1
|
Ortega R, Miralles I, Domene MA, Meca D, Del Moral F. Ecological practices increase soil fertility and microbial diversity under intensive farming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176777. [PMID: 39378938 DOI: 10.1016/j.scitotenv.2024.176777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Intensive farming offers a potential solution to feed the growing population due to its high productivity. Conventional management (CO) based on inorganic fertilization practices degrades soil quality, but restorative practices including ecological intensification (EI) and organic management results in maintaining soil quality without compromising productivity. In this paper, two different management systems were evaluated: CO, based on inorganic fertilization, and EI, focused on providing organic nutrients to soils to support crops. EI increased soil fertility, together with higher alpha diversity indices, more differentially abundant amplicon sequence variant (ASVs) (247 EI vs. 165 CO) and indicator taxa (60 EI vs. 32 CO). Distinct bacterial taxa were associated with the different management systems, revealing their roles in soil processes and nutrient availability. In the CO treatment, indicator genera such as Nitrospira and Desulfarculaceae were linked to N fertilization and nitrite oxidation, while RB41 was associated with phosphorus availability. Ammoniphilus, PAUC26f, and BSV26 were also indicators of CO management. Conversely, EI treatment promoted bacteria involved in organic matter decomposition and nutrient cycling, such as Halomonas, Chryseolinea and Rhodobacteraceae. Gemmatimonas, Steroidobacter, Altererythrobacter, Acidibacter and Anseongella contribute to carbon and nitrogen cycling. Burkholderiaceae and Rhodopirellula play roles in phosphate solubilization and organic P mineralization, respectively. Numerous taxa with plant growth-promoting (PGP) attributes, such as BIrii41, Pseudomonas, and Lysobacter, were also identified as indicators of the EI treatment. EI associated bacteria were positively correlated with soil organic carbon contents, nitrates, and exchangeable bases, while negatively correlated with CO bacteria. A distance-based multivariate multiple regression (DistLM) demonstrated a strong relationship (r2 = 0.78) between soil physicochemical variables and bacterial community structure, with SOC explaining the most variations in the model. Other significant parameters included potassium (K), electrical conductivity (EC), and nitrates. The results suggest that EI promotes more sustainable soils in terms of fertility and microbial diversity.
Collapse
Affiliation(s)
- Raúl Ortega
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120 Almería, Spain..
| | - Isabel Miralles
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120 Almería, Spain
| | - Miguel Angel Domene
- Cajamar Research Station, Cajamar Foundation, Grupo Cooperativo Cajamar, Paraje Las Palmerillas 25, 04710 El Ejido, Almería, Spain
| | - David Meca
- Cajamar Research Station, Cajamar Foundation, Grupo Cooperativo Cajamar, Paraje Las Palmerillas 25, 04710 El Ejido, Almería, Spain
| | - Fernando Del Moral
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120 Almería, Spain
| |
Collapse
|
2
|
Darriaut R, Marzari T, Lailheugue V, Tran J, Martins G, Marguerit E, Masneuf-Pomarède I, Lauvergeat V. Microbial dysbiosis in roots and rhizosphere of grapevines experiencing decline is associated with active metabolic functions. FRONTIERS IN PLANT SCIENCE 2024; 15:1358213. [PMID: 38628369 PMCID: PMC11018932 DOI: 10.3389/fpls.2024.1358213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
When grapevine decline, characterized by a premature decrease in vigor and yield and sometimes plant death, cannot be explained by pathological or physiological diseases, one may inquire whether the microbiological status of the soil is responsible. Previous studies have shown that the composition and structure of bacterial and fungal microbial communities in inter-row soil are affected in areas displaying vine decline, compared to areas with non-declining vines within the same plot. A more comprehensive analysis was conducted in one such plot. Although soil chemical parameters could not directly explain these differences, the declining vines presented lower vigor, yield, berry quality, and petiole mineral content than those in non-declining vines. The bacterial and fungal microbiome of the root endosphere, rhizosphere, and different horizons of the bulk soil were explored through enzymatic, metabolic diversity, and metabarcoding analysis in both areas. Despite the lower microbial diversity and richness in symptomatic roots and soil, higher microbial activity and enrichment of potentially both beneficial bacteria and pathogenic fungi were found in the declining area. Path modeling analysis linked the root microbial activity to berry quality, suggesting a determinant role of root microbiome in the berry mineral content. Furthermore, certain fungal and bacterial taxa were correlated with predicted metabolic pathways and metabolic processes assessed with Eco-Plates. These results unexpectedly revealed active microbial profiles in the belowground compartments associated with stressed vines, highlighting the interest of exploring the functional microbiota of plants, and more specifically roots and rhizosphere, under stressed conditions.
