1
|
Biały S, Iwaszko M, Świerkot J, Kolossa K, Wielińska J, Jeka S, Bogunia-Kubik K. Genetic variability of three common NK and γδ T cell receptor genes (FCγ3R, NCR3, and DNAM-1) and their role in Polish patients with rheumatoid arthritis and ankylosing spondylitis. Immunol Res 2024; 72:614-625. [PMID: 38714580 PMCID: PMC11347466 DOI: 10.1007/s12026-024-09488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/29/2024] [Indexed: 05/10/2024]
Abstract
Various lymphocyte subpopulations, including NK cells as well as γδ T cells, have been considered an important element in the pathogenesis of autoimmune, inflammatory, rheumatic diseases, such as rheumatoid arthritis (RA) and ankylosing spondylitis (AS). The aim of this study was to assess the potential role of polymorphic variations in the genes coding for three NK and γδ T cell receptors: NCR3, FCγR3A, and DNAM-1 (rs1052248, rs396991, and rs763361, respectively) in the disease susceptibility and the efficacy of treatment with TNF inhibitors. The study included 461 patients with RA, 168 patients with AS, and 235 voluntary blood donors as controls. The NCR3 rs1052248 AA homozygosity prevailed in RA in patients lacking rheumatoid factor (p = 0.044) as well as in those who manifested the disease at a younger age (p = 0.005) and had higher CRP levels after 12 weeks of anti-TNF therapy (p = 0.021). The FCγR3A rs396991 polymorphism was associated with pain visual analogue scale (VAS) values before the initiation of anti-TNF treatment. Lower VAS values were observed in the GG homozygous RA patients (p = 0.024) and in AS patients with the TT genotype (p = 0.012). Moreover, AS heterozygous patients with the TG genotype presented higher CRP levels in the 12th week of anti-TNF treatment (p = 0.021). The findings suggest that the NCR3 rs1052248 AA homozygosity may have an adverse effect on RA, while the T allele potentially plays a protective role in the development of AS. Moreover, the rs1052248 T allele and TT genotype appear to have a favorable impact on the response to anti-TNF therapy in RA patients.
Collapse
MESH Headings
- Humans
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/drug therapy
- Male
- Female
- Spondylitis, Ankylosing/genetics
- Spondylitis, Ankylosing/immunology
- Adult
- Middle Aged
- Poland
- Antigens, Differentiation, T-Lymphocyte/genetics
- Genetic Predisposition to Disease
- Polymorphism, Single Nucleotide
- Receptors, IgG/genetics
- Genotype
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Killer Cells, Natural/immunology
- Alleles
- Gene Frequency
- Aged
Collapse
Affiliation(s)
- Sylwia Biały
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Milena Iwaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jerzy Świerkot
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Kolossa
- Clinical Department of Rheumatology and Connective Tissue Diseases, Jan Biziel Hospital University, No. 2, Bydgoszcz, Poland
| | - Joanna Wielińska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Sławomir Jeka
- Clinical Department of Rheumatology and Connective Tissue Diseases, Jan Biziel Hospital University, No. 2, Bydgoszcz, Poland
- Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
2
|
Bettin L, Darbellay J, van Kessel J, Dhar N, Gerdts V. Porcine γδ T cells express cytotoxic cell-associated markers and display killing activity but are not selectively cytotoxic against PRRSV- or swIAV-infected macrophages. Front Immunol 2024; 15:1434011. [PMID: 39144143 PMCID: PMC11321972 DOI: 10.3389/fimmu.2024.1434011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Background Gamma-delta (γδ) T cells are a major immune cell subset in pigs. Approximately 50% of circulating T cells are γδ T cells in young pigs and up to 30% in adult sows. Despite this abundance, the functions of porcine γδ T cells are mostly unidentified. In humans and mice, activated γδ T cells exhibit broad innate cytotoxic activity against a wide variety of stressed, infected, and cancerous cells through death receptor/ligand-dependent and perforin/granzyme-dependent pathways. However, so far, it is unknown whether porcine γδ T cells have the ability to perform cytotoxic functions. Methods In this study, we conducted a comprehensive phenotypic characterization of porcine γδ T cells isolated from blood, lung, and nasal mucosa. To further analyze the cytolytic potential of γδ T cells, in vitro cytotoxicity assays were performed using purified γδ T cells as effector cells and virus-exposed or mock-treated primary porcine alveolar macrophages as target cells. Results Our results show that only CD2+ γδ T cells express cytotoxic markers (CD16, NKp46, perforin) with higher perforin and NKp46 expression in γδ T cells isolated from lung and nasal mucosa. Moreover, we found that γδ T cells can exhibit cytotoxic functions in a cell-cell contact and degranulation-dependent manner. However, porcine γδ T cells did not seem to specifically target Porcine Reproductive and Respiratory Syndrome Virus or swine Influenza A Virus-infected macrophages, which may be due to viral escape mechanisms. Conclusion Porcine γδ T cells express cytotoxic markers and can exhibit cytotoxic activity in vitro. The specific mechanisms by which porcine γδ T cells recognize target cells are not fully understood but may involve the detection of cellular stress signals.
