1
|
Tao L, Chiarelli MP, Pavlova S, Kolokythas A, Schwartz J, DeFrancesco J, Salameh B, Green SJ, Adami G. Enrichment of polycyclic aromatic hydrocarbon metabolizing microorganisms on the oral mucosa of tobacco users. PeerJ 2024; 12:e16626. [PMID: 38188172 PMCID: PMC10771095 DOI: 10.7717/peerj.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/16/2023] [Indexed: 01/09/2024] Open
Abstract
Certain soil microbes resist and metabolize polycyclic aromatic hydrocarbons (PAHs). The same is true for a subset of skin microbes. In the human mouth, oral microbes have the potential to oxidize tobacco PAHs, thereby increasing these chemicals' ability to cause cancer of adjacent epithelium. We hypothesized that we could identify, in smokers, the oral mucosal microbes that can metabolize PAH. We isolated bacteria and fungi that survived long-term in minimal media with PAHs as the sole carbon source, under aerobic conditions, from the oral mucosa in 17 of 26 smokers and two of 14 nonsmokers. Of bacteria genera that survived harsh PAH exposure in vitro, most were found at trace levels, except for Staphylococcus, Actinomyces, and Kingella, which were more abundant. Two PAH-resistant strains of Candida albicans (C. albicans) were isolated from smokers. C. albicans was a prime candidate to contribute to carcinogenesis in tobacco users as it is found orally at high levels in tobacco users on the mucosa, and some Candida species can metabolize PAHs. However, when C. albicans isolates were tested for metabolism of two model PAH substrates, pyrene and phenanthrene, they were not capable, suggesting they cannot metabolize PAH under the conditions used. In conclusion, evidence for large scale microbial degradation of tobacco PAHs under aerobic conditions on the oral mucosa remains lacking, though nonabundant PAH metabolizers are certainly present.
Collapse
Affiliation(s)
- Lin Tao
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States of America
| | - M Paul Chiarelli
- Department of Chemistry and Biochemistry, Loyola University of Chicago, Chicago, IL, United States of America
| | - Sylvia Pavlova
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States of America
| | - Antonia Kolokythas
- Department of Oral and Maxillofacial Surgery, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, United States of America
| | - Joel Schwartz
- Oral Medicine and Diagnostic Sciences, University of Illinois Chicago, Chicago, IL, United States of America
| | - James DeFrancesco
- Forensic Science Program — Department of Criminal Justice, Loyola University of Chicago, Chicago, IL, United States of America
| | - Benjamin Salameh
- Oral Medicine and Diagnostic Sciences, University of Illinois Chicago, Chicago, IL, United States of America
| | - Stefan J. Green
- DNA Sequencing Core, Research Resources Center, University of Illinois Chicago, Chicago, IL, United States of America
| | - Guy Adami
- Oral Medicine and Diagnostic Sciences, University of Illinois Chicago, Chicago, IL, United States of America
| |
Collapse
|
2
|
Chattopadhyay S, Ramachandran P, Malayil L, Mongodin EF, Sapkota AR. Conventional tobacco products harbor unique and heterogenous microbiomes. ENVIRONMENTAL RESEARCH 2023; 220:115205. [PMID: 36592812 PMCID: PMC9898174 DOI: 10.1016/j.envres.2022.115205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/08/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
While an increasing number of studies have evaluated tobacco microbiomes, comparative microbiome analyses across diverse tobacco products are non-existent. Moreover, to our knowledge, no previous studies have characterized the metabolically-active (live) fraction of tobacco bacterial communities and compared them across products. To address these knowledge gaps, we compared bacterial communities across four commercial products (cigarettes, little cigars, cigarillos and hookah) and one research cigarette product. After total DNA extraction (n = 414) from all samples, the V3V4 region of the 16S rRNA gene was sequenced on the Illumina HiSeq platform. To identify metabolically-active bacterial communities within these products, we applied a coupled 5-bromo-2'-deoxyuridine labeling and sequencing approach to a subset of samples (n = 56). Each tobacco product was characterized by its signature microbiome, along with a shared microbiome across all tobacco products consisting of Pseudomonas aeruginosa, P. putida, P. alcaligenes, Bacillus subtilis, and Klebsiella pneumoniae. Comparing across products (using Linear discriminant analysis Effect Size (LEfSe)), a significantly higher (p < 0.05) relative abundance of Klebsiella and Acinetobacter was observed in commercial cigarettes, while a higher relative abundance of Pseudomonas and Pantoea was observed in research cigarettes. Methylorubrum and Paenibacillus were higher in hookah, and Brevibacillus, Lactobacillus, Bacillus, Lysinibacillus, and Staphylococcus were higher in little cigars and cigarillos. Across all products, the majority of the metabolically-active bacterial communities belonged to the genus Pseudomonas, followed by several genera within the Firmicutes phylum (Bacillus, Terribacillus, and Oceanobacillus). Identification of some metabolically-active pathogens such as Bacillus cereus and Haemophilus parainfluenzae in commercial products is of concern because of the potential for these microorganisms to be transferred to users' respiratory tracts via mainstream smoke. Future work is warranted to evaluate the potential impact of these tobacco bacterial communities on users' oral and lung microbiomes, which play such an important role on the spectrum from health to disease.
Collapse
Affiliation(s)
- Suhana Chattopadhyay
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD, USA
| | - Padmini Ramachandran
- Food and Drug Administration, Office of Regulatory Science, Division of Microbiology, HFS-712, College Park, MD, USA
| | - Leena Malayil
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD, USA.
| |
Collapse
|
3
|
Fatton M, Filippidou S, Junier T, Cailleau G, Berge M, Poppleton D, Blum TB, Kaminek M, Odriozola A, Blom J, Johnson SL, Abrahams JP, Chain PS, Gribaldo S, Tocheva EI, Zuber B, Viollier PH, Junier P. Cryptosporulation in Kurthia spp. forces a rethinking of asporogenesis in Firmicutes. Environ Microbiol 2022; 24:6320-6335. [PMID: 36530021 PMCID: PMC10086788 DOI: 10.1111/1462-2920.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/20/2022] [Indexed: 01/12/2023]
Abstract
Endosporulation is a complex morphophysiological process resulting in a more resistant cellular structure that is produced within the mother cell and is called endospore. Endosporulation evolved in the common ancestor of Firmicutes, but it is lost in descendant lineages classified as asporogenic. While Kurthia spp. is considered to comprise only asporogenic species, we show here that strain 11kri321, which was isolated from an oligotrophic geothermal reservoir, produces phase-bright spore-like structures. Phylogenomics of strain 11kri321 and other Kurthia strains reveals little similarity to genetic determinants of sporulation known from endosporulating Bacilli. However, morphological hallmarks of endosporulation were observed in two of the four Kurthia strains tested, resulting in spore-like structures (cryptospores). In contrast to classic endospores, these cryptospores did not protect against heat or UV damage and successive sub-culturing led to the loss of the cryptosporulating phenotype. Our findings imply that a cryptosporulation phenotype may have been prevalent and subsequently lost by laboratory culturing in other Firmicutes currently considered as asporogenic. Cryptosporulation might thus represent an ancestral but unstable and adaptive developmental state in Firmicutes that is under selection under harsh environmental conditions.
