1
|
Gopalakrishnan K, Ahmed S, Mishra P. Effect of aminolysis treatment on self-healing properties and printing potentialities of banana peel and edible wax based biodegradable film. Int J Biol Macromol 2024:136805. [PMID: 39461637 DOI: 10.1016/j.ijbiomac.2024.136805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Cellulose-based materials are a viable alternative to petroleum-based sources; however, the practical applicability of cellulose films is severely limited by their poor hydrophobicity. This study explores the development of hydrophobic films with self-healing properties through the incorporation of natural wax into a cellulose matrix. Different formulations of films were developed varying the concentration of glycerol (0 % to 3.5 % v/v) and aminolysis treatment. Printability property, rubbing, acid, and water resistance property of the film were also evaluated. The self-healing efficiency of the films varied from around 30 % to 80 % based on variations in glycerol and aminolysis treatment provided. Aminolysis-treated films showed enhanced self-healing properties (Self-healing efficiency ~77 %) compared to the control films. The films were characterized for their physical, mechanical, barrier, and thermal properties and it was found that 1.5 % had superior properties compared to other compositions. Printability properties showed that aminolysis-treated films had better wetting properties (WCA ~ 74.46°) with a peak tact force of 8.1 N. This signifies aminolysis-treated films had better ink absorption and adhesion properties, which confirms the printability nature of the films. This study highlights the potential applications of biodegradable self-healing based film, applications with a scope of resolving environmental problems by replacing petrochemical plastics.
Collapse
Affiliation(s)
- Krishna Gopalakrishnan
- Department of Food Engineering and Technology, Tezpur University, Napaam, Tezpur, Assam, India
| | - Shayaan Ahmed
- Department of Food Engineering and Technology, Tezpur University, Napaam, Tezpur, Assam, India
| | - Poonam Mishra
- Department of Food Engineering and Technology, Tezpur University, Napaam, Tezpur, Assam, India.
| |
Collapse
|
2
|
Rafique A, Bulbul YE, Raza ZA, Oksuz AU. Development of aminolyzed polylactic acid-based porous films for pH-responsive sustained drug delivery devices. Int J Biol Macromol 2024; 266:130947. [PMID: 38521313 DOI: 10.1016/j.ijbiomac.2024.130947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Biomaterial-based drug-carrying systems have scored enormous focus in the biomedical sector. Poly(lactic acid) (PLA) is a versatile material in this context. A porous and hydrophilic PLA surface can do this job better. We aimed to synthesize pH-responsive PLA-based porous films for uptaking and releasing amikacin sulfate in the aqueous media. The native PLA lacks functional/polar sites for the said purpose. So, we tended to aminolyze it for tailored physicochemical and surface properties. The amino (-NH2) group density on the treated films was examined using the ninhydrin assay. Electron microscopic analyses indicated the retention of porous morphology after aminolysis. Surface wettability and FTIR results expressed that the resultant films became hydrophilic after aminolysis. The thermal analysis expressed reasonable thermal stability of the aminolyzed films. The prepared films expressed pH-responsive behaviour for loading and releasing amikacin sulfate drug at pH 5.5 and 7.4, respectively. The drug release data best-fitted the first-order kinetic model based on Akaike information and model selection criteria. The prepared PLA-based aminolyzed films qualified as potential candidates for pH-responsive drug delivery applications. This study could be the first report on pH-responsive amikacin sulfate uptake and release on the swellable aminolyzed PLA-based porous films for effective drug delivery application.
Collapse
Affiliation(s)
- Ammara Rafique
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan; Department of Chemistry, Suleyman Demirel University, Faculty of Engineering and Natural Sciences, 32220 Isparta, Turkey
| | - Y Emre Bulbul
- Department of Chemistry, Suleyman Demirel University, Faculty of Engineering and Natural Sciences, 32220 Isparta, Turkey
| | - Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan.
| | - Aysegul Uygun Oksuz
- Department of Chemistry, Suleyman Demirel University, Faculty of Engineering and Natural Sciences, 32220 Isparta, Turkey.
| |
Collapse
|
3
|
Park H, He H, Yan X, Liu X, Scrutton NS, Chen GQ. PHA is not just a bioplastic! Biotechnol Adv 2024; 71:108320. [PMID: 38272380 DOI: 10.1016/j.biotechadv.2024.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Polyhydroxyalkanoates (PHA) have evolved into versatile biopolymers, transcending their origins as mere bioplastics. This extensive review delves into the multifaceted landscape of PHA applications, shedding light on the diverse industries that have harnessed their potential. PHA has proven to be an invaluable eco-conscious option for packaging materials, finding use in films foams, paper coatings and even straws. In the textile industry, PHA offers a sustainable alternative, while its application as a carbon source for denitrification in wastewater treatment showcases its versatility in environmental remediation. In addition, PHA has made notable contributions to the medical and consumer sectors, with various roles ranging from 3D printing, tissue engineering implants, and cell growth matrices to drug delivery carriers, and cosmetic products. Through metabolic engineering efforts, PHA can be fine-tuned to align with the specific requirements of each industry, enabling the customization of material properties such as ductility, elasticity, thermal conductivity, and transparency. To unleash PHA's full potential, bridging the gap between research and commercial viability is paramount. Successful PHA production scale-up hinges on establishing direct supply chains to specific application domains, including packaging, food and beverage materials, medical devices, and agriculture. This review underscores that PHA's future rests on ongoing exploration across these industries and more, paving the way for PHA to supplant conventional plastics and foster a circular economy.