Collapse
MESH Headings
- Animals
- Swine
- Porcine respiratory and reproductive syndrome virus/immunology
- Porcine respiratory and reproductive syndrome virus/physiology
- Cytotoxicity, Immunologic
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/virology
- Porcine Reproductive and Respiratory Syndrome/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Biomarkers
- Orthomyxoviridae Infections/immunology
- Perforin/metabolism
- Perforin/immunology
- Intraepithelial Lymphocytes/immunology
- Cells, Cultured
Collapse
Affiliation(s)
- Leonie Bettin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph Darbellay
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Jill van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Neeraj Dhar
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Balog JÁ, Zvara Á, Bukovinszki V, Puskás LG, Balog A, Szebeni GJ. Comparative single-cell multiplex immunophenotyping of therapy-naive patients with rheumatoid arthritis, systemic sclerosis, and systemic lupus erythematosus shed light on disease-specific composition of the peripheral immune system. Front Immunol 2024; 15:1376933. [PMID: 38726007 PMCID: PMC11079270 DOI: 10.3389/fimmu.2024.1376933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Systemic autoimmune diseases (SADs) are a significant burden on the healthcare system. Understanding the complexity of the peripheral immunophenotype in SADs may facilitate the differential diagnosis and identification of potential therapeutic targets. Methods Single-cell mass cytometric immunophenotyping was performed on peripheral blood mononuclear cells (PBMCs) from healthy controls (HCs) and therapy-naive patients with rheumatoid arthritis (RA), progressive systemic sclerosis (SSc), and systemic lupus erythematosus (SLE). Immunophenotyping was performed on 15,387,165 CD45+ live single cells from 52 participants (13 cases/group), using an antibody panel to detect 34 markers. Results Using the t-SNE (t-distributed stochastic neighbor embedding) algorithm, the following 17 main immune cell types were determined: CD4+/CD57- T cells, CD4+/CD57+ T cells, CD8+/CD161- T cells, CD8+/CD161+/CD28+ T cells, CD8dim T cells, CD3+/CD4-/CD8- T cells, TCRγ/δ T cells, CD4+ NKT cells, CD8+ NKT cells, classic NK cells, CD56dim/CD98dim cells, B cells, plasmablasts, monocytes, CD11cdim/CD172dim cells, myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs). Seven of the 17 main cell types exhibited statistically significant frequencies in the investigated groups. The expression levels of the 34 markers in the main populations were compared between HCs and SADs. In summary, 59 scatter plots showed significant differences in the expression intensities between at least two groups. Next, each immune cell population was divided into subpopulations (metaclusters) using the FlowSOM (self-organizing map) algorithm. Finally, 121 metaclusters (MCs) of the 10 main immune cell populations were found to have significant differences to classify diseases. The single-cell T-cell heterogeneity represented 64MCs based on the expression of 34 markers, and the frequency of 23 MCs differed significantly between at least twoconditions. The CD3- non-T-cell compartment contained 57 MCs with 17 MCs differentiating at least two investigated groups. In summary, we are the first to demonstrate the complexity of the immunophenotype of 34 markers over 15 million single cells in HCs vs. therapy-naive patients with RA, SSc, and SLE. Disease specific population frequencies or expression patterns of peripheral immune cells provide a single-cell data resource to the scientific community.
