1
|
Khalil KD, Bashal AH, Habeeb T, Kebeish R, Abu-Dief AM. Multifunctional lanthanum oxide-doped carboxymethyl cellulose nanocomposites: A promising approach for antimicrobial and targeted anticancer applications. Int J Biol Macromol 2024; 283:137495. [PMID: 39528180 DOI: 10.1016/j.ijbiomac.2024.137495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
This study presents the synthesis and characterization of lanthanum oxide (La₂O₃)-doped carboxymethyl cellulose (CMC) nanocomposites via a solution casting method, designed to offer an eco-friendly, multifunctional material with significant potential in biomedical applications. Structural analysis using FTIR, XRD, and EDX confirmed successful La₂O₃ integration, with FTIR spectra indicating a distinctive LaO stretching peak at 628.2 cm-1, XRD patterns revealing enhanced crystallinity with notable peaks at 16.6°, 27.6°, and 49.8°, and EDX showing a uniform lanthanum distribution with a 10.41 mass% concentration. These enhancements in structural stability and crystalline properties underscore the composite's functional robustness. Biological assessments revealed the composite's substantial antimicrobial efficacy, demonstrating inhibition zones up to 31 mm against pathogenic strains such as E. coli, S. aureus, E. faecalis, K. pneumoniae, and C. albicans at a 15 wt% La₂O₃ concentration-surpassing conventional antimicrobial agents. Minimum inhibitory concentration (MIC) tests supported these findings, showing MIC values as low as 7.82 μg/mL, further validating the composite's heightened antimicrobial potency compared to pure CMC. In vitro cytotoxicity assays indicated selective anticancer effects of the La₂O₃/CMC nanocomposites, with IC₅₀ values of 327.7 μg/mL and 189.8 μg/mL against PC-3 prostate and A549 lung cancer cells, respectively. Remarkably, the composite showed minimal impact on normal lung fibroblasts (Wi-38), with an IC₅₀ value of 956.8 μg/mL, emphasizing its selectivity towards cancer cells. Collectively, these results highlight the La₂O₃/CMC composite as a biocompatible and multifunctional material suitable for both antimicrobial and targeted anticancer applications, aligning with the growing demand for safe, effective biomedical solutions.
Collapse
Affiliation(s)
- Khaled D Khalil
- Department of Chemistry, Faculty of Science in Yanbu, Taibah University, Yanbu 46423, Saudi Arabia; Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Ali H Bashal
- Department of Chemistry, Faculty of Science in Yanbu, Taibah University, Yanbu 46423, Saudi Arabia.
| | - Talaat Habeeb
- Department of Biology, Faculty of Science in Yanbu, Taibah University, Yanbu 46423, Saudi Arabia.
| | - Rashad Kebeish
- Department of Biology, Faculty of Science in Yanbu, Taibah University, Yanbu 46423, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Ahmed M Abu-Dief
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah 30002, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt.
| |
Collapse
|
2
|
Liu F, Yin D, Sun J, Luo X, Huang X. Preparation and Characterization of Temperature-Sensitive Gel Plugging Agent. Gels 2024; 10:742. [PMID: 39590098 PMCID: PMC11593796 DOI: 10.3390/gels10110742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
In order to use intelligent gel systems to realize deep source water control in medium and high water cut reservoirs, and also to solve the shortcomings of conventional gels, such as the high chemical dose required, large profile control radius, poor temperature resistance, shear resistance, and plugging performance, a temperature-sensitive gel based on natural cellulose was developed, and the temperature resistance, rheological performance, and plugging performance of the temperature-sensitive gel were tested and evaluated. The results show that the system can maintain a viscosity retention rate of up to 95% after high-temperature aging at 90-120 °C for 50 days. When using medium- to low-salinity calcium chloride formation water for preparation, the gelation effect is good. The rheometer oscillation frequency scanning test shows that the system gel is a strong elastic body dominated by elasticity. The core displacement experiment shows that the highest sealing rate of the system is 97%, and the breakthrough pressure can reach 2.5 MPa at this time. The microstructure of the gel system was tested by infrared, and it was found that the gel system had strong hydrogen bonding and the gel had good stability. The research results contribute to improving the recovery rate of high water cut oil reservoirs.
