1
|
Mutalová S, Hodorová V, Brázdovič F, Cillingová A, Tomáška Ľ, Brejová B, Nosek J. Chromosome-level genome assembly of an auxotrophic strain of the pathogenic yeast Candida parapsilosis. Microbiol Resour Announc 2024; 13:e0034724. [PMID: 39083682 PMCID: PMC11385725 DOI: 10.1128/mra.00347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
We report the genome sequence of the pathogenic yeast Candida parapsilosis strain SR23 (CBS 7157) used in a number of experimental studies. The nuclear genome assembly consists of eight chromosome-sized contigs with a total size of 13.04 Mbp (N50 2.09 Mbp) and a G+C content of 38.7%.
Collapse
Affiliation(s)
- Sofia Mutalová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Viktória Hodorová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Filip Brázdovič
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Cillingová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Broňa Brejová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
2
|
Cillingová A, Tóth R, Mojáková A, Zeman I, Vrzoňová R, Siváková B, Baráth P, Neboháčová M, Klepcová Z, Brázdovič F, Lichancová H, Hodorová V, Brejová B, Vinař T, Mutalová S, Vozáriková V, Mutti G, Tomáška Ľ, Gácser A, Gabaldón T, Nosek J. Transcriptome and proteome profiling reveals complex adaptations of Candida parapsilosis cells assimilating hydroxyaromatic carbon sources. PLoS Genet 2022; 18:e1009815. [PMID: 35255079 PMCID: PMC8929692 DOI: 10.1371/journal.pgen.1009815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/17/2022] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
Many fungal species utilize hydroxyderivatives of benzene and benzoic acid as carbon sources. The yeast Candida parapsilosis metabolizes these compounds via the 3-oxoadipate and gentisate pathways, whose components are encoded by two metabolic gene clusters. In this study, we determine the chromosome level assembly of the C. parapsilosis strain CLIB214 and use it for transcriptomic and proteomic investigation of cells cultivated on hydroxyaromatic substrates. We demonstrate that the genes coding for enzymes and plasma membrane transporters involved in the 3-oxoadipate and gentisate pathways are highly upregulated and their expression is controlled in a substrate-specific manner. However, regulatory proteins involved in this process are not known. Using the knockout mutants, we show that putative transcriptional factors encoded by the genes OTF1 and GTF1 located within these gene clusters function as transcriptional activators of the 3-oxoadipate and gentisate pathway, respectively. We also show that the activation of both pathways is accompanied by upregulation of genes for the enzymes involved in β-oxidation of fatty acids, glyoxylate cycle, amino acid metabolism, and peroxisome biogenesis. Transcriptome and proteome profiles of the cells grown on 4-hydroxybenzoate and 3-hydroxybenzoate, which are metabolized via the 3-oxoadipate and gentisate pathway, respectively, reflect their different connection to central metabolism. Yet we find that the expression profiles differ also in the cells assimilating 4-hydroxybenzoate and hydroquinone, which are both metabolized in the same pathway. This finding is consistent with the phenotype of the Otf1p-lacking mutant, which exhibits impaired growth on hydroxybenzoates, but still utilizes hydroxybenzenes, thus indicating that additional, yet unidentified transcription factor could be involved in the 3-oxoadipate pathway regulation. Moreover, we propose that bicarbonate ions resulting from decarboxylation of hydroxybenzoates also contribute to differences in the cell responses to hydroxybenzoates and hydroxybenzenes. Finally, our phylogenetic analysis highlights evolutionary paths leading to metabolic adaptations of yeast cells assimilating hydroxyaromatic substrates.
Collapse
Affiliation(s)
- Andrea Cillingová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Renáta Tóth
- HCEMM-USZ Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| | - Anna Mojáková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Igor Zeman
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Romana Vrzoňová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Barbara Siváková
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Neboháčová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zuzana Klepcová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Filip Brázdovič
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Hana Lichancová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Viktória Hodorová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Broňa Brejová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Tomáš Vinař
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Sofia Mutalová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Giacomo Mutti
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Atilla Gácser
- HCEMM-USZ Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| | - Toni Gabaldón
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- * E-mail:
| |
Collapse
|
3
|
Genetic Manipulation as a Tool to Unravel Candida parapsilosis Species Complex Virulence and Drug Resistance: State of the Art. J Fungi (Basel) 2021; 7:jof7060459. [PMID: 34200514 PMCID: PMC8228522 DOI: 10.3390/jof7060459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/12/2023] Open
Abstract
An increase in the rate of isolation of Candida parapsilosis in the past decade, as well as increased identification of azole-resistant strains are concerning, and require better understanding of virulence-like factors and drug-resistant traits of these species. In this regard, the present review “draws a line” on the information acquired, thus far, on virulence determinants and molecular mechanisms of antifungal resistance in these opportunistic pathogens, mainly derived from genetic manipulation studies. This will provide better focus on where we stand in our understanding of the C. parapsilosis species complex–host interaction, and how far we are from defining potential novel targets or therapeutic strategies—key factors to pave the way for a more tailored management of fungal infections caused by these fungal pathogens.
