1
|
Lou L, Chen H, Zhang L. Biodegradable gelatin/pectin films containing cellulose nanofibers and biguanide polymers: Characterization and application in sweet cherry packaging. Int J Biol Macromol 2024; 274:133530. [PMID: 38945332 DOI: 10.1016/j.ijbiomac.2024.133530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
To expand the utilization of gelatin and pectin derived from agricultural by-products, the composite films composed of gelatin, citrus pectin, cellulose nanofibers (CNF), and polyhexamethylene biguanide hydrochloride (PHMB) were prepared through the solvent casting method. Fourier infrared spectroscopy analysis verified the successful integration of CNF and PHMB into the gelatin-pectin matrix. The incorporation of CNF as a reinforcing agent substantially enhanced the barrier capabilities of the composite film. Moreover, the addition of PHMB, functioning as an antimicrobial agent, not only granted the film with antibacterial properties but also improved its physical characteristics and biodegradability. A water contact angle experiment revealed the film presented a certain degree of hydrophobicity. The optimal performances were attained with a composition in which CNF and PHMB constituted 8 % and 3 %, respectively, of the total weight of gelatin and pectin. As a packaging film, the composite film demonstrated its effectiveness by reducing the decay index and weight loss rate of sweet cherries during a 12-day storage period. In the soil degradation test, the composite film exhibited notable structural degradation by the 16th day. Consequently, the composite film will be used as an innovative and biodegradable packaging material to provide a sustainable solution for food packaging industries.
Collapse
Affiliation(s)
- Lan Lou
- School of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Hongyan Chen
- School of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Lilin Zhang
- School of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Moazzami Goudarzi Z, Zaszczyńska A, Kowalczyk T, Sajkiewicz P. Electrospun Antimicrobial Drug Delivery Systems and Hydrogels Used for Wound Dressings. Pharmaceutics 2024; 16:93. [PMID: 38258102 PMCID: PMC10818291 DOI: 10.3390/pharmaceutics16010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/25/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
Wounds and chronic wounds can be caused by bacterial infections and lead to discomfort in patients. To solve this problem, scientists are working to create modern wound dressings with antibacterial additives, mainly because traditional materials cannot meet the general requirements for complex wounds and cannot promote wound healing. This demand is met by material engineering, through which we can create electrospun wound dressings. Electrospun wound dressings, as well as those based on hydrogels with incorporated antibacterial compounds, can meet these requirements. This manuscript reviews recent materials used as wound dressings, discussing their formation, application, and functionalization. The focus is on presenting dressings based on electrospun materials and hydrogels. In contrast, recent advancements in wound care have highlighted the potential of thermoresponsive hydrogels as dynamic and antibacterial wound dressings. These hydrogels contain adaptable polymers that offer targeted drug delivery and show promise in managing various wound types while addressing bacterial infections. In this way, the article is intended to serve as a compendium of knowledge for researchers, medical practitioners, and biomaterials engineers, providing up-to-date information on the state of the art, possibilities of innovative solutions, and potential challenges in the area of materials used in dressings.
Collapse
Affiliation(s)
| | | | - Tomasz Kowalczyk
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland; (Z.M.G.); (A.Z.); (P.S.)
| | | |
Collapse
|
3
|
Fallah-Darrehchi M, Zahedi P. Improvement of Intracellular Interactions through Liquid Crystalline Elastomer Scaffolds by the Alteration of Topology. ACS OMEGA 2023; 8:46878-46891. [PMID: 38107894 PMCID: PMC10720303 DOI: 10.1021/acsomega.3c06528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Preparation of inherently bioactive scaffolds has become a challenging issue owing to their complicated synthesis and nonrobust modified cell-actuating property. Liquid crystalline elastomers (LCEs), due to their combined specialties of liquid crystals and elastomers as well as their ability to respond to various kinds of stimuli, have reversibly led to the design of a new class of stimuli-responsive tissue-engineered scaffolds. In this line, in the first stage of this research work, synthesis and evaluation of acrylate-based LCE films (LCEfilm) encompassing mesogenic monomers are carried out. In the second step, the design of an affordable electrospinning technique for preparing LCE nanofibers (LCEfiber) as a problematic topic, thanks to the low molecular weight of the mesogenic chains of LCEs, is investigated. For this purpose, two approaches are considered, including (1) photo-cross-linking of electrospun LCEfiber and (2) blending LCE with poly(ε-caprolactone) (PCL) to produce morphologically stable nanofibers (PCL-LCEfiber). In the following, thermal, mechanical, and morphological evaluations show the optimized crosslinker (mol)/aliphatic spacer (mol) molar ratio of 50:50 for LCEfilm samples. On the other hand, for LCEfiber samples, the appropriate amounts of excessive mesogenic monomer and PCL/LCE (v/v) to fabricate the uniform nanofibers are determined to be 20% and 1:2, respectively. Eventually, PC12 cell compatibility and the impact of the liquid crystalline phase on the PC12 cell dynamic behavior of the samples are examined. The obtained results reveal that PC12 cells cultured on electrospun PCL-LCEfiber nanofibers with an average diameter of ∼659 nm per sample are alive and the scaffold has susceptibility for cell proliferation and actuation because of the rapid increase in cell density and number of singularity points formed in time-lapse cell imaging. Moreover, the PCL-LCEfiber nanofibrous scaffold exhibits a high performance for cell differentiation according to detailed biological evaluations such as gene expression level measurements. The time-lapse evaluation of PC12 cell flow fields confirms the significant influence of the reprogrammable liquid crystalline phase in the PCL-LCEfiber nanofibrous scaffold on topographical cue induction compared to the biodegradable PCL nanofibers.