Collapse
Affiliation(s)
- Romain Darriaut
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Tania Marzari
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Vincent Lailheugue
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Joseph Tran
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Guilherme Martins
- Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR Œnologie 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, 1 cours du Général de Gaulle, Gradignan, France
| | - Elisa Marguerit
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Isabelle Masneuf-Pomarède
- Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR Œnologie 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, 1 cours du Général de Gaulle, Gradignan, France
| | - Virginie Lauvergeat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| |
Collapse
|
3
|
Liu M, Wang X, Tang S, Zhou J, Liu L, Ma Q, Wu L, Xu M. Remobilization of Cd caused by iron oxide phase transformation and Mn 2+ competition after stabilization by nano zero valent iron. CHEMOSPHERE 2024; 350:141091. [PMID: 38171399 DOI: 10.1016/j.chemosphere.2023.141091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Stabilization techniques are vital in controlling Cd soil pollution. Nano zero valent iron (nZVI) has been extensively utilized for Cd remediation owing to its robust adsorption and reactivity. However, the environmental stress-induced stability of Cd after nZVI addition remains unclear. A pot experiment was conducted to evaluate the Cd bioavailability in continuously flooded (130 d) soil after stabilization with nZVI. The findings indicated that nZVI application did not result in a decline in Cd concentration in rice, as compared to the no-nZVI control. Additionally, nZVI simultaneously increased the available Cd concentration, iron-manganese oxide-bound (OX) Mn fraction, and relative abundance of Fe(III)-reducing bacteria, but it decreased OX-Cd and Mn availability in soil. Cadmium in rice tissues was positively correlated with the available Cd in soil. The results of subsequent adsorption tests demonstrated that CdO was the product of Cd adsorption by the nZVI aging products. Conversely, Mn2+ decreased the adsorption capacity of Cd-containing solutions. These results underscore the crucial role of both biotic and abiotic factors in undermining the stabilization of nZVI under continuous flooding conditions. This study offers novel insights into the regulation of nZVI-mediated Cd stabilization efficiency in conjunction with biological inhibitors and functional modification techniques.
Collapse
Affiliation(s)
- Mengjiao Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiya Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Sheng Tang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingjie Zhou
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Longfei Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Qingxu Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lianghuan Wu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Meng Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Sarkodie EK, Jiang L, Li K, Guo Z, Yang J, Shi J, Peng Y, Wu X, Huang S, Deng Y, Jiang H, Liu H, Liu X. The influence of cysteine in transformation of Cd fractionation and microbial community structure and functional profile in contaminated paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167535. [PMID: 37802356 DOI: 10.1016/j.scitotenv.2023.167535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Remediating cadmium (Cd) contaminated paddy soil is vital for agroecology, food safety, and human health. Soil washing is more feasible to reduce remediation method due to its high efficiency. However, green, low-cost and more efficient washing agents are still required. In this study, we investigated the ability of cysteine as a washing agent for soil washing to remove Cd from contaminated paddy soil. Through a batch experiment, we evaluated the removal efficiency of cysteine as a washing agent by comparing their removal rate with that of a microbial inoculant and sulphuric acid as other washing agents. The transformation of Cd fractionation and microbial community structure and functional profile in paddy soils after cysteine leaching was studied by using sequential extraction and high-throughput sequencing. Results showed that cysteine had better efficiency in the removal of Cd from paddy soil in comparison to sulphuric acid and the microbial inoculant, and could achieve a maximum removal rate of 97 % Cd in paddy soil. Cysteine decreased the proportion of Cd in the exchangeable fraction, carbonate bound fraction, iron and manganese bound fraction, and organic matter bound fraction and was best for the removal of the residual fraction, which contributed to its higher Cd removal ability. Considering the economic benefits of the reagents used, cysteine was shown to be economically feasible for use as a leaching agent. In addition, cysteine could significantly increase the relative abundance of Thermochromatium, Sideroxydans, Streptacidiphilus, and Frankia which promoted the nitrogen and sulfur metabolism in the paddy soil. In summary, this study revealed that cysteine was readily available, cheap, non-toxic, highly efficient, and even has fertilizing properties, making it eco-friendly and ideal for remediation of Cd-contaminated paddy soils. Besides, the health of paddy soils would also benefit from cysteine's promotion of microbial nitrogen and sulfur metabolism.
Collapse
Affiliation(s)
- Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yulong Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xinhong Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Shanshan Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yan Deng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Huidan Jiang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Li D, Qu C, Cheng X, Chen Y, Yan H, Wu Q. Effect of different fertilization strategies on the yield, quality of Euryales Semen and soil microbial community. Front Microbiol 2023; 14:1310366. [PMID: 38098669 PMCID: PMC10719947 DOI: 10.3389/fmicb.2023.1310366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Euryales Semen, a medicinal herb widely utilized in Asia, faces a critical constraint in its production, primarily attributed to fertilizer utilization. Understanding the impact of different fertilization schemes on Euryales Semen (ES) planting and exploring the supporting mechanism are crucial for achieving high yield and sustainable development of the ES planting industry. Methods In this study, a field plot experiment was conducted to evaluate the effects of four different fertilization treatments on the yield and quality of ES using morphological characteristics and metabolomic changes. These treatments included a control group and three groups with different organic fertilizer to chemical fertilizer ratios (3:7, 5:5, and 7:3). The results of this study revealed the mechanisms underlying the effect of the different treatments on the yield and quality of Euryales Semen. These insights were achieved through analyses of soil physicochemical properties, soil enzyme activity, and soil microbial structure. Results We found that the quality and yield of ES were the best at a ratio of organic fertilizer to chemical fertilizer of 7:3. The optimality of this treatment was reflected in the yield, soil available nitrogen, soil available phosphorus, and soil enzyme activity of ES. This ratio also increased soil microbial diversity, resulting in an increase and decrease in Proteobacteria and Firmicutes abundances, respectively. In addition, linear discriminant analysis showed that Chloroflexi, Gammaproteobacteria, and Hypocreales-incertae-sedis were significantly enriched in the ratio of organic fertilizer to chemical fertilizer of 7:3. Variance partitioning analysis showed that the soil properties, enzyme activities, and their interactions cumulatively can explain 90.80% of the differences in Euryales Semen yield and metabolome. In general, blending organic and chemical fertilizers at a 7:3 ratio can enhance soil fertility, boost Euryales Semen yield and quality, and bring forth conditions that are agriculturally beneficial to microbial (bacteria and fungi) dynamics. Discussion This study initially revealed the scientific connotation of the effects of different fertilization patterns on the planting of Euryales Semen and laid a theoretical foundation for the study of green planting patterns of Euryales Semen with high quality and yield.
