1
|
Park S, Sharma H, Safdar M, Lee J, Kim W, Park S, Jeong HE, Kim J. Micro/nanoengineered agricultural by-products for biomedical and environmental applications. ENVIRONMENTAL RESEARCH 2024; 250:118490. [PMID: 38365052 DOI: 10.1016/j.envres.2024.118490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Agriculturally derived by-products generated during the growth cycles of living organisms as secondary products have attracted increasing interest due to their wide range of biomedical and environmental applications. These by-products are considered promising candidates because of their unique characteristics including chemical stability, profound biocompatibility and offering a green approach by producing the least impact on the environment. Recently, micro/nanoengineering based techniques play a significant role in upgrading their utility, by controlling their structural integrity and promoting their functions at a micro and nano scale. Specifically, they can be used for biomedical applications such as tissue regeneration, drug delivery, disease diagnosis, as well as environmental applications such as filtration, bioenergy production, and the detection of environmental pollutants. This review highlights the diverse role of micro/nano-engineering techniques when applied on agricultural by-products with intriguing properties and upscaling their wide range of applications across the biomedical and environmental fields. Finally, we outline the future prospects and remarkable potential that these agricultural by-products hold in establishing a new era in the realms of biomedical science and environmental research.
Collapse
Affiliation(s)
- Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang, 50463, Republic of Korea
| | - Harshita Sharma
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeongryun Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sangbae Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Biosystems Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
2
|
Moridi H, Gh AB. Functionalization of a cast NaAl/binary ZnO/SiO 2 nanohybrid with amine and Schiff base ligands as an adsorbent of divalent cations in water system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28454-28473. [PMID: 38539000 DOI: 10.1007/s11356-024-32148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/03/2023] [Indexed: 04/30/2024]
Abstract
Casting method was used to synthesize a novel sodium alginate nanohybrid functionalized with aminated ZnO/SiO2 Schiff base for adsorption of nickel (Ni2+) and copper (Cu2+) divalent cations in single and binary water systems. The cast Schiff base nanohybrids were investigated using FESEM, XRD, BET, FTIR, TGA, and XPS analyses. The influence of unfunctionalized binary ZnO/SiO2 nano oxides and aminated Schiff base ligands formed by the reaction between salicylaldehyde and O-phenylenediamine on the adsorption of Ni2+ and Cu2+ cations was evaluated. The results confirmed that the aminated Schiff base ligands led to a higher adsorption ability of the cast nanohybrids containing interaction of divalent cations with nitrogen and oxygen atoms, as well as carboxyl and hydroxyl groups. The adsorption kinetics and isotherm for both cations followed a double-exponential model and the Redlich-Peterson model, respectively. The maximum monolayer capacity was found to be 249.8 mg/g for Cu2+ cation and 96.4 mg/g for Ni2+ cation. Thermodynamic analysis revealed an endothermic and spontaneous adsorption process with an increase in entropy. Furthermore, the synthesized Schiff base adsorbent could be easily reused over five times. The simultaneous adsorption in binary system exhibited a higher adsorption selectivity of the cast Schiff base nanohybrid for Cu2+ cation compared to Ni2+ cation. It was found that the removal percentages of Cu2+ and Ni2+ from industrial electroplating wastewater were 91.3 and 64.5%, respectively. Lastly, cost analysis of the synthesized nanohybrid was investigated.
Collapse
Affiliation(s)
- Hadis Moridi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Azar Bagheri Gh
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Ahmaruzzaman M, Roy P, Bonilla-Petriciolet A, Badawi M, Ganachari SV, Shetti NP, Aminabhavi TM. Polymeric hydrogels-based materials for wastewater treatment. CHEMOSPHERE 2023; 331:138743. [PMID: 37105310 DOI: 10.1016/j.chemosphere.2023.138743] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Low-cost and reliable wastewater treatment is a relevant issue worldwide to reduce the concentration of environmental pollutants. Industrial effluents containing dyes, heavy metals, and other inorganic and organic compounds can pollute water resources; therefore, novel technologies are required to mitigate and control their release into the environment. Adsorption is one of the simplest methods for treating contaminated water in which a wide spectrum of adsorbents can be used to remove emerging compounds. Hydrogels are interesting materials with high adsorption capacities that can be synthesized via green routes. These adsorbents are promising for large-scale industrial wastewater treatment applications; however, gaps still exist in achieving sustainable commercial implementation. This review focuses on the discussion and analysis of preparation, characterization, and adsorption properties of hydrogels for water purification. The advantages of these polymeric materials for water treatment were analyzed, including their performance in the removal of different organic and inorganic contaminants. Recent advances in the functionalization of hydrogels and the synthesis of novel composites have also been described. The adsorption capacities of hydrogel-based adsorbents are higher than 500 mg/g for different organic and inorganic pollutants, and can reach values of up to >2000 mg/g for organic compounds, significantly outperforming other materials reported for water cleaning. The main interactions involved in the adsorption of water pollutants using hydrogel-based adsorbents were described and explained to allow the interpretation of their removal mechanisms. The current challenges in the implementation of hydrogels for water purification in real-life operations are also highlighted. This review provides an updated picture of hydrogels as interesting materials to address water depollution worldwide.