Collapse
|
4
|
Németh T, D Nosanchuk J, Vagvolgyi C, Gacser A. Enhancing the chemical transformation of Candida parapsilosis. Virulence 2021; 12:937-950. [PMID: 33729086 PMCID: PMC7993187 DOI: 10.1080/21505594.2021.1893008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Candida parapsilosis is a leading cause of invasive mycoses and the major cause of nosocomial fungaemia amongst low and very low birth weight neonates. However, the molecular and physiological characteristics of this fungus remain understudied. To advance our knowledge about the pathobiology of this pathogen, we sought to develop and validate an effective method for chemical transformation of C. parapsilosis. Chemical transformation is the primary procedure for introducing foreign DNA into Candida yeast as it requires no special equipment, although its performance efficacy drops rapidly when the size of the transforming DNA increases. To define optimal conditions for chemical transformation in C. parapsilosis, we selected a leucine auxotroph laboratory strain. We identified optimal cell density for transformation, incubation times, inclusion of specific enhancing chemicals, and size and amounts of DNA fragments that resulted in maximized transformation efficiency. We determined that the inclusion of dimethyl sulfoxide was beneficial, but dithiothreitol pretreatment reduced colony recovery. As a result, the modified protocol led to a 20–55-fold increase in transformation efficiency, depending on the size of the transforming fragment. We validated the modified methodology with prototrophic isolates and demonstrated that the new approach resulted in the recovery of significantly more transformants in 5 of 6 isolates. Additionally, we identified a medium in which transformation competent yeast cells could safely be maintained at −80°C for up to 6 weeks that reduces laboratory work and shortens the overall procedure. These modifications will significantly aid further investigations into the genetic basis for virulence in C. parapsilosis.
Collapse
Affiliation(s)
- Tibor Németh
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Joshua D Nosanchuk
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Csaba Vagvolgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Attila Gacser
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.,MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Abstract
Fungal pathogens represent a major human threat affecting more than a billion people worldwide. Invasive infections are on the rise, which is of considerable concern because they are accompanied by an escalation of antifungal resistance. Deciphering the mechanisms underlying virulence traits and drug resistance strongly relies on genetic manipulation techniques such as generating mutant strains carrying specific mutations, or gene deletions. However, these processes have often been time-consuming and cumbersome in fungi due to a number of complications, depending on the species (e.g., diploid genomes, lack of a sexual cycle, low efficiency of transformation and/or homologous recombination, lack of cloning vectors, nonconventional codon usage, and paucity of dominant selectable markers). These issues are increasingly being addressed by applying clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 mediated genetic manipulation to medically relevant fungi. Here, we summarize the state of the art of CRISPR-Cas9 applications in four major human fungal pathogen lineages: Candida spp., Cryptococcus neoformans, Aspergillus fumigatus, and Mucorales. We highlight the different ways in which CRISPR has been customized to address the critical issues in different species, including different strategies to deliver the CRISPR-Cas9 elements, their transient or permanent expression, use of codon-optimized CAS9, and methods of marker recycling and scarless editing. Some approaches facilitate a more efficient use of homology-directed repair in fungi in which nonhomologous end joining is more commonly used to repair double-strand breaks (DSBs). Moreover, we highlight the most promising future perspectives, including gene drives, programmable base editors, and nonediting applications, some of which are currently available only in model fungi but may be adapted for future applications in pathogenic species. Finally, this review discusses how the further evolution of CRISPR technology will allow mycologists to tackle the multifaceted issue of fungal pathogenesis.
Collapse
Affiliation(s)
- Florent Morio
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Université, EA1155 –IICiMed, Nantes, France
| | - Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
6
|
Abstract
Patients with suppressed immunity are at the highest risk for hospital-acquired infections. Among these, invasive candidiasis is the most prevalent systemic fungal nosocomial infection. Over recent decades, the combined prevalence of non-albicans Candida species outranked Candida albicans infections in several geographical regions worldwide, highlighting the need to understand their pathobiology in order to develop effective treatment and to prevent future outbreaks. Candida parapsilosis is the second or third most frequently isolated Candida species from patients. Besides being highly prevalent, its biology differs markedly from that of C. albicans, which may be associated with C. parapsilosis' increased incidence. Differences in virulence, regulatory and antifungal drug resistance mechanisms, and the patient groups at risk indicate that conclusions drawn from C. albicans pathobiology cannot be simply extrapolated to C. parapsilosis Such species-specific characteristics may also influence their recognition and elimination by the host and the efficacy of antifungal drugs. Due to the availability of high-throughput, state-of-the-art experimental tools and molecular genetic methods adapted to C. parapsilosis, genome and transcriptome studies are now available that greatly contribute to our understanding of what makes this species a threat. In this review, we summarize 10 years of findings on C. parapsilosis pathogenesis, including the species' genetic properties, transcriptome studies, host responses, and molecular mechanisms of virulence. Antifungal susceptibility studies and clinician perspectives are discussed. We also present regional incidence reports in order to provide an updated worldwide epidemiology summary.
