1
|
Winter E, Teschler-Nicola M, Macfelda K, Vohland K. The pathological anatomical collection of the Natural History Museum Vienna. Wien Med Wochenschr 2024; 174:265-278. [PMID: 36729342 PMCID: PMC9893974 DOI: 10.1007/s10354-022-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/22/2022] [Indexed: 02/03/2023]
Abstract
The pathological anatomical collection Vienna (Pathologisch-Anatomische Sammlung Wien; PASW) is a living and still growing research collection. It was established as early as 1796 as part of the Medical University of Vienna, acquired the status of an independent federal museum in 1971, and was assigned to the Natural History Museum Vienna in 2012. It houses a wide range of human wet and dry specimens and further objects, such as moulages, medical devices, microbiological and histological specimens, and a photo archive (approximately 50,000 objects), which, as a meaningful source, may contribute to disclosing not only aspects of the medical history and the development of corresponding museums in Vienna, but is also considered a collection of cultural and current scientific relevance, quite comparable to today's biobanks. Most of the tissue amassment represents wet organic specimens and human skeletons or skeletal elements representing, e.g., congenital and metabolic disorders, infectious diseases, injuries, neoplasms, or musculoskeletal diseases, basically collected as descriptive anatomical teaching aids. This article reviews the current medical issues on which research has been and is being conducted by including PASW specimens (hereby using the ICD-10 code), and the extent to and ethical conditions under which this important heritage could be used as a reference collection for clinical and bioanthropological (paleopathological and palaeoepidemiological) studies; finally, this article reflects on the value and future research prospects, taking into account different positions and the ongoing discussions in pathological anatomical human tissue collections.
Collapse
|
2
|
Ippoliti L, Coppeta L, Somma G, Bizzarro G, Borelli F, Crispino T, Ferrari C, Iannuzzi I, Mazza A, Paolino A, Magrini A, Pietroiusti A. Pulmonary function assessment after COVID-19 in vaccinated healthcare workers. J Occup Med Toxicol 2023; 18:31. [PMID: 38102626 PMCID: PMC10724929 DOI: 10.1186/s12995-023-00400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
COVID-19 typically presents with flu-like symptoms due to the viral infection itself. The most severe cases are characterised by lung damage, an important factor in fatal outcome due to alveolar damage. In some cases, patients develop a long COVID with persistent symptoms of chest pain and fatigue. Causes, including organ damage or inflammation, are being investigated. Clinical outcomes are variable and permanent lung damage is not fully understood, while vaccination is effective against severe infection but its effect on respiratory function in mild cases remains uncertain. This retrospective study aims to analyse changes in lung function in HCWs who had COVID-19 between 2020 and 2022, comparing their spirometric test results before and after the pandemic and taking into account their vaccination status. 321 HCWs were included in the study. The study examined spirometric parameters both before and after the pandemic, and all measured outcomes except the FEV1/FVC ratio showed a significant decrease during the study period. We then assessed the association between SARS-CoV-2 infection and changes in lung function parameters, analysing infections in 2020, 2021 and 2022 separately. We found a statistically significant difference in Forced vital capacity (FVC) between infected and non-infected subjects in 2020 and 2021, but not in 2022. To evaluate the protective effect of SARS-CoV-2 vaccination on respiratory function, a linear regression analysis was performed using changes in FVC, Forced expiratory volume in 1 s (FEV1), FVC/FEV1 ratio and Peak expiratory flow (PEF) as dependent variables. The analysis showed that the decline in FVC was significantly lower in subjects who had been vaccinated prior to infection. The study concludes that subclinical SARS-CoV-2 infections in 2020 and 2021 worsened respiratory parameters (FVC and FEV1), but vaccination protected against these effects. Even healthy individuals with previous infections showed respiratory changes, with vaccination providing protection, especially for FVC decline. This highlights the importance of vaccinating healthcare workers against COVID-19.