Collapse
Affiliation(s)
- Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.
| | - Prerona Roy
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | | | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Sharanabasava V Ganachari
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India.
| |
Collapse
|
4
|
Duran C, Ozeken ST, Camoglu AY, Ozdes D. Enhancement of adsorptive removal efficiency of an anionic dye from aqueous solutions using carboxylic acid-modified mulberry leaves: Artificial neural network modeling, isotherm, and kinetics evaluation. JOURNAL OF WATER AND HEALTH 2023; 21:869-883. [PMID: 37515559 PMCID: wh_2023_025 DOI: 10.2166/wh.2023.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Natural mulberry leaves and carboxylic acid-modified mulberry (Morus alba L.) leaves were used for the first time to scrutinize the effects of modification on the retention efficiency of an anionic dye (Remazol Brilliant Blue R (RBBR)) from aqueous solutions to suggest an economical and promising adsorbent for the treatment of dye-contaminated water. The characterization of the adsorbents was accomplished through common techniques including SEM, FTIR, and pHpzc determination. Several parameters studied in batch experiments pointed out that the initial pH of 2.0 and the contact time of 240 min were optimum conditions for all the developed RBBR uptake processes. An artificial neural network (ANN) model was applied to formulate a forecast model for the uptake efficiency of RBBR. The experimental data were assessed by different kinetic and isotherm models to explain the mechanism of the developed processes in more detail. Maximum monolayer adsorption capacities of natural mulberry leaves and acetic acid-, citric acid-, and oxalic acid-modified mulberry leaves were determined as 64.5, 95.2, 84.8, and 91.7 mg g-1, respectively, by the Langmuir isotherm model. These results demonstrated that the modification with carboxylic acids significantly increases the anionic dye adsorption capacity of the mulberry leaves.
Collapse
Affiliation(s)
- Celal Duran
- Faculty of Sciences, Department of Chemistry, Karadeniz Technical University, 61080 Trabzon, Türkiye E-mail:
| | - Sengul Tugba Ozeken
- Faculty of Sciences, Department of Chemistry, Karadeniz Technical University, 61080 Trabzon, Türkiye
| | - Aslihan Yilmaz Camoglu
- Faculty of Sciences, Department of Chemistry, Karadeniz Technical University, 61080 Trabzon, Türkiye
| | - Duygu Ozdes
- Gumushane Vocational School, Chemistry and Chemical Processing Technologies Department, Gumushane University, 29100 Gumushane, Türkiye
| |
Collapse
|
5
|
Moridi H, Gh AB. Sodium alginate/polyvinyl pyrrolidone/zinc oxide @silica Schiff-base nanofiber membrane for single and binary removal of copper and nickel cations from aqueous medium. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04834-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Hasan Z, Afroz S, Nipa K, Rahaman MS, Hasnine SMM, Ahmed T, Sultana S, Takafuji M, Alam MA. Adsorption isotherm and kinetics of methylene blue on gamma radiation assisted Starch/Acrylic acid/4-Styrenesulfonic acid sodium salt hydrogel. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.1982970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zahid Hasan
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Sadia Afroz
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Khayrunnahar Nipa
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - M. S. Rahaman
- Institute of Nuclear Science & Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - S. M. M. Hasnine
- Institute of Nuclear Science & Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - Tanvir Ahmed
- Institute of Nuclear Science & Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - Salma Sultana
- Institute of Nuclear Science & Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto, Japan
| | - M. A. Alam
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
7
|
Balci B, Erkurt FE, Basibuyuk M, Budak F, Zaimoglu Z, Turan ES, Yilmaz S. Removal of Reactive Blue 19 from simulated textile wastewater by Powdered Activated Carbon/Maghemite composite. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1982979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Behzat Balci
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| | - F. Elcin Erkurt
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| | - Mesut Basibuyuk
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| | - Fuat Budak
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| | - Zeynep Zaimoglu
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| | - E. Su Turan
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| | - Sevgi Yilmaz
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| |
Collapse
|
8
|
Nour HF, E. Abdel Mageid R, Radwan EK, Khattab TA, Olson MA, El Malah T. Adsorption isotherms and kinetic studies for the removal of toxic reactive dyestuffs from contaminated water using a viologen-based covalent polymer. NEW J CHEM 2021. [DOI: 10.1039/d1nj02488d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A polyviologen-based adsorbent was prepared via polymerization of a viologen-dialdehyde with a hydroxyl-substituted aryl-dihydrazide in acidified water.
