1
|
Deepika, Madhu, Shekhawat J, Dixit S, Upadhyay SK. Pre-mRNA processing factor 4 kinases (PRP4Ks): Exploration of molecular features, interaction network and expression profiling in bread wheat. JOURNAL OF PLANT GROWTH REGULATION 2024. [DOI: 10.1007/s00344-024-11489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024]
|
2
|
Borao S, Vega M, Boronat S, Hidalgo E, Hümmer S, Ayté J. A systematic screen identifies Saf5 as a link between splicing and transcription in fission yeast. PLoS Genet 2024; 20:e1011316. [PMID: 38833506 PMCID: PMC11178228 DOI: 10.1371/journal.pgen.1011316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/14/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024] Open
Abstract
Splicing is an important step of gene expression regulation in eukaryotes, as there are many mRNA precursors that can be alternatively spliced in different tissues, at different cell cycle phases or under different external stimuli. We have developed several integrated fluorescence-based in vivo splicing reporter constructs that allow the quantification of fission yeast splicing in vivo on intact cells, and we have compared their splicing efficiency in a wild type strain and in a prp2-1 (U2AF65) genetic background, showing a clear dependency between Prp2 and a consensus signal at 5' splicing site (5'SS). To isolate novel genes involved in regulated splicing, we have crossed the reporter showing more intron retention with the Schizosaccharomyces pombe knock out collection. Among the candidate genes involved in the regulation of splicing, we have detected strong splicing defects in two of the mutants -Δcwf12, a member of the NineTeen Complex (NTC) and Δsaf5, a methylosome subunit that acts together with the survival motor neuron (SMN) complex in small nuclear ribonucleoproteins (snRNP) biogenesis. We have identified that strains with mutations in cwf12 have inefficient splicing, mainly when the 5'SS differs from the consensus. However, although Δsaf5 cells also have some dependency on 5'SS sequence, we noticed that when one intron of a given pre-mRNA was affected, the rest of the introns of the same pre-mRNA had high probabilities of being also affected. This observation points Saf5 as a link between transcription rate and splicing.
Collapse
Affiliation(s)
- Sonia Borao
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Montserrat Vega
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Stefan Hümmer
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
3
|
Dey P, Malik A, Singh DK, Haange SB, von Bergen M, Jehmlich N. Insight Into the Molecular Mechanisms Underpinning the Mycoremediation of Multiple Metals by Proteomic Technique. Front Microbiol 2022; 13:872576. [PMID: 35756008 PMCID: PMC9221998 DOI: 10.3389/fmicb.2022.872576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
We investigated the fungus Aspergillus fumigatus PD-18 responses when subjected to the multimetal combination (Total Cr, Cd2+, Cu2+, Ni2+, Pb2+, and Zn2+) in synthetic composite media. To understand how multimetal stress impacts fungal cells at the molecular level, the cellular response of A. fumigatus PD-18 to 30 mg/L multimetal stress (5 mg/L of each heavy metal) was determined by proteomics. The comparative fungal proteomics displayed the remarkable inherent intracellular and extracellular mechanism of metal resistance and tolerance potential of A. fumigatus PD-18. This study reported 2,238 proteins of which 434 proteins were exclusively expressed in multimetal extracts. The most predominant functional class expressed was for cellular processing and signaling. The type of proteins and the number of proteins that were upregulated due to various stress tolerance mechanisms were post-translational modification, protein turnover, and chaperones (42); translation, ribosomal structure, and biogenesis (60); and intracellular trafficking, secretion, and vesicular transport (18). In addition, free radical scavenging antioxidant proteins, such as superoxide dismutase, were upregulated upto 3.45-fold and transporter systems, such as protein transport (SEC31), upto 3.31-fold to combat the oxidative stress caused by the multiple metals. Also, protein–protein interaction network analysis revealed that cytochrome c oxidase and 60S ribosomal protein played key roles to detoxify the multimetal. To the best of our knowledge, this study of A. fumigatus PD-18 provides valuable insights toward the growing research in comprehending the metal microbe interactions in the presence of multimetal. This will facilitate in development of novel molecular markers for contaminant bioremediation.
