1
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
2
|
Raheja Y, Singh V, Kaur B, Basotra N, Di Falco M, Tsang A, Singh Chadha B. Combination of system biology and classical approaches for developing biorefinery relevant lignocellulolytic Rasamsonia emersonii strain. BIORESOURCE TECHNOLOGY 2022; 351:127039. [PMID: 35318142 DOI: 10.1016/j.biortech.2022.127039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The objective of this study was to develop thermophilic fungus Rasamsonia emersonii using integrated system biology tools (genomics, proteomics and transcriptional analysis) in combination with classical strain breeding approaches. Developed hyper cellulolytic mutant strain M36 showed endoglucanase (476.35 U/ml), β-glucosidase (70.54 U/ml), cellobiohydrolase (15.17 U/ml), FPase (4.89 U/ml) and xylanase (485.21 U/ml) on cellulose/gram flour based production medium. Comparison of the expression profile at proteome and transcriptional level of the developed strain and wild type parent gave detailed insight into the up-regulation of different CAZymes including glycosyl hydrolases (GH5, GH6, GH7, GH3, GH10) and auxiliary enzymes (lytic polysaccharide monooxygenase, swollenin) at system level. Furthermore, the potential of lignocellulolytic enzyme produced by the developed strain and custom designed cocktail spiked with heterologously expressed lytic polysaccharide monooxygenase from Mycothermus thermophiloides were analyzed for the hydrolysis of biorefinery relevant unwashed pretreated rice straw slurry (PRAJ and IOCL) @17% substrate loading rate.
Collapse
Affiliation(s)
- Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Varinder Singh
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Baljit Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Neha Basotra
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Marcos Di Falco
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | | |
Collapse
|
3
|
Transcriptomic and Non-Targeted Metabolomic Analyses Reveal the Flavonoid Biosynthesis Pathway in Auricularia cornea. Molecules 2022; 27:molecules27072334. [PMID: 35408732 PMCID: PMC9000485 DOI: 10.3390/molecules27072334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Flavonoids, which are abundant in plants, are recognized for their antioxidant and anticancer roles in clinical applications. However, little is known about the molecular basis of flavonoid biosynthesis in fungi. In this study, we found that inclusion of leachate of Korshinsk peashrub (Caragana korshinskii) in the fermentation medium increased the total flavonoid content of the edible fungus Auricularia cornea by 23.6% relative to that grown in a control medium. Combined transcriptomic and non-targeted metabolomic analysis of the flavonoid biosynthesis pathway in A. cornea illustrated that there are important metabolites in the phenylpropanoid, coumarin and isoflavonoid biosynthesis pathways. In addition, we found that certain homologous genes encode phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO) and chalcone isomerase (CHI) in these biosynthesis pathways. These results, in this study, provide a new line for studying the regulation of flavonoid production in edible fungi.
Collapse
|
4
|
Wang W, Wang Y, Gong Z, Yang S, Jia F. Comparison of the Nutritional Properties and Transcriptome Profiling Between the Two Different Harvesting Periods of Auricularia polytricha. Front Nutr 2021; 8:771757. [PMID: 34765633 PMCID: PMC8576271 DOI: 10.3389/fnut.2021.771757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Auricularia polytricha (A. polytricha), regarded as an edible and medical mushroom, has attracted toward the research interests because of the high nutrition and bioactivity. The nutritional and medical properties of A. polytricha have been well-studied; however, research about the difference of the nutritional properties and transcriptome profiling between the two different harvesting periods of A. polytricha was limited. In this study, the nutritional properties and transcriptome profiling were compared between the two different harvesting periods of A. polytricha: AP_S1 (the stage for the first harvesting period) and AP_S2 (the stage for the third harvesting period). This study showed that AP_S1 had the more growth advantages than AP_S2 including biomass, auricle area and thickness, protein and calcium contents, and most species of the amino acid contents, which contributed to the higher sensory evaluation and acceptability of AP_S1. Transcriptome profiling showed that a total of 30,298 unigenes were successfully annotated in the two different harvesting periods of A. polytricha. At a threshold of two-fold change, 1,415 and 3,213 unigenes were up- and downregulated, respectively. All the differentially expressed genes (DEGs) analysis showed that the some synthesis and metabolic processes were strengthened in AP_S1, especially the synthesis and metabolism of the amino acids and protein. The enhanced energy metabolism pathways could provide more energy for AP_S1 to synthesize the nutritional substance. Moreover, the expressions of 10 selected DEGs involved in the amino acid and protein synthesis pathways and energy metabolism pathways were higher in AP_S1 compared to AP_S2, consistent with Illumina analysis. To the best of our knowledge, this is the first study that compares the nutritional properties and transcriptome profiling between the two different harvesting periods of A. polytricha and the results can present insights into the growth and genetic characteristics of A. polytricha.