Collapse
Affiliation(s)
- Hany F. Nour
- National Research Centre, Photochemistry Department, Chemical Industries Research Division, 33 El Buhouth Street, P.O. Box 12622, Cairo, Egypt
| | - Randa E. Abdel Mageid
- National Research Centre, Photochemistry Department, Chemical Industries Research Division, 33 El Buhouth Street, P.O. Box 12622, Cairo, Egypt
| | - Emad K. Radwan
- National Research Centre, Water Pollution Research Department, 33 El Buhouth Street, P. O. Box 12622, Cairo, Egypt
| | - Tawfik A. Khattab
- National Research Centre, Dyeing, Printing and Auxiliaries Department, Textile Industries Research Division, 33 El Buhouth Street, P. O. Box 12622, Cairo, Egypt
| | - Mark A. Olson
- Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, lL 60208, USA
| | - Tamer El Malah
- National Research Centre, Photochemistry Department, Chemical Industries Research Division, 33 El Buhouth Street, P.O. Box 12622, Cairo, Egypt
| |
Collapse
|
9
|
New alginate-based interpenetrating polymer networks for water treatment: A response surface methodology based optimization study. Int J Biol Macromol 2020; 155:772-785. [PMID: 32234446 DOI: 10.1016/j.ijbiomac.2020.03.220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/29/2020] [Accepted: 03/25/2020] [Indexed: 12/07/2022]
Abstract
Different interpenetrating polymeric networks (IPN) based on sodium alginate, carrageenan and bentonite were developed to remove heavy metals and dyes from contaminated water. Four significant preparation factors; crosslinking time, calcium chloride concentration, alginate to carrageenan mass ratio,and bentonite to carrageenan mass ratio were studied and optimized via full factorial design and response surface methodology to determine the optimum composition with highest adsorption capacity. Different optimal conditions and combinations were found depending on the type of heavy metal or dye to be removed. Low calcium chloride concentration was a common factor in all cases of heavy metals and dyes removal which indicates the negative effect of excessive crosslinking on the removal percentage. The adsorption capacity of methylene blue, Fe3+, Ni2+, and Cr3+ ions is 1271, 1550, 1500 and 1540 mg/g adsorbent, respectively. Reusability tests confirmed that the optimized formulations can be reused five successive times without significant drop in their removal efficiency. Upon utilization of the optimized formulations on real contaminated waters from tannery plant and oasis groundwater, they demonstrated an excellent performance as they removed above 95% of the original heavy metals contaminants and 40% of the acidic dye content.
Collapse
|
10
|
Guo X, Wang Y, Qin Y, Shen P, Peng Q. Structures, properties and application of alginic acid: A review. Int J Biol Macromol 2020; 162:618-628. [PMID: 32590090 DOI: 10.1016/j.ijbiomac.2020.06.180] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/27/2022]
Abstract
Alginic acid is a natural polysaccharide, which has been widely concerned and applied due to its excellent water solubility, film formation, biodegradability and biocompatibility. This paper briefly describes the source, properties, structure and application of sodium alginate by summarizing and analyzing the current literature. This paper reviews the application of sodium alginate in the fields of food industry, catalyst, health, water treatment, packaging, immobilized cells, and looks forward to its application prospects.