Collapse
Affiliation(s)
- Mathilda Fatton
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sevasti Filippidou
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,AstrobiologyOU, The Open University, Milton Keynes, UK
| | - Thomas Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Vital-IT group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Matthieu Berge
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Poppleton
- Unité de Biologie Moléculaire du Gène chez les Extrémophiles, Département de Microbiologie, Institut Pasteur, France
| | - Thorsten B Blum
- Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Marek Kaminek
- Institute for Anatomy, University of Bern, Bern, Switzerland
| | | | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Shannon L Johnson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Jan Pieter Abrahams
- Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), Villigen, Switzerland.,Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland.,Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Patrick S Chain
- Institute for Anatomy, University of Bern, Bern, Switzerland
| | - Simonetta Gribaldo
- Unité de Biologie Moléculaire du Gène chez les Extrémophiles, Département de Microbiologie, Institut Pasteur, France
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Benoît Zuber
- Institute for Anatomy, University of Bern, Bern, Switzerland
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
4
|
Liu T, Guo S, Wu C, Zhang R, Zhong Q, Shi H, Zhou R, Qin Y, Jin Y. Phyllosphere microbial community of cigar tobacco and its corresponding metabolites. Front Microbiol 2022; 13:1025881. [PMID: 36439836 PMCID: PMC9691965 DOI: 10.3389/fmicb.2022.1025881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 08/29/2023] Open
Abstract
Cigar is made of a typical fermented tobacco where the microbiota inhabits within an alkaline environment. Our current understanding on cigar fermentation is far from thorough. This work employed both high-throughput sequencing and chromatography-mass spectrometric technologies to provide new scientific reference for this specific fermented system. Typical cigar samples from different regions (the Caribbeans, South America, East Asia, and Southeast Asia) were investigated. The results show that Firmicutes, Actinobacteria, Proteobacteria, Ascomycota, and Basidiomycota were the predominant phyla in the cigar samples. Rather than the fungal community, it was the bacterial community structures that played vital roles to differentiate the cigar from different regions: Staphylococcus was the dominant genus in the Americas; Bacillus was the dominant genus in Southeast Asia; while in East Asia, there was no dominant genus. Such differences in community structure then affected the microflora metabolism. The correlation between microbiota and metabolites revealed that Aspergillaceae, Cercospora, and Staphylococcus were significantly correlated with sclareolide; Bacillus were positively associated with isophorone. Alcaligenaceae was significantly and positively correlated with L-nicotine and hexadecanoic acid, methyl ester. GRAPHICAL ABSTRACT.
Collapse
Affiliation(s)
- Tiantian Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Shiping Guo
- R&D Department, Sichuan Provincial Branch of China National Tobacco Crop Tobacco Science Institute, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Ruina Zhang
- R&D Department, Deyang Tobacco Company of Sichuan Province, Sichuan, Deyang, China
| | - Qiu Zhong
- R&D Department, Deyang Tobacco Company of Sichuan Province, Sichuan, Deyang, China
| | - Hongzhi Shi
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yanqing Qin
- R&D Department, Sichuan Provincial Branch of China National Tobacco Crop Tobacco Science Institute, Chengdu, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Malayil L, Chattopadhyay S, Bui A, Panse M, Cagle R, Mongodin EF, Sapkota AR. Viable bacteria abundant in cigarettes are aerosolized in mainstream smoke. ENVIRONMENTAL RESEARCH 2022; 212:113462. [PMID: 35580667 DOI: 10.1016/j.envres.2022.113462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Multiple studies have demonstrated that cigarettes harbor bacterial pathogens. Yet, to our knowledge, there are no published data to date on whether or not these microorganisms can be aerosolized and transmitted to the respiratory tract of users. To address this knowledge gap, we characterized cigarette bacterial communities and evaluated whether or not they could be aerosolized in mainstream smoke. Filtered and unfiltered cigarettes were tested. Non-smoked tobacco leaf, enriched non-smoked tobacco leaf extract and enriched mainstream smoke extract samples (n = 144) were incubated on trypticase soy agar, and resulting bacterial colonies were sequenced. Total DNA was also extracted, followed by PCR amplification of the 16S rRNA gene, sequencing and analysis using UCHIME, QIIME and R packages. The predominant bacterial genera cultured from the mainstream smoke of unfiltered cigarettes were Bacillus, Terribacillus, Paenibacillus and Desulfotomaculum. Culturable bacteria were not recovered from the smoke of filtered products. However, sequencing data demonstrated no significant differences in bacterial community diversity in the smoke of filtered versus unfiltered cigarettes, suggesting that other non-culturable bacteria may be aerosolized in mainstream smoke as well. Our study provides novel evidence that tobacco-associated bacterial communities are viable, can be aerosolized in mainstream smoke, and could potentially be transferred to the oral cavity and respiratory tract of smokers.
Collapse
Affiliation(s)
- Leena Malayil
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Suhana Chattopadhyay
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Anthony Bui
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Mansi Panse
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Robin Cagle
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| |
Collapse
|
6
|
Apatzidou DA. The role of cigarette smoking in periodontal disease and treatment outcomes of dental implant therapy. Periodontol 2000 2022; 90:45-61. [PMID: 35950749 DOI: 10.1111/prd.12449] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tobacco smoking has been implicated in periodontal pathology through various mechanisms, including perturbations of the inflammatory and host responses to putative periodontal pathogens, alterations in the subgingival microbial communities, and a compromised healing potential of the tissues leading to imbalance of tissue homeostasis. This review provides the evidence for the relationship between cigarette smoking and periodontal disease in an attempt to explain possible mechanisms of how tobacco smoking may exert its negative effects on the periodontal tissues via systemic and localized pathways. Early and more recent studies explore cigarette smoking-induced changes in periodontal clinical indices; in subgingival microbial flora by employing traditional detection methods for selected microorganisms, in addition to modern techniques such as deep sequencing and bioinformatics analyses that are able to fully characterize the microbial communities; and in inflammatory and immune responses critically appraising study limitations and differences in study protocol designs. Periodontal treatment outcomes and implant therapy outcomes are reviewed in an attempt to shed light on possible mechanisms for the inferior treatment outcome noted in smokers. The potential harmful effects of passive smoking are also reviewed, providing evidence for the advantages of smoking cessation. Quitting cigarette smoking should be recommended by the dentist, and effort should be made to inform smokers about the negative effects of smoking on the periodontal status and implant therapy outcomes.
Collapse
Affiliation(s)
- Danae Anastasia Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| |
Collapse
|
7
|
Bacterial communities of hookah tobacco products are diverse and differ across brands and flavors. Appl Microbiol Biotechnol 2022; 106:5785-5795. [PMID: 35927334 PMCID: PMC9361917 DOI: 10.1007/s00253-022-12079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022]
Abstract
Abstract Young adults are increasingly using non-cigarette products, such as hookahs, since they are perceived as healthier alternatives to cigarette smoking. However, hookah users are exposed to not only carcinogenic compounds but also microorganisms that may play an active role in the development of both infectious and chronic diseases among users. Nevertheless, existing hookah research in this area has focused only on microorganisms that may be transferred to users through the smoking apparatus and not on bacterial communities associated with hookah tobacco. To address this knowledge gap, we conducted time-series experiments on commercially available hookah brands (Al Fakher (flavors: two apple, mint, and watermelon) and Fumari (flavors: white gummy bear, ambrosia, and mint chocolate chill)) stored under three different temperature and relative humidity conditions over 14 days. To characterize bacterial communities, the total DNA was extracted on days 0, 5, 9, and 14, PCR-amplified for the V3V4 region of the bacterial 16S rRNA gene, sequenced on the Illumina HiSeq platform, and analyzed using R. Diversity (alpha and beta) analyses revealed that the microbiotas of Fumari and Al Fakher products differed significantly and that flavor had a significant effect on the hookah microbiota. Overall, Pseudomonas, Bacillus, Sphingomonas, and Methylobacterium were the predominant bacterial taxa across all products. Additionally, we observed compositional differences between hookah brands across the 14-day incubation. These data suggest that the bacterial communities of hookah tobacco are diverse and differ across brands and flavors, which may have critical implications regarding exposures to specific bacteria among hookah users. Key points • Commercial hookah products harbor diverse bacterial communities. • Brands and flavors impact the diversity of these communities. • Research on their viability and transmission to users’ respiratory tracts is needed. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12079-7.
