1
|
Le Y, Zhang M, Wu P, Wang H, Ni J. Biofuel production from lignocellulose via thermophile-based consolidated bioprocessing. ENGINEERING MICROBIOLOGY 2024; 4:100174. [PMID: 39628591 PMCID: PMC11610967 DOI: 10.1016/j.engmic.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 12/06/2024]
Abstract
The depletion of fossil fuels and their impact on the environment have led to efforts to develop alternative sustainable fuels. While biofuel derived from lignocellulose is considered a sustainable, renewable, and green energy source, enhancing biofuel production and achieving a cost-effective bioconversion of lignocellulose at existing bio-refineries remains a challenge. Consolidated bioprocessing (CBP) using thermophiles can simplify this operation by integrating multiple processes, such as hydrolytic enzyme production, lignocellulose degradation, biofuel fermentation, and product distillation. This paper reviews recent developments in the conversion of lignocellulose to biofuel using thermophile-based CBP. First, advances in thermostable enzyme and thermophilic lignocellulolytic microorganism discovery and development for lignocellulosic biorefinery use are outlined. Then, several thermophilic CBP candidates and thermophilic microbes engineered to drive CBP of lignocellulose are reviewed. CRISPR/Cas-based genome editing tools developed for thermophiles are also highlighted. The potential applications of the Design-Build-Test-Learn (DBTL) synthetic biology strategy for designing and constructing thermophilic CBP hosts are also discussed in detail. Overall, this review illustrates how to develop highly sophisticated thermophilic CBP hosts for use in lignocellulosic biorefinery applications.
Collapse
Affiliation(s)
- Yilin Le
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mengqi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Pengju Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Huilei Wang
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
2
|
Gholampour-Faroji N, Hemmat J, Haddad-Mashadrizeh A, Asoodeh A. Characterization, structural, and evolutionary analysis of an extremophilic GH5 endoglucanase from Bacillus sp. G131: Insights from ancestral sequence reconstruction. Int J Biol Macromol 2024; 277:134311. [PMID: 39094869 DOI: 10.1016/j.ijbiomac.2024.134311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Nature has developed extremozymes that catalyze complex reaction processes in extreme environmental conditions. Accordingly, a combined approach consisting of extremozyme screening, ancestral sequence resurrection (ASR), and molecular dynamic simulation was utilized to construct a developed endoglucanase. The primary experimental and in-silico data led to the prediction of a hypothetical sequence of endoglucanase (EG5-G131) using Bacillus sp. G131 confirmed by amplification and sequencing. EG5-G131 exhibited noticeable stability in a broad-pH range, several detergents, organic solvents, and temperatures up to 80 °C. The molecular weight, Vmax, and Km of the purified endoglucanase were estimated to be 36 kDa, 4.32 μmol/min, and 23.62 mg/ml, respectively. The calculated thermodynamic parameters for EG5-G131 confirmed its intrinsic thermostability. Computational analysis revealed Glu142 and Glu230 as active-site residues of the enzyme. Furthermore, the enzyme remained bound to cellotetraose at 298 K, 333 K, 343 K, and 353 K for 300 ns, consistent with our experimental data. ASR of EG5-G131 led to the introduction of ancestral ANC204 and ANC205, which show similar thermodynamic characteristics with the last Firmicute common ancestor. Finally, truncating loops from the N-terminal of two sequences created two variants with desirable thermal stability, suggesting the evolutionary deciphering of the functional domain of the GH5 family in Bacillus sp. G131.
Collapse
Affiliation(s)
- Nazanin Gholampour-Faroji
- Biotechnology Department, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Jafar Hemmat
- Biotechnology Department, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Aliakbar Haddad-Mashadrizeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ahmad Asoodeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
3
|
Ban H, Liu Q, Xiu L, Cai D, Liu J. Effect of Solid-State Fermentation of Hericium erinaceus on the Structure and Physicochemical Properties of Soluble Dietary Fiber from Corn Husk. Foods 2024; 13:2895. [PMID: 39335822 PMCID: PMC11431227 DOI: 10.3390/foods13182895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Corn husk, a by-product of corn starch production and processing, contains high-quality dietary fiber (DF). Our study compares and analyzes the impact of Hericium erinaceus solid-state fermentation (SSF) on the structure and physicochemical characteristics of soluble dietary fiber (SDF) of corn husks. The study also investigates the kinetics of SSF of H. erinaceus in this process. The scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) results revealed significant structural changes in corn husk SDF before and after fermentation, with a significant elevation in the functional group numbers. The data indicate that the fermented corn husk SDF's water-holding, swelling, and oil-holding capacities increased to 1.57, 1.95, and 1.80 times those of the pre-fermentation SDF, respectively. Additionally, the results suggest that changes in extracellular enzyme activity and nutrient composition during SSF of H. erinaceus are closely associated with the mycelium growth stage, with a mutual promotion or inhibition relationship between the two. Our study offers a foundation for corn husk SDF fermentation and is relevant to the bioconversion of maize processing by-products.