Collapse
Affiliation(s)
- Xi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Yan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yimin Qin
- State Key Laboratory of Bioactive Seaweed Substances, Ministry of Agriculture Key Laboratory of Seaweed Fertilizers, Qingdao Bright Moon Seaweed Group Co., LTD, Qingdao Bright Moon Blue Ocean Bio-Tech Co., LTD, Qingdao 266400, PR China
| | - Peili Shen
- State Key Laboratory of Bioactive Seaweed Substances, Ministry of Agriculture Key Laboratory of Seaweed Fertilizers, Qingdao Bright Moon Seaweed Group Co., LTD, Qingdao Bright Moon Blue Ocean Bio-Tech Co., LTD, Qingdao 266400, PR China.
| | - Qiang Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
11
|
Nayak S, Prasad SR, Mandal D, Das P. Carbon dot cross-linked polyvinylpyrrolidone hybrid hydrogel for simultaneous dye adsorption, photodegradation and bacterial elimination from waste water. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122287. [PMID: 32066019 DOI: 10.1016/j.jhazmat.2020.122287] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 05/08/2023]
Abstract
The creation of a polymeric hydrogel from polyvinylpyrrolidone (PVP) cross-linked by Carbon Quantum Dots (CD) for the adsorption and photocatalytic degradation of both cationic and anionic dyes. PVP, an important biocompatible constituent and often surplus in cosmetic industry, was carboxylated through NaOH refluxing and covalently conjugated to surface amine functionality of CD derived from lemon juice and Cysteamine. The hybrid hydrogel was obtained from PVP-CD covalent conjugate by careful manipulation of pH and found to possess better rheological properties than only carboxylate-PVP. The monolayer physisorption of the dyes on the hydrogel was affected by hydrogen bonding, dispersion or inductive effect, and π-π interaction with the polymer backbone as well as the CD that followed pseudo-second-order kinetics. Degradation of the adsorbed dyes was instated by the unique Reactive Oxygen Species (ROS) generating ability of the CD embedded in the hydrogel matrix upon exposure to sunlight, the mechanism of which is also unveiled. The same CD-induced ROS was found to effectively annihilate both gram-positive and gram-negative bacteria in real polluted water in less than 10 min of photoexcitation of the hydrogel. The hydrogel was restored by mild acid wash that is able to perform dye adsorption and photo-degradation upto four cycles.
Collapse
Affiliation(s)
- Suman Nayak
- Department of Chemistry, Indian Institute of Technology Patna, Patna, 801103, Bihar, India
| | - Surendra Rajit Prasad
- National Institute of Pharmaceutical Education and Research, Hajipur, 844102, Bihar, India
| | - Debabrata Mandal
- National Institute of Pharmaceutical Education and Research, Hajipur, 844102, Bihar, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna, 801103, Bihar, India.
| |
Collapse
|
12
|
Enhancing the Removal of Sb (III) from Water: A Fe3O4@HCO Composite Adsorbent Caged in Sodium Alginate Microbeads. Processes (Basel) 2020. [DOI: 10.3390/pr8010044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To remove antimony (Sb) ions from water, a novel composite adsorbent was fabricated from ferriferous oxide and waste sludge from a chemical polishing process (Fe3O4@HCO) and encapsulated in sodium alginate (SAB). The SAB adsorbent performed well with 80%–96% removal of Sb (III) ions within a concentration range of 5–60 mg/L. The adsorption mechanism of Sb (III) was revealed to be the synergy of chemisorption (ion exchange) and physisorption (diffusion reaction). The adsorption isotherms and kinetics conformed to the Langmuir isotherm and the pesudo-second-order kinetic model. Both initial pH and temperature influenced the adsorption performance with no collapse of microbeads within solution pH range 3–7. Most importantly for practical applications, these microspheres can be separated and recovered from aqueous solution by a magnetic separation technology to facilitate large-scale treatment of antimony-containing wastewater.
