1
|
Agorastos A, Mansueto AC, Hager T, Pappi E, Gardikioti A, Stiedl O. Heart Rate Variability as a Translational Dynamic Biomarker of Altered Autonomic Function in Health and Psychiatric Disease. Biomedicines 2023; 11:1591. [PMID: 37371686 DOI: 10.3390/biomedicines11061591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The autonomic nervous system (ANS) is responsible for the precise regulation of tissue functions and organs and, thus, is crucial for optimal stress reactivity, adaptive responses and health in basic and challenged states (survival). The fine-tuning of central ANS activity relies on the internal central autonomic regulation system of the central autonomic network (CAN), while the peripheral activity relies mainly on the two main and interdependent peripheral ANS tracts, the sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS). In disease, autonomic imbalance is associated with decreased dynamic adaptability and increased morbidity and mortality. Acute or prolonged autonomic dysregulation, as observed in stress-related disorders, affects CAN core centers, thereby altering downstream peripheral ANS function. One of the best established and most widely used non-invasive methods for the quantitative assessment of ANS activity is the computerized analysis of heart rate variability (HRV). HRV, which is determined by different methods from those used to determine the fluctuation of instantaneous heart rate (HR), has been used in many studies as a powerful index of autonomic (re)activity and an indicator of cardiac risk and ageing. Psychiatric patients regularly show altered autonomic function with increased HR, reduced HRV and blunted diurnal/circadian changes compared to the healthy state. The aim of this article is to provide basic knowledge on ANS function and (re)activity assessment and, thus, to support a much broader use of HRV as a valid, transdiagnostic and fully translational dynamic biomarker of stress system sensitivity and vulnerability to stress-related disorders in neuroscience research and clinical psychiatric practice. In particular, we review the functional levels of central and peripheral ANS control, the main neurobiophysiologic theoretical models (e.g., polyvagal theory, neurovisceral integration model), the precise autonomic influence on cardiac function and the definition and main aspects of HRV and its different measures (i.e., time, frequency and nonlinear domains). We also provide recommendations for the proper use of electrocardiogram recordings for HRV assessment in clinical and research settings and highlight pathophysiological, clinical and research implications for a better functional understanding of the neural and molecular mechanisms underlying healthy and malfunctioning brain-heart interactions in individual stress reactivity and psychiatric disorders.
Collapse
Affiliation(s)
- Agorastos Agorastos
- II. Department of Psychiatry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 56430 Thessaloniki, Greece
| | - Alessandra C Mansueto
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam, 1081 HV Amsterdam, The Netherlands
- Centre for Urban Mental Health, University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Torben Hager
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Eleni Pappi
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Angeliki Gardikioti
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Oliver Stiedl
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Health, Safety and Environment, Vrije Universiteit (VU) Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
2
|
Voikar V, Gaburro S. Three Pillars of Automated Home-Cage Phenotyping of Mice: Novel Findings, Refinement, and Reproducibility Based on Literature and Experience. Front Behav Neurosci 2020; 14:575434. [PMID: 33192366 PMCID: PMC7662686 DOI: 10.3389/fnbeh.2020.575434] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Animal models of neurodegenerative and neuropsychiatric disorders require extensive behavioral phenotyping. Currently, this presents several caveats and the most important are: (i) rodents are nocturnal animals, but mostly tested during the light period; (ii) the conventional behavioral experiments take into consideration only a snapshot of a rich behavioral repertoire; and (iii) environmental factors, as well as experimenter influence, are often underestimated. Consequently, serious concerns have been expressed regarding the reproducibility of research findings on the one hand, and appropriate welfare of the animals (based on the principle of 3Rs-reduce, refine and replace) on the other hand. To address these problems and improve behavioral phenotyping in general, several solutions have been proposed and developed. Undisturbed, 24/7 home-cage monitoring (HCM) is gaining increased attention and popularity as demonstrating the potential to substitute or complement the conventional phenotyping methods by providing valuable data for identifying the behavioral patterns that may have been missed otherwise. In this review, we will briefly describe the different technologies used for HCM systems. Thereafter, based on our experience, we will focus on two systems, IntelliCage (NewBehavior AG and TSE-systems) and Digital Ventilated Cage (DVC®, Tecniplast)-how they have been developed and applied during recent years. Additionally, we will touch upon the importance of the environmental/experimenter artifacts and propose alternative suggestions for performing phenotyping experiments based on the published evidence. We will discuss how the integration of telemetry systems for deriving certain physiological parameters can help to complement the description of the animal model to offer better translation to human studies. Ultimately, we will discuss how such HCM data can be statistically interpreted and analyzed.