Collapse
Affiliation(s)
- Priyadarshini Dey
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Helmholtz Association of German Research Centres (HZ), Leipzig, Germany
- Department of Biotechnology, MS Ramaiah Institute of Technology, Bengaluru, India
| | - Anushree Malik
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Dileep Kumar Singh
- Department of Zoology, Faculty of Science, University of Delhi, New Delhi, India
| | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Helmholtz Association of German Research Centres (HZ), Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Helmholtz Association of German Research Centres (HZ), Leipzig, Germany
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity, Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Helmholtz Association of German Research Centres (HZ), Leipzig, Germany
- *Correspondence: Nico Jehmlich,
| |
Collapse
|
4
|
Borao S, Ayté J, Hümmer S. Evolution of the Early Spliceosomal Complex-From Constitutive to Regulated Splicing. Int J Mol Sci 2021; 22:ijms222212444. [PMID: 34830325 PMCID: PMC8624252 DOI: 10.3390/ijms222212444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Pre-mRNA splicing is a major process in the regulated expression of genes in eukaryotes, and alternative splicing is used to generate different proteins from the same coding gene. Splicing is a catalytic process that removes introns and ligates exons to create the RNA sequence that codifies the final protein. While this is achieved in an autocatalytic process in ancestral group II introns in prokaryotes, the spliceosome has evolved during eukaryogenesis to assist in this process and to finally provide the opportunity for intron-specific splicing. In the early stage of splicing, the RNA 5' and 3' splice sites must be brought within proximity to correctly assemble the active spliceosome and perform the excision and ligation reactions. The assembly of this first complex, termed E-complex, is currently the least understood process. We focused in this review on the formation of the E-complex and compared its composition and function in three different organisms. We highlight the common ancestral mechanisms in S. cerevisiae, S. pombe, and mammals and conclude with a unifying model for intron definition in constitutive and regulated co-transcriptional splicing.
Collapse
Affiliation(s)
- Sonia Borao
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
- Correspondence: (J.A.); (S.H.)
| | - Stefan Hümmer
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
- Translational Molecular Pathology, Vall d’Hebron Research Institute (VHIR), CIBERONC, 08035 Barcelona, Spain
- Correspondence: (J.A.); (S.H.)
| |
Collapse
|
5
|
Hümmer S, Borao S, Guerra-Moreno A, Cozzuto L, Hidalgo E, Ayté J. Cross talk between the upstream exon-intron junction and Prp2 facilitates splicing of non-consensus introns. Cell Rep 2021; 37:109893. [PMID: 34706246 DOI: 10.1016/j.celrep.2021.109893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 04/27/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022] Open
Abstract
Splicing of mRNA precursors is essential in the regulation of gene expression. U2AF65 recognizes the poly-pyrimidine tract and helps in the recognition of the branch point. Inactivation of fission yeast U2AF65 (Prp2) blocks splicing of most, but not all, pre-mRNAs, for reasons that are not understood. Here, we have determined genome-wide the splicing efficiency of fission yeast cells as they progress into synchronous meiosis in the presence or absence of functional Prp2. Our data indicate that in addition to the splicing elements at the 3' end of any intron, the nucleotides immediately upstream the intron will determine whether Prp2 is required or dispensable for splicing. By changing those nucleotides in any given intron, we regulate its Prp2 dependency. Our results suggest a model in which Prp2 is required for the coordinated recognition of both intronic ends, placing Prp2 as a key regulatory element in the determination of the exon-intron boundaries.
Collapse
Affiliation(s)
- Stefan Hümmer
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | - Sonia Borao
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Angel Guerra-Moreno
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Luca Cozzuto
- CRG Bioinformatics Core, Centre de Regulació Genòmica (CRG), 08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| |
Collapse
|
6
|
Thillainadesan G, Xiao H, Holla S, Dhakshnamoorthy J, Jenkins LMM, Wheeler D, Grewal SIS. Conserved protein Pir2 ARS2 mediates gene repression through cryptic introns in lncRNAs. Nat Commun 2020; 11:2412. [PMID: 32415063 PMCID: PMC7229227 DOI: 10.1038/s41467-020-16280-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are components of epigenetic control mechanisms that ensure appropriate and timely gene expression. The functions of lncRNAs are often mediated through associated gene regulatory activities, but how lncRNAs are distinguished from other RNAs and recruit effector complexes is unclear. Here, we utilize the fission yeast Schizosaccharomyces pombe to investigate how lncRNAs engage silencing activities to regulate gene expression in cis. We find that invasion of lncRNA transcription into the downstream gene body incorporates a cryptic intron required for repression of that gene. Our analyses show that lncRNAs containing cryptic introns are targeted by the conserved Pir2ARS2 protein in association with splicing factors, which recruit RNA processing and chromatin-modifying activities involved in gene silencing. Pir2 and splicing machinery are broadly required for gene repression. Our finding that human ARS2 also interacts with splicing factors suggests a conserved mechanism mediates gene repression through cryptic introns within lncRNAs. In fission yeast, several lncRNAs act in cis to regulate expression of adjacent genes. Here, the authors show that the conserved Pir2ARS2 protein is targeted, along with splicing factors, to cryptic introns in lncRNAs and recruits effectors, including RNAi machinery, for gene repression.