Collapse
Affiliation(s)
- Wenliang Wang
- Shandong Academy of Agricultural Science, Jinan, China.,Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan, China.,Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Yansheng Wang
- Shandong Academy of Agricultural Science, Jinan, China.,Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan, China.,Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Zhiqing Gong
- Shandong Academy of Agricultural Science, Jinan, China.,Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan, China.,Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Shifa Yang
- Shandong Academy of Agricultural Science, Jinan, China
| | - Fengjuan Jia
- Shandong Academy of Agricultural Science, Jinan, China.,Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan, China.,Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan, China
| |
Collapse
|
5
|
Wang B, Lu J, Zheng J, Yu Z. iTRAQ-facilitated proteomic analysis of Bacillus cereus via degradation of malachite green. J Microbiol 2021; 59:142-150. [PMID: 33527315 DOI: 10.1007/s12275-021-0441-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/13/2023]
Abstract
The wide use of malachite green (MG) as a dye has caused substantial concern owing to its toxicity. Bacillus cereus can against the toxic effect of MG and efficiently decolourise it. However, detailed information regarding its underlying adaptation and degradation mechanisms based on proteomic data is scarce. In this study, the isobaric tags for relative and absolute quantitation (iTRAQ)-facilitated quantitative method was applied to analyse the molecular mechanisms by which B. cereus degrades MG. Based on this analysis, 209 upregulated proteins and 198 downregulated proteins were identified with a false discovery rate of 1% or less during MG biodegradation. Gene ontology and KEGG analysis determined that the differentially expressed proteins were enriched in metabolic processes, catalytic activity, antioxidant activity, and responses to stimuli. Furthermore, real-time qPCR was utilised to further confirm the regulated proteins involved in benzoate degradation. The proteins BCE_4076 (Acetyl-CoA acetyltransferase), BCE_5143 (Acetyl-CoA acetyltransferase), BCE_5144 (3-hydroxyacyl-CoA dehydrogenase), BCE_4651 (Enoyl-CoA hydratase), and BCE_5474 (3-hydroxyacyl-CoA dehydrogenase) involved in the benzoate degradation pathway may play an important role in the biodegradation of MG by B. cereus. The results of this study not only provide a comprehensive view of proteomic changes in B. cereus upon MG loading but also shed light on the mechanism underlying MG biodegradation by B. cereus.