Collapse
Affiliation(s)
- Vootele Voikar
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
3
|
Valenza G, Citi L, Garcia RG, Taylor JN, Toschi N, Barbieri R. Complexity Variability Assessment of Nonlinear Time-Varying Cardiovascular Control. Sci Rep 2017; 7:42779. [PMID: 28218249 PMCID: PMC5316947 DOI: 10.1038/srep42779] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 12/30/2016] [Indexed: 11/23/2022] Open
Abstract
The application of complex systems theory to physiology and medicine has provided meaningful information about the nonlinear aspects underlying the dynamics of a wide range of biological processes and their disease-related aberrations. However, no studies have investigated whether meaningful information can be extracted by quantifying second-order moments of time-varying cardiovascular complexity. To this extent, we introduce a novel mathematical framework termed complexity variability, in which the variance of instantaneous Lyapunov spectra estimated over time serves as a reference quantifier. We apply the proposed methodology to four exemplary studies involving disorders which stem from cardiology, neurology and psychiatry: Congestive Heart Failure (CHF), Major Depression Disorder (MDD), Parkinson's Disease (PD), and Post-Traumatic Stress Disorder (PTSD) patients with insomnia under a yoga training regime. We show that complexity assessments derived from simple time-averaging are not able to discern pathology-related changes in autonomic control, and we demonstrate that between-group differences in measures of complexity variability are consistent across pathologies. Pathological states such as CHF, MDD, and PD are associated with an increased complexity variability when compared to healthy controls, whereas wellbeing derived from yoga in PTSD is associated with lower time-variance of complexity.
Collapse
Affiliation(s)
- Gaetano Valenza
- Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Information Engineering and Bioengineering and Robotics Research Centre “E. Piaggio”, School of Engineering, University of Pisa, Italy
| | - Luca Citi
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - Ronald G. Garcia
- Masira Research Institute, School of Medicine, Universidad de Santander, Bucaramanga, Colombia
| | | | - Nicola Toschi
- Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- University of Rome “Tor Vergata”, Rome, Italy
| | - Riccardo Barbieri
- Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Politecnico di Milano, Milan, Italy
| |
Collapse
|
4
|
Nardelli M, Valenza G, Cristea IA, Gentili C, Cotet C, David D, Lanata A, Scilingo EP. Characterizing psychological dimensions in non-pathological subjects through autonomic nervous system dynamics. Front Comput Neurosci 2015; 9:37. [PMID: 25859212 PMCID: PMC4373375 DOI: 10.3389/fncom.2015.00037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/06/2015] [Indexed: 11/17/2022] Open
Abstract
The objective assessment of psychological traits of healthy subjects and psychiatric patients has been growing interest in clinical and bioengineering research fields during the last decade. Several experimental evidences strongly suggest that a link between Autonomic Nervous System (ANS) dynamics and specific dimensions such as anxiety, social phobia, stress, and emotional regulation might exist. Nevertheless, an extensive investigation on a wide range of psycho-cognitive scales and ANS non-invasive markers gathered from standard and non-linear analysis still needs to be addressed. In this study, we analyzed the discerning and correlation capabilities of a comprehensive set of ANS features and psycho-cognitive scales in 29 non-pathological subjects monitored during resting conditions. In particular, the state of the art of standard and non-linear analysis was performed on Heart Rate Variability, InterBreath Interval series, and InterBeat Respiration series, which were considered as monovariate and multivariate measurements. Experimental results show that each ANS feature is linked to specific psychological traits. Moreover, non-linear analysis outperforms the psychological assessment with respect to standard analysis. Considering that the current clinical practice relies only on subjective scores from interviews and questionnaires, this study provides objective tools for the assessment of psychological dimensions.