Collapse
Affiliation(s)
- Gobi Thillainadesan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sahana Holla
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Ahmed MB, Islam SU, Lee YS. Decursin negatively regulates LPS-induced upregulation of the TLR4 and JNK signaling stimulated by the expression of PRP4 in vitro. Anim Cells Syst (Seoul) 2020; 24:44-52. [PMID: 32158615 PMCID: PMC7048231 DOI: 10.1080/19768354.2020.1726811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 02/03/2020] [Indexed: 02/08/2023] Open
Abstract
The current investigation was carried out to analyze the correlation of bacterial lipopolysaccharide (LPS) and pre-mRNA processing factor 4B (PRP4) in inducing inflammatory response and cell actin cytoskeleton rearrangement in macrophages (Raw 264.7) and colorectal (HCT116) as well as skin cancer (B16-F10) cells. Cell lines were stimulated with LPS, and the expression of PRP4 as well as pro-inflammatory cytokines and proteins like IL-6, IL-1β, TLR4, and NF-κB were assayed. The results demonstrated that LPS markedly increased the expression of PRP4, IL-6, IL-1β, TLR4, and NF-κB in the cells. LPS and PRP4 concomitantly altered the morphology of cells from an aggregated, flattened shape to a round shape. Decursin, a pyranocoumarin from Angelica gigas, inhibited the LPS and PRP4-induced inflammatory response, and reversed the induction of morphological changes. Finally, we established a possible link of LPS with TLR4 and JNK signaling, through which it activated PRP4. Our study provides molecular insights for LPS and PRP4-related pathogenesis and a basis for developing new strategies against metastasis in colorectal cancer and skin melanoma. Our study emphasizes that decursin may be an effective treatment strategy for various cancers in which LPS and PRP4 perform a critical role in inducing inflammatory response and morphological changes leading to cell survival and protection against anti-cancer drugs.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Young Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
8
|
Vijayakumari D, Sharma AK, Bawa PS, Kumar R, Srinivasan S, Vijayraghavan U. Early splicing functions of fission yeast Prp16 and its unexpected requirement for gene Silencing is governed by intronic features. RNA Biol 2019; 16:754-769. [PMID: 30810475 DOI: 10.1080/15476286.2019.1585737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Prp16 is a DEAH box pre-mRNA splicing factor that triggers a key spliceosome conformational switch to facilitate second step splicing in Saccharomyces cerevisiae. However, Prp16 functions are largely unexplored in Schizosaccharomyces pombe, an attractive model with exon-intron architecture more relevant to several other eukaryotes. Here, we generated mis-sense alleles in SpPrp16 whose consequences on genome-wide splicing uncover its nearly global splicing role with only a small subset of unaffected introns. Prp16 dependent and independent intron categories displayed a striking difference in the strength of intronic 5' splice site (5'SS)-U6 snRNA and branch site (BS)-U2 snRNA interactions. Selective weakening of these interactions could convert a Prp16 dependent intron into an independent one. These results point to the role of SpPrp16 in destabilizing 5'SS-U6snRNA and BS-U2snRNA interactions which plausibly trigger structural alterations in the spliceosome to facilitate first step catalysis. Our data suggest that SpPrp16 interactions with early acting factors, its enzymatic activities and association with intronic elements collectively account for efficient and accurate first step catalysis. In addition to splicing derangements in the spprp16F528S mutant, we show that SpPrp16 influences cell cycle progression and centromeric heterochromatinization. We propose that strong 5'SS-U6 snRNA and BS-U2 snRNA complementarity of intron-like elements in non-coding RNAs which lead to complete splicing arrest and impaired Seb1 functions at the pericentromeric loci may cumulatively account for the heterochromatin defects in spprp16F528S cells. These findings suggest that the diverse Prp16 functions within a genome are likely governed by its intronic features that influence splice site-snRNA interaction strength.
Collapse
Affiliation(s)
- Drisya Vijayakumari
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | - Amit Kumar Sharma
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | | | - Rakesh Kumar
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | | | - Usha Vijayraghavan
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| |
Collapse
|
9
|
Sun M, Zhang Y, Wang Q, Wu C, Jiang C, Xu JR. The tri-snRNP specific protein FgSnu66 is functionally related to FgPrp4 kinase in Fusarium graminearum. Mol Microbiol 2018; 109:494-508. [PMID: 29923654 DOI: 10.1111/mmi.14005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2018] [Indexed: 11/28/2022]
Abstract
Deletion of Prp4, the only kinase among spliceosome components, is not lethal in Fusarium graminearum but Fgprp4 mutants have severe growth defects and produced spontaneous suppressors. To identify novel suppressor mutations of Fgprp4, we sequenced the genome of suppressor S37 that was normal in growth but only partially recovered for intron splicing and identified a tandem duplication of 9-aa in the tri-snRNP component FgSNU66. Among the 19 additional suppressor strains found to have mutations in FgSNU66 (out of 260 screened), five had the same 9-aa duplication event with S37 and another five had the R477H/C mutation. The rest had nonsense or G-to-D mutations in the C-terminal 27-aa (CT27) region of FgSnu66, which is absent in its yeast ortholog. Truncation of this C-terminal region reduced the interaction of FgSnu66 with FgHub1 but increased its interaction with FgPrp8 and FgPrp6. Five phosphorylation sites were identified in FgSnu66 by phosphoproteomic analysis and the T418A-S420A-S422A mutation was shown to reduce virulence. Overall, our results showed that mutations in FgSNU66 can suppress deletion of Fgprp4, which has not been reported in other organisms, and the C-terminal tail of FgSnu66 plays a role in its interaction with key tri-snRNP components during spliceosome activation.