Collapse
|
8
|
Liu X, Sun W, Ma W, Wang H, Xu K, Zhao L, He Y. Smoking related environmental microbes affecting the pulmonary microbiome in Chinese population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154652. [PMID: 35307427 DOI: 10.1016/j.scitotenv.2022.154652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Smoking is a serious public health problem that affects human health conditions. Although there is evidence that microorganisms are associated with smoking-related lung diseases, the relationship between the rich lung microbiome of upper respiratory tract groups and smoking has not been studied. OBJECTIVE In this study, we investigated the effects of smoking on environmental microbes and lung microbiome in the Chinese population and provided clues for the role of smoking in the development of respiratory disease. METHODS Bronchoalveolar lavage fluid samples were collected from 55 individuals with a history of smoking. Microbial gene sequencing was carried out through NGS technology. We analyzed and compared the diversity, community structure, and species abundance of bronchoalveolar lavage microbiome between smokers and nonsmokers, to speculate the effects of smoking on the lung microbiome. RESULTS Smoking hardly affected the α diversity of microbial groups of bronchoalveolar lavage, but it had a huge influence on the microbiome composition. The relative abundance of Rothia, Actinomycetes, Haemophilus, Porphyrins, Neisseria, Acinetobacter, and Streptococcus genera had a remarkable increase in the smoking group. On the other hand, the relative abundance of Plusella and Veronella decreased significantly. CONCLUSION Smoking may change the environmental microbes and then alter the structure of the lung microbiome, which may lead to smoking-related diseases.
Collapse
Affiliation(s)
- Xinyue Liu
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Wenwen Sun
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Weiqi Ma
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wang
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Kandi Xu
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Lishu Zhao
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yayi He
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| |
Collapse
|
9
|
Ye J, Ding Y, Qi X, Xu J, Yang X, Zhang Z. Geographic and position-based variations in phyllospheric bacterial communities present on flue-cured tobacco. Appl Microbiol Biotechnol 2021; 105:9297-9308. [PMID: 34792639 DOI: 10.1007/s00253-021-11671-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
Although tobacco leaves (TLs) contain abundant bacteria, how the geography and leaf position of TLs affect these bacteria is unclear. Here, TLs at different positions from Henan (HN, strong flavor style) and Yunnan (YN, fresh flavor style) provinces were collected, and the bacteria were characterized by Illumina sequencing at harvest and 1 year of storage. Bacterial communities were very different between TLs originating from different geographical areas and positions, and beta diversity analysis showed that leaf position was the most important factor for phyllospheric bacterial communities, followed by geographical area and storage time. At the genus level, Subdoligranulum, Thermus, and Acinetobacter were obviously more abundant in HN than in YN, while Blautia and Ruminococcus were significantly more abundant in YN. These differences in bacterial communities decreased after 1 year of storage, indicating that the microbiota tends to become similar during tobacco processing. Storage time also affected the phyllospheric bacteria of TLs, as the bacterial communities shifted significantly on both HN and YN TLs after 1 year of storage. Significant differences in the predicted genes were also observed between the different geographic locations and leaf positions. Potential human pathogens, including Acinetobacter, Methylobacterium, and Escherichia-Shigella, were greatly different between TLs originating from different areas and positions. These data suggested that geographic variations and positions were associated with phyllospheric bacterial communities on TLs, which may be related to not only the flavor style and quality of TLs but also the potential health risks to humans. KEY POINTS: • Tobacco leaf position and tobacco growth location affected bacterial communities. • Microbial communities of TLs shifted significantly after one year of storage. • Potential human pathogens differed at different leaf positions and growth locations.
Collapse
Affiliation(s)
- Jianbin Ye
- Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian University, Putian City, 351100, Fujian Province, China
| | - Yilang Ding
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan Province, China
| | - Xiaona Qi
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan Province, China
| | - Jia Xu
- Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian University, Putian City, 351100, Fujian Province, China
| | - Xuepeng Yang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan Province, China.
| | - Zhan Zhang
- Techonology Center, China Tobacco Henan Industrial Co., Ltd.,, Zhengzhou, 450001, China.
| |
Collapse
|
10
|
Lozica L, Maurić Maljković M, Mazić M, Gottstein Ž. Kurthia gibsonii, a novel opportunistic pathogen in poultry. Avian Pathol 2021; 51:26-33. [PMID: 34662527 DOI: 10.1080/03079457.2021.1993132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Kurthia gibsonii (H. Kurth, 1883) was isolated on 10 unrelated laying hen farms over a period of 15 months. Farmers reported elevated morbidity and mortality rates, and suspected of colibacillosis based on the necropsy findings. The most frequently found lesions were perihepatitis, fibrinous peritonitis, salpingitis and oophoritis. Necropsy findings and bacteriological results allowed the diagnosis of colibacillosis. In addition, K. gibsonii was isolated from the ovarian follicles (44.44 %), liver (22.22%), peritoneum (16.67%), bone marrow (5.56%), spleen (5.56%), and duodenum (5.56%). On all farms, coinfection with E. coli was detected, while on some farms other common avian pathogens were found as well. In total, 18 K. gibsonii strains were identified and phylogenetically analysed based on the 16S rRNA gene sequences. The results showed some variability of the strains originating from the same farm, although the overall phylogenetic diversity was low, regardless of the geographical location of the farm, age of the flock or date of collection. Embryo lethality assay showed K. gibsonii is not able to cause a primary infection. We conclude that Kurthia gibsonii may play a role as an opportunistic pathogen for poultry. This is the first report of coinfection of Kurthia gibsonii and E. coli in laying hens.
