1
|
Chen Y, Tang H, Yao B, Pan S, Ying S, Zhang C. Basophil differentiation, heterogeneity, and functional implications. Trends Immunol 2024; 45:523-534. [PMID: 38944621 DOI: 10.1016/j.it.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/01/2024]
Abstract
Basophils, rare granulocytes, have long been acknowledged for their roles in type 2 immune responses. However, the mechanisms by which basophils adapt their functions to diverse mammalian microenvironments remain unclear. Recent advancements in specific research tools and single-cell-based technologies have greatly enhanced our understanding of basophils. Several studies have shown that basophils play a role in maintaining homeostasis but can also contribute to pathology in various tissues and organs, including skin, lung, and others. Here, we provide an overview of recent basophil research, including cell development, characteristics, and functions. Based on an increasing understanding of basophil biology, we suggest that the precise targeting of basophil features might be beneficial in alleviating certain pathologies such as asthma, atopic dermatitis (AD), and others.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China
| | - Haoyu Tang
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China
| | - Bingpeng Yao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Sheng Pan
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Songmin Ying
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, 322000, China.
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Anatomy, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Held E, Mochizuki H. Hematologic Abnormalities and Diseases Associated with Moderate-to-Marked Basophilia in a Large Cohort of Dogs. Vet Sci 2023; 10:700. [PMID: 38133251 PMCID: PMC10748300 DOI: 10.3390/vetsci10120700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Basophilia is a rare hematologic finding in dogs. This research aimed to describe the hematologic and clinical characteristics of dogs with moderate-to-marked basophilia. CBC reports with blood smear examinations from dogs presented to the North Carolina State University Veterinary Teaching Hospital were retrospectively reviewed for basophilia (>193 cells/µL). We classified basophilia as moderate when counts were ≥500 cells/µL and marked when they reached ≥1000 cells/µL. We compared the hematologic and clinical profiles of dogs with moderate-to-marked basophilia (the basophilia group) to those without basophilia, serving as our control group. In addition, we investigated differences between dogs with marked basophilia versus those with moderate basophilia, as well as between dogs in the basophilia group with and without concurrent eosinophilia. Diseases associated with moderate-to-marked basophilia included eosinophilic lung disease (p < 0.0001), leukemia/myeloproliferative neoplasms (p = 0.004), parasitic infection (p = 0.004), mast cell tumor (p = 0.005), and inflammatory bowel disease (p = 0.02). Overall, dogs with marked basophilia had a lower frequency of inflammatory diseases (51% vs. 70%, p = 0.009) and a higher frequency of neoplastic diseases (48% vs. 26%, p = 0.003) compared to those with moderate basophilia. In the basophilia group, concurrent eosinophilia was only seen in 36% of dogs. Dogs with concurrent eosinophilia were more often diagnosed with inflammatory diseases (77% vs. 58%, p = 0.006), with fewer diagnoses of neoplasia (19% vs. 40%, p = 0.001), compared to dogs without concurrent eosinophilia. The findings of this study offer veterinary clinicians valuable guidance in determining diagnostic priorities for dogs with moderate-to-marked basophilia.
Collapse
Affiliation(s)
- Elizabeth Held
- Department of Public Health and Pathobiology, NC State College of Veterinary Medicine, Raleigh, NC 27607, USA;
| | - Hiroyuki Mochizuki
- Department of Public Health and Pathobiology, NC State College of Veterinary Medicine, Raleigh, NC 27607, USA;
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
3
|
IL-31-generating network in atopic dermatitis comprising macrophages, basophils, thymic stromal lymphopoietin, and periostin. J Allergy Clin Immunol 2023; 151:737-746.e6. [PMID: 36410530 DOI: 10.1016/j.jaci.2022.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/22/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND IL-31 is a type 2 cytokine involved in the itch sensation in atopic dermatitis (AD). The cellular origins of IL-31 are generally considered to be TH2 cells. Macrophages have also been implicated as cellular sources of IL-31. OBJECTIVE We sought to determine the expression of IL-31 by macrophages and to elucidate the productive mechanisms and contributions to itch in AD skin lesions. METHODS Expression of IL-31 by macrophages, expressions of thymic stromal lymphopoietin (TSLP) and periostin, and presence of infiltrating basophils in human AD lesions were examined through immunofluorescent staining, and correlations were assessed. Furthermore, mechanisms of inducing IL-31-expressing macrophages were analyzed in an MC903-induced murine model for AD in vivo and in mouse peritoneal macrophages ex vivo. RESULTS A significant population of IL-31+ cells in human AD lesions was that of CD68+ cells expressing CD163, an M2 macrophage marker. The number of IL-31+/CD68+ cells correlated with epidermal TSLP, dermal periostin, and the number of dermal-infiltrating basophils. In the MC903-induced murine AD model, significant scratching behaviors with enhanced expressions of TSLP and periostin were observed, accompanied by massive infiltration of basophils and IL-31+/MOMA-2+/Arg-1+ cells. Blockade of IL-31 signaling with anti-IL-31RA antibody or direct depletion of macrophages by clodronate resulted in attenuation of scratching behaviors. To effectively reduce lesional IL-31+ macrophages and itch, basophil depletion was essential in combination with TSLP- and periostin-signal blocking. Murine peritoneal macrophages produced IL-31 when stimulated with TSLP, periostin, and basophils. CONCLUSIONS A network comprising IL-31-expressing macrophages, TSLP, periostin, and basophils plays a significant role in AD itch.