Collapse
Affiliation(s)
- Mimma Nardelli
- Department of Information Engineering & Research Centre E. Piaggio, Faculty of Engineering, University of PisaPisa, Italy
| | - Gaetano Valenza
- Department of Information Engineering & Research Centre E. Piaggio, Faculty of Engineering, University of PisaPisa, Italy
| | - Ioana A. Cristea
- Section of Psychology, Department of Surgical, Medical, Molecular, and Critical Area Pathology, University of PisaPisa, Italy
- Department of Clinical Psychology and Pychotherapy, Babes-Bolyai UniversityCluj-Napoca, Romania
| | - Claudio Gentili
- Section of Psychology, Department of Surgical, Medical, Molecular, and Critical Area Pathology, University of PisaPisa, Italy
| | - Carmen Cotet
- Department of Clinical Psychology and Pychotherapy, Babes-Bolyai UniversityCluj-Napoca, Romania
| | - Daniel David
- Department of Clinical Psychology and Pychotherapy, Babes-Bolyai UniversityCluj-Napoca, Romania
| | - Antonio Lanata
- Department of Information Engineering & Research Centre E. Piaggio, Faculty of Engineering, University of PisaPisa, Italy
| | - Enzo P. Scilingo
- Department of Information Engineering & Research Centre E. Piaggio, Faculty of Engineering, University of PisaPisa, Italy
| |
Collapse
|
5
|
Hager T, Maroteaux G, Pont PD, Julsing J, van Vliet R, Stiedl O. Munc18-1 haploinsufficiency results in enhanced anxiety-like behavior as determined by heart rate responses in mice. Behav Brain Res 2013; 260:44-52. [PMID: 24304718 DOI: 10.1016/j.bbr.2013.11.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 12/15/2022]
Abstract
Heterozygous (HZ) missense mutations in the gene encoding syntaxin binding protein 1 (Stxbp1 or Munc18-1), a presynaptic protein essential for neurotransmitter release, causes early infantile epileptic encephalopathy, abnormal brain structure and mental retardation in humans. Here we investigated whether the mouse model mimics symptoms of the human phenotype. The effects of the deletion of munc18-1 were studied in HZ and wild-type (WT) mice based on heart rate (HR) and its variability (HRV) as independent measures to expand previous behavioral results of enhanced anxiety and impaired emotional learning suggesting mild cognitive impairments. HR responses were assessed during novelty exposure, during the expression and extinction of conditioned tone-dependent fear and during the diurnal phase. Novelty exposure yielded no differences in activity patterns between the two genotypes, while maximum HR differed significantly (WT: 770 bpm; HZ: 790 bpm). Retention tests after both auditory delay and trace fear conditioning showed a delayed extinction of the conditioned HR response in HZ mice compared to WT mice. Since the HR versus HRV correlation and HR dynamics assessed by nonlinear methods revealed similar function in HZ and WT mice, the higher HR responses of munc18-1 HZ mice to different emotional challenges cannot be attributed to differences in autonomic nervous system function. Thus, in contrast to the adverse consequences of deletion of a single allele of munc18-1 in humans, C57BL/6J mice show enhanced anxiety responses based on HR adjustments that extend previous results on the behavioral level without support of cognitive impairment, epileptic seizures and autonomic dysregulation.