Collapse
|
13
|
Kvg R, Das S, Osborne JW, Natarajan C, Mukherjee A. Novel nano-bio (Nano Zerovalent Iron and Klebsiella sp.) composite beads for congo red removal using response surface methodology. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2019; 7:103413. [DOI: 10.1016/j.jece.2019.103413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
14
|
Mijinyawa AH, Durga G, Mishra A. A sustainable process for adsorptive removal of methylene blue onto a food grade mucilage: kinetics, thermodynamics, and equilibrium evaluation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1122-1129. [PMID: 31056928 DOI: 10.1080/15226514.2019.1606785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Adsorption of dyes onto natural materials like polysaccharides is considered a green chemistry approach for remediation of wastewater. In this work, the polysaccharide isolated from the corm of Colocasia esculenta (L.) Schott or taro tuber (CEM) was utilized for removing methylene blue (MB) from aqueous solution by batch adsorption method. The CEM adsorbent was characterized by FTIR spectroscopy, Brunauer-Emmett-Teller (BET), and scanning electron microscopy (SEM). The solution pH and adsorbent dose have been found to have a significant positive correlation with the adsorptive removal efficiency of CEM for MB dye. The removal efficiency of CEM was found to be 72.35% under the optimum conditions; 20 mg/L initial concentration of dye, 120 mg of adsorbent dose, solution pH 8.5, 311.2 K temperature and 80 min contact time. The adsorption of MB onto CEM followed best the Freundlich isotherm and pseudo-second-order kinetics. The adsorption was thermodynamically favorable and was endothermic in nature. The desorption/adsorption data justifiably indicated the reuse capability of CEM adsorbent for MB adsorption. Hence, CEM may be regarded as an eco-friendly and cost-effective natural adsorbent for MB dye removal from aqueous solution.
Collapse
Affiliation(s)
| | - Geeta Durga
- Department of Chemistry, Sharda University , Greater Noida , Utter Pradesh , India
| | - Anuradha Mishra
- Department of Applied Chemistry, School of Vocational Studies and Applied Sciences, Gautam Buddha University , Greater Noida , Utter Pradesh , India
| |
Collapse
|
15
|
Bendahma YH, Hamri S, Merad M, Bouchaour T, Maschke U. Conformational modeling of the system pollutant/three-dimensional poly (2-hydroxyethyl methacrylate) (PHEMA) in aqueous medium: a new approach. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-018-2455-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Wang B, Wan Y, Zheng Y, Lee X, Liu T, Yu Z, Huang J, Ok YS, Chen J, Gao B. Alginate-based composites for environmental applications: A critical review. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2018; 49:318-356. [PMID: 34121831 PMCID: PMC8193857 DOI: 10.1080/10643389.2018.1547621] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Alginate-based composites have been extensively studied for applications in energy and environmental sectors due to their biocompatible, nontoxic, and cost-effective properties. This review is designed to provide an overview of the synthesis and application of alginate-based composites. In addition to an overview of current understanding of alginate biopolymer, gelation process, and cross-linking mechanisms, this work focuses on adsorption mechanisms and performance of different alginate-based composites for the removal of various pollutants including dyes, heavy metals, and antibiotics in water and wastewater. While encapsulation in alginate gel beads confers protective benefits to engineered nanoparticles, carbonaceous materials, cells and microbes, alginate-based composites typically exhibit enhanced adsorption performance. The physical and chemical properties of alginate-based composites determine the effectiveness under different application conditions. A series of alginate-based composites and their physicochemical and sorptive properties have been summarized. This critical review not only summarizes recent advances in alginate-based composites but also presents a perspective of future work for their environmental applications.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yongshan Wan
- National Health and Environmental Effects Research Laboratory, US EPA, Gulf Breeze, FL 32561, USA
| | - Yuling Zheng
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Taoze Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jun Huang
- Hualan Design & Consulting Group Co. Ltd., Nanning 530011, China
- College of Civil Engineering and Architecture Guangxi University, Nanning 530004, China
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jianjun Chen
- Mid-Florida Research & Education Center, University of Florida, Apopka, FL 32703, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
17
|
Van Tran V, Park D, Lee YC. Hydrogel applications for adsorption of contaminants in water and wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24569-24599. [PMID: 30008169 DOI: 10.1007/s11356-018-2605-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/18/2018] [Indexed: 05/10/2023]
Abstract