Collapse
|
4
|
Liu W, Xu R, Wang F. Recent Advances of Basophils in Pruritic Skin Diseases. J Invest Dermatol 2023; 143:691-698. [PMID: 36608999 DOI: 10.1016/j.jid.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023]
Abstract
Basophils are a rare type of granulocyte in peripheral blood. Owing to their accessibility in circulation and similarities to mast cells, basophils were considered a tool to gain insight into the function of mast cells. However, recent studies have uncovered that basophils have unique biology, specifically in activation, recruitment, and potential biomarkers. Accordingly, some previously unrecognized functions, particularly in neuroimmunology, have been found, suggesting a role of basophils in inflammatory and pruritic disorders. In this review, we aim to present an overview of basophil biology to show how basophils contribute to certain pruritic skin diseases.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Xu
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fang Wang
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Shibuya R, Kim BS. Skin-homing basophils and beyond. Front Immunol 2022; 13:1059098. [PMID: 36618424 PMCID: PMC9815541 DOI: 10.3389/fimmu.2022.1059098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Basophils have been implicated in type 2 inflammation and numerous disorders in the skin such as helminth infection, atopic dermatitis, and urticaria. Although similar in form and function to tissue-resident mast cells, classical studies on basophils have centered on those from the hematopoietic compartment. However, increasing studies in tissues like the skin demonstrate that basophils may take on particular characteristics by responding to unique developmental, chemotactic, and activation cues. Herein, we highlight how recent studies in barrier immunology suggest the presence of skin-homing basophils that harbor a unique identity in terms of phenotype, function, and motility. These concepts may uniquely inform how basophils contribute to diseases at multiple epithelial surfaces and our ability to therapeutically target the innate immune system in disease.
Collapse
Affiliation(s)
- Rintaro Shibuya
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Brian S. Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,*Correspondence: Brian S. Kim,
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Myeloid cells - granulocytes, monocytes, macrophages and dendritic cells (DCs) - are innate immune cells that play key roles in pathogen defense and inflammation, as well as in tissue homeostasis and repair. Over the past 5 years, in part due to more widespread use of single cell omics technologies, it has become evident that these cell types are significantly more heterogeneous than was previously appreciated. In this review, we consider recent studies that have demonstrated heterogeneity among neutrophils, monocytes, macrophages and DCs in mice and humans. We also discuss studies that have revealed the sources of their heterogeneity. RECENT FINDINGS Recent studies have confirmed that ontogeny is a key determinant of diversity, with specific subsets of myeloid cells arising from distinct progenitors. However, diverse microenvironmental cues also strongly influence myeloid fate and function. Accumulating evidence therefore suggests that a combination of these mechanisms underlies myeloid cell diversity. SUMMARY Consideration of the heterogeneity of myeloid cells is critical for understanding their diverse activities, such as the role of macrophages in tissue damage versus repair, or tumor growth versus elimination. Insights into these mechanisms are informing the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Alberto Yáñez
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Cristina Bono
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Helen S. Goodridge
- Board of Governors Regenerative Medicine Institute and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
7
|
Temporal Modulation of Drug Desensitization Procedures. Curr Issues Mol Biol 2022; 44:833-844. [PMID: 35723342 PMCID: PMC8929139 DOI: 10.3390/cimb44020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022] Open
Abstract
Drug hypersensitivity reactions are an unavoidable clinical consequence of the presence of new therapeutic agents. These adverse reactions concern patients afflicted with infectious diseases (e.g., hypersensitivity to antibiotics), and with non-infectious chronic diseases, such as in cancers, diabetes or cystic fibrosis treatments, and may occur at the first drug administration or after repeated exposures. Here we revise recent key studies on the mechanisms underlying the desensitization protocols, and propose an additional temporal regulation layer that is based on the circadian control of the signaling pathway involved and on the modulation of the memory effects established by the desensitization procedures.