Collapse
Affiliation(s)
- Torben Hager
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands; Sylics BV, PO Box 71033, 1008 BA Amsterdam, The Netherlands
| | - Grégoire Maroteaux
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Paula du Pont
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Joris Julsing
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Rick van Vliet
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Oliver Stiedl
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Agorastos A, Boel JA, Heppner PS, Hager T, Moeller-Bertram T, Haji U, Motazedi A, Yanagi MA, Baker DG, Stiedl O. Diminished vagal activity and blunted diurnal variation of heart rate dynamics in posttraumatic stress disorder. Stress 2013; 16:300-10. [PMID: 23167763 DOI: 10.3109/10253890.2012.751369] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Affected autonomic heart regulation is implicated in the pathophysiology of cardiovascular diseases and is associated with posttraumatic stress disorder (PTSD). However, although sympathetic hyperactivation has been repeatedly shown in PTSD, research has neglected parasympathetic function. The objective of this study is the long-term assessment of heart rate (HR) dynamics and its diurnal changes as an index of autonomic imbalance in PTSD. Since tonic parasympathetic activity underlies long-range correlation of heartbeat interval fluctuations in the healthy state, we included nonlinear (unifractal) analysis as an important and sensitive readout to assess functional alterations. We conducted electrocardiogram recordings over a 24-h period in 15 deployed male subjects with moderate to high levels of combat exposure (PTSD: n = 7; combat controls: n = 8) in the supine position. HR dynamics were assessed in two 5-h sub-epochs in the time and frequency domains, and by nonlinear analysis based on detrended fluctuation analysis. Psychiatric symptoms were assessed using structured interviews, including the Clinician Administered PTSD Scale. Subjects with PTSD showed significantly higher baseline HR, higher LF/HF ratio in the frequency domain, blunted differences between day and night-time measures, as well as a higher scaling coefficient αfast during the day, indicating diminished tonic parasympathetic activity. Diminished diurnal differences and blunted tonic parasympathetic activity altering HR dynamics suggest central neuroautonomic dysregulation that could represent a possible link to increased cardiovascular disease in PTSD.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Veterans Affairs Center of Excellence for Stress and Mental Health, VA San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Skinner JE, Meyer M, Dalsey WC, Nester BA, Ramalanjaona G, O'Neil BJ, Mangione A, Terregino C, Moreyra A, Weiss DN, Anchin JM, Geary U, Taggart P. Risk stratification for arrhythmic death in an emergency department cohort: a new method of nonlinear PD2i analysis of the ECG. Ther Clin Risk Manag 2011; 4:689-97. [PMID: 19209249 PMCID: PMC2621378 DOI: 10.2147/tcrm.s2741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Heart rate variability (HRV) reflects both cardiac autonomic function and risk of sudden arrhythmic death (AD). Indices of HRV based on linear stochastic models are independent risk factors for AD in postmyocardial infarction (MI) cohorts. Indices based on nonlinear deterministic models have a higher sensitivity and specificity for predicting AD in retrospective data. A new nonlinear deterministic model, the automated Point Correlation Dimension (PD2i), was prospectively evaluated for prediction of AD. Patients were enrolled (N = 918) in 6 emergency departments (EDs) upon presentation with chest pain and being determined to be at risk of acute MI (AMI) >7%. Brief digital ECGs (>1000 heartbeats, approximately 15 min) were recorded and automated PD2i results obtained. Out-of-hospital AD was determined by modified Hinkle-Thaler criteria. All-cause mortality at 1 year was 6.2%, with 3.5% being ADs. Of the AD fatalities, 34% were without previous history of MI or diagnosis of AMI. The PD2i prediction of AD had sensitivity = 96%, specificity = 85%, negative predictive value = 99%, and relative risk >24.2 (p ≤ 0.001). HRV analysis by the time-dependent nonlinear PD2i algorithm can accurately predict risk of AD in an ED cohort and may have both life-saving and resource-saving implications for individual risk assessment.