Collapse
Affiliation(s)
- Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yimei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunlan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
10
|
Phosphorylation by Prp4 kinase releases the self-inhibition of FgPrp31 in Fusarium graminearum. Curr Genet 2018; 64:1261-1274. [PMID: 29671102 DOI: 10.1007/s00294-018-0838-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
Prp31 is one of the key tri-snRNP components essential for pre-mRNA splicing although its exact molecular function is not well studied. In a previous study, suppressor mutations were identified in the PRP31 ortholog in two spontaneous suppressors of Fgprp4 mutant deleted of the only kinase of the spliceosome in Fusarium graminearum. To further characterize the function of FgPrp31 and its relationship with FgPrp4 kinase, in this study we identified additional suppressor mutations in FgPrp31 and determined the suppressive effects of selected mutations. In total, 28 of the 35 suppressors had missense or nonsense mutations in the C terminus 465-594 aa (CT130) region of FgPrp31. The other 7 had missense or deletion mutations in the 7-64 aa region. The nonsense mutation at R464 in FgPRP31 resulted in the truncation of CT130 that contains all the putative Prp4 kinase-phosphorylation sites reported in humans, and partially rescued intron splicing defects of Fgprp4. The CT130 of FgPrp31 displayed self-inhibitory interaction with the N-terminal 1-463 (N463) region, which was reduced or abolished by the L532P, D534G, or G529D mutation in yeast two-hybrid assays. The N463 region, but not full-length FgPrp31, interacted with the N-terminal region of FgBrr2, one main U5 snRNP protein. The L532P mutation in FgPrp31 increased its interaction with FgBrr2. In contrast, suppressor mutations in FgPrp31 reduced its interaction with FgPrp6, another key component of tri-snRNP. Furthermore, we showed that FgPrp31 was phosphorylated by FgPrp4 in vivo. Site-directed mutagenesis analysis showed that phosphorylation at multiple sites in FgPrp31 is necessary to suppress Fgprp4, and S520 and S521 are important FgPrp4-phosphorylation sites. Overall, these results indicated that phosphorylation by FgPrp4 at multiple sites may release the self-inhibitory binding of FgPrp31 and affect its interaction with other components of tri-snRNP during spliceosome activation.
Collapse
|
11
|
Melangath G, Sen T, Kumar R, Bawa P, Srinivasan S, Vijayraghavan U. Functions for fission yeast splicing factors SpSlu7 and SpPrp18 in alternative splice-site choice and stress-specific regulated splicing. PLoS One 2017; 12:e0188159. [PMID: 29236736 PMCID: PMC5728500 DOI: 10.1371/journal.pone.0188159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 11/01/2017] [Indexed: 01/23/2023] Open
Abstract
Budding yeast spliceosomal factors ScSlu7 and ScPrp18 interact and mediate intron 3'ss choice during second step pre-mRNA splicing. The fission yeast genome with abundant multi-intronic transcripts, degenerate splice signals and SR proteins is an apt unicellular fungal model to deduce roles for core spliceosomal factors in alternative splice-site choice, intron retention and to study the cellular implications of regulated splicing. From our custom microarray data we deduce a stringent reproducible subset of S. pombe alternative events. We examined the role of factors SpSlu7 or SpPrp18 for these splice events and investigated the relationship to growth phase and stress. Wild-type log and stationary phase cells showed ats1+ exon 3 skipped and intron 3 retained transcripts. Interestingly the non-consensus 5'ss in ats1+ intron 3 caused SpSlu7 and SpPrp18 dependent intron retention. We validated the use of an alternative 5'ss in dtd1+ intron 1 and of an upstream alternative 3'ss in DUF3074 intron 1. The dtd1+ intron 1 non-canonical 5'ss yielded an alternative mRNA whose levels increased in stationary phase. Utilization of dtd1+ intron 1 sub-optimal 5' ss required functional SpPrp18 and SpSlu7 while compromise in SpSlu7 function alone hampered the selection of the DUF3074 intron 1 non canonical 3'ss. We analysed the relative abundance of these splice isoforms during mild thermal, oxidative and heavy metal stress and found stress-specific splice patterns for ats1+ and DUF3074 intron 1 some of which were SpSlu7 and SpPrp18 dependent. By studying ats1+ splice isoforms during compromised transcription elongation rates in wild-type, spslu7-2 and spprp18-5 mutant cells we found dynamic and intron context-specific effects in splice-site choice. Our work thus shows the combinatorial effects of splice site strength, core splicing factor functions and transcription elongation kinetics to dictate alternative splice patterns which in turn serve as an additional recourse of gene regulation in fission yeast.