Collapse
Affiliation(s)
- Dishuai Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Qu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Xuemei Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yexing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Qinan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| |
Collapse
|
6
|
Zhang Y, Cheng Z, Li Q, Dai Q, Hu J. Responses of rhizosphere bacterial communities in newly reclaimed mudflat paddies to rice genotype and nitrogen fertilizer rate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38761-38774. [PMID: 36586025 DOI: 10.1007/s11356-022-25020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The rhizosphere microbiome plays a vital role in crop growth and adaptation. However, the effects of rice genotype, nitrogen (N) fertilization, and their interactions on the rhizosphere bacterial communities in low fertility soil remain poorly understood. In this study, a two-factor field experiment was performed in newly reclaimed mudflat paddies characterized by poor fertility to analyze bacterial communities in the rhizosphere of Yongyou 2640 (japonica/indica hybrid rice, JIH) and Huaidao No.5 (japonica conventional rice, JC) under different N fertilizer rates. Results showed that genotype, followed by N fertilizer rate, was the primary factor affecting rhizobacteria diversity. Rhizobacteria diversity was higher in JIH than in JC and that of JIH and JC did not significantly change overall as N fertilizer rates but increased and decreased at N fertilizer rates of over 300 kg N ha-1, respectively. The inconsistent response was probably attributed to the difference in the increase of ammonium and/or nitrate in the rhizosphere of JIH and JC. Genotype explained approximately 26% of the variation in rhizosphere bacterial communities. Rhizosphere bacterial communities with N fertilizer rates of over 300 kg N ha-1 were more dissimilar to those without N fertilization relative to those with N fertilizer rates of below 300 kg N ha-1, which was mainly attributed to changes in the concentration of ammonium and/or nitrate. The relative abundances of some potential beneficial genera such as Salinimicrobium, Salegentibacter, Gillisia, and Anaerolinea in the rhizosphere of JC and Salegentibacter, Lysobacter, Nocardioides, and Pontibacter in the rhizosphere of JIH were increased under N fertilizer rates of less than 300 kg N ha-1 and positively correlated with rice yields, which indicate that changes in bacterial communities caused by N fertilization might be strongly associated with the improvement of rice yield. Overall, rhizosphere bacterial communities were more sensitive to genotype in newly reclaimed mudflat paddies and showed a consistent response to N fertilizer rates.
Collapse
Affiliation(s)
- Yang Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225127, China
| | - Zhandou Cheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Qing Li
- Jiangsu Key Laboratory of Crop Genetic and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qigen Dai
- Jiangsu Key Laboratory of Crop Genetic and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Jian Hu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225127, China
| |
Collapse
|
7
|
Tanikawa T, Maie N, Fujii S, Sun L, Hirano Y, Mizoguchi T, Matsuda Y. Contrasting patterns of nitrogen release from fine roots and leaves driven by microbial communities during decomposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158809. [PMID: 36116643 DOI: 10.1016/j.scitotenv.2022.158809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Leachate from decaying root and leaf litter plays crucial roles in soil biogeochemical processes in forest ecosystems. Unlike for leaf litter, however, the chemical composition and microbial community of root litter leachate are poorly understood. We hypothesized that both leachate nitrogen (N) composition and microbial communities differ between plant organs and decomposition stages and that leachate composition affects microbial community composition. We conducted a 2.5-year laboratory incubation using root and leaf substrate from Cryptomeria japonica and Chamaecyparis obtusa. We monitored the N forms released and used metabarcoding to characterize the microbial communities. Leachate N accounted for 40 % and 30 % of net N losses from C. japonica and C. obtusa roots, respectively; the remainder was probably lost in gaseous forms. In contrast, leaves absorbed N during the incubation regardless of tree species. The predominant N form in root leachate was nitrate (NO3-); cumulative NO3- quantity was 22.6 and 25.5 times greater in root than in leaf leachate for C. japonica and C. obtusa, respectively. A nitrifying bacterium was selected as the indicator taxon in root substrates, whereas many families of N-fixing bacteria were selected in leaf substrates. At the end of the incubation period, bacterial taxonomic diversity was high in both organs from both tree species, ranging from 177 to 339 taxa and increasing with time. However, fungal diversity was low for both organs (72 to 155 taxa). Shifts in bacterial community structure were related to NO3- concentration and leachate pH, whereas shifts in fungal community structure were related to leachate pH. These results suggest that the contrasting N dynamics of root and leaf substrates are strongly affected by the characteristics of and the microbes recruited by their leachates. Understanding organ-specific litter N dynamics is indispensable for predicting N cycling for optimal management of forest ecosystems in a changing world.