Collapse
Affiliation(s)
- Lorenzo Ippoliti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy.
| | - Luca Coppeta
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Giuseppina Somma
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Giuseppe Bizzarro
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Francesco Borelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Teresa Crispino
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Cristiana Ferrari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Ilaria Iannuzzi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Andrea Mazza
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Agostino Paolino
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Antonio Pietroiusti
- Saint Camillus International University of Health Sciences, Rome, 00131, Italy
| |
Collapse
|
3
|
Zacher J, Branahl A, Predel HG, Laborde S. Effects of Covid-19 on the autonomic nervous system in elite athletes assessed by heart rate variability. SPORT SCIENCES FOR HEALTH 2023:1-12. [PMID: 37360977 PMCID: PMC10191822 DOI: 10.1007/s11332-023-01067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/27/2023] [Indexed: 06/28/2023]
Abstract
Introduction Covid-19 is a viral airway and systemic infection which can negatively affect the function of the autonomic nervous system. Cardiovascular autonomic function is essential for peak athletic performance. The aim of this study was to assess the effects of a Covid-19 disease on the autonomic nervous system of German elite athletes using heart rate variability (HRV). Methods 60 elite athletes (aged 22.88 ± 4.71 years) were recruited, 30 of whom had undergone a Covid-19 disease. Heart rate (HR), blood pressure (BP) and heart rate variability (HRV) were measured during rest and during an orthostatic challenge. Results At rest and after orthostatic stress blood pressure and the root mean square of successive differences (RMSDD) were significantly lower in Covid-19 athletes (COV) than in control athletes (CON) (p = 0.002 and p = 0.004, respectively); heart rate was significantly higher (p = 0.001). COV showed a significantly greater reduction in blood pressure and elevation of heart rate than CON, but the change in RMSSD did not differ significantly during the orthostatic challenge. Conclusion These results show a change in cardiac parasympathetic activity and cardiovascular autonomic function in German elite athletes after Covid-19. These findings further the understanding of effects of the Covid-19 disease on the cardiovascular physiology in athletes. Heart rate variability may be a helpful tool in the return-to-play assessment of elite athletes. Supplementary Information The online version contains supplementary material available at 10.1007/s11332-023-01067-7.
Collapse
Affiliation(s)
- Jonas Zacher
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Aike Branahl
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Hans-Georg Predel
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sylvain Laborde
- Institute of Psychology, German Sport University Cologne, Cologne, Germany
- Normandie Université, EA 4260, UFR STAPS, Caen, France
| |
Collapse
|
4
|
Jonigk D, Werlein C, Lee PD, Kauczor HU, Länger F, Ackermann M. Pulmonary and Systemic Pathology in COVID-19—Holistic Pathological Analyses. DEUTSCHES ARZTEBLATT INTERNATIONAL 2022; 119:429-435. [PMID: 35698804 PMCID: PMC9549895 DOI: 10.3238/arztebl.m2022.0231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/22/2022] [Accepted: 05/10/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND The COVID-19 pandemic is the third worldwide coronavirus-associated disease outbreak in the past 20 years. Lung involvement, with acute respiratory distress syndrome (ARDS) in severe cases, is the main clinical feature of this disease; the cardiovascular system, the central nervous system, and the gastrointestinal tract can also be affected. The pathophysiology of both pulmonary and extrapulmonary organ damage was almost completely unknown when the pandemic began. METHODS This review is based on pertinent publications retrieved by a selective search concerning the structural changes and pathophysiology of COVID-19, with a focus on imaging techniques. RESULTS Immunohistochemical, electron-microscopic and molecular pathological analyses of tissues obtained by autopsy have improved our understanding of COVID-19 pathophysiology, including molecular regulatory mechanisms. Intussusceptive angiogenesis (IA) has been found to be a prominent pattern of damage in the affected organs of COVID-19 patients. In IA, an existing vessel changes by invagination of the endothelium and formation of an intraluminal septum, ultimately giving rise to two new lumina. This alters hemodynamics within the vessel, leading to a loss of laminar flow and its replacement by turbulent, inhomogeneous flow. IA, which arises because of ischemia due to thrombosis, is itself a risk factor for the generation of further microthrombi; these have been detected in the lungs, heart, liver, kidneys, brain, and placenta of COVID-19 patients. CONCLUSION Studies of autopsy material from various tissues of COVID-19 patients have revealed ultrastructural evidence of altered microvascularity, IA, and multifocal thrombi. These changes may contribute to the pathophysiology of post-acute interstitial fibrotic organ changes as well as to the clinical picture of long COVID.