Collapse
Affiliation(s)
- Geetha Melangath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Titash Sen
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rakesh Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Pushpinder Bawa
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Subha Srinivasan
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
12
|
Hálová M, Gahura O, Převorovský M, Cit Z, Novotný M, Valentová A, Abrhámová K, Půta F, Folk P. Nineteen complex-related factor Prp45 is required for the early stages of cotranscriptional spliceosome assembly. RNA (NEW YORK, N.Y.) 2017; 23:1512-1524. [PMID: 28701519 PMCID: PMC5602110 DOI: 10.1261/rna.061986.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/21/2017] [Indexed: 05/22/2023]
Abstract
Splicing in S. cerevisiae has been shown to proceed cotranscriptionally, but the nature of the coupling remains a subject of debate. Here, we examine the effect of nineteen complex-related splicing factor Prp45 (a homolog of SNW1/SKIP) on cotranscriptional splicing. RNA-sequencing and RT-qPCR showed elevated pre-mRNA levels but only limited reduction of spliced mRNAs in cells expressing C-terminally truncated Prp45, Prp45(1-169). Assays with a series of reporters containing the AMA1 intron with regulatable splicing confirmed decreased splicing efficiency and showed the leakage of unspliced RNAs in prp45(1-169) cells. We also measured pre-mRNA accumulation of the meiotic MER2 gene, which depends on the expression of Mer1 factor for splicing. prp45(1-169) cells accumulated approximately threefold higher levels of MER2 pre-mRNA than WT cells only when splicing was induced. To monitor cotranscriptional splicing, we determined the presence of early spliceosome assembly factors and snRNP complexes along the ECM33 and ACT1 genes. We found that prp45(1-169) hampered the cotranscriptional recruitment of U2 and, to a larger extent, U5 and NTC, while the U1 profile was unaffected. The recruitment of Prp45(1-169) was impaired similarly to U5 snRNP and NTC. Our results imply that Prp45 is required for timely formation of complex A, prior to stable physical association of U5/NTC with the emerging pre-mRNA substrate. We suggest that Prp45 facilitates conformational rearrangements and/or contacts that couple U1 snRNP-recognition to downstream assembly events.
Collapse
Affiliation(s)
- Martina Hálová
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Ondřej Gahura
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Zdeněk Cit
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Anna Valentová
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Kateřina Abrhámová
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - František Půta
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Petr Folk
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| |
Collapse
|
13
|
Nissen KE, Homer CM, Ryan CJ, Shales M, Krogan NJ, Patrick KL, Guthrie C. The histone variant H2A.Z promotes splicing of weak introns. Genes Dev 2017; 31:688-701. [PMID: 28446597 PMCID: PMC5411709 DOI: 10.1101/gad.295287.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/22/2017] [Indexed: 12/12/2022]
Abstract
In this study, Nissen et al. investigated the function of the highly conserved histone variant H2A.Z in pre-mRNA splicing using the intron-rich model yeast S. pombe. The findings suggest that H2A.Z occupancy promotes cotranscriptional splicing of suboptimal introns that may otherwise be discarded via proofreading ATPases. Multiple lines of evidence implicate chromatin in the regulation of premessenger RNA (pre-mRNA) splicing. However, the influence of chromatin factors on cotranscriptional splice site usage remains unclear. Here we investigated the function of the highly conserved histone variant H2A.Z in pre-mRNA splicing using the intron-rich model yeast Schizosaccharomyces pombe. Using epistatic miniarray profiles (EMAPs) to survey the genetic interaction landscape of the Swr1 nucleosome remodeling complex, which deposits H2A.Z, we uncovered evidence for functional interactions with components of the spliceosome. In support of these genetic connections, splicing-specific microarrays show that H2A.Z and the Swr1 ATPase are required during temperature stress for the efficient splicing of a subset of introns. Notably, affected introns are enriched for H2A.Z occupancy and more likely to contain nonconsensus splice sites. To test the significance of the latter correlation, we mutated the splice sites in an affected intron to consensus and found that this suppressed the requirement for H2A.Z in splicing of that intron. These data suggest that H2A.Z occupancy promotes cotranscriptional splicing of suboptimal introns that may otherwise be discarded via proofreading ATPases. Consistent with this model, we show that overexpression of splicing ATPase Prp16 suppresses both the growth and splicing defects seen in the absence of H2A.Z.