Collapse
Affiliation(s)
- Fengbao Liu
- PetroChina Tarim Oilfield Company, Korla 841000, China
| | - Da Yin
- PetroChina Tarim Oilfield Company, Korla 841000, China
| | - Jinsheng Sun
- CNPC Engineering Technology R&D Company Limited, Beijing 102206, China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiao Luo
- College of Chemical and Environmental Engineering, Yangtze University, Jingzhou 434000, China
| | - Xianbin Huang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
3
|
Ulker Z, Bozbay R, Buyuk SD, Orakdogen N. Eco-friendly property modulation of biobased gels of carboxymethyl cellulose-integrated poly(tertiary amine)s for the removal of azo-food dyes. Int J Biol Macromol 2024; 282:137199. [PMID: 39489245 DOI: 10.1016/j.ijbiomac.2024.137199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Anionic polysaccharide-based gels enable the design of biobased materials with biochemical properties, non-toxic and natural origin. A new set of cationic gels was prepared from carboxymethylcellulose (CMC)-doped tertiary amino functional cationic monomers 2-(dimethylamino)ethyl methacrylate and N-(3-(dimethylamino)propyl) methacrylamide via the formation of semi-interpenetrated network (semi-IPN) at different polymerization temperatures, Tprep. A detailed understanding of the temperature-dependent synthesis and physicochemical response is required for the design of interpenetrating networks with CMC as an adsorbent that provides effective sources for the removal of azo-food dyes such as tartrazine and carmoisine from aqueous solutions. The variation of elasticity and swelling properties with respect to polymerization temperature was investigated. CMC-integration and polymerization temperature played a decisive role in the compressive elasticity. Incorporation of CMC into copolymer matrix led to a significant increase in elasticity of semi-IPNs, while mechanically weaker gels were obtained with increasing Tprep. Addition of CMC increased the swelling modulus of semi-IPNs formed at -18 °C by 2.6-fold. While the transparency changed depending on Tprep and microstructure, addition of CMC decreased the swelling rate of gels at all polymerization temperatures. The compressive modulus decreased with the swelling process in accordance with the Rubber elasticity theory. Semi-IPN gels showed stable swelling against pH-change in aqueous solutions and exhibited excellent pH-sensitivity significantly in low pH. A 4 to 12 fold decrease in maximum volume was observed by varying the pH between 2.1 and 9.8. The correlation between polymerization temperature and removal of azo-food dyes; tartrazine and carmoisine from contaminated wastewater with CMC-based gels was studied. Dynamic adsorption equilibrium was reached in 30 min, and tartrazine and carmoisine removal performances varied between 92.8 % and 98.4 %. respectively. The adsorption data for azo-dyes were evaluated by Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Redlich-Patterson, Sips, and Tooth isotherm models, but were best described by Langmuir and Redlich-Patterson models as they gave the highest correlation. Pseudo-first order, pseudo-second order, Elovich, Avrami kinetic and intra-particle diffusion models were investigated and dye adsorption was represented by pseudo-second-order model. After the adsorption process, semi-IPNs can easily be regenerated and effectively reused over five cycles. The study provided new insights towards the facile and sustainable synthesis of eco-friendly multifunctional CMC-based gels carrying tertiary amino groups for effective removal of azo-based food colorants.
Collapse
Affiliation(s)
- Zeynep Ulker
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, 34469 Maslak, Istanbul, Turkey
| | - Rabia Bozbay
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, 34469 Maslak, Istanbul, Turkey; Graduate School of Science Engineering and Technology, Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Sebnem Duygu Buyuk
- Graduate School of Science Engineering and Technology, Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Nermin Orakdogen
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
4
|
Vishwakarma M, Agrawal P, Soni S, Tomar S, Haider T, Kashaw SK, Soni V. Cationic nanocarriers: A potential approach for targeting negatively charged cancer cell. Adv Colloid Interface Sci 2024; 327:103160. [PMID: 38663154 DOI: 10.1016/j.cis.2024.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Cancer, a widespread and lethal disease, necessitates precise therapeutic interventions to mitigate its devastating impact. While conventional chemotherapy remains a cornerstone of cancer treatment, its lack of specificity towards cancer cells results in collateral damage to healthy tissues, leading to adverse effects. Thus, the quest for targeted strategies has emerged as a critical focus in cancer research. This review explores the development of innovative targeting methods utilizing novel drug delivery systems tailored to recognize and effectively engage cancer cells. Cancer cells exhibit morphological and metabolic traits, including irregular morphology, unchecked proliferation, metabolic shifts, genetic instability, and a higher negative charge, which serve as effective targeting cues. Central to these strategies is the exploitation of the unique negative charge characteristic of cancer cells, attributed to alterations in phospholipid composition and the Warburg effect. Leveraging this distinct feature, researchers have devised cationic carrier systems capable of enhancing the specificity of therapeutic agents towards cancer cells. The review delineates the underlying causes of the negative charge in cancer cells and elucidates various targeting approaches employing cationic compounds for drug delivery systems. Furthermore, it delves into the methods employed for the preparation of these systems. Beyond cancer treatment, the review also underscores the multifaceted applications of cationic carrier systems, encompassing protein and peptide delivery, imaging, photodynamic therapy, gene delivery, and antimicrobial applications. This comprehensive exploration underscores the potential of cationic carrier systems as versatile tools in the fight against cancer and beyond.