Collapse
|
8
|
Skinner JE, Anchin JM, Weiss DN. Nonlinear analysis of the heartbeats in public patient ECGs using an automated PD2i algorithm for risk stratification of arrhythmic death. Ther Clin Risk Manag 2011; 4:549-57. [PMID: 18728829 PMCID: PMC2504053 DOI: 10.2147/tcrm.s2521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Heart rate variability (HRV) reflects both cardiac autonomic function and risk of arrhythmic death (AD). Reduced indices of HRV based on linear stochastic models are independent risk factors for AD in post-myocardial infarct cohorts. Indices based on nonlinear deterministic models have a significantly higher sensitivity and specificity for predicting AD in retrospective data. A need exists for nonlinear analytic software easily used by a medical technician. In the current study, an automated nonlinear algorithm, the time-dependent point correlation dimension (PD2i), was evaluated. The electrocardiogram (ECG) data were provided through an National Institutes of Health-sponsored internet archive (PhysioBank) and consisted of all 22 malignant arrhythmia ECG files (VF/VT) and 22 randomly selected arrhythmia files as the controls. The results were blindly calculated by automated software (Vicor 2.0, Vicor Technologies, Inc., Boca Raton, FL) and showed all analyzable VF/VT files had PD2i < 1.4 and all analyzable controls had PD2i > 1.4. Five VF/VT and six controls were excluded because surrogate testing showed the RR-intervals to contain noise, possibly resulting from the low digitization rate of the ECGs. The sensitivity was 100%, specificity 85%, relative risk > 100; p < 0.01, power > 90%. Thus, automated heartbeat analysis by the time-dependent nonlinear PD2i-algorithm can accurately stratify risk of AD in public data made available for competitive testing of algorithms.
Collapse
|
9
|
Kas MJH, Krishnan V, Gould TD, Collier DA, Olivier B, Lesch KP, Domenici E, Fuchs E, Gross C, Castrén E. Advances in multidisciplinary and cross-species approaches to examine the neurobiology of psychiatric disorders. Eur Neuropsychopharmacol 2011; 21:532-44. [PMID: 21237620 DOI: 10.1016/j.euroneuro.2010.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/02/2010] [Accepted: 12/04/2010] [Indexed: 01/03/2023]
Abstract
Current approaches to dissect the molecular neurobiology of complex neuropsychiatric disorders such as schizophrenia and major depression have been rightly criticized for failing to provide benefits to patients. Improving the translational potential of our efforts will require the development and refinement of better disease models that consider a wide variety of contributing factors, such as genetic variation, gene-by-environment interactions, endophenotype or intermediate phenotype assessment, cross species analysis, sex differences, and developmental stages. During a targeted expert meeting of the European College of Neuropsychopharmacology (ECNP) in Istanbul, we addressed the opportunities and pitfalls of current translational animal models of psychiatric disorders and agreed on a series of core guidelines and recommendations that we believe will help guiding further research in this area.
Collapse
Affiliation(s)
- Martien J H Kas
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Skinner JE, Meyer M, Nester BA, Geary U, Taggart P, Mangione A, Ramalanjaona G, Terregino C, Dalsey WC. Comparison of linear-stochastic and nonlinear-deterministic algorithms in the analysis of 15-minute clinical ECGs to predict risk of arrhythmic death. Ther Clin Risk Manag 2009; 5:671-82. [PMID: 19707283 PMCID: PMC2731023 DOI: 10.2147/tcrm.s5568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Indexed: 11/23/2022] Open
Abstract
Objective: Comparative algorithmic evaluation of heartbeat series in low-to-high risk cardiac patients for the prospective prediction of risk of arrhythmic death (AD). Background: Heartbeat variation reflects cardiac autonomic function and risk of AD. Indices based on linear stochastic models are independent risk factors for AD in post-myocardial infarction (post-MI) cohorts. Indices based on nonlinear deterministic models have superior predictability in retrospective data. Methods: Patients were enrolled (N = 397) in three emergency departments upon presenting with chest pain and were determined to be at low-to-high risk of acute MI (>7%). Brief ECGs were recorded (15 min) and R-R intervals assessed by three nonlinear algorithms (PD2i, DFA, and ApEn) and four conventional linear-stochastic measures (SDNN, MNN, 1/f-Slope, LF/HF). Out-of-hospital AD was determined by modified Hinkle–Thaler criteria. Results: All-cause mortality at one-year follow-up was 10.3%, with 7.7% adjudicated to be AD. The sensitivity and relative risk for predicting AD was highest at all time-points for the nonlinear PD2i algorithm (p ≤0.001). The sensitivity at 30 days was 100%, specificity 58%, and relative risk >100 (p ≤0.001); sensitivity at 360 days was 95%, specificity 58%, and relative risk >11.4 (p ≤0.001). Conclusions: Heartbeat analysis by the time-dependent nonlinear PD2i algorithm is comparatively the superior test.