Collapse
|
8
|
Peng J, Siracusa MC. Basophils in antihelminth immunity. Semin Immunol 2021; 53:101529. [PMID: 34815162 PMCID: PMC8715908 DOI: 10.1016/j.smim.2021.101529] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022]
Abstract
It has been appreciated that basophilia is a common feature of helminth infections for approximately 50 years. The ability of basophils to secrete IL-4 and other type 2 cytokines has supported the prevailing notion that basophils contribute to antihelminth immunity by promoting optimal type 2 T helper (Th2) cell responses. While this appears to be the case in several helminth infections, emerging studies are also revealing that the effector functions of basophils are extremely diverse and parasite-specific. Further, new reports now suggest that basophils can restrict type 2 inflammation in a manner that preserves the integrity of helminth-affected tissue. Finally, exciting data has also demonstrated that basophils can regulate inflammation by participating in neuro-immune interactions. This article will review the current state of basophil biology and describe how recent studies are transforming our understanding of the role basophils play in the context of helminth infections.
Collapse
Affiliation(s)
- Jianya Peng
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Mark C Siracusa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
9
|
Abstract
Objective: To establish a convenient and simple flow cytometry immunophenotyping panel to explore immune cellular alterations and potential cellular biomarkers in systemic lupus erythematosus. Materials and methods: This is a cross-sectional, case–control study including 60 patients with systemic lupus erythematosus and 20 sex- and age-matched healthy controls. A 14-color immunophenotyping panel was applied to detect proportions of circulating immune mononuclear cells, and comparisons between patients and healthy controls, and subgroups of patients, were performed. Correlations between cellular proportions and other parameters were investigated. Results: After multivariate analysis, significantly decreased proportions of CD4−CD8− T cells, natural killer cells and innate lymphoid cells were observed in patients compared with healthy controls. The proportions of basophils were decreased significantly in patients with lupus nephritis (LN) compared with those in patients without LN. Conclusion: In the present study, we found that basophil proportions may be a biomarker of LN. Systemic lupus erythematosus is a chronic, multisystem, autoimmune disorder that involves various abnormalities of immune cells and thus presents in a striking variety of ways. This study aimed to establish a biomarker panel that would enable the exploration of changes in immune cells and the relationships between immune cell subsets and clinical manifestations in patients with systemic lupus erythematosus. Our results showed that basophil cell proportions may be a biomarker of use in lupus nephritis.
Collapse
|
10
|
Vivanco Gonzalez N, Oliveria JP, Tebaykin D, Ivison GT, Mukai K, Tsai MM, Borges L, Nadeau KC, Galli SJ, Tsai AG, Bendall SC. Mass Cytometry Phenotyping of Human Granulocytes Reveals Novel Basophil Functional Heterogeneity. iScience 2020; 23:101724. [PMID: 33205028 PMCID: PMC7653073 DOI: 10.1016/j.isci.2020.101724] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Basophils, the rarest granulocyte, play critical roles in parasite- and allergen-induced inflammation. We applied mass cytometry (CyTOF) to simultaneously asses 44 proteins to phenotype and functionally characterize neutrophils, eosinophils, and basophils from 19 healthy donors. There was minimal heterogeneity seen in eosinophils and neutrophils, but data-driven analyses revealed four unique subpopulations within phenotypically basophilic granulocytes (PBG; CD45+HLA-DR-CD123+). Through CyTOF and fluorescence-activated cell sorting (FACS), we classified these four PBG subpopulations as (I) CD16lowFcεRIhighCD244high (88.5 ± 1.2%), (II) CD16highFcεRIhighCD244high (9.1 ± 0.4%), (III) CD16lowFcεRIlowCD244low (2.3 ± 1.3), and (IV) CD16highFcεRIlowCD244low (0.4 ± 0.1%). Prospective isolation confirmed basophilic-morphology of PBG I-III, but neutrophilic-morphology of PBG IV. Functional interrogation via IgE-crosslinking or IL-3 stimulation demonstrated that PBG I-II had significant increases in CD203c expression, whereas PBG III-IV remained unchanged compared with media-alone conditions. Thus, PBG III-IV could serve roles in non-IgE-mediated immunity. Our findings offer new perspectives in human basophil heterogeneity and the varying functional potential of these new subsets in health and disease.
