiltration of leukocytes, mRNA expression of transforming growth factor (TGF)‐β, collagen‐I, α‐SMA, tumor necrosis factor (TNF)‐α, and interleukin (IL)‐6, the classical signal pathway of TGF‐β, Smad‐3, and p‐Smad‐3 expression in tissue were analyzed. Skin thickening and increased collagen synthesis, as well as the manifestation of tissue fibrosis, could be detected in skin, kidney, and lung of modified scl‐GvHD mouse model. Increased serum levels of anti‐Scl‐70 autoantibody, IL‐10, and TGF‐β could be detected. Increased CD4+ T cells and F4/80+ macrophage infiltration were found in skin, kidney, and lung. Gene expression of collagen‐I, TGF‐β, α‐SMA, TNF‐α, and IL‐6 was increased in tissue of the scl‐GvHD model. Moreover, TGF‐β expression and Smad‐3 phosphorylation were detected in skin, kidney, and lung of scl‐GvHD mice. Our data show that spleen cells from B10.D2 donor mice transplanted into immunodeficient Rag‐2 recipients could induce typical fibrosis not only of the skin and kidney but also of lung, which was missing from previous scl‐GvHD models. Thus, the modified scl‐GvHD model might be a promising model to explore the immunologic mechanisms of SSc and may be useful for investigation of new therapies for systemic sclerosis.
Collapse
Affiliation(s)
- Xue Yang
- Division of Rheumatology Huashan Hospital Fudan University Shanghai China.,Division of Transplantation Immunology National Research Institute for Child Health and Development Tokyo Japan.,Institute of Rheumatology, Immunology and Allergy Fudan University Shanghai China
| | - Chi Liu
- Division of Transplantation Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Masayuki Fujino
- Division of Transplantation Immunology National Research Institute for Child Health and Development Tokyo Japan.,AIDS Research Center National Institute of Infectious Diseases Tokyo Japan
| | - Ji Yang
- Department of Dermatology Zhongshan Hospital Fudan University Shanghai China
| | - Xiao-Kang Li
- Division of Transplantation Immunology National Research Institute for Child Health and Development Tokyo Japan.,Institute of Rheumatology, Immunology and Allergy Fudan University Shanghai China
| | - Hejian Zou
- Division of Rheumatology Huashan Hospital Fudan University Shanghai China.,Institute of Rheumatology, Immunology and Allergy Fudan University Shanghai China
| |
Collapse
|
27
|
Morin F, Kavian N, Chouzenoux S, Cerles O, Nicco C, Chéreau C, Batteux F. Leflunomide prevents ROS-induced systemic fibrosis in mice. Free Radic Biol Med 2017; 108:192-203. [PMID: 28365359 DOI: 10.1016/j.freeradbiomed.2017.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/06/2017] [Accepted: 03/13/2017] [Indexed: 02/02/2023]
Abstract
Systemic sclerosis (SSc) is a connective tissue disorder characterized by fibrosis of the skin and inner organs, vasculopathy and immunological abnormalities. Recent insights into the polarization of macrophages in scleroderma and into the implication of STAT6 and KLF4 in this process have prompted us to investigate the effects of the inhibition of STAT6 signaling pathway by leflunomide in mice. SSc was induced in BALB/c mice by daily subcutaneous injections of hypochlorous acid (HOCl) or bleomycin. Mice were treated (or not) every other day, for 4 or 6 weeks, by leflunomide. Skin and lung fibrosis as well as immunological features were studied. Mice exposed to HOCl developed a diffuse cutaneous SSc with pulmonary fibrosis and anti-DNA topoisomerase 1 auto-antibodies. STAT6 pathway was hyperactivated and KLF4 was overexpressed in the skin and the lungs of diseased mice. Their inhibition by leflunomide prevented skin and lung fibrosis. Moreover, the hyperproliferative and pro-oxidative phenotype of skin and lung fibroblasts was reversed by leflunomide. Beneficial immunological effects of leflunomide were associated with decreased activation of CD4+ and CD8+ T cells, B cell activation, decreased auto-antibodies production and restored polarization of macrophages in the spleen. The improvement provided by leflunomide in both mouse models of SSc provides a rationale for the evaluation of this immunomodulating drug in the management of patients affected by this disease.