Collapse
Affiliation(s)
- Toko Tanikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Nagoya 464-8601, Japan; Kansai Research Center, Forestry and Forest Products Research Institute, Nagai-kyutaro, Momoyama, Fushimi, Kyoto 612-0855, Japan.
| | - Nagamitsu Maie
- School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Saori Fujii
- Department of Forest Entomology, Forestry and Forest Products Research Institute, Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Lijuan Sun
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yasuhiro Hirano
- Graduate School of Environmental Studies, Nagoya University, Furocho, Nagoya 464-8601, Japan
| | - Takeo Mizoguchi
- Kansai Research Center, Forestry and Forest Products Research Institute, Nagai-kyutaro, Momoyama, Fushimi, Kyoto 612-0855, Japan
| | - Yosuke Matsuda
- Graduate School of Bioresources, Mie University, Mie 514-8507, Japan.
| |
Collapse
|
8
|
Shi Q, Zhou Z, Wang Z, Lu Z, Han J, Xue J, Creech D, Yin Y, Hua J. Afforestation of Taxodium Hybrid Zhongshanshan Influences Soil Bacterial Community Structure by Altering Soil Properties in the Yangtze River Basin, China. PLANTS (BASEL, SWITZERLAND) 2022; 11:3456. [PMID: 36559565 PMCID: PMC9786738 DOI: 10.3390/plants11243456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Taxodium hybrid Zhongshanshan has been widely planted in the Yangtze River Basin (YRB) for soil and carbon conservation, with quantities over 50 million. The objective of this study was to determine how T. hybrid Zhongshanshan plantations affected soil physicochemical properties and bacterial community structure in the YRB, and to examine the consistency of changes by afforestation. Soils under T. Zhongshanshan plantations across six sites of the YRB were compared with soils of adjacent non-forested sites. Soil physicochemical properties and bacterial community structure were determined to clarify edaphic driving factors and reveal the effects of afforestation on bacteria. The results indicated that most soil attributes manifested improvements, e.g., total nitrogen in Jiangxi and Shanghai; available phosphorus in Hubei, Chongqing and Yunnan, exhibited the potential to maintain or ameliorate soil quality. A decrease in soil bulk density caused by plantation was also observed at the expense of soil macro-aggregates augment. Afforestation of T. Zhongshanshan plantation has habitually improved Shannon diversity and Chao1 richness, of which dominant phyla were Proteobacteria, Acidobacteria, and Actinobacteria, and increased the relative abundance of the phyla Proteobacteria and Nitrospirae, and the classes Flavobacteriia, Acidobacteria_Gp5, and Bacilli. We concluded that T. Zhongshanshan plantation can be employed to facilitate soil nutrient accumulation in the YRB, but that the degree, rate and direction of changes in soil attributes are sites dependent. It is recommended that afforestation of nutrient-depleted and less productive lands in the YRB should utilize this fast-growing species in combination with proper fertilization.
Collapse
Affiliation(s)
- Qin Shi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Zhidong Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Ziyang Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Zhiguo Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Jiangang Han
- College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jianhui Xue
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - David Creech
- Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX 75962-3000, USA
| | - Yunlong Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Jianfeng Hua
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
9
|
Li Q, Zhang Y, Hu J, Dai Q. Response of bacterial communities and nitrogen-cycling genes in newly reclaimed mudflat paddy soils to nitrogen fertilizer gradients. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71113-71123. [PMID: 35595885 DOI: 10.1007/s11356-022-20770-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Conversion of coastal mudflats into paddy soils is an effective measure to alleviate the pressures on land resources. However, few studies have evaluated the effects of nitrogen (N) fertilizers on bacterial communities in newly reclaimed mudflat paddy soils. We performed a field plot experiment with six N fertilizer rates (0, 210, 255, 300, 345, and 390 kg N ha-1) in a newly reclaimed mudflat paddy for 2 consecutive years and used Illumina sequencing and qPCR to investigate the effects of N fertilizers on bacterial communities and N-cycling genes. Results showed that high N fertilization (above 300 kg N ha-1) increased the contents of organic matter (OM), total N (TN), ammonium (NH4+), and nitrate (NO3-) and significantly decreased the diversity and richness of bacteria. Furthermore, high N fertilization had a stronger effect on bacterial communities than low N fertilization, probably due to high concentrations of NH4+, OM, and NO3-. Additionally, in paddy soils with high N fertilizer application, the relative abundances of Bacteroidetes, γ-proteobacteria, and Actinobacteria increased significantly, but the reverse was true for those of Chloroflexi, Firmicutes, δ-proteobacteria, α-proteobacteria, Acidobacteria, and β-proteobacteria. The results of qPCR indicated that high N fertilization significantly increased the relative abundance of nifH genes involved in N fixation and decreased that of amoA-archaea involved in ammonia oxidation, nirS genes involved in nitrite reduction, and nosZ genes involved in nitrous oxide reduction, which suggested that high N fertilization increased the potential of available N retention and reduced the potential of nitrous oxide emission. Overall, N fertilizers with an N fertilizer rate of above 300 kg N ha-1 significantly altered the bacterial communities and N-cycle of mudflat paddy soils.