Collapse
Affiliation(s)
- He Ban
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.B.); (Q.L.); (L.X.); (J.L.)
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Qiannan Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.B.); (Q.L.); (L.X.); (J.L.)
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Lin Xiu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.B.); (Q.L.); (L.X.); (J.L.)
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.B.); (Q.L.); (L.X.); (J.L.)
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.B.); (Q.L.); (L.X.); (J.L.)
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
4
|
Abdel-Moghies AH, El-Sehrawy MH, Zakaria AE, Fahmy SM. In vivo application of potent probiotics for enhancing potato growth and controlling Ralstonia solanacearum and Fusarium oxysporum infections. Antonie Van Leeuwenhoek 2024; 117:33. [PMID: 38334837 PMCID: PMC10858073 DOI: 10.1007/s10482-024-01928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
Plant probiotics are live microbial cells or cultures that support plant growth and control plant pathogens through different mechanisms. They have various effects on plants, including plant growth promotion through the production of indole acetic acid (IAA), biological control activity (BCA), and production of cellulase enzymes, thus inducing systemic resistance and increasing the availability of mineral elements. The present work aimed to study the potential of Achromobacter marplatensis and Bacillus velezensis as plant probiotics for the field cultivation of potatoes. In vitro studies have demonstrated the ability of selected probiotics to produce IAA and cellulase, as well as antimicrobial activity against two plant pathogens that infect Solanum tuberosum as Fusarium oxysporum and Ralstonia solanacearum under different conditions at a broad range of different temperatures and pH values. In vivo study of the effects of the probiotics A. marplatensis and B. velezensis on S. tuberosum plants grown in sandy clay loamy soil was detected after cultivation for 90 days. Probiotic isolates A. marplatensis and B. velezensis were able to tolerate ultraviolet radiation (UV) exposure for up to two hours, the dose response curve exhibited that the D10 values of A. marplatensis and B. velezensis were 28 and 16 respectively. In the case of loading both probiotics with broth, the shoot dry weight was increased significantly from 28 in the control to 50 g, shoot length increased from 24 to 45.7 cm, branches numbers increased from 40 to 70 branch, leaves number increased from 99 to 130 leaf, root dry weight increased from 9.3 to 12.9 g, root length increased from 24 to 35.7 cm, tuber weight increased from 15 to 37.0 g and tubers number increased from 9 to 24.4 tuber, the rot percentage was reduced to 0%. The addition of both probiotic isolates, either broth or wheat grains load separately has enhanced all the growth parameters; however, better results and increased production were in favor of adding probiotics with broth more than wheat. On the other hand, both probiotics showed a remarkable protective effect against potato pathogens separately and reduced the negative impact of the infection using them together.
Collapse
Affiliation(s)
- Ahmed Hamdy Abdel-Moghies
- Radiation Microbiology Department, National Center for Research and Radiation Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | | | - Abeer Emam Zakaria
- Radiation Microbiology Department, National Center for Research and Radiation Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Shimaa Mohamed Fahmy
- Radiation Microbiology Department, National Center for Research and Radiation Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
5
|
Zhu X, Ma K, Sun M, Zhang J, Liu L, Niu S. Isolation and identification of pathogens of Morchella sextelata bacterial disease. Front Microbiol 2023; 14:1231353. [PMID: 38029130 PMCID: PMC10657878 DOI: 10.3389/fmicb.2023.1231353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Morel mushroom (Morchella spp.) is a rare edible and medicinal fungus distributed worldwide. It is highly desired by the majority of consumers. Bacterial diseases have been commonly observed during artificial cultivation of Morchella sextelata. Bacterial pathogens spread rapidly and cause a wide range of infections, severely affecting the yield and quality of M. sextelata. In this study, two strains of bacterial pathogens, named M-B and M-5, were isolated, cultured, and purified from the tissues of the infected M. sextelata. Koch's postulates were used to determine the pathogenicity of bacteria affecting M. sextelata, and the pathogens were identified through morphological observation, physiological and biochemical analyses, and 16S rRNA gene sequence analysis. Subsequently, the effect of temperature on the growth of pathogenic bacteria, the inhibitory effect of the bacteria on M. sextelata on plates, and the changes in mycelial morphology of M. sextelata mycelium were analyzed when M. sextelata mycelium was double-cultured with pathogenic bacteria on plates. The results revealed that M-B was Pseudomonas chlororaphis subsp. aureofaciens and M-5 was Bacillus subtilis. Strain M-B started to multiply at 10-15°C, and strain M-5 started at 15-20°C. On the plates, the pathogenic bacteria also produced significant inhibition of M. sextelata mycelium, and the observation of mycelial morphology under the scanning electron microscopy revealed that the inhibited mycelium underwent obvious drying and crumpling, and the healthy mycelium were more plump. Thus, this study clarified the pathogens, optimal growth environment, and characteristics of M. sextelata bacterial diseases, thereby providing valuable basic data for the disease prevention and control of Morchella production.
Collapse
|