Collapse
Affiliation(s)
- Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany; German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover site, Hannover, Germany; Department of Mechanical Engineering, Faculty of Engineering Science, University College London, London, UK; Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany; Institute of Pathology and Molecular Pathology, Helios University Hospital Wuppertal, University Hospital of Witten-Herdecke, Wuppertal, Germany; Institute of Functional and Clinical Anatomy, University Medical Center Mainz, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Biswas M, Sawajan N, Rungrotmongkol T, Sanachai K, Ershadian M, Sukasem C. Pharmacogenetics and Precision Medicine Approaches for the Improvement of COVID-19 Therapies. Front Pharmacol 2022; 13:835136. [PMID: 35250581 PMCID: PMC8894812 DOI: 10.3389/fphar.2022.835136] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
Many drugs are being administered to tackle coronavirus disease 2019 (COVID-19) pandemic situations without establishing clinical effectiveness or tailoring safety. A repurposing strategy might be more effective and successful if pharmacogenetic interventions are being considered in future clinical studies/trials. Although it is very unlikely that there are almost no pharmacogenetic data for COVID-19 drugs, however, from inferring the pharmacokinetic (PK)/pharmacodynamic(PD) properties and some pharmacogenetic evidence in other diseases/clinical conditions, it is highly likely that pharmacogenetic associations are also feasible in at least some COVID-19 drugs. We strongly mandate to undertake a pharmacogenetic assessment for at least these drug-gene pairs (atazanavir-UGT1A1, ABCB1, SLCO1B1, APOA5; efavirenz-CYP2B6; nevirapine-HLA, CYP2B6, ABCB1; lopinavir-SLCO1B3, ABCC2; ribavirin-SLC28A2; tocilizumab-FCGR3A; ivermectin-ABCB1; oseltamivir-CES1, ABCB1; clopidogrel-CYP2C19, ABCB1, warfarin-CYP2C9, VKORC1; non-steroidal anti-inflammatory drugs (NSAIDs)-CYP2C9) in COVID-19 patients for advancing precision medicine. Molecular docking and computational studies are promising to achieve new therapeutics against SARS-CoV-2 infection. The current situation in the discovery of anti-SARS-CoV-2 agents at four important targets from in silico studies has been described and summarized in this review. Although natural occurring compounds from different herbs against SARS-CoV-2 infection are favorable, however, accurate experimental investigation of these compounds is warranted to provide insightful information. Moreover, clinical considerations of drug-drug interactions (DDIs) and drug-herb interactions (DHIs) of the existing repurposed drugs along with pharmacogenetic (e.g., efavirenz and CYP2B6) and herbogenetic (e.g., andrographolide and CYP2C9) interventions, collectively called multifactorial drug-gene interactions (DGIs), may further accelerate the development of precision COVID-19 therapies in the real-world clinical settings.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Nares Sawajan
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pathology, School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Kamonpan Sanachai
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Maliheh Ershadian
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics and Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Singh SP, Bhatnagar A, Singh SK, K Patra S, Kanwar N, Kanwal A, Amar S, Manna R. SARS-CoV-2 Infections, Impaired Tissue, and Metabolic Health: Pathophysiology and Potential Therapeutics. Mini Rev Med Chem 2022; 22:2102-2123. [PMID: 35105287 DOI: 10.2174/1389557522666220201154845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023]
Abstract
The SARS-CoV-2 enters the human airways and comes into contact with the mucous membranes lining the mouth, nose, and eyes. The virus enters the healthy cells and uses cell machinery to make several copies of the virus. Critically ill patients infected with SARS-CoV-2 may have damaged lungs, air sacs, lining, and walls. Since COVID-19 causes cytokine storm, it damages the alveolar cells of the lungs and fills them with fluid, making it harder to exchange oxygen and carbon dioxide. The SARS-CoV-2 infection causes a range of complications, including mild to critical breathing difficulties. It has been observed that older people suffering from health conditions like cardiomyopathies, nephropathies, metabolic syndrome, and diabetes instigate severe symptoms. Many people who died due to COVID-19 had impaired metabolic health [IMH], characterized by hypertension, dyslipidemia, and hyperglycemia, i.e., diabetes, cardiovascular system, and renal diseases making their retrieval challenging. Jeopardy stresses for increased mortality from COVID-19 include older age, COPD, ischemic heart disease, diabetes mellitus, and immunosuppression. However, no targeted therapies are available as of now. Almost two-thirds of diagnosed coronavirus patients had cardiovascular diseases and diabetes, out of which 37% were under 60. The NHS audit revealed that with a higher expression of ACE-2 receptors, viral particles could easily bind their protein spikes and get inside the cells, finally causing COVID-19 infection. Hence, people with IMH are more prone to COVID-19 and, ultimately, comorbidities. This review provides enormous information about tissue [lungs, heart and kidneys] damage, pathophysiological changes, and impaired metabolic health of SARS-CoV-2 infected patients. Moreover, it also designates the possible therapeutic targets of COVID-19 and drugs which can be used against these targets.