Collapse
Affiliation(s)
- Florence Morin
- INSERM U1016, Institut Cochin, Cnrs, UMR8104, Université Paris Descartes Sorbonne Paris Cité, Paris, France; Laboratoire d'Immunologie biologique, Hôpital Cochin, AP-HP, 75679 Paris cedex 14, France
| | - Niloufar Kavian
- INSERM U1016, Institut Cochin, Cnrs, UMR8104, Université Paris Descartes Sorbonne Paris Cité, Paris, France; Laboratoire d'Immunologie biologique, Hôpital Cochin, AP-HP, 75679 Paris cedex 14, France
| | - Sandrine Chouzenoux
- INSERM U1016, Institut Cochin, Cnrs, UMR8104, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Olivier Cerles
- INSERM U1016, Institut Cochin, Cnrs, UMR8104, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Carole Nicco
- INSERM U1016, Institut Cochin, Cnrs, UMR8104, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Christiane Chéreau
- INSERM U1016, Institut Cochin, Cnrs, UMR8104, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Frédéric Batteux
- INSERM U1016, Institut Cochin, Cnrs, UMR8104, Université Paris Descartes Sorbonne Paris Cité, Paris, France; Laboratoire d'Immunologie biologique, Hôpital Cochin, AP-HP, 75679 Paris cedex 14, France.
| |
Collapse
|
28
|
Mescher AL. Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. ACTA ACUST UNITED AC 2017; 4:39-53. [PMID: 28616244 PMCID: PMC5469729 DOI: 10.1002/reg2.77] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 12/15/2022]
Abstract
This review provides a concise summary of the changing phenotypes of macrophages and fibroblastic cells during the local inflammatory response, the onset of tissue repair, and the resolution of inflammation which follow injury to an organ. Both cell populations respond directly to damage and present coordinated sequences of activation states which determine the reparative outcome, ranging from true regeneration of the organ to fibrosis and variable functional deficits. Recent work with mammalian models of organ regeneration, including regeneration of full‐thickness skin, hair follicles, ear punch tissues, and digit tips, is summarized and the roles of local immune cells in these systems are discussed. New investigations of the early phase of amphibian limb and tail regeneration, including the effects of pro‐inflammatory and anti‐inflammatory agents, are then briefly discussed, focusing on the transition from the normally covert inflammatory response to the initiation of the regeneration blastema by migrating fibroblasts and the expression of genes for limb patterning.
Collapse
Affiliation(s)
- Anthony L Mescher
- Department of Anatomy and Cell Biology, Indiana University School of Medicine - Bloomington Indiana University Center for Developmental and Regenerative Biology Bloomington IN 47405 USA
| |
Collapse
|
29
|
Haematological Malignancies in Systemic Sclerosis Patients: Case Reports and Review of the World Literature. Case Rep Rheumatol 2017; 2017:6230138. [PMID: 28546881 PMCID: PMC5435905 DOI: 10.1155/2017/6230138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/02/2017] [Accepted: 04/18/2017] [Indexed: 12/29/2022] Open
Abstract
Background. The association of systemic sclerosis (SSc) and haematological cancers was reported in a large number of case reports and cohort studies, describing SSc patients with highly heterogeneous clinical pictures. Objective. We reviewed the literature to better describe SSc patients with haematological malignancies. Methods. SSc cases complicated by haematological malignancies described in the world literature were collected; other 2 cases referred to our centre were reported. Results. One hundred-thirty SSc subjects were collected from 1954 up to date. The mean age of patients at cancer diagnosis was 56.1 ± 16.7 years; 72% of patients were females. In 60% of cases, the diagnosis of haematological malignancy was described within 5 years of SSc diagnosis. In 7.8% of cases, coexistence of Sjögren's syndrome or other autoimmune disorders was cited. Sixty-six cases with lymphoma (in the majority of cases B-cell neoplasms), 28 with leukaemia (chronic lymphocytic form in 9), 14 with multiple myeloma plus one solitary IgM plasmocytoma, and 16 with myeloproliferative disorders were found. No specific SSc subsets seem to be related to haematological malignancies. Conclusions. We remarked the importance of clinical work-up in SSc, in order to early diagnose and treat eventual occult haematological malignancies, especially during the first years of the disease.