Collapse
Affiliation(s)
- Qing Li
- Jiangsu Key Laboratory of Crop Genetic and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yang Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Jian Hu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Qigen Dai
- Jiangsu Key Laboratory of Crop Genetic and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
10
|
Xiao X, Li J, Lyu J, Feng Z, Zhang G, Yang H, Gao C, Jin L, Yu J. Chemical fertilizer reduction combined with bio-organic fertilizers increases cauliflower yield via regulation of soil biochemical properties and bacterial communities in Northwest China. Front Microbiol 2022; 13:922149. [PMID: 35966650 PMCID: PMC9363920 DOI: 10.3389/fmicb.2022.922149] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/08/2022] [Indexed: 12/03/2022] Open
Abstract
The continuous application of chemical fertilizers in vegetable cropping has led to deterioration of the soil environment and reduced yield and quality. The objective of this study was to evaluate the effect of combining chemical and bio-organic fertilizers on cauliflower yield, soil biochemical properties, and the bacterial community. Six treatments were established: no fertilizer (CK, control), chemical fertilizers (CF, conventional dosage for this region), balanced fertilization (BF, 30% reduction of chemical fertilizers), and balanced fertilization plus 3,000, 6,000, or 12,000 kg.ha-1 bio-organic fertilizer (Lvneng Ruiqi Biotechnology Co., Ltd., Gansu, China) (BF + OF1, BF + OF2, BF + OF3, respectively). A two-season field experiment with cauliflower was conducted under the different fertilizer treatments in irrigation districts along the Yellow River, Northwest China. The results indicate that the yield, soil organic matter, total potassium content, and enzyme activity under the bio-organic treatments were generally higher than those under the CF treatment. Compared with the CF treatment, the BF treatment increased soil organic matter content, enzyme activity and soil bacterial relative abundance. Moreover, the bacterial alpha-diversity were higher than those of conventional fertilization. The predominant phyla, including Proteobacteria, Actinobacteria, Gemmatimonadetes, and Chloroflexi, were the main contributors to the microbiome shift, as demonstrated by their remarkable enrichment in the soil under BF + OF2 and BF + OF3 treatments. Furthermore, Pearson correlation analyses show significant correlations among the soil organic matter, available P and K, electrical conductivity, and relative abundance of potentially beneficial microbial groups, such as the genera Massilia, Bacillus, Lysobacter, and Nitrosospira. Overall, this study suggests that balanced fertilization and the application of bio-organic fertilizers are essential to ensure soil fertility and long-term sustainable green productivity.
Collapse
Affiliation(s)
- Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Ju Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhi Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Haixing Yang
- Agricultural Technology Extension Center of Yuzhong County, Lanzhou, China
| | - Chengfei Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Li Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
11
|
Xu J, Xie J, Wang Y, Xu L, Zong Y, Pang W, Xie L. Effect of anthraquinone-2,6-disulfonate (AQDS) on anaerobic digestion under ammonia stress: Triggering mediated interspecies electron transfer (MIET). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154158. [PMID: 35240170 DOI: 10.1016/j.scitotenv.2022.154158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The underlying mechanisms by which humic-like substrates affect anaerobic digestion under ammonia stress are insufficiently understood so far. In this study, anthraquinone-2,6-disulfonate (AQDS), a representative analogue of humic acid, was adopted at a 100 μM concentration as the exogenous additive during anaerobic digestion process along with 5.0 g NH4+-N/L stress. The results showed that AQDS could improve the cumulative CH4 production and the maximum CH4 production rate by 7.3 and 10.8%, respectively, and shorten the methanogenic lag phase by 13.8%. Acetate-related production and methanation were both facilitated, during which the biological rather than the chemical mechanism played a crucial role. The microbial diversity distribution revealed that electroactive Anaerolinea and Methanosaeta were significantly enriched in response to AQDS amendment. Herein, AQDS was presumed to serve as an electron shuttle to trigger a mediated interspecies electron transfer (MIET) network among electroactive consortia, thus accelerating acetate methanation and ameliorating methanogenesis under ammonia stress.
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jing Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yipeng Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ling Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yang Zong
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Weihai Pang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
12
|
Short-Term Effects of Reclamation of Aquaculture Ponds to Paddy Fields on Soil Chemical Properties and Bacterial Communities in Eastern China Coastal Zone. SUSTAINABILITY 2022. [DOI: 10.3390/su14031613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Large areas of tidal flats were previously developed into aquaculture ponds and were recently encouraged to be converted into paddy fields to fulfill food and economic needs in China. However, the influences of short-term rice cultivation at the reclaimed aquaculture ponds on soil chemical properties and bacterial communities are poorly understood. To address this issue, we collected mineral soil samples at 0–20 and 20–40 cm depths from non-cultivated soils and paddy fields after being reclaimed from aquaculture ponds in Nantong, China, and identified soil bacterial communities using high-throughput sequencing. The results suggested that rice cultivation significantly increased the accumulation of total soil carbon (TC) and dissolved organic carbon (WSOC). The pH, ammonium (NH4+), nitrate (NO3−) and available phosphorus (AP) varied with the reclamation duration but did not show a unanimous tendency. Proteobacteria, Acidobacteria, Bacteroidetes, Chloroflexi and Planctomycetes dominated the bacterial community in both non-cultivated and cultivated soils after reclamation regardless of cultivation ages and soil depth. The variations in the diversity and composition of the soil microbial community were mainly associated with electrical conductivity (EC), WSOC, TC, NH4+ and NO3− in non-cultivated and cultivated lands. Here, we found that short-term rice cultivation at the reclaimed aquaculture ponds strongly influenced soil bacterial communities and chemical properties, especially in the 0–20 cm depth, in the coastal regions.
Collapse
|
13
|
Noushahi HA, Zhu Z, Khan AH, Ahmed U, Haroon M, Asad M, Hussain M, Beibei H, Zafar M, Alami MM, Shu S. Rhizosphere microbial diversity in rhizosphere of Pinellia ternata intercropped with maize. 3 Biotech 2021; 11:469. [PMID: 34745820 DOI: 10.1007/s13205-021-03011-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 10/02/2021] [Indexed: 11/29/2022] Open
Abstract
Dry tubers of Pinellia ternata (Thunb.) Breit are used in traditional Chinese medicine. Commonly known as "banxia" in China, the tubers contain valuable compounds, including alkaloids and polysaccharides that are widely used in pharmaceuticals. The quantity and quality of these important compounds are affected by whether P. ternata is grown as a sole crop or as an intercrop, and P. ternata cultivation has become challenging in recent years. By intercropping P. ternata, its maximum yield, as well as large numbers of chemical components, can be realized. Here, a large data set derived from next-generation sequencing was used to compare changes in the bacterial communities in rhizosphere soils of P. ternata and maize grown as sole crops and as intercrops. The overall microbial population in the rhizosphere of intercropped P. ternata was significantly larger than that of sole-cropped P. ternata, whereas the numbers of distinct microbial genera, ranging from 552 to 559 among treatments, were not significantly different between the two rhizospheres. The relative abundances of the genera differed. Specifically, the numbers of Acidobacteria and Anaerolineaceae species were significantly greater, and those of Bacillus were significantly lower, in the intercropped P. ternata rhizosphere than in the sole-cropped rhizosphere. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03011-3.