Collapse
|
7
|
Lombardi L, Turner SA, Zhao F, Butler G. Gene editing in clinical isolates of Candida parapsilosis using CRISPR/Cas9. Sci Rep 2017; 7:8051. [PMID: 28808289 PMCID: PMC5556056 DOI: 10.1038/s41598-017-08500-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/10/2017] [Indexed: 01/04/2023] Open
Abstract
Candida parapsilosis is one of the most common causes of candidiasis, particularly in the very young and the very old. Studies of gene function are limited by the lack of a sexual cycle, the diploid genome, and a paucity of molecular tools. We describe here the development of a plasmid-based CRISPR-Cas9 system for gene editing in C. parapsilosis. A major advantage of the system is that it can be used in any genetic background, which we showed by editing genes in 20 different isolates. Gene editing is carried out in a single transformation step. The CAS9 gene is expressed only when the plasmid is present, and it can be removed easily from transformed strains. There is theoretically no limit to the number of genes that can be edited in any strain. Gene editing is increased by homology-directed repair in the presence of a repair template. Editing by non-homologous end joining (NHEJ) also occurs in some genetic backgrounds. Finally, we used the system to introduce unique tags at edited sites.
Collapse
Affiliation(s)
- Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Siobhán A Turner
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fang Zhao
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
8
|
Gonia S, Berman J, Gale CA. Generation of Fluorescent Protein Fusions in Candida Species. J Vis Exp 2017. [PMID: 28287596 DOI: 10.3791/55333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Candida species, prevalent colonizers of the intestinal and genitourinary tracts, are the cause of the majority of invasive fungal infections in humans. Thus, molecular and genetic tools are needed to facilitate the study of their pathogenesis mechanisms. PCR-mediated gene modification is a straightforward and quick approach to generate epitope-tagged proteins to facilitate their detection. In particular, fluorescent protein (FP) fusions are powerful tools that allow visualization and quantitation of both yeast cells and proteins by fluorescence microscopy and immunoblotting, respectively. Plasmids containing FP encoding sequences, along with nutritional marker genes that facilitate the transformation of Candida species, have been generated for the purpose of FP construction and expression in Candida. Herein, we present a strategy for constructing a FP fusion in a Candida species. Plasmids containing the nourseothricin resistance transformation marker gene (NAT1) along with sequences for either green, yellow, or cherry FPs (GFP, YFP, mCherry) are used along with primers that include gene-specific sequences in a polymerase chain reaction (PCR) to generate a FP cassette. This gene-specific cassette has the ability to integrate into the 3'-end of the corresponding gene locus via homologous recombination. Successful in-frame fusion of the FP sequence into the gene locus of interest is verified genetically, followed by analysis of fusion protein expression by microscopy and/or immuno-detection methods. In addition, for the case of highly expressed proteins, successful fusions can be screened for primarily by fluorescence imaging techniques.
Collapse
Affiliation(s)
- Sara Gonia
- Department of Pediatrics, University of Minnesota
| | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University
| | | |
Collapse
|
9
|
Zeman I, Neboháčová M, Gérecová G, Katonová K, Jánošíková E, Jakúbková M, Centárová I, Dunčková I, Tomáška L, Pryszcz LP, Gabaldón T, Nosek J. Mitochondrial Carriers Link the Catabolism of Hydroxyaromatic Compounds to the Central Metabolism in Candida parapsilosis. G3 (BETHESDA, MD.) 2016; 6:4047-4058. [PMID: 27707801 PMCID: PMC5144973 DOI: 10.1534/g3.116.034389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/01/2016] [Indexed: 12/23/2022]
Abstract
The pathogenic yeast Candida parapsilosis metabolizes hydroxyderivatives of benzene and benzoic acid to compounds channeled into central metabolism, including the mitochondrially localized tricarboxylic acid cycle, via the 3-oxoadipate and gentisate pathways. The orchestration of both catabolic pathways with mitochondrial metabolism as well as their evolutionary origin is not fully understood. Our results show that the enzymes involved in these two pathways operate in the cytoplasm with the exception of the mitochondrially targeted 3-oxoadipate CoA-transferase (Osc1p) and 3-oxoadipyl-CoA thiolase (Oct1p) catalyzing the last two reactions of the 3-oxoadipate pathway. The cellular localization of the enzymes indicates that degradation of hydroxyaromatic compounds requires a shuttling of intermediates, cofactors, and products of the corresponding biochemical reactions between cytosol and mitochondria. Indeed, we found that yeast cells assimilating hydroxybenzoates increase the expression of genes SFC1, LEU5, YHM2, and MPC1 coding for succinate/fumarate carrier, coenzyme A carrier, oxoglutarate/citrate carrier, and the subunit of pyruvate carrier, respectively. A phylogenetic analysis uncovered distinct evolutionary trajectories for sparsely distributed gene clusters coding for enzymes of both pathways. Whereas the 3-oxoadipate pathway appears to have evolved by vertical descent combined with multiple losses, the gentisate pathway shows a striking pattern suggestive of horizontal gene transfer to the evolutionarily distant Mucorales.