Collapse
|
30
|
Kumar S, Singh J, Rattan S, DiMarino AJ, Cohen S, Jimenez SA. Review article: pathogenesis and clinical manifestations of gastrointestinal involvement in systemic sclerosis. Aliment Pharmacol Ther 2017; 45:883-898. [PMID: 28185291 PMCID: PMC5576448 DOI: 10.1111/apt.13963] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/18/2016] [Accepted: 01/11/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Gastrointestinal tract (GIT) involvement is a common cause of debilitating symptoms in patients with systemic sclerosis (SSc). There are no disease modifying therapies for this condition and the treatment remains symptomatic, largely owing to the lack of a clear understanding of its pathogenesis. AIMS To investigate novel aspects of the pathogenesis of gastrointestinal involvement in SSc. To summarise existing knowledge regarding the cardinal clinical gastrointestinal manifestations of SSc and its pathogenesis, emphasising recent investigations that may be valuable in identifying potentially novel therapeutic targets. METHODS Electronic (PubMed/Medline) and manual Google search. RESULTS The GIT is the most common internal organ involved in SSc. Any part of the GIT from the mouth to the anus can be affected. There is substantial variability in clinical manifestations and disease course and symptoms are nonspecific and overlapping for a particular anatomical site. Gastrointestinal involvement can occur in the absence of cutaneous disease. Up to 8% of SSc patients develop severe GIT symptoms. This subset of patients display increased mortality with only 15% survival at 9 years. Dysmotiity of the GIT causes the majority of symptoms. Recent investigations have identified a novel mechanism in the pathogenesis of GIT dysmotility mediated by functional anti-muscarinic receptor autoantibodies. CONCLUSIONS Despite extensive investigation, the pathogenesis of gastrointestinal involvement in systemic sclerosis remains elusive. Although treatment currently remains symptomatic, an improved understanding of novel pathogenic mechanisms may allow the development of potentially highly effective approaches including intravenous immunoglobulin and microRNA based therapeutic interventions.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA
| | - Jagmohan Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA
| | - Anthony J DiMarino
- Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA
| | - Sidney Cohen
- Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA
| | - Sergio A. Jimenez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA
| |
Collapse
|
31
|
Slobodin G, Rimar D. Regulatory T Cells in Systemic Sclerosis: a Comprehensive Review. Clin Rev Allergy Immunol 2017; 52:194-201. [PMID: 27318947 DOI: 10.1007/s12016-016-8563-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Systemic sclerosis (SSc) is a chronic inflammatory disease with complex pathogenesis, based on the sophisticated interplay of injury to the vascular endothelium, exaggerated tissue regeneration and fibrosis, and extensive immune abnormalities. The role of regulatory T cells (Tregs) in the development of SSc has started being studied during the last decade with new aspects being disclosed continuously, in parallel with the better understanding of Tregs physiology. There is a general agreement in the medical literature regarding the decreased functional capacity of circulating Tregs in SSc. Some patients, particularly those with active disease, may have increased numbers of circulating Tregs, representing the inhibitory response of the immune system to its inappropriate activation or occurring as a compensatory move for Tregs' decreased suppressive ability. Decreased pool of circulating Tregs can be seen in other SSc patients, with even lower Treg percentages seen in patients with long-standing disease. Skin-resident Tregs are depleted in advanced SSc but can be active and have a role in earlier disease stages. In addition to diminished suppressive ability, Tregs can contribute to SSc evolution by their microenvironment-dependent transformation to pathogenic effector T cells of Th17 or Th2 lineages with respective pro-inflammatory or pro-fibrotic activity. The current data on the effects of existing treatment modalities, including autologous stem cell transplantation, on Tregs function in SSc, is controversial, not being sufficiently elaborated.