Collapse
Affiliation(s)
- Nora Vivanco Gonzalez
- Department of Pathology, School of Medicine, Stanford University, Stanford Blood Center, 3373 Hillview Avenue Room 230A, Palo Alto, CA 94305, USA
| | - John-Paul Oliveria
- Department of Pathology, School of Medicine, Stanford University, Stanford Blood Center, 3373 Hillview Avenue Room 230A, Palo Alto, CA 94305, USA
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON, L8S4K1, Canada
| | - Dmitry Tebaykin
- Department of Pathology, School of Medicine, Stanford University, Stanford Blood Center, 3373 Hillview Avenue Room 230A, Palo Alto, CA 94305, USA
| | - Geoffrey T. Ivison
- Department of Pathology, School of Medicine, Stanford University, Stanford Blood Center, 3373 Hillview Avenue Room 230A, Palo Alto, CA 94305, USA
| | - Kaori Mukai
- Department of Pathology, School of Medicine, Stanford University, Stanford Blood Center, 3373 Hillview Avenue Room 230A, Palo Alto, CA 94305, USA
- Sean N. Parker Center for Allergy Research, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Mindy M. Tsai
- Department of Pathology, School of Medicine, Stanford University, Stanford Blood Center, 3373 Hillview Avenue Room 230A, Palo Alto, CA 94305, USA
- Sean N. Parker Center for Allergy Research, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Luciene Borges
- Department of Pathology, School of Medicine, Stanford University, Stanford Blood Center, 3373 Hillview Avenue Room 230A, Palo Alto, CA 94305, USA
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy Research, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Stephen J. Galli
- Department of Pathology, School of Medicine, Stanford University, Stanford Blood Center, 3373 Hillview Avenue Room 230A, Palo Alto, CA 94305, USA
- Sean N. Parker Center for Allergy Research, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Albert G. Tsai
- Department of Pathology, School of Medicine, Stanford University, Stanford Blood Center, 3373 Hillview Avenue Room 230A, Palo Alto, CA 94305, USA
| | - Sean C. Bendall
- Department of Pathology, School of Medicine, Stanford University, Stanford Blood Center, 3373 Hillview Avenue Room 230A, Palo Alto, CA 94305, USA
| |
Collapse
|
11
|
Nakashima C, Ishida Y, Kitoh A, Otsuka A, Kabashima K. Interaction of peripheral nerves and mast cells, eosinophils, and basophils in the development of pruritus. Exp Dermatol 2019; 28:1405-1411. [DOI: 10.1111/exd.14014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 06/29/2019] [Accepted: 07/27/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Chisa Nakashima
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Yoshihiro Ishida
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Akihiko Kitoh
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Atsushi Otsuka
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto Japan
- Translational Research Department for Skin and Brain Diseases Kyoto University Graduate School of Medicine Kyoto Japan
| | - Kenji Kabashima
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto Japan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR) Skin Research Institute of Singapore Biopolis Singapore
| |
Collapse
|
12
|
Varricchi G, Raap U, Rivellese F, Marone G, Gibbs BF. Human mast cells and basophils-How are they similar how are they different? Immunol Rev 2019; 282:8-34. [PMID: 29431214 DOI: 10.1111/imr.12627] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells and basophils are key contributors to allergies and other inflammatory diseases since they are the most prominent source of histamine as well as numerous additional inflammatory mediators which drive inflammatory responses. However, a closer understanding of their precise roles in allergies and other pathological conditions has been marred by the considerable heterogeneity that these cells display, not only between mast cells and basophils themselves but also across different tissue locations and species. While both cell types share the ability to rapidly degranulate and release histamine following high-affinity IgE receptor cross-linking, they differ markedly in their ability to either react to other stimuli, generate inflammatory eicosanoids or release immunomodulating cytokines and chemokines. Furthermore, these cells display considerable pharmacological heterogeneity which has stifled attempts to develop more effective anti-allergic therapies. Mast cell- and basophil-specific transcriptional profiling, at rest and after activation by innate and adaptive stimuli, may help to unravel the degree to which these cells differ and facilitate a clearer understanding of their biological functions and how these could be targeted by new therapies.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Ulrike Raap