Collapse
Affiliation(s)
- Igor Zeman
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Martina Neboháčová
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Gabriela Gérecová
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Kornélia Katonová
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Eva Jánošíková
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Michaela Jakúbková
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Ivana Centárová
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Ivana Dunčková
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - L'ubomír Tomáška
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Leszek P Pryszcz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
- Departament de Ciències Experimentals I de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Jozef Nosek
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| |
Collapse
|
10
|
Zhang R, Wang L, Xu Y, Liang H, Zhou X, Jiang J, Li Y, Xiao R, Ni Y. In situ expression of (R)-carbonyl reductase rebalancing an asymmetric pathway improves stereoconversion efficiency of racemic mixture to (S)-phenyl-1,2-ethanediol in Candida parapsilosis CCTCC M203011. Microb Cell Fact 2016; 15:143. [PMID: 27534936 PMCID: PMC4989518 DOI: 10.1186/s12934-016-0539-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/03/2016] [Indexed: 12/05/2022] Open
Abstract
Background Candida parapsilosis (R)-carbonyl reductase (RCR) and (S)-carbonyl reductase (SCR) are involved in the stereoconversion of racemic (R,S)-1-phenyl-1,2-ethanediol (PED) to its (S)-isomer. RCR catalyzes (R)-PED to 2-hydroxyacetophenone (2-HAP), and SCR catalyzes 2-HAP to (S)-PED. However, the stereoconversion efficiency of racemic mixture to (S)-PED is not high because of an activity imbalance between RCR and SCR, with RCR performing at a lower rate than SCR. To realize the efficient preparation of racemic mixture to (S)-PED, an in situ expression of RCR and a two-stage control strategy were introduced to rebalance the RCR- and SCR-mediated pathways. Results An in situ expression plasmid pCP was designed and RCR was successfully expressed in C. parapsilosis. With respect to wild-type, recombinant C. parapsilosis/pCP-RCR exhibited over four-fold higher activity for catalyzing racemic (R,S)-PED to 2-HAP, while maintained the activity for catalyzing 2-HAP to (S)-PED. The ratio of kcat/KM for SCR catalyzing (R)-PED and RCR catalyzing 2-HAP was about 1.0, showing the good balance between the functions of SCR and RCR. Based on pH and temperature preferences of RCR and SCR, a two-stage control strategy was devised, where pH and temperature were initially set at 5.0 and 30 °C for RCR rapidly catalyzing racemic PED to 2-HAP, and then adjusted to 4.5 and 35 °C for SCR transforming 2-HAP to (S)-PED. Using these strategies, the recombinant C. parapsilosis/pCP-RCR catalyzed racemic PED to its (S)-isomer with an optical purity of 98.8 % and a yield of 48.4 %. Most notably, the biotransformation duration was reduced from 48 to 13 h. Conclusions We established an in situ expression system for RCR in C. parapsilosis to rebalance the functions between RCR and SCR. Then we designed a two-stage control strategy based on pH and temperature preferences of RCR and SCR, better rebalancing RCR and SCR-mediated chiral biosynthesis pathways. This work demonstrates a method to improve chiral biosyntheses via in situ expression of rate-limiting enzyme and a multi-stage control strategy to rebalance asymmetric pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0539-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,National Key Laboratory for Food Science, Jiangnan University, Wuxi, 214122, People's Republic of China. .,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China.
| | - Lei Wang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,National Key Laboratory for Food Science, Jiangnan University, Wuxi, 214122, People's Republic of China. .,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China.
| | - Hongbo Liang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xiaotian Zhou
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jiawei Jiang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yaohui Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| |
Collapse
|
11
|
Gonia S, Larson B, Gale CA. PCR-mediated gene modification strategy for construction of fluorescent protein fusions in Candida parapsilosis. Yeast 2016; 33:63-9. [PMID: 26551241 DOI: 10.1002/yea.3141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 11/07/2022] Open
Abstract
Candida parapsilosis is a common cause of invasive candidiasis, especially in premature infants, even surpassing Candida albicans as the most frequently identified Candida species in some newborn intensive care units. Whereas many molecular tools are available to facilitate the study of C. albicans, relatively few have been developed for C. parapsilosis. In this study, we show that plasmids harbouring green, yellow and mCherry fluorescent protein sequences, previously developed for expression in C. albicans, can be used to construct fluorescent fusion proteins in C. parapsilosis by PCR-mediated gene modification. Further, the strategy can be used in clinical isolates of C. parapsilosis, which are typically prototrophic, because the plasmids include NAT1, a dominant selectable trait that confers resistance to the antibiotic nourseothricin. Overall, these tools will be useful to yeast researchers who require the ability to visualize C. parapsilosis directly, e.g. in in vitro and in vivo infection models. In addition, this strategy can be used to generate fluorescence in other C. parapsilosis clinical isolates and to tag sequences of interest for protein localization studies. Lastly, the ability to express up to three different fluorescent proteins will allow researchers to visualize and differentiate C. parapsilosis and/or C. albicans clinical isolates from each other in mixed infection models.