Collapse
Affiliation(s)
- Mahshid Fallah-Darrehchi
- Nano-Biopolymers Research
Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417613131, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research
Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417613131, Iran
| |
Collapse
|
4
|
Effect of cellulose nanofibers on polyhydroxybutyrate electrospun scaffold for bone tissue engineering applications. Int J Biol Macromol 2022; 220:1402-1414. [PMID: 36116594 DOI: 10.1016/j.ijbiomac.2022.09.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
The choice of materials and preparation methods are the most important factors affecting the final characteristics of the scaffolds. In this study, cellulose nanofibers (CNFs) as a nano-additive reinforcer were selected to prepare a polyhydroxybutyrate (PHB) based nanocomposite mat. The PHB/CNF (PC) scaffold properties, created via the electrospinning method, were investigated and compared with pure PHB. The obtained results, in addition to a slight increment of crystallinity (from ≃46 to 53 %), showed better water contact angle (from ≃120 to 96°), appropriate degradation rate (up to ≃25 % weight loss in two months), prominent biomineralization (Ca/P ratio about 1.50), and ≃89 % increment in toughness factor of PC compare to the neat PHB. Moreover, the surface roughness as an affecting parameter on cell behavior was also increased up to ≃43 % in the presence of CNFs. Eventually, not only the MTT assay revealed better human osteoblast MG63 cell viability on PC samples, but also DAPI staining and SEM results confirmed the more plausible cell spreading in the presence of cellulose nano-additive. These improvements, along with the appropriate results of ALP and Alizarin red, authenticate that the newly PC nanocomposite composition has the required efficiency in the field of bone tissue engineering.
Collapse
|
5
|
Polysaccharides-based nanofibrils: From tissue engineering to biosensor applications. Carbohydr Polym 2022; 291:119670. [DOI: 10.1016/j.carbpol.2022.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
|
6
|
Goudarzi ZM, Soleimani M, Ghasemi-Mobarakeh L, Sajkiewicz P, Sharifianjazi F, Esmaeilkhanian A, Khaksar S. Control of drug release from cotton fabric by nanofibrous mat. Int J Biol Macromol 2022; 217:270-281. [PMID: 35760164 DOI: 10.1016/j.ijbiomac.2022.06.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/05/2022]
Abstract
A drug delivery system (DDSs) was developed in the present study based on textile substrates as drug carriers and electrospun nanofibers as a controller of release rate. Three types of drugs consisting of ciprofloxacin (CIP), clotrimazole (CLO), and benzalkonium chloride (BEN) were loaded into the cover glass (CG) and cotton fabrics (CF1 and CF2) separately. Then, the drug-loaded substrates were coated with polycaprolactone (PCL) and polycaprolactone/gelatin (PCL/Gel) nanofibers with various thicknesses. The morphology and hydrophilicity of the electrospun nanofibers and the release profile of drug-loaded samples were investigated. FTIR, XRD, and in vitro biodegradability analysis were analyzed to characterize the drug delivery system. A morphological study of electrospun fibers showed the mean diameter of the PCL and PCL/Gel nanofibers 127 ± 25 and 178 ± 38 nm, respectively. The drug delivery assay revealed that various factors affect the rate of drug releases, such as the type of drug, the type of drug carrier, and the thickness of the covered nanofibers. The study highlights the ability of drugs to load substrates with coated nanofibers as controlled drug delivery systems. In conclusion, it is shown that the obtained samples are excellent candidates for future wound dressing applications.