Collapse
Affiliation(s)
| | - Aayushi Bhatnagar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India-305817
| | - Sujeet Kumar Singh
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India-305817
| | - Sanjib K Patra
- Department of Yoga, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India-305817
| | - Navjot Kanwar
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, Punjab, India-151001
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, Punjab, India-151001
| | - Salomon Amar
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595
| | - Ranata Manna
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India-305817
| |
Collapse
|
7
|
Kamp JC, Neubert L, Ackermann M, Stark H, Werlein C, Fuge J, Haverich A, Tzankov A, Steinestel K, Friemann J, Boor P, Junker K, Hoeper MM, Welte T, Laenger F, Kuehnel MP, Jonigk DD. Time-Dependent Molecular Motifs of Pulmonary Fibrogenesis in COVID-19. Int J Mol Sci 2022; 23:1583. [PMID: 35163504 PMCID: PMC8835897 DOI: 10.3390/ijms23031583] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: In COVID-19 survivors there is an increased prevalence of pulmonary fibrosis of which the underlying molecular mechanisms are poorly understood; (2) Methods: In this multicentric study, n = 12 patients who succumbed to COVID-19 due to progressive respiratory failure were assigned to an early and late group (death within ≤7 and >7 days of hospitalization, respectively) and compared to n = 11 healthy controls; mRNA and protein expression as well as biological pathway analysis were performed to gain insights into the evolution of pulmonary fibrogenesis in COVID-19; (3) Results: Median duration of hospitalization until death was 3 (IQR25-75, 3-3.75) and 14 (12.5-14) days in the early and late group, respectively. Fifty-eight out of 770 analyzed genes showed a significantly altered expression signature in COVID-19 compared to controls in a time-dependent manner. The entire study group showed an increased expression of BST2 and IL1R1, independent of hospitalization time. In the early group there was increased activity of inflammation-related genes and pathways, while fibrosis-related genes (particularly PDGFRB) and pathways dominated in the late group; (4) Conclusions: After the first week of hospitalization, there is a shift from pro-inflammatory to fibrogenic activity in severe COVID-19. IL1R1 and PDGFRB may serve as potential therapeutic targets in future studies.