Collapse
Affiliation(s)
- Kelly E Nissen
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA
| | - Christina M Homer
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA
| | - Colm J Ryan
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco 94158, California, USA.,California Institute for Quantitative Biosciences (QB3), San Francisco 94158, California, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco 94158, California, USA.,California Institute for Quantitative Biosciences (QB3), San Francisco 94158, California, USA.,J. David Gladstone Institutes, San Francisco 94158, California, USA
| | - Kristin L Patrick
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas 77807, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA
| |
Collapse
|
14
|
Feng X, Xu J, Liang Y, Chen GL, Fan XW, Li YZ. A proteomic-based investigation of potential copper-responsive biomarkers: Proteins, conceptual networks, and metabolic pathways featuring Penicillium janthinellum from a heavy metal-polluted ecological niche. Microbiologyopen 2017; 6. [PMID: 28488414 PMCID: PMC5552966 DOI: 10.1002/mbo3.485] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/05/2017] [Accepted: 03/14/2017] [Indexed: 12/13/2022] Open
Abstract
Filamentous fungi‐copper (Cu) interactions are very important in the formation of natural ecosystems and the bioremediation of heavy metal pollution. However, important issues at the proteome level remain unclear. We compared six proteomes from Cu‐resistant wild‐type (WT) Penicillium janthinellum strain GXCR and a Cu‐sensitive mutant (EC‐6) under 0, 0.5, and 3 mmol/L Cu treatments using iTRAQ. A total of 495 known proteins were identified, and the following conclusions were drawn from the results: Cu tolerance depends on ATP generation and supply, which is relevant to glycolysis pathway activity; oxidative phosphorylation, the TCA cycle, gluconeogenesis, fatty acid synthesis, and metabolism are also affected by Cu; high Cu sensitivity is primarily due to an ATP energy deficit; among ATP generation pathways, Cu‐sensitive and Cu‐insensitive metabolic steps exist; gluconeogenesis pathway is crucial to the survival of fungi in Cu‐containing and sugar‐scarce environments; fungi change their proteomes via two routes (from ATP, ATP‐dependent RNA helicases (ADRHs), and ribosome biogenesis to proteasomes and from ATP, ADRHs to spliceosomes and/or stress‐adapted RNA degradosomes) to cope with changes in Cu concentrations; and unique routes exist through which fungi respond to high environmental Cu. Further, a general diagram of Cu‐responsive paths and a model theory of high Cu are proposed at the proteome level. Our work not only provides the potential protein biomarkers that indicate Cu pollution and targets metabolic steps for engineering Cu‐tolerant fungi during bioremediation but also presents clues for further insight into the heavy metal tolerance mechanisms of other eukaryotes.
Collapse
Affiliation(s)
- Xin Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jian Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Guo-Li Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
15
|
Vijaykrishna N, Melangath G, Kumar R, Khandelia P, Bawa P, Varadarajan R, Vijayraghavan U. The Fission Yeast Pre-mRNA-processing Factor 18 (prp18+) Has Intron-specific Splicing Functions with Links to G1-S Cell Cycle Progression. J Biol Chem 2016; 291:27387-27402. [PMID: 27875300 DOI: 10.1074/jbc.m116.751289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/11/2016] [Indexed: 12/24/2022] Open
Abstract
The fission yeast genome, which contains numerous short introns, is an apt model for studies on fungal splicing mechanisms and splicing by intron definition. Here we perform a domain analysis of the evolutionarily conserved Schizosaccharomyces pombe pre-mRNA-processing factor, SpPrp18. Our mutational and biophysical analyses of the C-terminal α-helical bundle reveal critical roles for the conserved region as well as helix five. We generate a novel conditional missense mutant, spprp18-5 To assess the role of SpPrp18, we performed global splicing analyses on cells depleted of prp18+ and the conditional spprp18-5 mutant, which show widespread but intron-specific defects. In the absence of functional SpPrp18, primer extension analyses on a tfIId+ intron 1-containing minitranscript show accumulated pre-mRNA, whereas the lariat intron-exon 2 splicing intermediate was undetectable. These phenotypes also occurred in cells lacking both SpPrp18 and SpDbr1 (lariat debranching enzyme), a genetic background suitable for detection of lariat RNAs. These data indicate a major precatalytic splicing arrest that is corroborated by the genetic interaction between spprp18-5 and spprp2-1, a mutant in the early acting U2AF59 protein. Interestingly, SpPrp18 depletion caused cell cycle arrest before S phase. The compromised splicing of transcripts coding for G1-S regulators, such as Res2, a transcription factor, and Skp1, a regulated proteolysis factor, are shown. The cumulative effects of SpPrp18-dependent intron splicing partly explain the G1 arrest upon the loss of SpPrp18. Our study using conditional depletion of spprp18+ and the spprp18-5 mutant uncovers an intron-specific splicing function and early spliceosomal interactions and suggests links with cell cycle progression.