Collapse
Affiliation(s)
- Bobo Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junfang Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, P. R. China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
6
|
Agaricus bisporus Crude Extract: Characterization and Analytical Application. Molecules 2020; 25:molecules25245996. [PMID: 33352884 PMCID: PMC7765987 DOI: 10.3390/molecules25245996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
In the present work crude Agaricus bisporus extract (ABE) has been prepared and characterized by its tyrosinase activity, protein composition and substrate specificity. The presence of mushroom tyrosinase (PPO3) in ABE has been confirmed using two-dimensional electrophoresis, followed by MALDI TOF/TOF MS-based analysis. GH27 alpha-glucosidases, GH47 alpha-mannosidases, GH20 hexosaminidases, and alkaline phosphatases have been also detected in ABE. ABE substrate specificity has been studied using 19 phenolic compounds: polyphenols (catechol, gallic, caffeic, chlorogenic, and ferulic acids, quercetin, rutin, dihydroquercetin, l-dihydroxyphenylalanine, resorcinol, propyl gallate) and monophenols (l-tyrosine, phenol, p-nitrophenol, o-nitrophenol, guaiacol, o-cresol, m-cresol, p-cresol). The comparison of ABE substrate specificity and affinity to the corresponding parameters of purified A. bisporus tyrosinase has revealed no major differences. The conditions for spectrophotometric determination have been chosen and the analytical procedures for determination of 1.4 × 10-4-1.0 × 10-3 M l-tyrosine, 3.1 × 10-6-1.0 × 10-4 M phenol, 5.4 × 10-5-1.0 × 10-3 M catechol, 8.5 × 10-5-1.0 × 10-3 M caffeic acid, 1.5 × 10-4-7.5 × 10-4 M chlorogenic acid, 6.8 × 10-5-1.0 × 10-3 M l-DOPA have been proposed. The procedures have been applied for the determination of l-tyrosine in food supplements, l-DOPA in synthetic serum, and phenol in waste water from the food manufacturing plant. Thus, we have demonstrated the possibility of using ABE as a substitute for tyrosinase in such analytical applications, as food supplements, medical and environmental analysis.
Collapse
|
7
|
Jiang S, Zheng X, Li L. De novo assembly of Auricularia polytricha transcriptome and discovery of genes involved in the degradation of lignocellulose. Biotechnol Appl Biochem 2020; 68:983-991. [PMID: 32786100 DOI: 10.1002/bab.2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/27/2020] [Indexed: 11/10/2022]
Abstract
Auricularia polytricha belonging to Basidiomycota has the ability to degrade lignocellulose. However, there has been no resource in public databases examining the transcriptome of A. polytricha. In this study, high-throughput sequencing platform BGISEQ-500 was used to generate large amount of transcript sequences from A. polytricha for gene discovery and molecular marker development. A total of 28,102 unigenes were discovered from the assembly of clean reads. In addition, functional categorization of the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) metabolic pathways revealed several important biological processes. GO annotation analysis presented 47 categories, with the major subcategories being catalytic activity, binding, cellular process, metabolic process, and cell. Among the five functional categories and 21 subcategories of processes discovered from KEGG, global and overview maps, carbohydrate metabolism, transport, and catabolism are the main subcategories. Furthermore, among the unigenes related to lignocellulosic degradation discovered by KEGG pathway enrichment analysis, 2, 5, and 16 unigenes in de novo assembly of A. polytricha transcriptome were found to relate to cellulose, hemicellulose, and lignin degradation, respectively. The study provided valuable information on the degradation of lignocellulose to facilitate research on the degradation mechanism, molecular marker, functional research, gene mapping, and other multigenomic studies of species containing lignocellulose.