Collapse
Affiliation(s)
- Liča Lozica
- Department of Poultry Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Maja Maurić Maljković
- Department of Animal Breeding and Livestock Production, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Marin Mazić
- Veterinary Clinic Marković, Pile I. 33, 10000 Zagreb, Croatia
| | - Željko Gottstein
- Department of Poultry Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Chattopadhyay S, Malayil L, Mongodin EF, Sapkota AR. A roadmap from unknowns to knowns: Advancing our understanding of the microbiomes of commercially available tobacco products. Appl Microbiol Biotechnol 2021; 105:2633-2645. [PMID: 33704513 PMCID: PMC7948171 DOI: 10.1007/s00253-021-11183-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 01/03/2023]
Abstract
Tobacco smoking is still the leading cause of preventable diseases and death in the USA and throughout the globe. Under Section 904(a)(3) of the US Federal Food, Drug, and Cosmetic Act, tobacco manufacturing companies need to report on quantities of harmful and potentially harmful constituents (HPHCs) in all tobacco products. While the extensive HPHC list of 2012 includes 93 chemicals, which are categorized as carcinogenic, respiratory, cardiovascular, or reproductive toxicants or addictive compounds, it fails to include microorganisms (bacteria and fungi) that have been shown to contribute to adverse health outcomes among tobacco users. Nevertheless, over the last 50 years, researchers have studied microorganisms in a variety of tobacco products using both culture-based and culture-independent techniques. In this mini-review, we provide an overview of this body of research, detailing the bacterial and fungal microbiomes residing in commercial tobacco products. Overall, studies have characterized over 89 unique bacterial genera and 19 fungal genera in cigarettes, cigars, cigarillos, hookah, and smokeless tobacco. The most predominant bacterial genera are Bacillus, Pseudomonas, and Staphylococcus. Fungal genera identified have included Aspergillus, Penicillium, Mucor, Alternaria, Cladosporium, Streptomyces, and Candida, to name a few. While some of the identified microorganisms are known human pathogens, others are potential opportunistic pathogens. Given the vast array of microorganisms that are present across diverse types of tobacco products, future research should be focused on the viability of these microorganisms, as well as their ability to transfer to the user's respiratory tract, potentially contributing to adverse health outcomes. KEY POINTS: • Commercial tobacco products harbor diverse bacterial and fungal communities. • Some of these microorganisms are known or opportunistic human pathogens. • Research on their viability and transmission to users' respiratory tracts is needed.
Collapse
Affiliation(s)
- Suhana Chattopadhyay
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, 20742, USA
| | - Leena Malayil
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, 20742, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Division of Lung Diseases, National Institutes of Health (NIH), National Heart, Lung and Blood Institute (NHLBI), Bethesda, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, 20742, USA.
| |
Collapse
|
12
|
Malayil L, Chattopadhyay S, Kulkarni P, Hittle L, Clark PI, Mongodin EF, Sapkota AR. Mentholation triggers brand-specific shifts in the bacterial microbiota of commercial cigarette products. Appl Microbiol Biotechnol 2020; 104:6287-6297. [PMID: 32448997 DOI: 10.1007/s00253-020-10681-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 02/08/2023]
Abstract
Bacterial communities are integral constituents of tobacco products. They originate from tobacco plants and are acquired during manufacturing processes, where they play a role in the production of tobacco-specific nitrosamines. In addition, tobacco bacterial constituents may play an important role in the development of infectious and chronic diseases among users. Nevertheless, tobacco bacterial communities have been largely unexplored, and the influence of tobacco flavor additives such as menthol (a natural antimicrobial) on tobacco bacterial communities is unclear. To bridge this knowledge gap, time series experiments including 5 mentholated and non-mentholated commercially available cigarettes-Marlboro red (non-menthol), Marlboro menthol, Newport menthol box, Newport menthol gold, and Newport non-menthol-were conducted. Each brand was stored under three different temperature and relative humidity conditions. To characterize bacterial communities, total DNA was extracted on days 0 and 14. Resulting DNA was purified and subjected to PCR of the V3V4 region of the 16S rRNA gene, followed by sequencing on the Illumina HiSeq platform and analysis using the QIIME, phyloseq, metagenomeSeq, and DESeq software packages. Ordination analyses showed that the bacterial community composition of Marlboro cigarettes was different from that of Newport cigarettes. Additionally, bacterial profiles significantly differed between mentholated and non-mentholated Newports. Independently of storage conditions, tobacco brands were dominated by Proteobacteria, with the most dominant bacterial genera being Pseudomonas, unclassified Enterobacteriaceae, Bacillus, Erwinia, Sphingomonas, Acinetobacter, Agrobacterium, Staphylococcus, and Terribacillus. These data suggest that the bacterial communities of tobacco products differ across brands and that mentholation of tobacco can alter bacterial community composition of select brands. KEY POINTS: • Bacterial composition differed between the two brands of cigarettes. • Mentholation impacts cigarette microbiota. • Pseudomonas and Bacillus dominated the commercial cigarettes. Graphical abstract.
Collapse
Affiliation(s)
- Leena Malayil
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD, 20742, USA
| | - Suhana Chattopadhyay
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD, 20742, USA
| | - Prachi Kulkarni
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD, 20742, USA
| | - Lauren Hittle
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pamela I Clark
- Department of Behavioral and Community Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
13
|
Zhou J, Yu L, Zhang J, Zhang X, Xue Y, Liu J, Zou X. Characterization of the core microbiome in tobacco leaves during aging. Microbiologyopen 2020; 9:e984. [PMID: 31893578 PMCID: PMC7066457 DOI: 10.1002/mbo3.984] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023] Open
Abstract
Microbiome plays an important role during the tobacco aging process which was an indispensable link in the production and processing of cigarettes. However, the structure and functions of microbiome have not been clarified during the tobacco aging process. In this study, 16S rDNA and ITS amplicon sequencing techniques were used to analyze the core microbiome of 15 tobacco samples from five different aging stages. The whole bacterial microbiome was classified into 29 microbial phyla and 132 orders. Enterobacteriales (63%), Pseudomonadales (16%), Sphingomonadales (8%), Xanthomonadales (4%), Burkholderiales (4%), Rhizobiales (3%), and Bacillales (2%) comprised the core bacterial microbiome. The whole fungal microbiome was classified into five microbial phyla and 52 orders. Incertae_sedis_Eurotiomycetes (27%), Wallemiales (25%), Sporidiobolales (17%), Capnodiales (5%), Eurotiales (2%), an unclassified Ascomycota (12%), and an unidentified Eurotiomycetes (4%) comprised the core fungal microbiome. FAPROTAX function prediction suggested that the core microbiome has a substantial potential for the carbon cycle, nitrate metabolism, aromatic compound degradation, chitinolysis, cellulolysis, and xylanolysis, but simultaneously, the core microbiome is also a source of human pathogens. The dynamics of the bacterial community were primarily determined by the total nitrogen in tobacco leaves during the aging process, while those of the fungal microbiome were primarily determined by total organic carbon. This study indicated that the core microbiome activities may play an important role in regulating the loss of carbon organic compounds and enhancing the secondary metabolites during tobacco leaves aging process.
Collapse
Affiliation(s)
- Jiaxi Zhou
- Department of EcologyInstitute of Fungal ResourcesCollege of Life SciencesGuizhou UniversityGuiyangChina
| | - Lifei Yu
- Department of EcologyInstitute of Fungal ResourcesCollege of Life SciencesGuizhou UniversityGuiyangChina
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)Collaborative Innovation Center for Mountain Ecology & Agro‐Bioengineering (CICMEAB)Guizhou UniversityGuiyangChina
| | - Jian Zhang
- Department of EcologyInstitute of Fungal ResourcesCollege of Life SciencesGuizhou UniversityGuiyangChina
| | - Xiaomin Zhang
- Guizhou Tobacco Industry Limited Liability CompanyGuiyangChina
| | - Yuan Xue
- Guizhou Tobacco Company Anshun BranchAnshunChina
| | - Jing Liu
- Guizhou Tobacco Company Zunyi BranchZunyiChina
| | - Xiao Zou
- Department of EcologyInstitute of Fungal ResourcesCollege of Life SciencesGuizhou UniversityGuiyangChina
| |
Collapse
|
14
|
Huang C, Shi G. Smoking and microbiome in oral, airway, gut and some systemic diseases. J Transl Med 2019; 17:225. [PMID: 31307469 PMCID: PMC6632217 DOI: 10.1186/s12967-019-1971-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022] Open
Abstract
The human microbiome harbors a diverse array of microbes which establishes a mutually beneficial relation with the host in healthy conditions, however, the dynamic homeostasis is influenced by both host and environmental factors. Smoking contributes to modifications of the oral, lung and gut microbiome, leading to various diseases, such as periodontitis, asthma, chronic obstructive pulmonary disease, Crohn’s disease, ulcerative colitis and cancers. However, the exact causal relationship between smoking and microbiome alteration remains to be further explored.