Collapse
Affiliation(s)
- Zahra Moazzami Goudarzi
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-106, Poland
| | - Mahnaz Soleimani
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Laleh Ghasemi-Mobarakeh
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-106, Poland
| | | | | | - Samad Khaksar
- School of Science and Technology, University of Georgia, Tbilisi, Georgia
| |
Collapse
|
7
|
Borges-Vilches J, Unalan I, Fernández K, Boccaccini AR. Fabrication of Biocompatible Electrospun Poly(ε-caprolactone)/Gelatin Nanofibers Loaded with Pinus radiata Bark Extracts for Wound Healing Applications. Polymers (Basel) 2022; 14:2331. [PMID: 35745907 PMCID: PMC9228265 DOI: 10.3390/polym14122331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, poly(ε-caprolactone) (PCL)/gelatin (GEL) electrospun nanofibers loaded with two different concentrations of Pinus radiata bark extracts (PEs) were fabricated via electrospinning for wound healing applications. The effects of incorporating PE into PCL/GEL electrospun nanofibers were investigated regarding their physicochemical properties and in vitro biocompatibility. All electrospun nanofibers showed smooth, uniform, and bead-free surfaces. Their functional groups were detected by ATR-FTIR spectroscopy, and their total phenol content was measured by a Folin-Ciocalteu assay. With PE addition, the electrospun nanofibers exhibited an increase in their wettability and degradation rates over time and a decrease in their tensile stress values from 20 ± 4 to 8 ± 2 MPa for PCL/GEL and PCL/GEL/0.36%PE samples, respectively. PE was also released from the fibrous mats in a rather controlled fashion. The PCL/GEL/0.18%PE and PCL/GEL/0.36%PE electrospun nanofibers inhibited bacterial activity at around 6 ± 0.1% and 23 ± 0.3% against E. coli and 14 ± 0.1% and 18 ± 0.2% against S. aureus after 24 h incubation, respectively. In vitro cell studies showed that PE-loaded electrospun nanofibers enhanced HaCaT cell growth, attachment, and proliferation, favoring cell migration towards the scratch area in the wound healing assay and allowing a complete wound closure after 72 h treatment. These findings suggested that PE-loaded electrospun nanofibers are promising materials for antibiotic-free dressings for wound healing applications.
Collapse
Affiliation(s)
- Jessica Borges-Vilches
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile; (J.B.-V.); (K.F.)
| | - Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany;
| | - Katherina Fernández
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile; (J.B.-V.); (K.F.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany;
| |
Collapse
|
8
|
Moazzami Goudarzi Z, Behzad T, Sheykhzadeh A. Effect of hydrophobically modified extracted starch nanocrystal on the properties of
LDPE
/ thermoplastic starch (
TPS
)/
PE‐g‐MA
nanocomposite. J Appl Polym Sci 2022. [DOI: 10.1002/app.51490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Tayebeh Behzad
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran Iran
| | - Aram Sheykhzadeh
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran Iran
| |
Collapse
|
9
|
Kharaziha M, Baidya A, Annabi N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100176. [PMID: 34251690 PMCID: PMC8489436 DOI: 10.1002/adma.202100176] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/03/2021] [Indexed: 05/03/2023]
Abstract
With all the advances in tissue engineering for construction of fully functional skin tissue, complete regeneration of chronic wounds is still challenging. Since immune reaction to the tissue damage is critical in regulating both the quality and duration of chronic wound healing cascade, strategies to modulate the immune system are of importance. Generally, in response to an injury, macrophages switch from pro-inflammatory to an anti-inflammatory phenotype. Therefore, controlling macrophages' polarization has become an appealing approach in regenerative medicine. Recently, hydrogels-based constructs, incorporated with various cellular and molecular signals, have been developed and utilized to adjust immune cell functions in various stages of wound healing. Here, the current state of knowledge on immune cell functions during skin tissue regeneration is first discussed. Recent advanced technologies used to design immunomodulatory hydrogels for controlling macrophages' polarization are then summarized. Rational design of hydrogels for providing controlled immune stimulation via hydrogel chemistry and surface modification, as well as incorporation of cell and molecules, are also dicussed. In addition, the effects of hydrogels' properties on immunogenic features and the wound healing process are summarized. Finally, future directions and upcoming research strategies to control immune responses during chronic wound healing are highlighted.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Avijit Baidya
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
10
|
Soares GODN, Lima FA, Goulart GAC, Oréfice RL. Physicochemical characterization of the gelatin/polycaprolactone nanofibers loaded with diclofenac potassium for topical use aiming potential anti-inflammatory action. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1962875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Flávia Alves Lima
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gisele Assis Castro Goulart
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Lambert Oréfice
- Department of Metallurgical, Materials and Mining Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
An investigation into influence of acetylated cellulose nanofibers on properties of PCL/Gelatin electrospun nanofibrous scaffold for soft tissue engineering. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123313] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Samadani F, Behzad T, Enayati MS. Facile strategy for improvement properties of whey protein isolate/walnut oil bio-packaging films: Using modified cellulose nanofibers. Int J Biol Macromol 2019; 139:858-866. [DOI: 10.1016/j.ijbiomac.2019.08.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/22/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
|