Collapse
Affiliation(s)
- Shiyu Jiang
- College of Grain and Food science, Henan University of Technology, Zhengzhou, Henan, People's Republic of China
| | - Xueling Zheng
- College of Grain and Food science, Henan University of Technology, Zhengzhou, Henan, People's Republic of China
| | - Li Li
- College of Grain and Food science, Henan University of Technology, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
8
|
Label-free quantitative proteomic analysis of the biological functions of Moringa oleifera seed proteins provides insights regarding the milk-clotting proteases. Int J Biol Macromol 2020; 144:325-333. [DOI: 10.1016/j.ijbiomac.2019.12.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/17/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023]
|
9
|
Zhu W, Hu J, Li Y, Yang B, Guan Y, Xu C, Chen F, Chi J, Bao Y. Comparative Proteomic Analysis of Pleurotus ostreatus Reveals Great Metabolic Differences in the Cap and Stipe Development and the Potential Role of Ca 2+ in the Primordium Differentiation. Int J Mol Sci 2019; 20:ijms20246317. [PMID: 31847351 PMCID: PMC6940972 DOI: 10.3390/ijms20246317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023] Open
Abstract
Pleurotus ostreatus is a widely cultivated edible fungus around the world. At present, studies on the developmental process of the fruiting body are limited. In our study, we compared the differentially expressed proteins (DEPs) in the stipe and cap of the fruiting body by high-throughput proteomics. GO and pathway analysis revealed the great differences in the metabolic levels, including sucrose and starch metabolism, and sphingolipid signaling and metabolism, and the differences of 16 important DEPs were validated further by qPCR analysis in expression level. In order to control the cap and stipe development, several chemical inducers were applied to the primordium of the fruiting body according to the pathway enrichment results. We found that CaCl2 can affect the primordium differentiation through inhibiting the stipe development. EGTA (ethyleneglycol bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid) treatment confirmed the inhibitory role of Ca2+ in the stipe development. Our study not only shows great metabolic differences during the cap and stipe development but also reveals the underlying mechanism directing the primordium differentiation in the early development of the fruiting body for the first time. Most importantly, we provide a reliable application strategy for the cultivation and improvement of the Pleurotus ostreatus, which can be an example and reference for a more edible fungus.
Collapse
Affiliation(s)
- Weiwei Zhu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Jinbo Hu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (J.H.); (B.Y.)
| | - Yang Li
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Bing Yang
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (J.H.); (B.Y.)
| | - Yanli Guan
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Chong Xu
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Fei Chen
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Jingliang Chi
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Yongming Bao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
- School of Food and Environmental Science and Technology, Dalian University of Technology, Panjin 12421, China
- Correspondence: ; Tel.: +86-411-8470-6344; Fax: +86-411-8470-6365
| |
Collapse
|
10
|
Gu X, Gao Y, Luo Z, Yang L, Chi F, Xiao J, Wang W, Geng F. In-depth mapping of the proteome of Tibetan pig tenderloin (longissimus dorsi) using offline high-pH reversed-phase fractionation and LC-MS/MS. J Food Biochem 2019; 43:e13015. [PMID: 31429109 DOI: 10.1111/jfbc.13015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022]
Abstract
In recent years, Tibetan pig breeding and meat processing have developed rapidly. However, the basic physiological and biochemical characteristics of Tibetan pork have not been systematically explored. The present study conducted a high-throughput analysis of the tenderloin (longissimus dorsi) proteome of the Tibetan pigs and performed a functional annotation and bioinformatics analysis of the identified proteins. Based on offline two-dimensional liquid chromatography fractionation and MS/MS identification, a total of 1,723 proteins were identified in the tenderloin of Tibetan pigs. Gene ontology analysis and pathway enrichment analysis revealed that the proteins involved in respiration (oxidative phosphorylation, glycolysis/gluconeogenesis, citric acid cycle, and pyruvate metabolism) and protein synthesis and metabolism (proteasome, amino acid biosynthesis, endoplasmic reticulum protein processing, and ribosomes) were significantly enriched, indicating that the energy production and protein metabolism are the most important physiological processes in Tibetan pig tenderloin. Practical applications The in-depth mapping of the tenderloin (longissimus dorsi) proteome of the Tibetan pigs gives a panoramic perspective at the protein molecular level and provides important information on the mechanisms of postmortem muscle physiology and meat quality formation. Furthermore, the development of Tibetan pork storage and processing technologies would also benefit from the characterization of the biochemical properties of Tibetan pork.