Collapse
Affiliation(s)
- Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China. .,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
15
|
Smyth EM, Kulkarni P, Claye E, Stanfill S, Tyx R, Maddox C, Mongodin EF, Sapkota AR. Smokeless tobacco products harbor diverse bacterial microbiota that differ across products and brands. Appl Microbiol Biotechnol 2017; 101:5391-5403. [PMID: 28432442 DOI: 10.1007/s00253-017-8282-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/10/2017] [Accepted: 03/31/2017] [Indexed: 12/22/2022]
Abstract
Smokeless tobacco products contain numerous chemical compounds, including known human carcinogens. Other smokeless tobacco constituents, including bacteria, may also contribute to adverse health effects among smokeless tobacco users. However, there is a lack of data regarding the microbial constituents of smokeless tobacco. Our goal was to characterize the bacterial microbiota of different smokeless tobacco products and evaluate differences across product types and brands. DNA was extracted from 15 brands of smokeless tobacco products (including dry snuff, moist snuff, snus, and Swedish snus) and 6 handmade products (e.g., toombak) using an enzymatic and mechanical lysis approach. Bacterial community profiling was performed using PCR amplification of the V1-V2 hypervariable region of the 16S rRNA gene, followed by 454 pyrosequencing of the resulting amplicons and sequence analysis using the QIIME package. Total viable counts were also determined to estimate the number of viable bacteria present in each product. Average total viable counts ranged from 0 to 9.35 × 107 CFU g-1. Analysis of the 16S rRNA gene sequences revealed high bacterial diversity across the majority of products tested: dry snuff products where characterized by the highest diversity indices compared to other products. The most dominant bacterial phyla across all products were Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. Significant differences in both bacterial community composition and in silico predicted gene content were observed between smokeless tobacco product types and between brands of specific smokeless tobacco products. These data are useful in order to comprehensively address potential health risks associated with the use of smokeless tobacco products.
Collapse
Affiliation(s)
- Eoghan M Smyth
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 West Baltimore St., Baltimore, MD, 21201, USA
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 4200 Valley Drive, Bldg no. 255, Room 2234P, College Park, MD, 20742, USA
| | - Prachi Kulkarni
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 4200 Valley Drive, Bldg no. 255, Room 2234P, College Park, MD, 20742, USA
| | - Emma Claye
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 4200 Valley Drive, Bldg no. 255, Room 2234P, College Park, MD, 20742, USA
| | - Stephen Stanfill
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Robert Tyx
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Cynthia Maddox
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 West Baltimore St., Baltimore, MD, 21201, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 West Baltimore St., Baltimore, MD, 21201, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 4200 Valley Drive, Bldg no. 255, Room 2234P, College Park, MD, 20742, USA.
| |
Collapse
|
16
|
Chopyk J, Chattopadhyay S, Kulkarni P, Smyth EM, Hittle LE, Paulson JN, Pop M, Buehler SS, Clark PI, Mongodin EF, Sapkota AR. Temporal Variations in Cigarette Tobacco Bacterial Community Composition and Tobacco-Specific Nitrosamine Content Are Influenced by Brand and Storage Conditions. Front Microbiol 2017; 8:358. [PMID: 28326071 PMCID: PMC5339245 DOI: 10.3389/fmicb.2017.00358] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/21/2017] [Indexed: 12/26/2022] Open
Abstract
Tobacco products, specifically cigarettes, are home to microbial ecosystems that may play an important role in the generation of carcinogenic tobacco-specific nitrosamines (TSNAs), as well as the onset of multiple adverse human health effects associated with the use of these products. Therefore, we conducted time-series experiments with five commercially available brands of cigarettes that were either commercially mentholated, custom-mentholated, user-mentholated, or non-mentholated. To mimic user storage conditions, the cigarettes were incubated for 14 days under three different temperatures and relative humidities (i.e., pocket, refrigerator, and room). Overall, 360 samples were collected over the course of 2 weeks and total DNA was extracted, PCR amplified for the V3V4 hypervariable region of the 16S rRNA gene and sequenced using Illumina MiSeq. A subset of samples (n = 32) was also analyzed via liquid chromatography with tandem mass spectrometry for two TSNAs: N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Comparative analyses of the five tobacco brands revealed bacterial communities dominated by Pseudomonas, Pantoea, and Bacillus, with Pseudomonas relatively stable in abundance regardless of storage condition. In addition, core bacterial operational taxonomic units (OTUs) were identified in all samples and included Bacillus pumilus, Rhizobium sp., Sphingomonas sp., unknown Enterobacteriaceae, Pantoea sp., Pseudomonas sp., Pseudomonas oryzihabitans, and P. putida. Additional OTUs were identified that significantly changed in relative abundance between day 0 and day 14, influenced by brand and storage condition. In addition, small but statistically significant increases in NNN levels were observed in user- and commercially mentholated brands between day 0 and day 14 at pocket conditions. These data suggest that manufacturing and user manipulations, such as mentholation and storage conditions, may directly impact the microbiome of cigarette tobacco as well as the levels of carcinogens.
Collapse
Affiliation(s)
- Jessica Chopyk
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland College Park, MD, USA
| | - Suhana Chattopadhyay
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland College Park, MD, USA
| | - Prachi Kulkarni
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland College Park, MD, USA
| | - Eoghan M Smyth
- Maryland Institute for Applied Environmental Health, School of Public Health, University of MarylandCollege Park, MD, USA; Institute for Genome Sciences and Department of Microbiology and Immunology, School of Medicine, University of MarylandBaltimore, MD, USA
| | - Lauren E Hittle
- Institute for Genome Sciences and Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, MD, USA
| | - Joseph N Paulson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer InstituteBoston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public HealthBoston, MA, USA
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, University of Maryland College Park, MD, USA
| | | | - Pamela I Clark
- Department of Behavioral and Community Health, School of Public Health, University of Maryland College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences and Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland College Park, MD, USA
| |
Collapse
|
17
|
Chopyk J, Chattopadhyay S, Kulkarni P, Claye E, Babik KR, Reid MC, Smyth EM, Hittle LE, Paulson JN, Cruz-Cano R, Pop M, Buehler SS, Clark PI, Sapkota AR, Mongodin EF. Mentholation affects the cigarette microbiota by selecting for bacteria resistant to harsh environmental conditions and selecting against potential bacterial pathogens. MICROBIOME 2017; 5:22. [PMID: 28202080 PMCID: PMC5312438 DOI: 10.1186/s40168-017-0235-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 01/24/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND There is a paucity of data regarding the microbial constituents of tobacco products and their impacts on public health. Moreover, there has been no comparative characterization performed on the bacterial microbiota associated with the addition of menthol, an additive that has been used by tobacco manufacturers for nearly a century. To address this knowledge gap, we conducted bacterial community profiling on tobacco from user- and custom-mentholated/non-mentholated cigarette pairs, as well as a commercially-mentholated product. Total genomic DNA was extracted using a multi-step enzymatic and mechanical lysis protocol followed by PCR amplification of the V3-V4 hypervariable regions of the 16S rRNA gene from five cigarette products (18 cigarettes per product for a total of 90 samples): Camel Crush, user-mentholated Camel Crush, Camel Kings, custom-mentholated Camel Kings, and Newport Menthols. Sequencing was performed on the Illumina MiSeq platform and sequences were processed using the Quantitative Insights Into Microbial Ecology (QIIME) software package. RESULTS In all products, Pseudomonas was the most abundant genera and included Pseudomonas oryzihabitans and Pseudomonas putida, regardless of mentholation status. However, further comparative analysis of the five products revealed significant differences in the bacterial compositions across products. Bacterial community richness was higher among non-mentholated products compared to those that were mentholated, particularly those that were custom-mentholated. In addition, mentholation appeared to be correlated with a reduction in potential human bacterial pathogens and an increase in bacterial species resistant to harsh environmental conditions. CONCLUSIONS Taken together, these data provide preliminary evidence that the mentholation of commercially available cigarettes can impact the bacterial community of these products.