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| | - Felice Rivellese
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Bernhard F Gibbs
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
13
|
Rignault-Bricard R, Machavoine F, Mecheri S, Hermine O, Schneider E, Dy M, Leite-de-Moraes M. IL-3-producing basophils are required to exacerbate airway hyperresponsiveness in a murine inflammatory model. Allergy 2018; 73:2342-2351. [PMID: 29777594 DOI: 10.1111/all.13480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Basophils are commonly associated with allergic responses because of their ability to produce large amounts of pro-Th2 cytokines and histamine. However, the mechanisms through which bone marrow-resident basophils (BMRB) become fully competent cytokine and histamine producers in response to IgE crosslinking are poorly understood. Here, we sought to determine the role of IL-3 in promoting pro-Th2 basophils. METHODS BMRB and basophils exposed to IL-3 in vitro and in vivo were evaluated for their production of Th2 cytokines and histamine in response to FcεRI crosslinking on both protein and gene expression levels. In vivo relevance of our findings was assessed in a model of ovalbumin-induced allergic asthma using IL-3-deficient and wild-type mice in a protocol of adoptive basophil transfer. RESULTS We show that BMRB and basophils previously exposed to IL-3 differ in their ability to generate cytokines (IL-4, IL-6, IL-13, and GM-CSF) and histamine in response to FcεRI crosslinking, reflecting two stages of maturation. Exposure to IL-3 initiated an autocrine loop of endogenous IL-3 production that enhanced histamine and cytokine production upon FcεRI crosslinking. This increased responsiveness required calcium flux and was dependent on calcineurin and store-operated calcium channels. Our findings are of pathophysiological relevance, as assessed by the failure of IL-3-deficient mice to develop airway hyperreactivity, which could be restored by adoptive transfer of IL-3-derived basophils recovered from wild-type mice. CONCLUSION IL-3-dependent basophils promote Th2 allergic AHR, which designates the IL-3/basophil axis as a promising therapeutic target for the treatment of basophil-dependent asthma.
Collapse
Affiliation(s)
- R. Rignault-Bricard
- Laboratory of Immunoregulation and Immunopathology; Institut Necker-Enfants Malades; Centre National de la Recherche Scientifique (CNRS); Unité Mixte de Recherche (UMR) 8253; Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1151; Université Paris Descartes Sorbonne Paris Cité; Paris France
- Institut Imagine Inserm UMR1163; CNRS Equipe de Recherche Labelisée (ERL) 8654; Université Paris Descartes Paris; Paris France
| | - F. Machavoine
- Laboratory of Immunoregulation and Immunopathology; Institut Necker-Enfants Malades; Centre National de la Recherche Scientifique (CNRS); Unité Mixte de Recherche (UMR) 8253; Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1151; Université Paris Descartes Sorbonne Paris Cité; Paris France
| | - S. Mecheri
- Institut Pasteur; Unité de Biologie des Interactions Hôte Parasites; CNRS ERL9195, Inserm UMR1201; Paris France
| | - O. Hermine
- Institut Imagine Inserm UMR1163; CNRS Equipe de Recherche Labelisée (ERL) 8654; Université Paris Descartes Paris; Paris France
- Department of Hematology; Hôpital Necker Enfants Malades; Assistance Publique Hôpitaux de Paris; Université Paris Descartes Paris; Paris France
| | - E. Schneider
- Laboratory of Immunoregulation and Immunopathology; Institut Necker-Enfants Malades; Centre National de la Recherche Scientifique (CNRS); Unité Mixte de Recherche (UMR) 8253; Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1151; Université Paris Descartes Sorbonne Paris Cité; Paris France
| | - M. Dy
- Laboratory of Immunoregulation and Immunopathology; Institut Necker-Enfants Malades; Centre National de la Recherche Scientifique (CNRS); Unité Mixte de Recherche (UMR) 8253; Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1151; Université Paris Descartes Sorbonne Paris Cité; Paris France
| | - M. Leite-de-Moraes
- Laboratory of Immunoregulation and Immunopathology; Institut Necker-Enfants Malades; Centre National de la Recherche Scientifique (CNRS); Unité Mixte de Recherche (UMR) 8253; Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1151; Université Paris Descartes Sorbonne Paris Cité; Paris France
| |
Collapse
|
14
|
Trier AM, Kim BS. Cytokine modulation of atopic itch. Curr Opin Immunol 2018; 54:7-12. [DOI: 10.1016/j.coi.2018.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/21/2022]
|
15
|