Collapse
Affiliation(s)
- Sara Gonia
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Britta Larson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Cheryl A Gale
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Börgel D, van den Berg M, Hüller T, Andrea H, Liebisch G, Boles E, Schorsch C, van der Pol R, Arink A, Boogers I, van der Hoeven R, Korevaar K, Farwick M, Köhler T, Schaffer S. Metabolic engineering of the non-conventional yeast Pichia ciferrii for production of rare sphingoid bases. Metab Eng 2012; 14:412-26. [PMID: 22449569 DOI: 10.1016/j.ymben.2012.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 02/19/2012] [Accepted: 03/09/2012] [Indexed: 12/13/2022]
Abstract
The study describes the identification of sphingolipid biosynthesis genes in the non-conventional yeast Pichia ciferrii, the development of tools for its genetic modification as well as their application for metabolic engineering of P. ciferrii with the goal to generate strains capable of producing the rare sphingoid bases sphinganine and sphingosine. Several canonical genes encoding ceramide synthase (encoded by PcLAG1 and PcLAF1), alkaline ceramidase (PcYXC1) and sphingolipid C-4-hydroxylase(PcSYR2), as well as structural genes for dihydroceramide Δ(4)-desaturase (PcDES1) and sphingolipid Δ(8)-desaturase (PcSLD1) were identified, indicating that P. ciferrii would be capable of synthesizing desaturated sphingoid bases, a property not ubiquitously found in yeasts. In order to convert the phytosphingosine-producing P. ciferrii wildtype into a strain capable of producing predominantly sphinganine, Syringomycin E-resistant mutants were isolated. A stable mutant almost exclusively producing high levels of acetylated sphinganine was obtained and used as the base strain for further metabolic engineering. A metabolic pathway required for the three-step conversion of sphinganine to sphingosine was implemented in the sphinganine producing P. ciferrii strain and subsequently enhanced by screening for the appropriate heterologous enzymes, improvement of gene expression and codon optimization. These combined efforts led to a strain capable of producing 240mgL(-1) triacetyl sphingosine in shake flask, with tri- and diacetyl sphinganine being the main by-products. Lab-scale fermentation of this strain resulted in production of up to 890mgkg(-1) triacetyl sphingosine. A third by-product was unequivocally identified as triacetyl sphingadienine. It could be shown that inactivation of the SLD1 gene in P. ciferrii efficiently suppresses triacetyl sphingadienine formation. Further improvement of the described P. ciferrii strains will enable a biotechnological route to produce sphinganine and sphingosine for cosmetic and pharmaceutical applications.
Collapse
Affiliation(s)
- Daniel Börgel
- Evonik Degussa, Project House ProFerm, Creavis Technologies & Innovation, Rodenbacher Chaussee 4, D-63457 Hanau, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Holesova Z, Jakubkova M, Zavadiakova I, Zeman I, Tomaska L, Nosek J. Gentisate and 3-oxoadipate pathways in the yeast Candida parapsilosis: identification and functional analysis of the genes coding for 3-hydroxybenzoate 6-hydroxylase and 4-hydroxybenzoate 1-hydroxylase. MICROBIOLOGY-SGM 2011; 157:2152-2163. [PMID: 21474535 DOI: 10.1099/mic.0.048215-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The pathogenic yeast Candida parapsilosis degrades various hydroxy derivatives of benzenes and benzoates by the gentisate and 3-oxoadipate pathways. We identified the genes MNX1, MNX2, MNX3, GDX1, HDX1 and FPH1 that code for enzymes involved in these pathways in the complete genome sequence of C. parapsilosis. Next, we demonstrated that MNX1, MNX2, MNX3 and GDX1 are inducible and transcriptionally controlled by hydroxyaromatic substrates present in cultivation media. Our results indicate that MNX1 and MNX2 code for flavoprotein monooxygenases catalysing the first steps in the 3-oxoadipate and gentisate pathways, respectively (i.e. 4-hydroxybenzoate 1-hydroxylase and 3-hydroxybenzoate 6-hydroxylase). Moreover, we found that the two pathways differ by their intracellular localization. The enzymes of the 3-oxoadipate pathway, Mnx1p and Mnx3p, localize predominantly in the cytosol. In contrast, intracellular localization of the components of the gentisate pathway, Mnx2p and Gdx1p, depends on the substrate in the cultivation medium. In cells growing on glucose these proteins localize in the cytosol, whereas in media containing hydroxyaromatic compounds they associate with mitochondria. Finally, we showed that the overexpression of MNX1 or MNX2 increases the tolerance of C. parapsilosis cells to the antifungal drug terbinafine.