Collapse
Affiliation(s)
- Jessica Chopyk
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD USA
| | - Suhana Chattopadhyay
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD USA
| | - Prachi Kulkarni
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD USA
| | - Emma Claye
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD USA
| | - Kelsey R. Babik
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD USA
| | - Molly C. Reid
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD USA
| | - Eoghan M. Smyth
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD USA
- School of Medicine, Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, 801 West Baltimore Street, Office #622, Baltimore, MD 21201 USA
| | - Lauren E. Hittle
- School of Medicine, Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, 801 West Baltimore Street, Office #622, Baltimore, MD 21201 USA
| | - Joseph N. Paulson
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD USA
| | - Raul Cruz-Cano
- Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, MD USA
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD USA
| | | | - Pamela I. Clark
- Department of Behavioral and Community Health, University of Maryland School of Public Health, College Park, MD USA
| | - Amy R. Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD USA
| | - Emmanuel F. Mongodin
- School of Medicine, Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, 801 West Baltimore Street, Office #622, Baltimore, MD 21201 USA
| |
Collapse
|
18
|
Dunlap CA, Schisler DA, Bowman MJ, Rooney AP. Genomic analysis of Bacillus subtilis OH 131.1 and co-culturing with Cryptococcus flavescens for control of Fusarium head blight. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.plgene.2015.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Hou CT, Labeda DP, Ray K. Production of polyol oils from soybean oil by bioprocess: results of microbial screening and identification of positive cultures. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2014.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Ongrádi J, Stercz B, Kövesdi V, Nagy K, Chatlynne L. Isolation of Kurthia gibsonii from non-gonorrheal urethritis: implications for the pathomechanism upon surveying the literature. Acta Microbiol Immunol Hung 2014; 61:79-87. [PMID: 24631755 DOI: 10.1556/amicr.61.2014.1.8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The incidence and number of species involved in the spectrum of sexually transmitted infections continue to increase. Laboratories have to be prepared for identification of unusual microbes. In our practice, a male patient had recurring urethritis and balanitis after having repeated unprotected insertive sexual intercourse with female piglets. He also had allergy to scents and some metals, otherwise he showed no general symptoms. Specimens were swabbed from the urethra, inflamed glans, rectum, mouth onto several culture media, subsequently isolates were tested for their morphology, biochemical activity. Kurthia gibsonii was isolated from urethra and glans. No concomitant infection with other microbes was detected, haemoculture was negative. Relying upon antibiotic sensitivity test, he was cured with 2 × 500 mg oral cefuroxime for 15 days, and topical gentamycin cream for 2 months. This is the first reported sexually transmitted, zoonotic infection without generalization by Kurthia spp. We report first the antibiogram of K. gibsonii. Slight differences in the antibiotic sensitivity suggest independent infection and sensitivity of urethral and mucous membrane tissues to distinct K. gibsonii strains. Allergy of the patient might predispose to opportunistic infection. Such aspects ought to be tested in details in further cases.
Collapse
Affiliation(s)
| | - Balázs Stercz
- 2 Semmelweis University Institute of Medical Microbiology Budapest Hungary
| | | | - Károly Nagy
- 2 Semmelweis University Institute of Medical Microbiology Budapest Hungary
| | | |
Collapse
|
21
|
Szponar B, Pehrson C, Larsson L. Bacterial and fungal markers in tobacco smoke. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 438:447-51. [PMID: 23026151 DOI: 10.1016/j.scitotenv.2012.08.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 06/01/2023]
Abstract
Previous research has demonstrated that cigarette smoke contains bacterial and fungal components including lipopolysaccharide (LPS) and ergosterol. In the present study we used gas chromatography-mass spectrometry to analyze tobacco as well as mainstream and second hand smoke for 3-hydroxy fatty acids (3-OH FAs) of 10 to 18 carbon chain lengths, used as LPS markers, and ergosterol, used as a marker of fungal biomass. The air concentrations of LPS were 0.0017 n mol/m(3) (N=5) and 0.0007/m(3) (N=6) in the smoking vs. non-smoking rooms (p=0.0559) of the studied private houses, and 0.0231 n mol/m(3) (N=5) vs. 0.0006 n mol/m(3) (N=5) (p=0.0173), respectively, at the worksite. The air concentrations of ergosterol were also significantly higher in rooms with ongoing smoking than in rooms without smoking. A positive correlation was found between LPS and ergosterol in rooms with smoking but not in rooms without smoking. 3-OH C14:0 was the main 3-OH FA, followed by 3-OH C12:0, both in mainstream and second hand smoke and in phenol:water smoke extracts prepared in order to purify the LPS. The Limulus activity of the phenolic phase of tobacco was 3900 endotoxin units (EU)/cigarette; the corresponding amount of the smoke, collected on filters from 8 puffs, was 4 EU/cigarette. Tobacco smoking has been associated with a range of inflammatory airway conditions including COPD, asthma, bronchitis, alveolar hypersensitivity etc. Significant levels of LPS and ergosterol were identified in tobacco smoke and these observations support the hypothesis that microbial components of tobacco smoke contribute to inflammation and airway disease.
Collapse
Affiliation(s)
- B Szponar
- Lund University, Dept. of Laboratory Medicine, Sölvegatan 23, 223 62 Lund, Sweden.
| | | | | |
Collapse
|
22
|
Larsson L, Pehrson C, Dechen T, Crane-Godreau M. Microbiological components in mainstream and sidestream cigarette smoke. Tob Induc Dis 2012; 10:13. [PMID: 22898193 PMCID: PMC3444954 DOI: 10.1186/1617-9625-10-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/08/2012] [Indexed: 11/10/2022] Open
Abstract
Background Research has shown that tobacco smoke contains substances of microbiological origin such as ergosterol (a fungal membrane lipid) and lipopolysaccharide (LPS) (in the outer membrane of Gram-negative bacteria). The aim of the present study was to compare the amounts of ergosterol and LPS in the tobacco and mainstream (MS) and sidestream (SS) smoke of some popular US cigarettes. Methods We measured LPS 3-hydroxy fatty acids and fungal biomass biomarker ergosterol in the tobacco and smoke from cigarettes of 11 popular brands purchased in the US. University of Kentucky reference cigarettes were also included for comparison. Results The cigarette tobacco of the different brands contained 6.88-16.17 (mean 10.64) pmol LPS and 8.27-21.00 (mean 14.05) ng ergosterol/mg. There was a direct correlation between the amounts of ergosterol and LPS in cigarette tobacco and in MS smoke collected using continuous suction; the MS smoke contained 3.65-8.23% (ergosterol) and 10.02-20.13% (LPS) of the amounts in the tobacco. Corresponding percentages were 0.30-0.82% (ergosterol) and 0.42-1.10% (LPS) for SS smoke collected without any ongoing suction, and 2.18% and 2.56% for MS smoke collected from eight two-second puffs. Conclusions Tobacco smoke is a bioaerosol likely to contain a wide range of potentially harmful bacterial and fungal components.