Collapse
Affiliation(s)
- Monika Vishwakarma
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Poornima Agrawal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Sakshi Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Surbhi Tomar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India; Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior 474005, MP, India
| | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India.
| |
Collapse
|
5
|
Sorokin AV, Goncharova SS, Lavlinskaya MS, Holyavka MG, Faizullin DA, Zuev YF, Kondratyev MS, Artyukhov VG. Complexation of Bromelain, Ficin, and Papain with the Graft Copolymer of Carboxymethyl Cellulose Sodium Salt and N-Vinylimidazole Enhances Enzyme Proteolytic Activity. Int J Mol Sci 2023; 24:11246. [PMID: 37511006 PMCID: PMC10379864 DOI: 10.3390/ijms241411246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
This study investigates the features of interactions between cysteine proteases (bromelain, ficin, and papain) and a graft copolymer of carboxymethyl cellulose sodium salt with N-vinylimidazole. The objective is to understand the influence of this interactions on the proteolytic activity and stability of the enzymes. The enzymes were immobilized through complexation with the carrier. The interaction mechanism was examined using Fourier-transform infrared spectroscopy and flexible molecular docking simulations. The findings reveal that the enzymes interact with the functional groups of the carrier via amino acid residues, resulting in the formation of secondary structure elements and enzyme's active sites. These interactions induce modulation of active site of the enzymes, leading to an enhancement in their proteolytic activity. Furthermore, the immobilized enzymes demonstrate superior stability compared to their native counterparts. Notably, during a 21-day incubation period, no protein release from the conjugates was observed. These results suggest that the complexation of the enzymes with the graft copolymer has the potential to improve their performance as biocatalysts, with applications in various fields such as biomedicine, pharmaceutics, and biotechnology.
Collapse
Affiliation(s)
- Andrey V Sorokin
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
- Bioresource Potential of the Seaside Territory Laboratory, Sevastopol State University, 33 Studencheskaya Street, 299053 Sevastopol, Russia
| | - Svetlana S Goncharova
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
| | - Maria S Lavlinskaya
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
- Bioresource Potential of the Seaside Territory Laboratory, Sevastopol State University, 33 Studencheskaya Street, 299053 Sevastopol, Russia
| | - Marina G Holyavka
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
- Bioresource Potential of the Seaside Territory Laboratory, Sevastopol State University, 33 Studencheskaya Street, 299053 Sevastopol, Russia
| | - Dzhigangir A Faizullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia
- Alexander Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Street 18, 420008 Kazan, Russia
| | - Maxim S Kondratyev
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
- Institute of Cell Biophysics of the RAS, 3 Institutskaya Street, 142290 Pushchino, Russia
| | - Valeriy G Artyukhov
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
| |
Collapse
|
6
|
Ramezanpour A, Ansari L, Rahimkhoei V, Sharifi S, Bigham A, Lighvan ZM, Rezaie J, Szafert S, Mahdavinia G, Akbari A, Jabbari E. Recent advances in carbohydrate-based paclitaxel delivery systems. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
7
|
Sorokin AV, Goncharova SS, Lavlinskaya MS, Holyavka MG, Faizullin DA, Kondratyev MS, Kannykin SV, Zuev YF, Artyukhov VG. Carboxymethyl Cellulose-Based Polymers as Promising Matrices for Ficin Immobilization. Polymers (Basel) 2023; 15:polym15030649. [PMID: 36771951 PMCID: PMC9920955 DOI: 10.3390/polym15030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The present work is devoted to research on the interaction between carboxymethyl cellulose sodium salt and its derivatives (graft copolymer of carboxymethyl cellulose sodium salt and N,N-dimethyl aminoethyl methacrylate) with cysteine protease (ficin). The interaction was studied by FTIR and by flexible molecular docking, which have shown the conjugates' formation with both matrices. The proteolytic activity assay performed with azocasein demonstrated that the specific activities of all immobilized ficin samples are higher in comparison with those of the native enzyme. This is due to the modulation of the conformation of ficin globule and of the enzyme active site by weak physical interactions involving catalytically valuable amino acids. The results obtained can extend the practical use of ficin in biomedicine and biotechnology.