Collapse
Affiliation(s)
- Hamza Armghan Noushahi
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Zhenxing Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetics Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Umair Ahmed
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Muhammad Haroon
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 4300070 China
| | - Muhammad Asad
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Mubashar Hussain
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - He Beibei
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Maimoona Zafar
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Mohammad Murtaza Alami
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
14
|
Chen YP, Tsai CF, Hameed A, Chang YJ, Young CC. Agricultural management and cultivation period alter soil enzymatic activity and bacterial diversity in litchi (Litchi chinensis Sonn.) orchards. BOTANICAL STUDIES 2021; 62:13. [PMID: 34568997 PMCID: PMC8473471 DOI: 10.1186/s40529-021-00322-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Agricultural management and temporal change including climate conditions and soil properties can result in the alteration of soil enzymatic activity and bacterial community, respectively. Therefore, different agricultural practices have been used globally to explore the soil quality. In this study, the temporal variations in soil property, enzymatic activity, and bacterial community at three successive trimester sampling intervals were performed in the soil samples of litchi orchards that were maintained under conventional and sustainable agricultural practices. RESULTS Agricultural management found to significantly influence arylsulfatase, β-glucosidase, and urease activities across time as observed by repeated-measures analysis of variance. Shannon and Simpson diversity indices, and the relative abundance of predominant Acidobacteria and Proteobacteria were significantly influenced by temporal change but not agricultural management. This suggested that soil enzymatic activity was more susceptible to the interaction of temporal change and agricultural management than that of the bacterial community. Multiple regression analysis identified total nitrogen, EC, and phosphorus as the significant predictors of acid phosphatase, arylsulfatase, and β-glucosidase for explaining 29.5-39% of the variation. Moreover, the soil pH and EC were selected for the SOBS, Chao, ACE, and Shannon index to describe 33.8%, 79% of the variation, but no significant predictor was observed in the dominant bacterial phyla. Additionally, the temporal change involved in the soil properties had a greater effect on bacterial richness and diversity, and enzymatic activity than that of the dominant phyla of bacteria. CONCLUSIONS A long-term sustainable agriculture in litchi orchards would also decrease soil pH and phosphorus, resulting in low β-glucosidase and urease activity, bacterial richness, and diversity. Nevertheless, application of chemical fertilizer could facilitate the soil acidification and lead to adverse effects on soil quality. The relationship between bacterial structure and biologically-driven ecological processes can be explored by the cross-over analysis of enzymatic activity, soil properties and bacterial composition.
Collapse
Affiliation(s)
- Yu-Pei Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, 361023 Fujian China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, 361023 Fujian China
| | - Chia-Fang Tsai
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Asif Hameed
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Yu-Jen Chang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 300 Taiwan
| | - Chiu-Chung Young
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227 Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 40227 Taiwan
| |
Collapse
|
15
|
Yao R, Yang J, Wang X, Xie W, Zheng F, Li H, Tang C, Zhu H. Response of soil characteristics and bacterial communities to nitrogen fertilization gradients in a coastal salt‐affected agroecosystem. LAND DEGRADATION & DEVELOPMENT 2021; 32:338-353. [PMID: 0 DOI: 10.1002/ldr.3705] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/26/2020] [Indexed: 05/22/2023]
Affiliation(s)
- Rongjiang Yao
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science, Chinese Academy of Sciences (CAS) Nanjing 210008 PR China
| | - Jinsong Yang
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science, Chinese Academy of Sciences (CAS) Nanjing 210008 PR China
| | - Xiangping Wang
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science, Chinese Academy of Sciences (CAS) Nanjing 210008 PR China
| | - Wenping Xie
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science, Chinese Academy of Sciences (CAS) Nanjing 210008 PR China
| | - Fule Zheng
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science, Chinese Academy of Sciences (CAS) Nanjing 210008 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Hongqiang Li
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science, Chinese Academy of Sciences (CAS) Nanjing 210008 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Cong Tang
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science, Chinese Academy of Sciences (CAS) Nanjing 210008 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Hai Zhu
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science, Chinese Academy of Sciences (CAS) Nanjing 210008 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| |
Collapse
|
16
|
Herath I, Zhao FJ, Bundschuh J, Wang P, Wang J, Ok YS, Palansooriya KN, Vithanage M. Microbe mediated immobilization of arsenic in the rice rhizosphere after incorporation of silica impregnated biochar composites. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:123096. [PMID: 32768840 DOI: 10.1016/j.jhazmat.2020.123096] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
This study mechanistically addressed for the first time, the contradiction between the application of many biochars to paddy soil and increased arsenic (As) release as employed by most of previous studies. Three types of biochar containing natural and chemical forms of Si: (i) unmodified rice husk biochar (RHBC), (ii) RHBC modified with Si fertilizer (Si-RHBC), and (iii) RHBC modified with nanoparticles of montmorillonite clay (NM-RHBC) were applied in As-contaminated paddy soil to examine their potential to control the mobility of As in the soil-microbe-rice system. Both Si-RHBC and NM-RHBC decreased As concentration in porewater by 40-65 %, while RHBC decreased by 30-44 % compared to biochar unamended soil from tillering to maturing stage. At tillering stage, RHBC, Si-RHBC and NM-RHBC amendments significantly decreased As(III) concentration in the rice rhizosphere by 57, 76 and 73 %, respectively compared to the control soil. The immobilization of As is due to: (i) lowering of microbe mediated As release from iron minerals, (ii) oxidation of As(III) to As(V) by aioA gene, and (iii) adsorption on a Si-ferrihydrite complex. The decrease of more toxic As(III) and its oxidation to less mobile As(V) by Si-rich biochar amendments is a promising As detoxification phenomenon in the rice rhizosphere.