Collapse
Affiliation(s)
- Zuzana Holesova
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynska dolina B-1, 842 15 Bratislava, Slovak Republic
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynska dolina CH-1, 842 15 Bratislava, Slovak Republic
| | - Michaela Jakubkova
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynska dolina CH-1, 842 15 Bratislava, Slovak Republic
| | - Ivana Zavadiakova
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynska dolina B-1, 842 15 Bratislava, Slovak Republic
| | - Igor Zeman
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynska dolina CH-1, 842 15 Bratislava, Slovak Republic
| | - Lubomir Tomaska
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynska dolina B-1, 842 15 Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynska dolina CH-1, 842 15 Bratislava, Slovak Republic
| |
Collapse
|
14
|
Biology and genetics of the pathogenic yeast Candida parapsilosis. Curr Genet 2009; 55:497-509. [DOI: 10.1007/s00294-009-0268-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 10/20/2022]
|
15
|
Miyakawa I, Okamuro A, Kinsky S, Visacka K, Tomaska L, Nosek J. Mitochondrial nucleoids from the yeast Candida parapsilosis: expansion of the repertoire of proteins associated with mitochondrial DNA. MICROBIOLOGY-SGM 2009; 155:1558-1568. [PMID: 19383705 DOI: 10.1099/mic.0.027474-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Molecules of mitochondrial DNA (mtDNA) are packed into nucleic acid-protein complexes termed mitochondrial nucleoids (mt-nucleoids). In this study, we analysed mt-nucleoids of the yeast Candida parapsilosis, which harbours a linear form of the mitochondrial genome. To identify conserved as well as specific features of mt-nucleoids in this species, we employed two strategies for analysis of their components. First, we investigated the protein composition of mt-nucleoids isolated from C. parapsilosis mitochondria, determined N-terminal amino acid sequences of 14 proteins associated with the mt-nucleoids and identified corresponding genes. Next, we complemented the list of mt-nucleoid components with additional candidates identified in the complete genome sequence of C. parapsilosis as homologues of Saccharomyces cerevisiae mt-nucleoid proteins. Our approach revealed several known mt-nucleoid proteins as well as additional components that expand the repertoire of proteins associated with these cytological structures. In particular, we identified and purified the protein Gcf1, which is abundant in the mt-nucleoids and exhibits structural features in common with the mtDNA packaging protein Abf2 from S. cerevisiae. We demonstrate that Gcf1p co-localizes with mtDNA, has DNA-binding activity in vitro, and is able to stabilize mtDNA in the S. cerevisiae Deltaabf2 mutant, all of which points to a role in the maintenance of the C. parapsilosis mitochondrial genome. Importantly, in contrast to Abf2p, in silico analysis of Gcf1p predicted the presence of a coiled-coil domain and a single high-mobility group (HMG) box, suggesting that it represents a novel type of mitochondrial HMG protein.
Collapse
Affiliation(s)
- Isamu Miyakawa
- Department of Physics, Biology, and Informatics, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Akira Okamuro
- Department of Physics, Biology, and Informatics, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Slavomir Kinsky
- Departments of Biochemistry and Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Katarina Visacka
- Departments of Biochemistry and Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Lubomir Tomaska
- Departments of Biochemistry and Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Jozef Nosek
- Departments of Biochemistry and Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| |
Collapse
|
16
|
Abstract
SUMMARY Candida parapsilosis is an emerging major human pathogen that has dramatically increased in significance and prevalence over the past 2 decades, such that C. parapsilosis is now one of the leading causes of invasive candidal disease. Individuals at the highest risk for severe infection include neonates and patients in intensive care units. C. parapsilosis infections are especially associated with hyperalimentation solutions, prosthetic devices, and indwelling catheters, as well as the nosocomial spread of disease through the hands of health care workers. Factors involved in disease pathogenesis include the secretion of hydrolytic enzymes, adhesion to prosthetics, and biofilm formation. New molecular genetic tools are providing additional and much-needed information regarding C. parapsilosis virulence. The emerging information will provide a deeper understanding of C. parapsilosis pathogenesis and facilitate the development of new therapeutic approaches for treating C. parapsilosis infections.
Collapse
|
17
|
Chen X, Fang H, Rao Z, Shen W, Zhuge B, Wang Z, Zhuge J. An efficient genetic transformation method for glycerol producer Candida glycerinogenes. Microbiol Res 2008; 163:531-7. [DOI: 10.1016/j.micres.2008.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 05/14/2008] [Indexed: 11/15/2022]
|
18
|
Gácser A, Trofa D, Schäfer W, Nosanchuk JD. Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. J Clin Invest 2007; 117:3049-58. [PMID: 17853941 PMCID: PMC1974868 DOI: 10.1172/jci32294] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 06/20/2007] [Indexed: 01/12/2023] Open
Abstract
Candida parapsilosis is a major cause of human disease, yet little is known about the pathogen's virulence. We have developed an efficient gene deletion system for C. parapsilosis based on the repeated use of the dominant nourseothricin resistance marker (caSAT1) and its subsequent deletion by FLP-mediated, site-specific recombination. Using this technique, we deleted the lipase locus in the C. parapsilosis genome consisting of adjacent genes CpLIP1 and CpLIP2. Additionally we reconstructed the CpLIP2 gene, which restored lipase activity. Lipolytic activity was absent in the null mutants, whereas the WT, heterozygous, and reconstructed mutants showed similar lipase production. Biofilm formation was inhibited with lipase-negative mutants and their growth was significantly reduced in lipid-rich media. The knockout mutants were more efficiently ingested and killed by J774.16 and RAW 264.7 macrophage-like cells. Additionally, the lipase-negative mutants were significantly less virulent in infection models that involve inoculation of reconstituted human oral epithelium or murine intraperitoneal challenge. These studies represent what we believe to be the first targeted disruption of a gene in C. parapsilosis and show that C. parapsilosis-secreted lipase is involved in disease pathogenesis. This efficient system for targeted gene deletion holds great promise for rapidly enhancing our knowledge of the biology and virulence of this increasingly common invasive fungal pathogen.