Collapse
Affiliation(s)
- Jan C. Kamp
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (M.M.H.); (T.W.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
| | - Lavinia Neubert
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Maximilian Ackermann
- Institute of Pathology and Department of Molecular Pathology, Helios University Clinic Wuppertal, University of Witten-Herdecke, 42283 Wuppertal, Germany;
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, 55122 Mainz, Germany
| | - Helge Stark
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Christopher Werlein
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Jan Fuge
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (M.M.H.); (T.W.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
| | - Axel Haverich
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland;
| | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, 89081 Ulm, Germany;
| | - Johannes Friemann
- Institute of Pathology, Märkische Kliniken GmbH, Klinikum Lüdenscheid, 58515 Lüdenscheid, Germany;
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, RWTH University of Aachen, 52062 Aachen, Germany;
| | - Klaus Junker
- Institute of Pathology, Bremen Central Hospital, 28177 Bremen, Germany;
| | - Marius M. Hoeper
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (M.M.H.); (T.W.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (M.M.H.); (T.W.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
| | - Florian Laenger
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Mark P. Kuehnel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Danny D. Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
8
|
Abstract
BACKGROUND Analyses for the presence of SARS-CoV‑2 in the tissues of COVID-19 patients is important in order to improve our understanding of the disease pathophysiology for interpretation of diagnostic histopathological findings in autopsies, biopsies, or surgical specimens and to assess the potential for occupational infectious hazard. MATERIAL AND METHODS In this review we identified 136 published studies in PubMed's curated literature database LitCovid on SARS-CoV‑2 detection methods in tissues and evaluated them regarding sources of error, specificity, and sensitivity of the methods, taking into account our own experience. RESULTS Currently, no sufficiently specific histomorphological alterations or diagnostic features for COVID-19 are known. Therefore, three approaches for SARS-CoV‑2 detection are used: RNA, proteins/antigens, or morphological detection by electron microscopy. In the preanalytical phase, the dominant source of error is tissue quality, especially the different intervals between sample collection and processing or fixation (and its duration) and specifically the interval between death and sample collection in autopsies. However, this information is found in less than half of the studies (e.g., in only 42% of autopsy studies). Our own experience and first studies prove the significantly higher sensitivity and specificity of RNA-based detection methods compared to antigen or protein detection by immunohistochemistry or immunofluorescence. Detection by electron microscopy is time consuming and difficult to interpret. CONCLUSIONS Different methods are available for the detection of SARS-CoV‑2 in tissue. Currently, RNA detection by RT-PCR is the method of choice. However, extensive validation studies and method harmonization are not available and are absolutely necessary.
Collapse
Affiliation(s)
| | - Peter Boor
- Institute of Pathology, University Hospital of RWTH Aachen, Aachen, Germany.
- Medical Clinic II (Nephrology and Immunology), University Hospital of RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
9
|
Jadaun PK, Chatterjee S. COVID-19 and dys-regulation of pulmonary endothelium: implications for vascular remodeling. Cytokine Growth Factor Rev 2021; 63:69-77. [PMID: 34728151 PMCID: PMC9611904 DOI: 10.1016/j.cytogfr.2021.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease-2019 (COVID-19),
the disease caused by severe acute respiratory syndrome-coronavirus-2,
has claimed more than 4.4 million lives worldwide (as of 20 August 2021).
Severe cases of the disease often result in respiratory distress due to
cytokine storm, and mechanical ventilation is required. Although, the
lungs are the primary organs affected by the disease, more evidence on
damage to the heart, kidney, and liver is emerging. A common link in
these connections is the cardiovascular network. Inner lining of the
blood vessels, called endothelium, is formed by a single layer of
endothelial cells. Several clinical manifestations involving the
endothelium have been reported, such as its activation via
immunomodulation, endotheliitis, thrombosis, vasoconstriction, and
distinct intussusceptive angiogenesis (IA), a unique and rapid process of
blood-vessel formation by splitting a vessel into two lumens. In fact,
the virus directly infects the endothelium via TMPRSS2 spike glycoprotein
priming to facilitate ACE-2-mediated viral entry. Recent studies have
indicated a significant increase in remodeling of the pulmonary vascular
bed via intussusception in patients with COVID-19. However, the lack of
circulatory biomarkers for IA limits its detection in COVID-19
pathogenesis. In this review, we describe the implications of
angiogenesis in COVID-19, unique features of the pulmonary vascular bed
and its remodeling, and a rapid and non-invasive assessment of IA to
overcome the technical limitations in patients with
COVID-19.
Collapse
Affiliation(s)
- Pavitra K Jadaun
- Hepatology, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Suvro Chatterjee
- Department of Biotechnology, University of Burdwan, Golap Bag Campus, Burdwan, India.