Collapse
Affiliation(s)
- Helen Park
- School of Life Sciences, Tsinghua University, Beijing 100084, China; EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Hongtao He
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing 101309, China
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Khoffi F, Khalsi Y, Chevrier J, Kerdjoudj H, Tazibt A, Heim F. Surface treatment of PET multifilament textile for biomedical applications: roughness modification and fibroblast viability assessment. BIOMED ENG-BIOMED TE 2024; 69:17-26. [PMID: 37650423 DOI: 10.1515/bmt-2023-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the potential of tuning the topography of textile surfaces for biomedical applications towards modified cell-substrate interactions. METHODS For that purpose, a supercritical Nitrogen N2 jet was used to spray glass particles on multi-filament polyethylene terephthalate (PET) yarns and on woven fabrics. The influence of the jet projection parameters such as the jet pressure (P) and the standoff distance (SoD) on the roughness was investigated. RESULTS The impact of the particles created local filament ruptures on the treated surfaces towards hairiness increase. The results show that the treatment increases the roughness by up to 17 % at P 300 bars and SoD 300 mm while the strength of the material is slightly decreased. The biological study brings out that proliferation can be slightly limited on a more hairy surface, and is increased when the surface is more flat. After 10 days of fibroblast culture, the cells covered the entire surface of the fabrics and had mainly grown unidirectionally, forming cell clusters oriented along the longitudinal axis of the textile yarns. Clusters were generated at yarn crossings. CONCLUSIONS This approach revealed that the particle projection technology can help tuning the cell proliferation on a textile surface.
Collapse
Affiliation(s)
- Foued Khoffi
- Laboratoire de Génie Textile (LGTex), Ksar-Hellal, Tunisia
- Laboratoire de Physique et Mécanique Textiles (LPMT), ENSISA, Mulhouse, France
- CRITT Techniques Jet Fluide et Usinage (TJFU), Bar-Le-Duc, France
| | - Yosri Khalsi
- CRITT Techniques Jet Fluide et Usinage (TJFU), Bar-Le-Duc, France
| | - Julie Chevrier
- Université de Reims Champagne Ardenne, BIOS EA 4691, Reims, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, BIOS EA 4691, Reims, France
- UFR d'Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | - Abdel Tazibt
- CRITT Techniques Jet Fluide et Usinage (TJFU), Bar-Le-Duc, France
| | - Fréderic Heim
- Laboratoire de Physique et Mécanique Textiles (LPMT), ENSISA, Mulhouse, France
- GEPROMED, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Sarwar T, Raza ZA, Nazeer MA, Khan A. Synthesis of aminolyzed gelatin-mediated chitosan as pH-responsive drug-carrying porous scaffolds. Int J Biol Macromol 2024; 256:128525. [PMID: 38040168 DOI: 10.1016/j.ijbiomac.2023.128525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Bio-based drug delivery devices have gained enormous interest in the biomedical field due to their biocompatible attributes. Extensive research is being conducted on chitosan-based devices for drug delivery applications. Chitosan being hydrophobic under neutral conditions makes it difficult to interact with a polar drug of curcumin. We tended to make it polar through sol-gel synthesis and modification via PEGylation, alkaline hydrolysis, and aminolysis. Such alterations could make the chitosan-based scaffolds porous, hydrophilic, amino-functionalized, and pH-responsive. The ninhydrin assay confirmed that a successful aminolysis occurred, and the chemical interaction among the precursors was explained under infrared spectroscopy. The scanning morphology of the optimum aminolyzed membrane appeared to be porous with an average pore size of 320 ± 20 nm. The aminolyzed chitosan membrane was found thermally stable up to 310 °C, hydrophilic with a water contact angle of 23.4°, moderate flowablity, and porous (97 ± 5 %, w/w) against ethanol. The curcumin-loaded chitosan membrane expressed the UV-protection behavior of 99 %. The curcumin-loading and release phenomena were found pH-responsive. The curcumin release results were evaluated through specific kinetic models. This study could be the first report on the amphiphilic, porous, and swellable drug-loaded gelatin/chitosan membrane with pH-responsive loading and release of curcumin for potential drug delivery applications.