During the last decade, hydrogels have been used as potential adsorbents for removal of contaminants from aqueous solution. To improve the adsorption efficiency, there are numerous different particles that can be chosen to encapsulate into hydrogels and each particle has their respective advantages. Depending on the type of pollutants and approaching method, the particles will be used to prepare hydrogels. The hydrogels commonly applied in water/wastewater treatment was mainly classified into three classes according to their shape included hydrogel beads, hydrogel films, and hydrogel nanocomposites. In review of many recently research papers, we take a closer look at hydrogels and their applications for removal of contaminants, such as heavy metal ion, dyes, and radionuclides from water/wastewater in order to elucidate the reactions between contaminants and particles and potential for recycling and regeneration of the post-treatment hydrogels. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Vinh Van Tran
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Seongnam-si, 13120, Gyeonggi-do, Republic of Korea
| | - Duckshin Park
- Korea Railroad Research Institute (KRRI), 176 Cheoldobakmulkwan-ro, Uiwang-si, 16105, Gyeonggi-do, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Seongnam-si, 13120, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
18
|
Magnetic Zinc Ferrite–Alginic Biopolymer Composite: As an Alternative Adsorbent for the Removal of Dyes in Single and Ternary Dye System. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0839-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Ekici S, Guntekin G. Utilization of polyampholyte hydrogels for simultaneous removal of textile dyes from aqueous solutions. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1442478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sema Ekici
- Faculty of Sciences and Arts, Department of Chemistry Hydrogel Research Laboratory, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Gamze Guntekin
- Graduate School of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
20
|
Magnetic Zinc Ferrite–Chitosan Bio-Composite: Synthesis, Characterization and Adsorption Behavior Studies for Cationic Dyes in Single and Binary Systems. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0752-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Li M, Buschle-Diller G. Pectin-blended anionic polysaccharide films for cationic contaminant sorption from water. Int J Biol Macromol 2017; 101:481-489. [DOI: 10.1016/j.ijbiomac.2017.03.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/16/2017] [Indexed: 11/30/2022]
|
22
|
Dual ionic cross-linked alginate/clinoptilolite composite microbeads with improved stability and enhanced sorption properties for methylene blue. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Mallakpour S, Jarang N. Production of bionanocomposites based on poly(vinyl pyrrolidone) using modified TiO2 nanoparticles with citric acid and ascorbic acid and study of their physicochemical properties. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2100-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Novel stimuli-responsive hydrogels derived from morpholine: synthesis, characterization and absorption uptake of textile azo dye. IRANIAN POLYMER JOURNAL 2017. [DOI: 10.1007/s13726-017-0528-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Elwakeel KZ, El-Bindary AA, Ismail A, Morshidy AM. Magnetic chitosan grafted with polymerized thiourea for remazol brilliant blue R recovery: Effects of uptake conditions. J DISPER SCI TECHNOL 2016. [DOI: 10.1080/01932691.2016.1216436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- K. Z. Elwakeel
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
- Environmental Science Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - A. A. El-Bindary
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - A. Ismail
- Environmental Science Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - A. M. Morshidy
- National Institute of Oceanography and Fisheries (NIOF), Baltim, Kafr Elsheikh, Egypt
| |
Collapse
|
26
|
Pushpamalar J, Veeramachineni AK, Owh C, Loh XJ. Biodegradable Polysaccharides for Controlled Drug Delivery. Chempluschem 2016; 81:504-514. [DOI: 10.1002/cplu.201600112] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/30/2016] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Cally Owh
- Institute of Materials Research and Engineering (IMRE); A*STAR; 3 Research Link Singapore 117602 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE); A*STAR; 3 Research Link Singapore 117602 Singapore
- Department of Materials Science and Engineering; National University of Singapore; 9 Engineering Drive 1 Singapore 117576 Singapore
- Singapore Eye Research Institute; 11 Third Hospital Avenue Singapore 168751 Singapore
| |
Collapse
|
27
|
Elwakeel KZ, El-Bindary AA, Ismail A, Morshidy AM. Sorptive removal of Remazol Brilliant Blue R from aqueous solution by diethylenetriamine functionalized magnetic macro-reticular hybrid material. RSC Adv 2016. [DOI: 10.1039/c5ra26508h] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chitosan, glycidyl methacrylate (synthetic polymer) and magnetite are combined to produce novel magnetic macro-reticular hybrid synthetic–natural materials which are shown to be effective sorbents for RBBR ions.
Collapse
Affiliation(s)
- K. Z. Elwakeel
- Environmental Science Department
- Faculty of Science
- Port-Said University
- Port-Said
- Egypt
| | - A. A. El-Bindary
- Chemistry Department
- Faculty of Science
- Damietta University
- Damietta 34517
- Egypt
| | - A. Ismail
- Environmental Science Department
- Faculty of Science
- Port-Said University
- Port-Said
- Egypt
| | - A. M. Morshidy
- National Institute of Oceanography and Fisheries (NIOF)
- Kafr Elsheikh
- Egypt
| |
Collapse
|