Collapse
Affiliation(s)
- József Á. Balog
- Laboratory of Functional Genomics, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Ágnes Zvara
- Laboratory of Functional Genomics, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Vivien Bukovinszki
- Department of Rheumatology and Immunology, Faculty of Medicine, Albert Szent-Gyorgyi Health Centre, University of Szeged, Szeged, Hungary
| | - László G. Puskás
- Laboratory of Functional Genomics, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Attila Balog
- Department of Rheumatology and Immunology, Faculty of Medicine, Albert Szent-Gyorgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Gábor J. Szebeni
- Laboratory of Functional Genomics, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Internal Medicine, Hematology Centre, Faculty of Medicine University of Szeged, Szeged, Hungary
- Astridbio Technologies Ltd., Szeged, Hungary
| |
Collapse
|
4
|
McBride DA, Wang JS, Johnson WT, Bottini N, Shah NJ. ABCD of IA: A multi-scale agent-based model of T cell activation in inflammatory arthritis. Biomater Sci 2024; 12:2041-2056. [PMID: 38349277 DOI: 10.1039/d3bm01674a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Biomaterial-based agents have been demonstrated to regulate the function of immune cells in models of autoimmunity. However, the complexity of the kinetics of immune cell activation can present a challenge in optimizing the dose and frequency of administration. Here, we report a model of autoreactive T cell activation, which are key drivers in autoimmune inflammatory joint disease. The model is termed a multi-scale Agent-Based, Cell-Driven model of Inflammatory Arthritis (ABCD of IA). Using kinetic rate equations and statistical theory, ABCD of IA simulated the activation and presentation of autoantigens by dendritic cells, interactions with cognate T cells and subsequent T cell proliferation in the lymph node and IA-affected joints. The results, validated with in vivo data from the T cell driven SKG mouse model, showed that T cell proliferation strongly correlated with the T cell receptor (TCR) affinity distribution (TCR-ad), with a clear transition state from homeostasis to an inflammatory state. T cell proliferation was strongly dependent on the amount of antigen in antigenic stimulus event (ASE) at low concentrations. On the other hand, inflammation driven by Th17-inducing cytokine mediated T cell phenotype commitment was influenced by the initial level of Th17-inducing cytokines independent of the amount of arthritogenic antigen. The introduction of inhibitory artificial antigen presenting cells (iaAPCs), which locally suppress T cell activation, reduced T cell proliferation in a dose-dependent manner. The findings in this work set up a framework based on theory and modeling to simulate personalized therapeutic strategies in IA.
Collapse
Affiliation(s)
- David A McBride
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | - James S Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wade T Johnson
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Nunzio Bottini
- Kao Autoimmunity Institute and Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nisarg J Shah
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
γδ T Lymphocytes as a Double-Edged Sword-State of the Art in Gynecological Diseases. Int J Mol Sci 2022; 23:ijms232314797. [PMID: 36499125 PMCID: PMC9740168 DOI: 10.3390/ijms232314797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Human gamma-delta (γδ) T cells are a heterogeneous cell population that bridges the gap between innate and acquired immunity. They are involved in a variety of immunological processes, including tumor escape mechanisms. However, by being prolific cytokine producers, these lymphocytes also participate in antitumor cytotoxicity. Which one of the two possibilities takes place depends on the tumor microenvironment (TME) and the subpopulation of γδ T lymphocytes. The aim of this paper is to summarize existing knowledge about the phenotype and dual role of γδ T cells in cancers, including ovarian cancer (OC). OC is the third most common gynecological cancer and the most lethal gynecological malignancy. Anticancer immunity in OC is modulated by the TME, including by immunosuppressive cells, cytokines, and soluble factors. Immune cells are exposed in the TME to many signals that determine their immunophenotype and can manipulate their functions. The significance of γδ T cells in the pathophysiology of OC is enigmatic and remains to be investigated.