Collapse
Affiliation(s)
| | | | - Rakesh Kumar
- From the Department of Microbiology and Cell Biology and
| | | | | | - Raghavan Varadarajan
- the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
16
|
Fair BJ, Pleiss JA. The power of fission: yeast as a tool for understanding complex splicing. Curr Genet 2016; 63:375-380. [PMID: 27628706 DOI: 10.1007/s00294-016-0647-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 01/12/2023]
Abstract
Pre-mRNA splicing is an essential component of eukaryotic gene expression. Many metazoans, including humans, regulate alternative splicing patterns to generate expansions of their proteome from a limited number of genes. Importantly, a considerable fraction of human disease causing mutations manifest themselves through altering the sequences that shape the splicing patterns of genes. Thus, understanding the mechanistic bases of this complex pathway will be an essential component of combating these diseases. Dating almost to the initial discovery of splicing, researchers have taken advantage of the genetic tractability of budding yeast to identify the components and decipher the mechanisms of splicing. However, budding yeast lacks the complex splicing machinery and alternative splicing patterns most relevant to humans. More recently, many researchers have turned their efforts to study the fission yeast, Schizosaccharomyces pombe, which has retained many features of complex splicing, including degenerate splice site sequences, the usage of exonic splicing enhancers, and SR proteins. Here, we review recent work using fission yeast genetics to examine pre-mRNA splicing, highlighting its promise for modeling the complex splicing seen in higher eukaryotes.
Collapse
Affiliation(s)
- Benjamin Jung Fair
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Jeffrey A Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
17
|
Gao X, Jin Q, Jiang C, Li Y, Li C, Liu H, Kang Z, Xu JR. FgPrp4 Kinase Is Important for Spliceosome B-Complex Activation and Splicing Efficiency in Fusarium graminearum. PLoS Genet 2016; 12:e1005973. [PMID: 27058959 PMCID: PMC4825928 DOI: 10.1371/journal.pgen.1005973] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/11/2016] [Indexed: 12/23/2022] Open
Abstract
PRP4 encodes the only kinase among the spliceosome components. Although it is an essential gene in the fission yeast and other eukaryotic organisms, the Fgprp4 mutant was viable in the wheat scab fungus Fusarium graminearum. Deletion of FgPRP4 did not block intron splicing but affected intron splicing efficiency in over 60% of the F. graminearum genes. The Fgprp4 mutant had severe growth defects and produced spontaneous suppressors that were recovered in growth rate. Suppressor mutations were identified in the PRP6, PRP31, BRR2, and PRP8 orthologs in nine suppressor strains by sequencing analysis with candidate tri-snRNP component genes. The Q86K mutation in FgMSL1 was identified by whole genome sequencing in suppressor mutant S3. Whereas two of the suppressor mutations in FgBrr2 and FgPrp8 were similar to those characterized in their orthologs in yeasts, suppressor mutations in Prp6 and Prp31 orthologs or FgMSL1 have not been reported. Interestingly, four and two suppressor mutations identified in FgPrp6 and FgPrp31, respectively, all are near the conserved Prp4-phosphorylation sites, suggesting that these mutations may have similar effects with phosphorylation by Prp4 kinase. In FgPrp31, the non-sense mutation at R464 resulted in the truncation of the C-terminal 130 aa region that contains all the conserved Prp4-phosphorylation sites. Deletion analysis showed that the N-terminal 310-aa rich in SR residues plays a critical role in the localization and functions of FgPrp4. We also conducted phosphoproteomics analysis with FgPrp4 and identified S289 as the phosphorylation site that is essential for its functions. These results indicated that FgPrp4 is critical for splicing efficiency but not essential for intron splicing, and FgPrp4 may regulate pre-mRNA splicing by phosphorylation of other components of the tri-snRNP although itself may be activated by phosphorylation at S289.
Collapse
Affiliation(s)
- Xuli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiaojun Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Yang Li
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Chaohui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
18
|
Eckert D, Andrée N, Razanau A, Zock-Emmenthal S, Lützelberger M, Plath S, Schmidt H, Guerra-Moreno A, Cozzuto L, Ayté J, Käufer NF. Prp4 Kinase Grants the License to Splice: Control of Weak Splice Sites during Spliceosome Activation. PLoS Genet 2016; 12:e1005768. [PMID: 26730850 PMCID: PMC4701394 DOI: 10.1371/journal.pgen.1005768] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/03/2015] [Indexed: 12/02/2022] Open
Abstract
The genome of the fission yeast Schizosaccharomyces pombe encodes 17 kinases that are essential for cell growth. These include the cell-cycle regulator Cdc2, as well as several kinases that coordinate cell growth, polarity, and morphogenesis during the cell cycle. In this study, we further characterized another of these essential kinases, Prp4, and showed that the splicing of many introns is dependent on Prp4 kinase activity. For detailed characterization, we chose the genes res1 and ppk8, each of which contains one intron of typical size and position. Splicing of the res1 intron was dependent on Prp4 kinase activity, whereas splicing of the ppk8 intron was not. Extensive mutational analyses of the 5’ splice site of both genes revealed that proper transient interaction with the 5’ end of snRNA U1 governs the dependence of splicing on Prp4 kinase activity. Proper transient interaction between the branch sequence and snRNA U2 was also important. Therefore, the Prp4 kinase is required for recognition and efficient splicing of introns displaying weak exon1/5’ splice sites and weak branch sequences. Prp4 is an essential protein kinase that is involved in the splicing of some introns. Using a conditional mutant of Prp4, we showed that a subset of genes, including several cell cycle–regulatory genes, are dependent on Prp4 for splicing. Furthermore, we could convert genes between Prp4-dependent and -independent states by introducing single-nucleotide mutations in the exon1/5’ splice sites and branch sequence of introns. This work shows that Prp4 activity is required for splicing surveillance in a subset of mRNAs.