Collapse
Affiliation(s)
- Andrey V. Sorokin
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
- Laboratory of Bioresource Potential of Coastal Area, Institute for Advanced Studies, Sevastopol State University, 33 Studencheskaya Street, 299053 Sevastopol, Russia
- Laboratory of Metagenomics and Food Biotechnologies, Voronezh State University of Engineering Technologies, 19 Revolutsii Avenue, 394036 Voronezh, Russia
| | - Svetlana S. Goncharova
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
| | - Maria S. Lavlinskaya
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
- Laboratory of Bioresource Potential of Coastal Area, Institute for Advanced Studies, Sevastopol State University, 33 Studencheskaya Street, 299053 Sevastopol, Russia
- Laboratory of Metagenomics and Food Biotechnologies, Voronezh State University of Engineering Technologies, 19 Revolutsii Avenue, 394036 Voronezh, Russia
| | - Marina G. Holyavka
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
- Laboratory of Bioresource Potential of Coastal Area, Institute for Advanced Studies, Sevastopol State University, 33 Studencheskaya Street, 299053 Sevastopol, Russia
| | - Dzhigangir A. Faizullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of the RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia
| | - Maxim S. Kondratyev
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
- Laboratory of Structure and Dynamics of Biomolecular Systems, Institute of Cell Biophysics of the RAS, 3 Institutskaya Street, 142290 Pushchino, Russia
| | - Sergey V. Kannykin
- Material Science and Nanosystem Industry Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
| | - Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of the RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia
- Correspondence:
| | - Valeriy G. Artyukhov
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
| |
Collapse
|
8
|
Blažic R, Marušić K, Vidović E. Swelling and Viscoelastic Properties of Cellulose-Based Hydrogels Prepared by Free Radical Polymerization of Dimethylaminoethyl Methacrylate in Cellulose Solution. Gels 2023; 9:94. [PMID: 36826264 PMCID: PMC9956197 DOI: 10.3390/gels9020094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
The grafting of a stimuli-responsive polymer (poly(dimethylaminoethyl methacrylate)) onto cellulose was achieved by performing free radical polymerization of a vinyl/divinyl monomer in cellulose solution. The grafting and crosslinking efficiency in the material have been increased by subsequent irradiation of the samples with ionizing radiation (doses of 10, 30, or 100 kGy). The relative amount of poly(dimethylaminoethyl methacrylate) in the prepared hydrogels was determined by infrared spectroscopy. The swelling behavior of the hydrogels was studied thoroughly, including microgelation extent, equilibrium swelling, and reswelling degree, as well as the dependence on the gelation procedure. The dynamic viscoelastic behavior of prepared hydrogels was also studied. The tan δ values indicate a solid-like behavior while the obtained hydrogels have a complex modulus in the range of 14-39 kPa, which is suitable for hydrogels used in biomedical applications. In addition, the incorporation of Ag particles and the adsorption of Fe3+ ions were tested to evaluate the additional functionalities of the prepared hydrogels. It was found that the introduction of PDMAEMA to the hydrogels enhanced their ability to synthesize Ag particles and absorb Fe3+ ions, providing a platform for the potential preparation of hydrogels for the treatment of wounds.