| |
Collapse
|
10
|
[Update on thoracic pathology 2021-report of the working group thoracic pathology of the German Society of Pathology]. DER PATHOLOGE 2021; 42:199-202. [PMID: 34609564 PMCID: PMC8490854 DOI: 10.1007/s00292-021-00991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 11/02/2022]
|
11
|
3D Printing for Medical Applications: Current State of the Art and Perspectives during the COVID-19 Crisis. SURGERIES 2021. [DOI: 10.3390/surgeries2030025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The coronavirus SARS-CoV-2 pandemic has affected over one hundred million people worldwide and has resulted in over two million deaths. In addition to the toll that coronavirus takes on the health of humans infected with the virus and the potential long term effects of infection, the repercussions of the pandemic on the economy as well as on the healthcare system have been enormous. The global supply of equipment necessary for dealing with the pandemic experienced extreme stress as healthcare systems around the world attempted to acquire personal protective equipment for their workers and medical devices for treating COVID-19. This review describes how 3D printing is currently being used in life saving surgeries such as heart and lung surgery and how 3D printing can address some of the worldwide shortage of personal protective equipment, by examining recent trends of the use of 3D printing and how these technologies can be applied during and after the pandemic. We review the use of 3D printed models for treating the long term effects of COVID-19. We then focus on methods for generating face shields and different types of respirators. We conclude with areas for future investigation and application of 3D printing technology.
Collapse
|
12
|
Cooperative approach of pathology and neuropathology in the COVID-19 pandemic : German registry for COVID-19 autopsies (DeRegCOVID) and German network for autopsies in pandemics (DEFEAT PANDEMIcs). DER PATHOLOGE 2021; 42:69-75. [PMID: 33721057 PMCID: PMC7958937 DOI: 10.1007/s00292-020-00897-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Background Autopsy is an important tool for understanding the pathogenesis of diseases, including COVID-19. Material and methods On 15 April 2020, together with the German Society of Pathology and the Federal Association of German Pathologists, the German Registry of COVID-19 Autopsies (DeRegCOVID) was launched (www.DeRegCOVID.ukaachen.de). Building on this, the German Network for Autopsies in Pandemics (DEFEAT PANDEMIcs) was established on 1 September 2020. Results The main goal of DeRegCOVID is to collect and distribute de facto anonymized data on potentially all autopsies of people who have died from COVID-19 in Germany in order to meet the need for centralized, coordinated, and structured data collection and reporting during the pandemic. The success of the registry strongly depends on the willingness of the respective centers to report the data, which has developed very positively so far and requires special thanks to all participating centers. The rights to own data and biomaterials (stored decentrally) remain with each respective center. The DEFEAT PANDEMIcs network expands on this and aims to strengthen harmonization and standardization as well as nationwide implementation and cooperation in the field of pandemic autopsies. Conclusions The extraordinary cooperation in the field of autopsies in Germany during the COVID-19 pandemic is impressively demonstrated by the establishment of DeRegCOVID, the merger of the registry of neuropathology (CNS-COVID19) with DeRegCOVID and the establishment of the autopsy network DEFEAT PANDEMIcs. It gives a strong signal for the necessity, readiness, and expertise to jointly help manage current and future pandemics by autopsy-derived knowledge.
Collapse
|
13
|
von Stillfried S, Acker T, Aepfelbacher M, Baretton G, Bülow RD, Bürrig KF, Holtherm HU, Jonigk D, Knüchel R, Majeed RW, Röhrig R, Wienströer J, Boor P. [Cooperative approach of pathology and neuropathology in the COVID-19 pandemic : German registry for COVID-19 autopsies (DeRegCOVID) and German network for autopsies in pandemics (DEFEAT PANDEMIcs)]. DER PATHOLOGE 2021; 42:216-223. [PMID: 33594614 PMCID: PMC7885765 DOI: 10.1007/s00292-020-00891-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autopsy is an important tool for understanding the pathogenesis of diseases, including COVID-19. MATERIAL AND METHODS On 15 April 2020, together with the German Society of Pathology and the Federal Association of German Pathologists, the German Registry of COVID-19 Autopsies (DeRegCOVID) was launched ( www.DeRegCOVID.ukaachen.de ). Building on this, the German Network for Autopsies in Pandemics (DEFEAT PANDEMIcs) was established on 1 September 2020. RESULTS The main goal of DeRegCOVID is to collect and distribute de facto anonymized data on potentially all autopsies of people who have died from COVID-19 in Germany in order to meet the need for centralized, coordinated, and structured data collection and reporting during the pandemic. The success of the registry strongly depends on the willingness of the respective centers to report the data, which has developed very positively so far and requires special thanks to all participating centers. The rights to own data and biomaterials (stored decentrally) remain with each respective center. The DEFEAT PANDEMIcs network expands on this and aims to strengthen harmonization and standardization as well as nationwide implementation and cooperation in the field of pandemic autopsies. CONCLUSIONS The extraordinary cooperation in the field of autopsies in Germany during the COVID-19 pandemic is impressively demonstrated by the establishment of DeRegCOVID, the merger of the registry of neuropathology (CNS-COVID19) with DeRegCOVID and the establishment of the autopsy network DEFEAT PANDEMIcs. It gives a strong signal for the necessity, readiness, and expertise to jointly help manage current and future pandemics by autopsy-derived knowledge.