Collapse
Affiliation(s)
- Indika Herath
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland 4350, Australia
| | - Fang-Jie Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland 4350, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba 4350, Queensland, Australia.
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Kumuduni Niroshika Palansooriya
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Meththika Vithanage
- Office of the Dean, Faculty of Applied Sciences, Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
17
|
Jin S, Jin W, Dong C, Bai Y, Jin D, Hu Z, Huang Y. Effects of rice straw and rice straw ash on rice growth and α-diversity of bacterial community in rare-earth mining soils. Sci Rep 2020; 10:10331. [PMID: 32587300 PMCID: PMC7316728 DOI: 10.1038/s41598-020-67160-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
Pot experiments were carried out to study the effects of rice straw (RS) and rice straw ash (RSA) on the growth of early rice and α-diversity of bacterial community in soils around rare earth mining areas of Xunwu and Xinfeng counties in South Jiangxi of China. The results showed that the exploitation of rare earth resources leads to soil pollution around rare earth mining areas and affects the growth of rice, and the content of rare earth elements (REEs) in rice was positively correlated with that in soils and negative correlated with dry weight of rice; The addition of RS to soils around REE mining area can inhibit growth of early rice, and the dry weight of rice grains, shoots, roots is lower when compared with the controls, while the content of REEs is higher. The α-diversity of soil bacterial decreases, which promotes the growth of Pseudorhodoferax, Phenylobacterium and other bacteria of the same kind, and inhibits the growth of beneficial bacteria. The addition of RSA to soils had no significant effect on α-diversity of soil bacterial but promoted the growth of Azospira and other beneficial bacteria, inhibited the growth of Bryobacter and other bacteria of the same kind, significantly improved the dry weight of grains, shoots and roots of early rice, and reduced the content of REEs in these parts of rice. It can be concluded that RS is unsuitable to be added to the planting soil of early rice in REE mining area, while RSA is suitable.
Collapse
Affiliation(s)
- Shulan Jin
- College of History, Geography and Tourism, Shangrao Normal University, Shangrao, 334000, China
| | - Wei Jin
- Shangrao Vocational and Technical College, Shangrao, 334109, China
| | - Chengxu Dong
- College of History, Geography and Tourism, Shangrao Normal University, Shangrao, 334000, China
| | - Yijun Bai
- College of History, Geography and Tourism, Shangrao Normal University, Shangrao, 334000, China
| | - Decai Jin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhongjun Hu
- College of History, Geography and Tourism, Shangrao Normal University, Shangrao, 334000, China.
| | - Yizong Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
18
|
Kim T, Noh J, Kwon BO, Lee C, Kim B, Kwon I, Hong S, Chang GS, Chang WK, Nam J, Khim JS. Natural purification capacity of tidal flats for organic matters and nutrients: A mesocosm study. MARINE POLLUTION BULLETIN 2020; 154:111046. [PMID: 32319891 DOI: 10.1016/j.marpolbul.2020.111046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
The regulating services by natural tidal flats to purify organic pollutants are increasingly recognized, but a quantitative assessment is very limited. We developed a mesocosm system to determine removal efficiency of organic matters and nutrients by simulating a natural tidal condition. The tidal flat sediments significantly removed waterborne organic pollutants to background levels in ~2 and 6-7 days for COD and TP, respectively. This rapid removal of organic matters by natural sediments could be attributed to the microbe community degrading the corresponding pollutants. Temporal trend and degree of removal rates for COD and TP were similar between the bare tidal flat and the salt marsh. Meantime, the salt marsh environment removed waterborne DIP much quickly and also efficiently, implying a high affinity of halophytes on dissolved organic matters. Of note, sedimentary organic sink prevailed in defaunated condition under the smaller bioturbation effect. A mini-review on the purification capacity of natural and/or constructed coastal wetlands generally supported a high efficiency of vegetation to remove various sources of organic matters.
Collapse
Affiliation(s)
- Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsung Noh
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Beomgi Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Inha Kwon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gap Soo Chang
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Won Keun Chang
- Korea Maritime Institute, Busan 49111, Republic of Korea
| | - Jungho Nam
- Korea Maritime Institute, Busan 49111, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
19
|
Xu Z, Shao T, Lv Z, Yue Y, Liu A, Long X, Zhou Z, Gao X, Rengel Z. The mechanisms of improving coastal saline soils by planting rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135529. [PMID: 31759722 DOI: 10.1016/j.scitotenv.2019.135529] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 05/27/2023]
Abstract
Planting rice is one of the effective ways to improve saline soils, but the underlying mechanisms are unknown. We studied basic soil properties (including pH, salt content, total nitrogen, etc.) and microbial diversity of the bare soil (salt content >4 g/kg, CK), the Suaeda (Suaeda glauca (Bunge) Bunge) soil (JP), and the soil in which rice (cv. Huaidao 5) grew for one (1Y) and three (3Y) years. The results showed that the soil salinity decreased in the order: CK > JP > 1Y > 3Y. The contents of soil organic matter, total nitrogen, dissolved organic carbon, readily oxidizable carbon, microbial biomass carbon, and particulate organic carbon were higher in 1Y and 3Y compared with CK. The Chao 1 index of soil microbiome diversity was about 1.20 times and 1.49 times higher in the soils after rice compared with JP and CK, respectively. Among the soil microorganisms, the top four abundant phyla were Proteobacteria, Chloroflexi, Bacteriodetes, and Firmicutes. In summary, planting rice decreased soil salinity, and increased the content of nutrients and diversity of microorganisms, thereby improving the saline soil.