Collapse
|
7
|
Nguyen CT, Furuya H, Das D, Marusina AI, Merleev AA, Ravindran R, Jalali Z, Khan IH, Maverakis E, Adamopoulos IE. Peripheral γδ T Cells Regulate Neutrophil Expansion and Recruitment in Experimental Psoriatic Arthritis. Arthritis Rheumatol 2022; 74:1524-1534. [PMID: 35320625 PMCID: PMC9427669 DOI: 10.1002/art.42124] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study was undertaken to identify the mechanistic role of γδ T cells in the pathogenesis of experimental psoriatic arthritis (PsA). METHODS In this study, we performed interleukin-23 (IL-23) gene transfer in wild-type (WT) and T cell receptor δ-deficient (TCRδ-/- ) mice and conducted tissue phenotyping in the joint, skin, and nails to characterize the inflammatory infiltrate. We further performed detailed flow cytometry, immunofluorescence staining, RNA sequencing, T cell repertoire analysis, and in vitro T cell polarization assays to identify regulatory mechanisms of γδ T cells. RESULTS We demonstrated that γδ T cells support systemic granulopoiesis, which is critical for murine PsA-like pathology. Briefly, γδ T cell ablation inhibited the expression of neutrophil chemokines CXCL1 and CXCL2 and neutrophil CD11b+Ly6G+ accumulation in the aforementioned PsA-related tissues. Although significantly reduced expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-17A was detected systemically in TCRδ-/- mice, no GM-CSF+/IL-17A+ γδ T cells were detected locally in the inflamed skin or bone marrow in WT mice. Our data showed that nonresident γδ T cells regulate the expansion of an CD11b+Ly6G+ neutrophil population and their recruitment to joint and skin tissues, where they develop hallmark pathologic features of human PsA. CONCLUSION Our findings do not support the notion that tissue-resident γδ T cells initiate the disease but demonstrate a novel role of γδ T cells in neutrophil regulation that can be exploited therapeutically in PsA patients.
Collapse
Affiliation(s)
- Cuong Thach Nguyen
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
| | - Hiroki Furuya
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Dayasagar Das
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
| | - Alina I Marusina
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Alexander A Merleev
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Resmi Ravindran
- Department of Pathology and Laboratory Medicine, University of California at Davis, USA
| | - Zahra Jalali
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Imran H. Khan
- Department of Pathology and Laboratory Medicine, University of California at Davis, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Iannis E. Adamopoulos
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| |
Collapse
|
8
|
Bertoldo E, Adami G, Rossini M, Giollo A, Orsolini G, Viapiana O, Gatti D, Fassio A. The Emerging Roles of Endocrine Hormones in Different Arthritic Disorders. Front Endocrinol (Lausanne) 2021; 12:620920. [PMID: 34093428 PMCID: PMC8177688 DOI: 10.3389/fendo.2021.620920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
The relationship between endocrine hormones and the spectrum of rheumatic conditions has long been discussed in the literature, focusing primarily on sexual hormones, such as estrogens, androgens, prolactin (PRL). Estrogens are indeed involved in the pathogenesis of the main inflammatory arthritis thanks to their effects on the immune system, both stimulatory and inhibitory. The PRL system has been discovered in synovial tissue of rheumatoid arthritis (RA) and psoriatic arthritis (PsA), patients and has been propose as a new potential therapeutic target. Besides sexual hormones, in the last years scientific interest about the crosstalk of immune system with other class of hormones has grown. Hormones acting on the bone tissue (i.e. parathyroid hormone, vitamin D) and modulators of the Wnt pathway (i.e. Dickkopf-1) have been demonstrated to play active role in inflammatory arthritis course, defining a new field of research named osteoimmunology. PTH, which is one of the main determinants of Dkkopf-1, plays a crucial role in bone erosions in RA and a correlation between PTH, Trabecular Bone Score (TBS) and disease activity has been found in ankylosing spondylitis (AS). In PSA is under studying the interaction among IL-17 and bone metabolism. The purpose of this review is to discuss and summarize the recent data about the interaction between endocrine hormone and immune system in the main rheumatic disorders, covering in particular the role of bone-related hormones and cytokines. We will describe this relationship from a biochemical, diagnostic and therapeutic perspective, with a particular focus on RA, PsA and AS.