Collapse
Affiliation(s)
- Roko Blažic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Katarina Marušić
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Elvira Vidović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| |
Collapse
|
9
|
Ning L, Jia Y, Zhao X, Tang R, Wang F, You C. Nanocellulose-based drug carriers: Functional design, controllable synthesis, and therapeutic applications. Int J Biol Macromol 2022; 222:1500-1510. [PMID: 36195234 DOI: 10.1016/j.ijbiomac.2022.09.266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022]
Abstract
With rising living standards and environmental awareness, materials-oriented chemical engineering has increasingly transitioned from traditional rough models to more resource-saving and eco-friendly models, providing an avenue for bio-based materials in the drug carrier field. Because of its excellent physical and chemical properties, including high specific surface area, abundant accessible hydroxyl groups, biocompatibility, and degradability, nanocellulose (NC) is an emerging bio-based material that has been widely exploited as biomedical materials. The modification techniques of NC, as well as advancements in the design and applications of drug carriers, were primarily discussed in this study. First, the NC modification methods are described; second, the applications of NC and its derivatives as drug carriers are summarized, focusing on NC-based carrier models, types of loaded therapeutic agents, and controlled release stimulators; and finally, the current challenges of NC in the drug carrier field and the directions of future research are also discussed.
Collapse
Affiliation(s)
- Like Ning
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxin Jia
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinxu Zhao
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ruoxu Tang
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Wang
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chaoqun You
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
10
|
Kumar A, Sharipov M, Turaev A, Azizov S, Azizov I, Makhado E, Rahdar A, Kumar D, Pandey S. Polymer-Based Hybrid Nanoarchitectures for Cancer Therapy Applications. Polymers (Basel) 2022; 14:polym14153027. [PMID: 35893988 PMCID: PMC9370428 DOI: 10.3390/polym14153027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 12/16/2022] Open
Abstract
Globally, cancer is affecting societies and is becoming an important cause of death. Chemotherapy can be highly effective, but it is associated with certain problems, such as undesired targeting and multidrug resistance. The other advanced therapies, such as gene therapy and peptide therapy, do not prove to be effective without a proper delivery medium. Polymer-based hybrid nanoarchitectures have enormous potential in drug delivery. The polymers used in these nanohybrids (NHs) provide them with their distinct properties and also enable the controlled release of the drugs. This review features the recent use of polymers in the preparation of different nanohybrids for cancer therapy published since 2015 in some reputed journals. The polymeric nanohybrids provide an advantage in drug delivery with the controlled and targeted delivery of a payload and the irradiation of cancer by chemotherapeutical and photodynamic therapy.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India;
| | - Mirkomil Sharipov
- Department of Chemistry, Changwon National University, Changwon 51140, Korea;
| | - Abbaskhan Turaev
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences, Tashkent 100125, Uzbekistan;
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences, Tashkent 100125, Uzbekistan;
- Department of Pharmaceutical Chemistry, Tashkent Pharmaceutical Institute, Tashkent 100015, Uzbekistan
- Correspondence: (S.A.); (D.K.); or (S.P.)
| | - Ismatdjan Azizov
- State Center for Expertise and Standardization of Medicines, Medical Devices, and Medical Equipment, State Unitary Enterprise, Tashkent 100002, Uzbekistan;
| | - Edwin Makhado
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Polokwane 0727, South Africa;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran;
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India;
- Correspondence: (S.A.); (D.K.); or (S.P.)
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Correspondence: (S.A.); (D.K.); or (S.P.)
| |
Collapse
|
11
|
Chitosan Graft Copolymers with N-Vinylimidazole as Promising Matrices for Immobilization of Bromelain, Ficin, and Papain. Polymers (Basel) 2022; 14:polym14112279. [PMID: 35683951 PMCID: PMC9182650 DOI: 10.3390/polym14112279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
This work aims to synthesize graft copolymers of chitosan and N-vinylimidazole (VI) with different compositions to be used as matrices for the immobilization of cysteine proteases—bromelain, ficin, and papain. The copolymers are synthesized by free radical solution copolymerization with a potassium persulfate-sodium metabisulfite blend initiator. The copolymers have a relatively high frequency of grafting and yields. All the synthesized graft copolymers are water-soluble, and their solutions are characterized by DLS and laser Doppler microelectrophoresis. The copolymers are self-assembled in aqueous solutions, and they have a cationic nature and pH-sensitivity correlating to the VI content. The FTIR data demonstrate that synthesized graft copolymers conjugate cysteine proteases. The synthesized copolymer adsorbs more enzyme macromolecules compared to non-modified chitosan with the same molecular weight. The proteolytic activity of the immobilized enzymes is increased up to 100% compared to native ones. The immobilized ficin retains up to 97% of the initial activity after a one-day incubation, the immobilized bromelain retains 69% of activity after a 3-day incubation, and the immobilized papain retains 57% of the initial activity after a 7-day incubation. Therefore, the synthesized copolymers can be used as matrices for the immobilization of bromelain, ficin, and papain.