Kawasaki A, Ito N, Murai H, Yasutomi M, Naiki H, Ohshima Y. Skin inflammation exacerbates food allergy symptoms in epicutaneously sensitized mice. Allergy 2018; 73:1313-1321. [PMID: 29319896 DOI: 10.1111/all.13404] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cutaneous exposure to food antigen through impaired skin barrier has been shown to induce epicutaneous sensitization, thereby causing IgE-mediated food allergies. OBJECTIVE We examined whether skin barrier impairment following epicutaneous sensitization exacerbates food allergies. METHODS BALB/c mice were epicutaneously sensitized by repeated application of ovalbumin (OVA) to MC903-pretreated ear skin for 48 hours weekly and then intragastrically challenged with OVA. After the first oral challenge, the skin barrier was disrupted with topical application of MC903 or by tape-stripping. Mice were monitored for changes in body temperature and the occurrence of diarrhea after undergoing the second oral challenge. Serum levels of mouse mast cell protease-1 (mmcp1) and OVA-specific IgE, IgG1, IgG2a antibodies and OVA-specific IgA levels in intestinal lavage fluid were measured by ELISA. Tissue accumulation of eosinophils was determined histologically. RESULTS Epicutaneously sensitized mice developed anaphylaxis after intragastric challenge, as evidenced by diarrhea, decreased body temperature, and increased serum mmcp1 levels. Skin barrier disruption by MC903 treatment or tape-stripping exacerbated allergic reactions induced by oral challenge. MC903 treatment increased serum baseline and postchallenge mmcp1 levels. Topical pretreatment with dexamethasone alleviated allergic reactions that were exacerbated by MC903 treatment. CONCLUSION Even after eliminating exposure to the antigen, inflammation from skin barrier disruption can exacerbate the severity of food allergy symptoms. Serum baseline mmcp1 levels might be an effective marker for predicting the severity of antigen-induced allergic symptoms.
Collapse
Affiliation(s)
- A. Kawasaki
- Department of Pediatrics Faculty of Medical Sciences University of Fukui Fukui Japan
| | - N. Ito
- Department of Pediatrics Faculty of Medical Sciences University of Fukui Fukui Japan
| | - H. Murai
- Department of Pediatrics Faculty of Medical Sciences University of Fukui Fukui Japan
| | - M. Yasutomi
- Department of Pediatrics Faculty of Medical Sciences University of Fukui Fukui Japan
| | - H. Naiki
- Department of Pathology Faculty of Medical Sciences University of Fukui Fukui Japan
| | - Y. Ohshima
- Department of Pediatrics Faculty of Medical Sciences University of Fukui Fukui Japan
| |
Collapse
|
16
|
Fei Q, Han Y, Qi R, Gao Y, Fang L, Hou R, Cai R, Qi Y. Shuang-Huang-Lian prevents basophilic granulocyte activation to suppress Th2 immunity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:2. [PMID: 29298707 PMCID: PMC5753509 DOI: 10.1186/s12906-017-2071-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/22/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Basophilic granulocytes (BGs) not only initiate the induction of Th2 cell differentiation, but also amplify the ongoing Th2 response. Shuang-Huang-Lian (SHL) is clinically used for relieving type I hypersensitivity by continuous treatment for several weeks. METHODS ELISA, flow cytometry, magnetic activated cell sorting, isoelectric precipitation, hybridoma technique, transfection and luciferase reporter assay were used in this study. The statistical analysis was performed using a one-way ANOVA. RESULTS Our recently published study demonstrated that SHL exerted a remarkable effect on mast cell stabilization. Herein, we sought to elucidate the effect of SHL on shrimp tropomyosin (ST)-induced Th2 immunity and its underlying mechanisms. The obtained data showed that continuous treatment with SHL significantly suppressed ST-stimulated Th2-cytokines release and IgE synthesis. A mechanistic study indicated that SHL not only reduced BG early IL-4 release before ST-specific IgE (sIgE) production, but also inhibited BG activation in the presence of sIgE, including suppressing CD200R surface expression and decreasing IL-4 production. Moreover, SHL markedly decreased the cytosolic Ca2+ (Ca2+[c]) level and inhibited the nuclear factor of activated T cells (NFAT) activation in RBL-2H3 cells. CONCLUSIONS Collectively, SHL potently reduces ST-induced Th2 immunity by inhibiting the BG Ca2+-NFAT pathway and, thus, suppressing the early IL-4 release before sIgE synthesis and inhibiting BG activation in the presence of sIgE. This study provides the pharmacological basis for the clinical use of SHL to relieve type I hypersensitivity by a successive dose regimen.