Collapse
Affiliation(s)
- Attila Gácser
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, Yeshiva University, New York, New York, USA.
| | | | | | | |
Collapse
|
19
|
Ding C, Butler G. Development of a gene knockout system in Candida parapsilosis reveals a conserved role for BCR1 in biofilm formation. EUKARYOTIC CELL 2007; 6:1310-9. [PMID: 17586721 PMCID: PMC1951126 DOI: 10.1128/ec.00136-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Candida parapsilosis is an important cause of candidiasis, yet few molecular tools are available. We adapted a recyclable nourseothricin resistance marker gene (SAT1) originally developed for use with C. albicans in order to generate gene knockouts from C. parapsilosis. We first replaced the promoters driving expression of the FLP recombinase and the SAT1 genes with the equivalent sequences from C. parapsilosis. We then used the cassette to generate a homozygous knockout of C. parapsilosis URA3. The ura3 knockouts have altered colony morphologies. We also knocked out both alleles of an ortholog of BCR1, a gene encoding a transcription factor known to be required for biofilm development in C. albicans. We show that C. parapsilosis BCR1 is necessary for biofilm development in C. parapsilosis and for expression of the cell wall protein encoded by RBT1. Our results suggest that there are significant similarities in the regulation of biofilms between the two species, despite the fact that C. parapsilosis does not generate true hyphae and that BCR1 regulates the expression of many hypha-specific adhesins in C. albicans.
Collapse
Affiliation(s)
- Chen Ding
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
20
|
Kosa P, Gavenciakova B, Nosek J. Development of a set of plasmid vectors for genetic manipulations of the pathogenic yeast Candida parapsilosis. Gene 2007; 396:338-45. [PMID: 17512139 PMCID: PMC1994580 DOI: 10.1016/j.gene.2007.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 04/05/2007] [Accepted: 04/10/2007] [Indexed: 11/23/2022]
Abstract
A system for genetic transformation of the yeast Candida parapsilosis, recently developed in our laboratory, opened a venue for investigation of this pathogenic species at the molecular level. In this study we extend the range of available experimental tools by construction of a genomic DNA library suitable for screening and isolation of genes by functional complementation of yeast mutants and a set of replicative plasmid vectors for genetic manipulation of C. parapsilosis cells. The plasmids are based on auxotrophic (CpGAL1, CpURA3, CpMET2, CpLYS4) and dominant (CaIMH3) selection markers. In addition, we constructed plasmid derivatives containing reporter genes yEGFP3 and KlLAC4 coding for enhanced version of the green fluorescent protein and Kluyveromyces lactis beta-galactosidase, respectively. The vectors facilitate propagation and expression of cloned genes in C. parapsilosis cells and allow intracellular localization of gene products and/or monitoring the activity of promoter sequences.
Collapse
Affiliation(s)
- Peter Kosa
- Department of Biochemistry and Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina CH-1, 842 15 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
21
|
Kim SK, Bissati KE, Mamoun CB. Amino acids mediate colony and cell differentiation in the fungal pathogen Candida parapsilosis. MICROBIOLOGY-SGM 2007; 152:2885-2894. [PMID: 17005970 DOI: 10.1099/mic.0.29180-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Candida parapsilosis is responsible for severe cases of non-albicans systemic candidiasis and is one of the leading causes of mortality in neonates. The molecular mechanisms underlying this organism's virulence remain unknown. Unlike C. albicans, which can exist in several morphogenetic forms, C. parapsilosis exists in either the yeast or pseudohyphal forms. The environmental signals that trigger pseudohyphal differentiation and the signalling pathways that transduce these signals are unknown. This paper provides evidence for the role of amino acids in morphogenesis in C. parapsilosis. The cell and colony morphologies, pseudohyphal differentiation and invasive growth of five C. parapsilosis isolates were characterized in ammonium-rich minimal media lacking or supplemented with naturally occurring amino acids. C. parapsilosis underwent dramatic changes in cellular and colony morphology and formed pseudohyphae in response to a specific subset of amino acids. Transport studies showed that these amino acid inducers activate the transport of some, but not all, unrelated amino acids. Interestingly, citrulline, an amino acid that is not transported in the presence of ammonium, strongly induced pseudohyphal morphogenesis in C. parapsilosis under these conditions. Together the data suggest that amino acids are important morphogens in C. parapsilosis and that amino-acid-mediated morphogenesis in this organism does not require transport of the ligand across the plasma membrane.