Collapse
Affiliation(s)
- Xuedong Gu
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Yuling Gao
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Zhang Luo
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Lin Yang
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Fumin Chi
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Jing Xiao
- Meat Processing Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
11
|
Kobayashi T, Ito T, Egusa C, Maeda T, Abe N, Okubo Y, Tsuboi R. A case of anaphylaxis due to alpha-mannosidase from Auricularia. Allergol Int 2019; 68:394-395. [PMID: 30926326 DOI: 10.1016/j.alit.2019.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 01/26/2023] Open
Affiliation(s)
- Tomoko Kobayashi
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Tomonobu Ito
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan.
| | - Chizu Egusa
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Tatsuo Maeda
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Namiko Abe
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Yukari Okubo
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Ryoji Tsuboi
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
12
|
Jia DH, Wang B, Li XL, Tan W, Gan BC, Peng WH. Validation of reference genes for quantitative gene expression analysis in Auricularia cornea. J Microbiol Methods 2019; 163:105658. [PMID: 31251967 DOI: 10.1016/j.mimet.2019.105658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
Abstract
Auricularia cornea Ehrenb., previously named A. polytricha (Mont.) Sacc, has become one of the most widely cultivated mushrooms in China. Considerable research has been conducted on its cultivation, pathogen identification, proteomics, and more. However, to the best of our knowledge, no studies have been performed on reference-gene validation in this species. Formerly, reference genes were selected for their expression levels only relied upon from others species, owing to the fact that the gene stability in this species is unknown. In this study, nine candidate genes, including tubulin alpha-1A chain (TUBA1A), β-tubulin (Btu), phosphoglucomutase (Pgm), actin 1 (Act1), protein phosphatase 2A regulatory subunit (PP2A), polyubiquitin (UBQ), glyceraldehyde-3-phosphate dehydrogenase (Gapdh), 18S ribosomal protein (18S) and 28S ribosomal protein (28S), were evaluated among different strains and developmental stages. Four algorithms (i.e., geNorm, NormFinder, BestKeeper and RefFinder) were used to analyze candidate genes. The results revealed that UBQ was the most stable reference gene, while 18S was the least stable. Despite these results, the candidate genes were largely inadequate and only two were considered suitable. Based on candidate gene stability, PP2A and UBQ were identified as a set of usable interior control genes for future analyses in this species. This is the first systematic study conducted for selecting reference genes in A. cornea, and lays the foundation for identifying genes and quantifying gene expression in this species.
Collapse
Affiliation(s)
- Ding-Hong Jia
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Bo Wang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xiao-Lin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Wei Tan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Bing-Cheng Gan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Wei-Hong Peng
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| |
Collapse
|
13
|
Zhang B, Zhou J, Li Q, Gan B, Peng W, Zhang X, Tan W, Jiang L, Li X. Manganese affects the growth and metabolism of Ganoderma lucidum based on LC-MS analysis. PeerJ 2019; 7:e6846. [PMID: 31106063 PMCID: PMC6500383 DOI: 10.7717/peerj.6846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/19/2019] [Indexed: 12/16/2022] Open
Abstract
Background As a metal-enriched edible fungus, Ganoderma lucidum is capable of adsorbing manganese effectively. And the manganese ion is demonstrated to play an important role in the synthesis of manganese peroxidase (Mnp) and other physiological activities during G. lucidum growth. Recently, the influence of manganese on the metabolites of G. lucidum fruiting bodies can be revealed through metabonomics technique. Methods In this study, we uncovered the changes between the control and 200 mg/kg Mn-treated fruiting bodies with liquid chromatography coupled to mass spectrometry (LC-MS). Results The mycelial growth rate, dry yield, Mnp activity , total polysaccharide content, triterpenoid content, and total manganese content in the mature fruiting bodies of G. lucidum changed between the control and different Mn-treated groups. Based on LC-MS method, a total of 16 significantly different metabolites were obtained and identified, among which, five presented significantly down-regulated and 11 up-regulated in Mn-treated samples. The metabolites chavicol and palmitoylethanolamide were particularly significantly up-regulated, and were found the strong promotion relationship. Dependent on the MetPA database, four KEGG pathways were detected and glycerophospholipid metabolism was most impacted, in which, choline was involved in. Discussion The added manganese ion in the substrate enhanced Mnp activities, and consequently promoted the mycelial growth, yield , metabolites in the fruiting bodies including triterpenoids, total manganese, chavicol, etc. Our finding can provide a theoretical reference to regulation of manganese on the physiological metabolism of G. lucidum.