Collapse
|
23
|
Cigarette smoke, bacteria, mold, microbial toxins, and chronic lung inflammation. JOURNAL OF ONCOLOGY 2011; 2011:819129. [PMID: 21772847 PMCID: PMC3136185 DOI: 10.1155/2011/819129] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/28/2011] [Accepted: 03/20/2011] [Indexed: 11/17/2022]
Abstract
Chronic inflammation associated with cigarette smoke fosters malignant transformation and tumor cell proliferation and promotes certain nonneoplastic pulmonary diseases. The question arises as to whether chronic inflammation and/or colonization of the airway can be attributed, at least in part, to tobacco-associated microbes (bacteria, fungi, and spores) and/or microbial toxins (endotoxins and mycotoxins) in tobacco. To address this question, a literature search of documents in various databases was performed. The databases included PubMed, Legacy Tobacco Documents Library, and US Patents. This investigation documents that tobacco companies have identified and quantified bacteria, fungi, and microbial toxins at harvest, throughout fermentation, and during storage. Also characterized was the microbial flora of diverse smoking and smokeless tobacco articles. Evidence-based health concerns expressed in investigations of microbes and microbial toxins in cigarettes, cigarette smoke, and smokeless tobacco products are reasonable; they warrant review by regulatory authorities and, if necessary, additional investigation to address scientific gaps.
Collapse
|
24
|
Adiyaman T, Schisler DA, Slininger PJ, Sloan JM, Jackson MA, Rooney AP. Selection of Biocontrol Agents of Pink Rot Based on Efficacy and Growth Kinetics Index Rankings. PLANT DISEASE 2011; 95:24-30. [PMID: 30743669 DOI: 10.1094/pdis-04-10-0284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The microbiota of 84 different agricultural soils were transferred to separate samples of a γ irradiation-sterilized field soil enriched with potato periderm, and the resulting soils were assayed for biological suppressiveness to Phytophthora erythroseptica and their effect on zoospore production. The 13 most suppressive soil samples, which reduced zoospore production by 14 to 93% and disease severity on tubers by 6 to 21%, were used to isolate 279 organisms. Fourteen strains that reduce pink rot infections in preliminary tests were selected for further study. Six bacterial strains that reduced the severity of disease (P ≤ 0.05, Fischer's protected least significant difference) in subsequent tests were identified as Bacillus simplex (three strains), Pantoea agglomerans, Pseudomonas koreensis, and P. lini. Relative performance indices (RPIs) for biocontrol efficacy and for each of four kinetic parameters, including total colony-forming units (CFUmax), biomass production values (DWmax), cell production after 8 h (OD8), and time of recovery from oxygen depletion (DT) were calculated for each strain. Overall RPIEff,Kin values for each strain then were calculated using strain RPI values for both efficacy (RPIEff) and kinetics (RPIKin). Strains with the highest RPIEff,Kin possess the best biocontrol efficacy of the strains tested and liquid culture growth characteristics that suggest commercial development potential.
Collapse
Affiliation(s)
- Tugba Adiyaman
- Visiting Scientist, National Center for Agricultural Utilization Research (NCAUR), United States Department of Agriculture-Agricultural Research Service (USDA-ARS0, Peoria, IL 61604 and Ege University, Science and Technology Center (EBILTEM), Izmir, Turkey
| | | | | | | | | | | |
Collapse
|
25
|
Sapkota AR, Berger S, Vogel TM. Human pathogens abundant in the bacterial metagenome of cigarettes. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:351-6. [PMID: 20064769 PMCID: PMC2854762 DOI: 10.1289/ehp.0901201] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/22/2009] [Indexed: 05/21/2023]
Abstract
BACKGROUND Many studies have evaluated chemical, heavy metal, and other abiotic substances present in cigarettes and their roles in the development of lung cancer and other diseases, yet no studies have comprehensively evaluated bacterial diversity of cigarettes and the possible impacts of these microbes on respiratory illnesses in smokers and exposed nonsmokers. OBJECTIVES The goal of this study was to explore the bacterial metagenomes of commercially available cigarettes. METHODS A 16S rRNA-based taxonomic microarray and cloning and sequencing were used to evaluate total bacterial diversity of four brands of cigarettes. Normalized microarray data were compared using principal component analysis and hierarchical cluster analysis to evaluate potential differences in microbial diversity across cigarette brands. RESULTS Fifteen different classes of bacteria and a broad range of potentially pathogenic organisms were detected in all cigarette samples. Most notably, we detected Acinetobacter, Bacillus, Burkholderia, Clostridium, Klebsiella, Pseudomonas aeruginosa, and Serratia in > or = 90% of all cigarette samples. Other pathogenic bacteria detected included Campylobacter, Enterococcus, Proteus, and Staphylococcus. No significant variability in bacterial diversity was observed across the four different cigarette brands. CONCLUSIONS Previous studies have shown that smoking is associated with colonization by pathogenic bacteria and an increased risk of lung infections. However, this is the first study to show that cigarettes themselves could be the direct source of exposure to a wide array of potentially pathogenic microbes among smokers and other people exposed to secondhand smoke. The overall public health implications of these findings are unclear at this time, and future studies are necessary to determine whether bacteria in cigarettes could play important roles in the development of both infectious and chronic respiratory diseases.
Collapse
Affiliation(s)
- Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland College Park School of Public Health, College Park, Maryland, USA.
| | | | | |
Collapse
|
26
|
Pauly JL, Smith LA, Rickert MH, Hutson A, Paszkiewicz GM. Review: Is lung inflammation associated with microbes and microbial toxins in cigarette tobacco smoke? Immunol Res 2010; 46:127-36. [PMID: 19763893 DOI: 10.1007/s12026-009-8117-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic inflammation that has been observed for malignant and non-neoplastic lung diseases of smokers has been attributed to the numerous and diverse particulate ('tar')-phase and gas-phase chemicals in mainstream smoke, most of which arise from the burning of tobacco. The primary cell-mediator of lung inflammation is the macrophage. Most probably, inflammation is promoted also from some of the more than 50 other cell types of the lung. Cured tobacco in diverse types of cigarettes is known to harbor a plethora of bacteria (Gram-positive and Gram-negative), fungi (mold, yeast), spores, and is rich in endotoxin (lipopolysaccharide). Reviewed herein are recent observations of the authors' team and other investigators that support the hypothesis that lung inflammation of long-term smokers may be attributed in part to tobacco-associated bacterial and fungal components that have been identified in tobacco and tobacco smoke.