Collapse
Affiliation(s)
- Seong-Kyoun Kim
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301, USA
| | - Kamal El Bissati
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301, USA
| | - Choukri Ben Mamoun
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301, USA
| |
Collapse
|
22
|
Gácser A, Salomon S, Schäfer W. Direct transformation of a clinical isolate of Candida parapsilosis using a dominant selection marker. FEMS Microbiol Lett 2005; 245:117-21. [PMID: 15796988 DOI: 10.1016/j.femsle.2005.02.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 01/28/2005] [Accepted: 02/25/2005] [Indexed: 10/25/2022] Open
Abstract
Candida parapsilosis is a human pathogenic fungus with increasing importance, particularly in nosocomial infections. For detailed molecular genetic explorations of prototrophic clinical isolates of C. parapsilosis, we developed an efficient transformation system based on a dominant selectable marker. The gene encoding resistance to mycophenolic acid (MPA) was used for selection in yeast transformation. C. parapsilosis cells were transformed with a plasmid vector containing the Candida albicans inosine monophosphate dehydrogenase gene (IMH3) responsible for mycophenolic acid resistance. Transformation was carried out both by electroporation and by the lithium acetate (LiAc) method. The LiAc method resulted in very poor transformation efficiency, while the modified electroporation method yielded a high number of mitotically stable transformants exhibiting unambiguous MPA resistance. Two hundred transformants were analysed for the presence of the C. albicans IMH3(r) gene by polymerase chain reaction. Integration of single or multiple plasmid copies into the genomic DNA of C. parapsilosis was determined by Southern hybridization. To our knowledge, the present study is the first report about a method based on a dominant selectable marker for the transformation of a prototrophic, clinical isolate of C. parapsilosis. The described technique may prove to be an efficient tool for the examination of the biology and virulence of this pathogenic yeast.
Collapse
Affiliation(s)
- Attila Gácser
- Center of Applied Molecular Biology, University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| | | | | |
Collapse
|
23
|
Klinner U, Schäfer B. Genetic aspects of targeted insertion mutagenesis in yeasts. FEMS Microbiol Rev 2004; 28:201-23. [PMID: 15109785 DOI: 10.1016/j.femsre.2003.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2003] [Revised: 08/20/2003] [Accepted: 10/02/2003] [Indexed: 11/16/2022] Open
Abstract
Targeted insertion mutagenesis is a main molecular tool of yeast science initially applied in Saccharomyces cerevisiae. The method was extended to fission yeast Schizosaccharomyces pombe and to "non-conventional" yeast species, which show specific properties of special interest to both basic and applied research. Consequently, the behaviour of such non-Saccharomyces yeasts is reviewed against the background of the knowledge of targeted insertion mutagenesis in S. cerevisiae. Data of homologous integration efficiencies obtained with circular, ends-in or ends-out vectors in several yeasts are compared. We follow details of targeted insertion mutagenesis in order to recognize possible rate-limiting steps. The route of the vector to the target and possible mechanisms of its integration into chromosomal genes are considered. Specific features of some yeast species are discussed. In addition, similar approaches based on homologous recombination that have been established for the mitochondrial genome of S. cerevisiae are described.
Collapse
Affiliation(s)
- U Klinner
- RWTH Aachen, Institut für Biologie IV (Mikrobiologie und Genetik), Worringer Weg, D-52056 Aachen, Germany.
| | | |
Collapse
|
24
|
Zemanova J, Nosek J, Tomaska L. High-efficiency transformation of the pathogenic yeast Candida parapsilosis. Curr Genet 2003; 45:183-6. [PMID: 14648114 DOI: 10.1007/s00294-003-0472-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 11/07/2003] [Accepted: 11/09/2003] [Indexed: 10/26/2022]
Abstract
A recently developed transformation system for the pathogenic yeast Candida parapsilosis opened a venue for studying the biological phenomena of this species at the molecular level. However, the standard chemical method yielded only about 1x10(3) transformants/microg of DNA, which is insufficient for certain types of experiment. With the aim of increasing the transformation efficiency, we employed two alternative methods for the introduction of plasmids into the recipient cells. Whereas biolistics resulted in about 5x10(2) transformants/microg of plasmid DNA, electroporation was an order of magnitude more efficient than the chemical method. Pretreatment of cells with 100 mM lithium acetate or 10 mM dithiothreitol resulted in a 5-fold (5x10(4)) or a 10-fold (1x10(5)) increase in transformation efficiency, respectively. This high-efficiency transformation method should be suitable for experiments such as the screening of DNA libraries.
Collapse
Affiliation(s)
- Julia Zemanova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, 84215, Bratislava, Slovakia.
| | | | | |
Collapse
|
25
|
Current awareness on yeast. Yeast 2003; 20:555-62. [PMID: 12749362 DOI: 10.1002/yea.944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|