Collapse
|
12
|
Mehta A, Aryan A, Pandey JP, Sen G. Synthesis of a Novel Water‐Soluble Graft Copolymer for Mineral Ore Beneficiation and for River Water Treatment towards Drinking Water Augmentation. ChemistrySelect 2022. [DOI: 10.1002/slct.202103289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anurag Mehta
- Department of Chemistry Birla Institute of Technology Mesra Ranchi 835 215 Jharkhand India
| | - Ayush Aryan
- Department of Chemistry Birla Institute of Technology Mesra Ranchi 835 215 Jharkhand India
| | - Jay Prakash Pandey
- Department of Chemistry Birla Institute of Technology Mesra Ranchi 835 215 Jharkhand India
| | - Gautam Sen
- Department of Chemistry Birla Institute of Technology Mesra Ranchi 835 215 Jharkhand India
| |
Collapse
|
13
|
Carvalho JPF, Silva ACQ, Silvestre AJD, Freire CSR, Vilela C. Spherical Cellulose Micro and Nanoparticles: A Review of Recent Developments and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2744. [PMID: 34685185 PMCID: PMC8537411 DOI: 10.3390/nano11102744] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/27/2022]
Abstract
Cellulose, the most abundant natural polymer, is a versatile polysaccharide that is being exploited to manufacture innovative blends, composites, and hybrid materials in the form of membranes, films, coatings, hydrogels, and foams, as well as particles at the micro and nano scales. The application fields of cellulose micro and nanoparticles run the gamut from medicine, biology, and environment to electronics and energy. In fact, the number of studies dealing with sphere-shaped micro and nanoparticles based exclusively on cellulose (or its derivatives) or cellulose in combination with other molecules and macromolecules has been steadily increasing in the last five years. Hence, there is a clear need for an up-to-date narrative that gathers the latest advances on this research topic. So, the aim of this review is to portray some of the most recent and relevant developments on the use of cellulose to produce spherical micro- and nano-sized particles. An attempt was made to illustrate the present state of affairs in terms of the go-to strategies (e.g., emulsification processes, nanoprecipitation, microfluidics, and other assembly approaches) for the generation of sphere-shaped particles of cellulose and derivatives thereof. A concise description of the application fields of these cellulose-based spherical micro and nanoparticles is also presented.
Collapse
Affiliation(s)
| | | | | | | | - Carla Vilela
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (J.P.F.C.); (A.C.Q.S.); (A.J.D.S.); (C.S.R.F.)
| |
Collapse
|
14
|
Rahman MS, Hasan MS, Nitai AS, Nam S, Karmakar AK, Ahsan MS, Shiddiky MJA, Ahmed MB. Recent Developments of Carboxymethyl Cellulose. Polymers (Basel) 2021; 13:1345. [PMID: 33924089 PMCID: PMC8074295 DOI: 10.3390/polym13081345] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/22/2022] Open
Abstract
Carboxymethyl cellulose (CMC) is one of the most promising cellulose derivatives. Due to its characteristic surface properties, mechanical strength, tunable hydrophilicity, viscous properties, availability and abundance of raw materials, low-cost synthesis process, and likewise many contrasting aspects, it is now widely used in various advanced application fields, for example, food, paper, textile, and pharmaceutical industries, biomedical engineering, wastewater treatment, energy production, and storage energy production, and storage and so on. Many research articles have been reported on CMC, depending on their sources and application fields. Thus, a comprehensive and well-organized review is in great demand that can provide an up-to-date and in-depth review on CMC. Herein, this review aims to provide compact information of the synthesis to the advanced applications of this material in various fields. Finally, this article covers the insights of future CMC research that could guide researchers working in this prominent field.
Collapse
Affiliation(s)
- Md. Saifur Rahman
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md. Saif Hasan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Ashis Sutradhar Nitai
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Sunghyun Nam
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA;
| | - Aneek Krishna Karmakar
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Md. Shameem Ahsan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Muhammad J. A. Shiddiky
- School of Environment and Science (ESC) and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan 4111, Australia;
| | - Mohammad Boshir Ahmed
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|