Collapse
Affiliation(s)
- John L Pauly
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | | | | | | | |
Collapse
|
27
|
Rooney AP, Price NPJ, Ehrhardt C, Swezey JL, Bannan JD. Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int J Syst Evol Microbiol 2009; 59:2429-36. [PMID: 19622642 DOI: 10.1099/ijs.0.009126-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Bacillus subtilis species complex is a tight assemblage of closely related species. For many years, it has been recognized that these species cannot be differentiated on the basis of phenotypic characteristics. Recently, it has been shown that phylogenetic analysis of the 16S rRNA gene also fails to differentiate species within the complex due to the highly conserved nature of the gene, yet DNA-DNA hybridization values fall well below 70 % for the same species comparisons. As a complementary approach, we propose that phylogenetic analysis of multiple protein-coding loci can be used as a means to detect and differentiate novel Bacillus taxa. Indeed, our phylogenetic analyses revealed the existence of a previously unknown group of strains closely related to, but distinct from, Bacillus subtilis subsp. spizizenii. Results of matrix-assisted laser desorption ionization-time of flight mass spectrometry analyses revealed that the group produces a novel surfactin-like lipopeptide with mass m/z 1120.8 that is not produced by the other currently recognized subspecies. In addition, the group displayed differences in the total cellular content of the fatty acids C(16 : 0) and iso-C(17 : 1)omega10c that distinguish it from the closely related B. subtilis subsp. spizizenii. Consequently, the correlation of these novel phenotypic traits with the phylogenetic distinctiveness of this previously unknown subspecies group showed that phylogenetic analysis of multiple protein-coding loci can be used as a means to detect and differentiate novel Bacillus taxa. Therefore, we propose that this new group should be recognized as representing a novel taxon, Bacillus subtilis subsp. inaquosorum subsp. nov., with the type strain NRRL B-23052(T) (=KCTC 13429(T)=BGSC 3A28(T)).
Collapse
Affiliation(s)
- Alejandro P Rooney
- Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, IL 61604, USA.
| | | | | | | | | |
Collapse
|
28
|
Conversion of Lesquerolic Acid to 14-Oxo-11(Z)-Eicosenoic Acid by Genetically Variable Sphingobacterium multivorum Strains. Curr Microbiol 2008; 57:55-60. [DOI: 10.1007/s00284-008-9152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
|
29
|
Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A, Ward DM, Rooney AP, Brambilla E, Connor N, Ratcliff RM, Nevo E, Cohan FM. Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc Natl Acad Sci U S A 2008; 105:2504-9. [PMID: 18272490 PMCID: PMC2268166 DOI: 10.1073/pnas.0712205105] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Indexed: 11/18/2022] Open
Abstract
The central questions of bacterial ecology and evolution require a method to consistently demarcate, from the vast and diverse set of bacterial cells within a natural community, the groups playing ecologically distinct roles (ecotypes). Because of a lack of theory-based guidelines, current methods in bacterial systematics fail to divide the bacterial domain of life into meaningful units of ecology and evolution. We introduce a sequence-based approach ("ecotype simulation") to model the evolutionary dynamics of bacterial populations and to identify ecotypes within a natural community, focusing here on two Bacillus clades surveyed from the "Evolution Canyons" of Israel. This approach has identified multiple ecotypes within traditional species, with each predicted to be an ecologically distinct lineage; many such ecotypes were confirmed to be ecologically distinct, with specialization to different canyon slopes with different solar exposures. Ecotype simulation provides a long-needed natural foundation for microbial ecology and systematics.
Collapse
Affiliation(s)
| | | | - Johannes Sikorski
- Institute of Evolution, International Graduate Center of Evolution, University of Haifa, Haifa, Israel 31905
- Deutsche Sammlung von Mikroorganismen und Zellkulturen, GmbH, Mascheroder Weg 1 b, D-38124 Braunschweig, Germany
| | - Danny Krizanc
- Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459
| | - Andrew Warner
- Departments of *Biology and
- Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459
| | - David M. Ward
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717
| | - Alejandro P. Rooney
- National Center for Agricultural Utilization Research, United States Department of Agriculture, Peoria, IL 61604; and
| | - Evelyne Brambilla
- Deutsche Sammlung von Mikroorganismen und Zellkulturen, GmbH, Mascheroder Weg 1 b, D-38124 Braunschweig, Germany
| | | | - Rodney M. Ratcliff
- **Infectious Diseases Laboratories, Institute of Medical and Veterinary Science, Frome Road, P.O. Box 14, Rundle Mall, Adelaide, South Australia 5000, Australia
| | - Eviatar Nevo
- Institute of Evolution, International Graduate Center of Evolution, University of Haifa, Haifa, Israel 31905
| | | |
Collapse
|
30
|
Production of 14-Oxo-cis-11-eicosenoic Acid from Lesquerolic Acid by Sphingobacterium multivorum NRRL B-23212. J AM OIL CHEM SOC 2007. [DOI: 10.1007/s11746-007-1085-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Price NPJ, Rooney AP, Swezey JL, Perry E, Cohan FM. Mass spectrometric analysis of lipopeptides from Bacillus strains isolated from diverse geographical locations. FEMS Microbiol Lett 2007; 271:83-9. [PMID: 17419767 DOI: 10.1111/j.1574-6968.2007.00702.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF MS) has been applied to characterize lipopeptide biomarkers from 54 different strains of Bacillis from most taxa within the Bacillis subtilis-Bacillis licheniformis clade, isolated from seven geographic locations on five continents. Even the most narrowly defined taxa are diverse in terms of the lipopeptide profiles. Many strains produce previously identified compounds with known antimicrobial properties (e.g. polymyxins and bacitracins), whereas other compounds represent novel classes that were hitherto unknown. Of particular interest is the novel 942/958 Da biomarkers produced by B. s. spizizeni desert strains and several type strains.
Collapse
Affiliation(s)
- Neil P J Price
- Bioproducts and Biocatalysis Research Unit, USDA-ARS-NCAUR, Peoria, IL 61604, USA.
| | | | | | | | | |
Collapse
|
32
|
Rooney AP, Swezey JL, Friedman R, Hecht DW, Maddox CW. Analysis of core housekeeping and virulence genes reveals cryptic lineages of Clostridium perfringens that are associated with distinct disease presentations. Genetics 2006; 172:2081-92. [PMID: 16489222 PMCID: PMC1456398 DOI: 10.1534/genetics.105.054601] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clostridium perfringens is an important human and animal pathogen that causes a number of diseases that vary in their etiology and severity. Differences between strains regarding toxin gene composition and toxin production partly explain why some strains cause radically different diseases than others. However, they do not provide a complete explanation. The purpose of this study was to determine if there is a phylogenetic component that explains the variance in C. perfringens strain virulence by assessing patterns of genetic polymorphism in genes (colA gyrA, plc, pfoS, and rplL) that form part of the core genome in 248 type A strains. We found that purifying selection plays a central role in shaping the patterns of nucleotide substitution and polymorphism in both housekeeping and virulence genes. In contrast, recombination was found to be a significant factor only for the virulence genes plc and colA and the housekeeping gene gyrA. Finally, we found that the strains grouped into five distinct evolutionary lineages that show evidence of host adaptation and the early stages of speciation. The discovery of these previously unknown lineages and their association with distinct disease presentations carries important implications for human and veterinary clostridial disease epidemiology and provides important insights into the pathways through which virulence has evolved in C. perfringens.
Collapse
Affiliation(s)
- Alejandro P Rooney
- Microbial Genomics Research Unit, National Center for Agricultural Utilization Research, U.S. Department of Agriculture--Agricultural Research Service, Peoria, Illinois 61604, USA.
| | | | | | | | | |
Collapse
|