Collapse
|
17
|
Basophil-derived IL-4 promotes epicutaneous antigen sensitization concomitant with the development of food allergy. J Allergy Clin Immunol 2018; 141:223-234.e5. [DOI: 10.1016/j.jaci.2017.02.035] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/13/2017] [Accepted: 02/13/2017] [Indexed: 12/17/2022]
|
18
|
Suzuki Y, Wakahara K, Nishio T, Ito S, Hasegawa Y. Airway basophils are increased and activated in eosinophilic asthma. Allergy 2017; 72:1532-1539. [PMID: 28474352 DOI: 10.1111/all.13197] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND The impact of basophils on asthma pathogenesis remains largely unexplored, particularly in humans. Here, we evaluated the frequencies and activation status of basophils in the sputum of adult asthmatic patients and related our findings to other parameters of eosinophilic airway inflammation. METHODS We enrolled 44 adult asthmatic patients who were being treated with inhaled corticosteroids (ICS). Analysis of the induced sputum, exhaled nitric oxide fraction (FeNO) measurement, and asthma control test (ACT) were carried out together with standard blood and pulmonary function tests. The cellular composition of the sputum was examined by flow cytometry, and the phenotypes of blood and sputum basophils were compared. RESULTS Basophils were increased in the sputum of asthmatic patients. The expression of CD203c on sputum basophils was significantly higher than that on blood basophils. The percentage of sputum basophils was positively correlated with those of eosinophils and mast cells; it was also correlated with that of blood eosinophils and FeNO. However, sputum basophils were not correlated with serum IgE, lung function, or the percentage of blood basophils. A receiver-operating characteristic (ROC) curve showed the superiority of sputum basophils as a surrogate marker of the percentages of sputum eosinophils compared with absolute numbers of blood eosinophils and FeNO. CONCLUSION The number of activated basophils was increased in the sputum of patients with eosinophilic asthma and correlated with airway and blood eosinophils. Our observations suggest that sputum basophils may serve as a biomarker to monitor new therapeutic approaches for the treatment of eosinophilic asthma.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - K Wakahara
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - T Nishio
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - S Ito
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Y Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
19
|
Oetjen LK, Mack MR, Feng J, Whelan TM, Niu H, Guo CJ, Chen S, Trier AM, Xu AZ, Tripathi SV, Luo J, Gao X, Yang L, Hamilton SL, Wang PL, Brestoff JR, Council ML, Brasington R, Schaffer A, Brombacher F, Hsieh CS, Gereau RW, Miller MJ, Chen ZF, Hu H, Davidson S, Liu Q, Kim BS. Sensory Neurons Co-opt Classical Immune Signaling Pathways to Mediate Chronic Itch. Cell 2017; 171:217-228.e13. [PMID: 28890086 DOI: 10.1016/j.cell.2017.08.006] [Citation(s) in RCA: 665] [Impact Index Per Article: 83.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 05/18/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
Mammals have evolved neurophysiologic reflexes, such as coughing and scratching, to expel invading pathogens and noxious environmental stimuli. It is well established that these responses are also associated with chronic inflammatory diseases, including asthma and atopic dermatitis. However, the mechanisms by which inflammatory pathways promote sensations such as itch remain poorly understood. Here, we show that type 2 cytokines directly activate sensory neurons in both mice and humans. Further, we demonstrate that chronic itch is dependent on neuronal IL-4Rα and JAK1 signaling. We also observe that patients with recalcitrant chronic itch that failed other immunosuppressive therapies markedly improve when treated with JAK inhibitors. Thus, signaling mechanisms previously ascribed to the immune system may represent novel therapeutic targets within the nervous system. Collectively, this study reveals an evolutionarily conserved paradigm in which the sensory nervous system employs classical immune signaling pathways to influence mammalian behavior.