Collapse
|
11
|
Assessing aversive emotional states through the heart in mice: Implications for cardiovascular dysregulation in affective disorders. Neurosci Biobehav Rev 2009; 33:181-90. [DOI: 10.1016/j.neubiorev.2008.08.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 08/19/2008] [Accepted: 08/25/2008] [Indexed: 11/17/2022]
|
12
|
Meyer M, Stiedl O. Fractal rigidity by enhanced sympatho-vagal antagonism in heartbeat interval dynamics elicited by central application of corticotropin-releasing factor in mice. J Math Biol 2006; 52:830-74. [PMID: 16521022 DOI: 10.1007/s00285-006-0375-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 12/06/2005] [Indexed: 10/24/2022]
Abstract
The dynamics of heartbeat interval fluctuations were studied in awake unrestrained mice following intracerebroventricular application of the neuropeptide corticotropin-releasing factor (CRF). The cardiac time series derived from telemetric ECG monitoring were analyzed by non-parametric techniques of nonlinear signal processing: delay-vector variance (DVV) analysis, higher-order variability (HOV) analysis, empirical mode decomposition (EMD), multiscale embedding-space decomposition (MESD), multiexponent multifractal (MEMF) analysis. The analyses support the conjecture that cardiac dynamics of normal control mice has both deterministic and stochastic elements, is nonstationary, nonlinear, and exerts multifractal properties. Central application of CRF results in bradycardia and increased variability of the beat-to-beat fluctuations. The altered dynamical properties elicited by CRF reflect a significant loss of intrinsic structural complexity of cardiac control which is due to central neuroautonomic hyperexcitation, i.e., enhanced sympatho-vagal antagonism. The change in dynamical complexity is characterized by an effect referred to as fractal rigidity, leading to a significant impairment of adaptability to extrinsic challenges in a fluctuating environment. The impact of dynamical neurocardiopathy as a major precipiting factor for the propensity of cardiac arrhythmias or sudden cardiac death by unchecked central CRF release in significant acute life events in man is critically discussed.
Collapse
Affiliation(s)
- M Meyer
- Fractal Physiology, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.
| | | |
Collapse
|
13
|
Stiedl O, Tovote P, Ogren SO, Meyer M. Behavioral and autonomic dynamics during contextual fear conditioning in mice. Auton Neurosci 2004; 115:15-27. [PMID: 15507402 DOI: 10.1016/j.autneu.2004.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 06/16/2004] [Accepted: 07/20/2004] [Indexed: 11/17/2022]
Abstract
Aversive conditioning to contextual stimulation was performed in mice implanted with ECG transmitters to investigate heart rate (HR) and behavioral responses during contextual retention. The dynamics of HR were analyzed by advanced nonlinear techniques to uncover central neuroautonomic outflow inferred from its sympathetic (SNS) and parasympathetic (PNS) projection onto the sinus node of the heart. Mice experienced a single foot shock (US, unconditioned stimulus) either immediately (USi) or late (USl) after placement in the conditioning context. Contextual memory was tested 24 h after training by reexposure to the conditioning context for 32 min. Only mice that experienced the USl exhibited a pronounced and sustained behavioral suppression (immobility) indicative of conditioned contextual fear. In contrast, HR was initially close to its maximal physiological limit (approximately 800 bpm) in all groups, and recovery towards baseline levels was sluggish, the most pronounced delay observed in the USl group. The results demonstrate that behavioral immobility was associated with maximum activation of autonomic system output in response to contextual reexposure. However, advanced complexity analysis of the variability of HR revealed uniform or stereotyped dynamical properties that were interpreted to reflect a generalized state of anticipatory emotional arousal experienced during reexposure to contextual stimuli. It is concluded that the dynamics of HR is a highly sensitive index of the autonomic nervous system response and emotional state elicited by sensory stimulation of an unfamiliar environment.
Collapse
Affiliation(s)
- Oliver Stiedl
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|