Collapse
Affiliation(s)
- Gleb Slobodin
- Rheumatology, Bnai Zion Medical Center, Haifa, Israel. .,Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| | - Doron Rimar
- Rheumatology, Bnai Zion Medical Center, Haifa, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
32
|
Morin F, Kavian N, Nicco C, Cerles O, Chéreau C, Batteux F. Niclosamide Prevents Systemic Sclerosis in a Reactive Oxygen Species–Induced Mouse Model. THE JOURNAL OF IMMUNOLOGY 2016; 197:3018-3028. [DOI: 10.4049/jimmunol.1502482] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 08/14/2016] [Indexed: 12/27/2022]
|
33
|
Murdaca G, Contatore M, Gulli R, Mandich P, Puppo F. Genetic factors and systemic sclerosis. Autoimmun Rev 2016; 15:427-32. [DOI: 10.1016/j.autrev.2016.01.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/22/2016] [Indexed: 12/12/2022]
|
34
|
Mendoza FA, Mansoor M, Jimenez SA. Treatment of Rapidly Progressive Systemic Sclerosis: Current and Futures Perspectives. Expert Opin Orphan Drugs 2015; 4:31-47. [PMID: 27812432 PMCID: PMC5087809 DOI: 10.1517/21678707.2016.1114454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Systemic Sclerosis (SSc) is a systemic autoimmune disease characterized by severe and often progressive cutaneous, pulmonary, cardiac and gastrointestinal tract fibrosis, cellular and humoral immunologic alterations, and pronounced fibroproliferative vasculopathy. There is no effective SSc disease modifying therapy. Patients with rapidly progressive SSc have poor prognosis with frequent disability and very high mortality. AREAS COVERED This paper reviews currently available therapeutic approaches for rapidly progressive SSc and discuss novel drugs under study for SSc disease modification. EXPERT OPINION The extent, severity, and rate of progression of SSc skin and internal organ involvement determines the optimal therapeutic interventions for SSc. Cyclophosphamide for progressive SSc-associated interstitial lung disease and mycophenolate for rapidly progressive cutaneous involvement have shown effectiveness. Methotrexate has been used for less severe skin progression and for patients unable to tolerate mycophenolate. Rituximab was shown to induce improvement in SSc-cutaneous and lung involvement. Autologous bone marrow transplantation is reserved for selected cases in whom poor survival risk outweighs the high mortality rate of the procedure. Novel agents capable of modulating fibrotic and inflammatory pathways involved in SSc pathogenesis, including tocilizumab, pirfenidone, tyrosine kinase inhibitors, lipid lysophosphatidic acid 1, and NOX4 inhibitors are currently under development for the treatment of rapidly progressive SSc.
Collapse
Affiliation(s)
- Fabian A. Mendoza
- Department of Medicine, Division of Rheumatology, Thomas Jefferson University Philadelphia, PA 19107, USA
- Jefferson Institute of Molecular Medicine, and Scleroderma Center, Thomas Jefferson University Philadelphia, PA 19107, USA
| | - Maryah Mansoor
- Department of Medicine, Division of Rheumatology, Thomas Jefferson University Philadelphia, PA 19107, USA
| | - Sergio A. Jimenez
- Jefferson Institute of Molecular Medicine, and Scleroderma Center, Thomas Jefferson University Philadelphia, PA 19107, USA
| |
Collapse
|