Collapse
Affiliation(s)
- Eugenia Bertoldo
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Carvalho AL, Hedrich CM. The Molecular Pathophysiology of Psoriatic Arthritis-The Complex Interplay Between Genetic Predisposition, Epigenetics Factors, and the Microbiome. Front Mol Biosci 2021; 8:662047. [PMID: 33869291 PMCID: PMC8047476 DOI: 10.3389/fmolb.2021.662047] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a symmetric autoimmune/inflammatory disease that primarily affects the skin. In a significant proportion of cases, it is accompanied by arthritis that can affect any joint, the spine, and/or include enthesitis. Psoriasis and psoriatic arthritis are multifactor disorders characterized by aberrant immune responses in genetically susceptible individuals in the presence of additional (environmental) factors, including changes in microbiota and/or epigenetic marks. Epigenetic changes can be heritable or acquired (e.g., through changes in diet/microbiota or as a response to therapeutics) and, together with genetic factors, contribute to disease expression. In psoriasis, epigenetic alterations are mainly related to cell proliferation, cytokine signaling and microbial tolerance. Understanding the complex interplay between heritable and acquired pathomechanistic factors contributing to the development and maintenance of psoriasis is crucial for the identification and validation of diagnostic and predictive biomarkers, and the introduction of individualized effective and tolerable new treatments. This review summarizes the current understanding of immune activation, genetic, and environmental factors that contribute to the pathogenesis of psoriatic arthritis. Particular focus is on the interactions between these factors to propose a multifactorial disease model.
Collapse
Affiliation(s)
- Ana L Carvalho
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.,Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom
| |
Collapse
|
10
|
Abstract
Inflammatory arthritis (IA) refers to a group of chronic diseases, including rheumatoid arthritis (RA), psoriatic arthritis (PsA), ankylosing spondylitis (AS), and other spondyloarthritis (SpA). IA is characterized by autoimmune-mediated joint inflammation and is associated with inflammatory cytokine networks. Innate lymphocytes, including innate-like lymphocytes (ILLs) expressing T or B cell receptors and innate lymphoid cells (ILCs), play important roles in the initiation of host immune responses against self-antigens and rapidly produce large amounts of cytokines upon stimulation. TNF (Tumor Necrosis Factor)-α, IFN (Interferon)-γ, Th2-related cytokines (IL-4, IL-9, IL-10, and IL-13), IL-17A, IL-22, and GM-CSF are involved in IA and are secreted by ILLs and ILCs. In this review, we focus on the current knowledge of ILL and ILC phenotypes, cytokine production and functions in IA. A better understanding of the roles of ILLs and ILCs in IA initiation and development will ultimately provide insights into developing effective strategies for the clinical treatment of IA patients.
Collapse
Affiliation(s)
- Xunyao Wu
- The Ministry of Education Key Laboratory, Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The therapeutic response to biologic agents in psoriasis is significantly higher than observed in psoriatic arthritis (PsA). In this review, specific actions to improve treatment outcomes in PsA are discussed. RECENT FINDINGS Increased understanding of disease pathogenesis derived from improved preclinical models and advances in cell-based and molecular technologies provide new tools to identify therapeutic targets. In addition to the important contributions of metabolic comorbidities, chronic pain and the lack of a diagnostic biomarker signal the need for new strategies to improve outcomes. Potential strategies include the following: (1) discover a novel pathway or cellular subset, (2) apply stratification biomarkers to individualize therapy, (3) preclinical intervention, (4) combination therapy, (5) lifestyle modification, (6) address chronic pain and fatigue, and (7) multidisciplinary care. The future holds great promise for enhanced treatment responses in PsA based on improved understanding of individual variation in disease pathophysiology coupled with comprehensive and integrated treatment programs.
Collapse
Affiliation(s)
- Christopher Ritchlin
- Allergy, Immunology and Rheumatology Division, Center for Musculoskeletal Research, University of Rochester Medical Center, Box 695, Rochester, NY, 14642, USA.
| | - Jose U Scher
- Department of Medicine, Division of Rheumatology and Psoriatic Arthritis Center, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
12
|
Affiliation(s)
- Mary C Nakamura
- Department of Medicine, Division of Rheumatology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA.
- Arthritis/Immunology Section, San Francisco Veterans Administration Health Care System, 4150 Clement Street, 111R, San Francisco, CA, 94121, USA.
| |
Collapse
|