Collapse
Affiliation(s)
- Bo Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jie Zhou
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qiang Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,College of Life Science, Sichuan University, Chengdu, China
| | - Bingcheng Gan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Weihong Peng
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Wei Tan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lin Jiang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
14
|
Biochemical characterization of a key laccase-like multicopper oxidase of artificially cultivable Morchella importuna provides insights into plant-litter decomposition. 3 Biotech 2019; 9:171. [PMID: 30997308 DOI: 10.1007/s13205-019-1688-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
The aim of this study is to determine the key laccase-encoding gene in the life cycle of Morchella importuna SCYDJ1-A1, and to characterize the biochemical properties of the laccase. Two laccase-like multicopper oxidase (LMCO) genes were identified in the genome of M. importuna SCYDJ1-A1 as putative laccase-encoding genes. The two genes, belonging to Auxiliary Activity family 1 subfamily 3, were named as MiLacA and MiLacB. Phylogenetic analysis of deduced amino acid sequences showed that MiLacA is closest to a LMCO of M. importuna 22J1, while MiLacB had low similarity with known Morchella LMCOs. Real-time quantitative PCR results showed that MiLacA was expressed at much higher levels than MiLacB throughout the entire course of artificial cultivation. MiLacA was overexpressed in Pichia pastoris as a recombinant protein. Biochemical characterization of the purified enzyme showed that MiLacA simultaneously possessed laccase and polyphenol-oxidase activities. MiLacA could be strongly inhibited by Fe2+, which is unusual. The optimum pH was four and optimum temperature was 60 °C. The enzyme retained over 74% of the laccase activity after 16-h incubation at 60 °C, which means that its thermostability is at the forefront among the currently known laccases. Our findings may help to elucidate how the laccase of M. importuna is involved in decaying lignin in plant litter, and could also provide a candidate thermostable laccase for potential industrial application.
Collapse
|
15
|
Wang J, Xiao J, Liu X, Geng F, Huang Q, Zhao J, Xiang D, Zhao G. Analysis of tartary buckwheat (Fagopyrum tataricum) seed proteome using offline two-dimensional liquid chromatography and tandem mass spectrometry. J Food Biochem 2019; 43:e12863. [PMID: 31353746 DOI: 10.1111/jfbc.12863] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/24/2019] [Accepted: 03/30/2019] [Indexed: 11/28/2022]
Abstract
The whole seed of tartary buckwheat (Fagopyrum tataricum) is considered as a healthy and functional food, which is rich in kinds of flavonoids and with potential antioxidant effect. An in-depth analysis of tartary buckwheat seed (TBS) proteome was performed using a shotgun proteomics strategy. Total protein of TBS was extracted and digested, then the peptides were separated by offline two-dimensional liquid chromatography and identified by tandem mass spectrometry. Total of 3,363 high-confidence proteins were identified from 13,730 matched peptides, in which, 2,499 proteins were annotated by the Gene Ontology (GO) analysis with 1,720 involved in "biological process," 2,241 in "molecular function," and 693 in "cellular components." Based on the GO functional enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment results, buckwheat seed proteins were mostly enriched in metabolism of nucleic acid, respiration and energy metabolism, as well as synthesis and metabolism of protein. PRACTICAL APPLICATIONS: This study characterized the tartary buckwheat seed proteome on a scale of 3,000+ proteins and provide important information and clues for future research, especially in the mechanism of seed germination, nutrient composition changes, and metabolite production seed germination and material metabolism.
Collapse
Affiliation(s)
- Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Jing Xiao
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Xin Liu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Qun Huang
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Jianglin Zhao
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, P.R. China
| |
Collapse
|
16
|
Proteomic analysis and food-grade enzymes of Moringa oleifer Lam. a Lam. flower. Int J Biol Macromol 2018; 115:883-890. [DOI: 10.1016/j.ijbiomac.2018.04.109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/28/2018] [Accepted: 04/21/2018] [Indexed: 01/28/2023]
|