Collapse
Affiliation(s)
- Zhikun Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianyun Shao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zixuan Lv
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Yue
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Anhong Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohua Long
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhaosheng Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiumei Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
20
|
Shift of Sediments Bacterial Community in the Black-Odor Urban River during In Situ Remediation by Comprehensive Measures. WATER 2019. [DOI: 10.3390/w11102129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The phenomenon of black-odor urban rivers with rapid urbanization has attracted extensive attention. In this study, we investigated the water quality and composition of sediment-associated bacteria communities in three remediation stages (before remediation, 30 days after remediation, and 90 days after remediation) based on the in situ remediation using comprehensive measures (physical, chemical, and biological measures). The results show that the overlying water quality was notably improved after in situ remediation, while the diversity and richness of sediment-associated bacterial communities decreased. A growing trend of some dominant genus was observed following the remediation of a black-odor river, such as Halomonas, Pseudomonas, Decarbonamis, Leptolina, Longilina, Caldiseericum, Smithella, Mesotoga, Truepera, and Ralstonia, which play an important role in the removal of nitrogen, organic pollutants and hydrogen sulfide (H2S) during the sediment remediation. Redundancy analysis (RDA) showed that the bacterial community succession may accelerate the transformation of organic pollutants into inorganic salts in the sediment after in situ remediation. In a word, the water quality of the black-odor river was obviously improved after in situ remediation, and the bacterial community in the sediment notably changed, which determines the nutrients environment in the sediment.
Collapse
|
21
|
Chen Y, Wang C, Dong S, Jiang L, Shi Y, Li X, Zou W, Tan Z. Microbial community assembly in detergent wastewater treatment bioreactors: Influent rather than inoculum source plays a more important role. BIORESOURCE TECHNOLOGY 2019; 287:121467. [PMID: 31121447 DOI: 10.1016/j.biortech.2019.121467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
In this study, three sequencing batch reactors Ra, Rb, Rc with different inoculum sources (activated sludge; activated sludge plus detergent degrading consortium; detergent degrading consortium) were used to treat detergent wastewater [consisting of sodium dodecyl sulfate, polyoxyethylene lauryl ether and tetrasodium ethylenediamine tetraacetate (Na4EDTA)]. Fast start-up and highest performance in phase I and II (organic loading rate were 0.28, 0.39 kgCOD/kgMLSS/d, respectively) were observed in Rc. In contrast, Rb showed highest impact resistance to the increase of EDTA concentration in phase III. High-throughput sequencing analysis showed that inoculum sources led to significant differences on microbial community in phase I. However, regardless of the influent variation in phases II and III, the differences on microbial community among three SBRs were diminished along long-term operation. Pseudomonas, Sphingopyxis, Luteimonas, Pseudoxanthomonas and SM1A02 were found to be the core taxa, they might contribute to the excellent performance of detergent wastewater treatment.
Collapse
Affiliation(s)
- Yangwu Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Chen Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Shiyang Dong
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China
| | - Lian Jiang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China
| | - Yan Shi
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China
| | - Wantong Zou
- Chengdu No. 20 Middle School, Chengdu 610036, PR China
| | - Zhouliang Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China.
| |
Collapse
|
22
|
Zhang Y, Li Q, Chen Y, Dai Q, Hu J. Mudflat reclamation causes change in the composition of fungal communities under long-term rice cultivation. Can J Microbiol 2019; 65:530-537. [DOI: 10.1139/cjm-2019-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fungi play a critical role in farmland ecosystems, especially in improving soil fertility; however, little is known about the changes in fungal communities caused by mudflat reclamation under rice cultivation. In this study, mudflats located in Yancheng, China, which were divided into nine plots with 0, 11, and 20 years of successive rice cultivation histories, were sampled to determine the fungal community composition by using Illumina MiSeq sequencing. Results show that the Shannon diversity of the fungal communities did not change significantly but the species richness increased under mudflat reclamation with long-term rice cultivation. Ascomycota was the dominant phylum throughout the reclaimed mudflats samples, while Sordariomycetes was the dominant class. Fungal functional prediction found that the relative abundance of saprotrophs gradually increased with mudflat reclamation and mainly belonged to Ascomycota after 20 years of successive reclamation. Redundancy analysis showed that electrical conductivity, organic matter, and total nitrogen were the main factors affecting the composition and ecological function of the fungal community during mudflat reclamation. In short, a fungal community dominated by Ascomycota was established during mudflat reclamation under rice cultivation, which is more conducive to promoting soil fertility because of the higher proportion of saprotrophic fungi in Ascomycota.
Collapse
Affiliation(s)
- Yang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industry Engineering Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Qing Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industry Engineering Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Yinglong Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industry Engineering Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Qigen Dai
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industry Engineering Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Jian Hu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, P.R. China
| |
Collapse
|