Collapse
Affiliation(s)
- Landon K Oetjen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Madison R Mack
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jing Feng
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Whelan
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Haixia Niu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Changxiong J Guo
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sisi Chen
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Anna M Trier
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amy Z Xu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shivani V Tripathi
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jialie Luo
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaofei Gao
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lihua Yang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samantha L Hamilton
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter L Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - M Laurin Council
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard Brasington
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - András Schaffer
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, University of Cape Town, Cape Town 7700, South Africa
| | - Chyi-Song Hsieh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert W Gereau
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark J Miller
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhou-Feng Chen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hongzhen Hu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steve Davidson
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Qin Liu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian S Kim
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Dema B, Lamri Y, Pellefigues C, Pacreau E, Saidoune F, Bidault C, Karasuyama H, Sacré K, Daugas E, Charles N. Basophils contribute to pristane-induced Lupus-like nephritis model. Sci Rep 2017; 7:7969. [PMID: 28801578 PMCID: PMC5554199 DOI: 10.1038/s41598-017-08516-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/12/2017] [Indexed: 01/14/2023] Open
Abstract
Lupus nephritis (LN), one of the most severe outcomes of systemic lupus erythematosus (SLE), is initiated by glomerular deposition of immune-complexes leading to an inflammatory response and kidney failure. Autoantibodies to nuclear antigens and autoreactive B and T cells are central in SLE pathogenesis. Immune mechanisms amplifying this autoantibody production drive flares of the disease. We previously showed that basophils were contributing to LN development in a spontaneous lupus-like mouse model (constitutive Lyn -/- mice) and in SLE subjects through their activation and migration to secondary lymphoid organs (SLOs) where they amplify autoantibody production. In order to study the basophil-specific mechanisms by which these cells contribute to LN development, we needed to validate their involvement in a genetically independent SLE-like mouse model. Pristane, when injected to non-lupus-prone mouse strains, induces a LN-like disease. In this inducible model, basophils were activated and accumulated in SLOs to promote autoantibody production. Basophil depletion by two distinct approaches dampened LN-like disease, demonstrating their contribution to the pristane-induced LN model. These results enable further studies to decipher molecular mechanisms by which basophils contribute to lupus progression.
Collapse
Affiliation(s)
- Barbara Dema
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris, France
| | - Yasmine Lamri
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris, France
| | - Christophe Pellefigues
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris, France
| | - Emeline Pacreau
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris, France
| | - Fanny Saidoune
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris, France
| | - Caroline Bidault
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris, France
| | - Hajime Karasuyama
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Karim Sacré
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris, France
- Department of Internal Medicine, Faculté de Médecine site Bichat, DHU FIRE, Paris, France
| | - Eric Daugas
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris, France
- Department of Nephrology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université Paris Diderot, Faculté de Médecine site Bichat, DHU FIRE, Paris, France
| | - Nicolas Charles
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris, France.
| |
Collapse
|
21
|
Breedveld A, Groot Kormelink T, van Egmond M, de Jong EC. Granulocytes as modulators of dendritic cell function. J Leukoc Biol 2017. [DOI: 10.1189/jlb.4mr0217-048rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
22
|
The Evolution of Human Basophil Biology from Neglect towards Understanding of Their Immune Functions. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8232830. [PMID: 28078302 PMCID: PMC5204076 DOI: 10.1155/2016/8232830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/16/2016] [Indexed: 12/03/2022]
Abstract
Being discovered long ago basophils have been neglected for more than a century. During the past decade evidence emerged that basophils share features of innate and adaptive immunity. Nowadays, basophils are best known for their striking effector role in the allergic reaction. They hence have been used for establishing new diagnostic tests and therapeutic approaches and for characterizing natural and recombinant allergens as well as hypoallergens, which display lower or diminished IgE-binding activity. However, it was a long way from discovery in 1879 until identification of their function in hypersensitivity reactions, including adverse drug reactions. Starting with a historical background, this review highlights the modern view on basophil biology.
Collapse
|
23
|
Basophils and mast cells in immunity and inflammation. Semin Immunopathol 2016; 38:535-7. [PMID: 27405865 DOI: 10.1007/s00281-016-0582-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
|
24
|
Hussain M, Epstein MM, Noti M. Experimental food allergy models to study the role of innate immune cells as initiators of allergen-specific Th2 immune responses. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.ddmod.2016.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|