Collapse
Affiliation(s)
- Tanzeel Sarwar
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan.
| | - Muhammad Anwaar Nazeer
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Amina Khan
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| |
Collapse
|
6
|
Jaffur BN, Kumar G, Jeetah P, Ramakrishna S, Bhatia SK. Current advances and emerging trends in sustainable polyhydroxyalkanoate modification from organic waste streams for material applications. Int J Biol Macromol 2023; 253:126781. [PMID: 37696371 DOI: 10.1016/j.ijbiomac.2023.126781] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
The current processes for producing polyhydroxyalkanoates (PHAs) are costly, owing to the high cost of cultivation feedstocks, and the need to sterilise the growth medium, which is energy-intensive. PHA has been identified as a promising biomaterial with a wide range of potential applications and its functionalization from waste streams has made significant advances recently, which can help foster the growth of a circular economy and waste reduction. Recent developments and novel approaches in the functionalization of PHAs derived from various waste streams offer opportunities for addressing these issues. This study focuses on the development of sustainable, efficient, and cutting-edge methods, such as advanced bioprocess engineering, novel catalysts, and advances in materials science. Chemical techniques, such as epoxidation, oxidation, and esterification, have been employed for PHA functionalization, while enzymatic and microbial methods have indicated promise. PHB/polylactic acid blends with cellulose fibers showed improved tensile strength by 24.45-32.08 % and decreased water vapor and oxygen transmission rates while PHB/Polycaprolactone blends with a 1:1 ratio demonstrated an elongation at break four to six times higher than pure PHB, without altering tensile strength or elastic modulus. Moreover, PHB films blended with both polyethylene glycol and esterified sodium alginate showed improvements in crystallinity and decreased hydrophobicity.
Collapse
Affiliation(s)
- Bibi Nausheen Jaffur
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius.
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental, Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea
| | - Pratima Jeetah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
7
|
Vicente D, Proença DN, Morais PV. The Role of Bacterial Polyhydroalkanoate (PHA) in a Sustainable Future: A Review on the Biological Diversity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2959. [PMID: 36833658 PMCID: PMC9957297 DOI: 10.3390/ijerph20042959] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Environmental challenges related to the mismanagement of plastic waste became even more evident during the COVID-19 pandemic. The need for new solutions regarding the use of plastics came to the forefront again. Polyhydroxyalkanoates (PHA) have demonstrated their ability to replace conventional plastics, especially in packaging. Its biodegradability and biocompatibility makes this material a sustainable solution. The cost of PHA production and some weak physical properties compared to synthetic polymers remain as the main barriers to its implementation in the industry. The scientific community has been trying to solve these disadvantages associated with PHA. This review seeks to frame the role of PHA and bioplastics as substitutes for conventional plastics for a more sustainable future. It is focused on the bacterial production of PHA, highlighting the current limitations of the production process and, consequently, its implementation in the industry, as well as reviewing the alternatives to turn the production of bioplastics into a sustainable and circular economy.
Collapse
Affiliation(s)
| | - Diogo Neves Proença
- Department of Life Sciences, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, 3000-456 Coimbra, Portugal
| | | |
Collapse
|
8
|
Raza ZA, Khatoon R. Lipolysis of Poly(Hydroxybutyrate)‐Based Films for the Tailored Release of Hydrophilic Proteins. ChemistrySelect 2023. [DOI: 10.1002/slct.202203417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zulfiqar Ali Raza
- Department of Applied Sciences National Textile University Faisalabad 37610 Pakistan
| | - Rizwana Khatoon
- Department of Applied Sciences National Textile University Faisalabad 37610 Pakistan
| |
Collapse
|
9
|
Zhang J, Jiao Y, Zhang Y, Wang K, Sui X, Song D, Drioli E, Cheng X. Development of Hydrophilic Polylactic Acid Hollow-Fiber Membranes for Water Remediation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jinghao Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai264209, P.R. China
| | - Yang Jiao
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai264209, P.R. China
| | - Yingjie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai264209, P.R. China
- Shandong Sino-European Membrane Technology Research Institute Co., Ltd., Weihai Key Laboratory of Water Treatment and Membrane Technology, Weihai264209, P.R. China
| | - Kai Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai264209, P.R. China
- Shandong Sino-European Membrane Technology Research Institute Co., Ltd., Weihai Key Laboratory of Water Treatment and Membrane Technology, Weihai264209, P.R. China
| | - Xiao Sui
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai264209, P.R. China
- Shandong Sino-European Membrane Technology Research Institute Co., Ltd., Weihai Key Laboratory of Water Treatment and Membrane Technology, Weihai264209, P.R. China
| | - Dan Song
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai264209, P.R. China
- Shandong Sino-European Membrane Technology Research Institute Co., Ltd., Weihai Key Laboratory of Water Treatment and Membrane Technology, Weihai264209, P.R. China
| | - Enrico Drioli
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17c, 87036Rende, Cosenza, Italy
| | - Xiquan Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai264209, P.R. China
- Shandong Sino-European Membrane Technology Research Institute Co., Ltd., Weihai Key Laboratory of Water Treatment and Membrane Technology, Weihai264209, P.R. China
| |
Collapse
|
10
|
Nano Cadmium Sulfide Mediation of Poly(hydroxybutyrate)-Based Biocomposite Film for Improved Thermomechanical Properties. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02487-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|