Collapse
Affiliation(s)
- Saskia von Stillfried
- Institut für Pathologie, Universitätsklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
| | - Till Acker
- Institut für Neuropathologie, Justus-Liebig-Universität Gießen, Gießen, Deutschland
- Deutschen Gesellschaft für Neuropathologie und Neuroanatomie e. V., Magdeburg, Deutschland
| | - Martin Aepfelbacher
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Gustavo Baretton
- Institut für Pathologie, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Deutschland
- Deutsche Gesellschaft für Pathologie e. V., Berlin, Deutschland
| | - Roman David Bülow
- Institut für Pathologie, Universitätsklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Karl-Friedrich Bürrig
- Institut für Pathologie Hildesheim, Hildesheim, Deutschland
- Bundesverband Deutscher Pathologen e. V., Berlin, Deutschland
| | | | - Danny Jonigk
- Deutsches Zentrum für Lungenforschung e. V., Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Ruth Knüchel
- Institut für Pathologie, Universitätsklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Raphael W Majeed
- Institut für Medizinische Informatik, Universitätsklinik RWTH Aachen, Aachen, Deutschland
| | - Rainer Röhrig
- Institut für Medizinische Informatik, Universitätsklinik RWTH Aachen, Aachen, Deutschland
| | - Jan Wienströer
- Institut für Medizinische Informatik, Universitätsklinik RWTH Aachen, Aachen, Deutschland
| | - Peter Boor
- Institut für Pathologie, Universitätsklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
- Medizinische Klinik II (Nephrologie und Immunologie), Universitätsklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
| |
Collapse
|
14
|
Abstract
BACKGROUND Analyses for the presence of SARS-CoV‑2 in the tissues of COVID-19 patients is important in order to improve our understanding of the disease pathophysiology for interpretation of diagnostic histopathological findings in autopsies, biopsies, or surgical specimens and to assess the potential for occupational infectious hazard. MATERIAL AND METHODS In this review we identified 136 published studies in PubMed's curated literature database LitCovid on SARS-CoV‑2 detection methods in tissues and evaluated them regarding sources of error, specificity, and sensitivity of the methods, taking into account our own experience. RESULTS Currently, no sufficiently specific histomorphological alterations or diagnostic features for COVID-19 are known. Therefore, three approaches for SARS-CoV‑2 detection are used: RNA, proteins/antigens, or morphological detection by electron microscopy. In the preanalytical phase, the dominant source of error is tissue quality, especially the different intervals between sample collection and processing or fixation (and its duration) and specifically the interval between death and sample collection in autopsies. However, this information is found in less than half of the studies (e.g., in only 42% of autopsy studies). Our own experience and first studies prove the significantly higher sensitivity and specificity of RNA-based detection methods compared to antigen or protein detection by immunohistochemistry or immunofluorescence. Detection by electron microscopy is time consuming and difficult to interpret. CONCLUSIONS Different methods are available for the detection of SARS-CoV‑2 in tissue. Currently, RNA detection by RT-PCR is the method of choice. However, extensive validation studies and method harmonization are not available and are absolutely necessary.
Collapse
Affiliation(s)
- Saskia von Stillfried
- Institut für Pathologie, Universitätsklinik der RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Peter Boor
- Institut für Pathologie, Universitätsklinik der RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
- Medizinische Klinik II (Nephrologie und Immunologie), Universitätsklinik der RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
| |
Collapse
|