Collapse
Affiliation(s)
- Daniela Eckert
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nicole Andrée
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Aleh Razanau
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | - Martin Lützelberger
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Susann Plath
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henning Schmidt
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angel Guerra-Moreno
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Luca Cozzuto
- CRG Bioinformatics Core, Centre de Regulació Genòmica (CRG), and Universitat Pompeu Fabra, Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (JA); (NFK)
| | - Norbert F. Käufer
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- * E-mail: (JA); (NFK)
| |
Collapse
|
19
|
Paths and determinants for Penicillium janthinellum to resist low and high copper. Sci Rep 2015; 5:10590. [PMID: 26265593 PMCID: PMC4642507 DOI: 10.1038/srep10590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/20/2015] [Indexed: 01/21/2023] Open
Abstract
Copper (Cu) tolerance was well understood in fungi yeasts but not in filamentous fungi. Filamentous fungi are eukaryotes but unlike eukaryotic fungi yeasts, which are a collection of various fungi that are maybe classified into different taxa but all characterized by growth as filamentous hyphae cells and with a complex morphology. The current knowledge of Cu resistance of filamentous fungi is still fragmental and therefore needs to be bridged. In this study, we characterized Cu resistance of Penicillium janthinellum strain GXCR and its Cu-resistance-decreasing mutants (EC-6 and UC-8), and conducted sequencing of a total of 6 transcriptomes from wild-type GXCR and mutant EC-6 grown under control and external Cu. Taken all the results together, Cu effects on the basal metabolism were directed to solute transport by two superfamilies of solute carrier and major facilitator, the buffering free CoA and Acyl-CoA pool in the peroxisome, F-type H(+)-transporting ATPases-based ATP production, V-type H(+)-transporting ATPases-based transmembrane transport, protein degradation, and alternative splicing of pre-mRNAs. Roles of enzymatic and non-enzymatic antioxidants in resistance to low and high Cu were defined. The backbone paths, signaling systems, and determinants that involve resistance of filamentous fungi to high Cu were determined, discussed and outlined in a model.
Collapse
|
20
|
Stepankiw N, Raghavan M, Fogarty EA, Grimson A, Pleiss JA. Widespread alternative and aberrant splicing revealed by lariat sequencing. Nucleic Acids Res 2015; 43:8488-501. [PMID: 26261211 PMCID: PMC4787815 DOI: 10.1093/nar/gkv763] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/15/2015] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing is an important and ancient feature of eukaryotic gene structure, the existence of which has likely facilitated eukaryotic proteome expansions. Here, we have used intron lariat sequencing to generate a comprehensive profile of splicing events in Schizosaccharomyces pombe, amongst the simplest organisms that possess mammalian-like splice site degeneracy. We reveal an unprecedented level of alternative splicing, including alternative splice site selection for over half of all annotated introns, hundreds of novel exon-skipping events, and thousands of novel introns. Moreover, the frequency of these events is far higher than previous estimates, with alternative splice sites on average activated at ∼3% the rate of canonical sites. Although a subset of alternative sites are conserved in related species, implying functional potential, the majority are not detectably conserved. Interestingly, the rate of aberrant splicing is inversely related to expression level, with lowly expressed genes more prone to erroneous splicing. Although we validate many events with RNAseq, the proportion of alternative splicing discovered with lariat sequencing is far greater, a difference we attribute to preferential decay of aberrantly spliced transcripts. Together, these data suggest the spliceosome possesses far lower fidelity than previously appreciated, highlighting the potential contributions of alternative splicing in generating novel gene structures.
Collapse
Affiliation(s)
- Nicholas Stepankiw
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Madhura Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jeffrey A Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Abstract
The pre-mRNA splicing reaction of eukaryotic cells has to be carried out extremely accurately, as failure to recognize the splice sites correctly causes serious disease. The small subunit of the U2AF heterodimer is essential for the determination of 3' splice sites in pre-mRNA splicing, and several single-residue mutations of the U2AF small subunit cause severe disorders such as myelodysplastic syndromes. However, the mechanism of RNA recognition is poorly understood. Here we solved the crystal structure of the U2AF small subunit (U2AF23) from fission yeast, consisting of an RNA recognition motif (RRM) domain flanked by two conserved CCCH-type zinc fingers (ZFs). The two ZFs are positioned side by side on the β sheet of the RRM domain. Further mutational analysis revealed that the ZFs bind cooperatively to the target RNA sequence, but the RRM domain acts simply as a scaffold to organize the ZFs and does not itself contact the RNA directly. This completely novel and unexpected mode of RNA-binding mechanism by the U2AF small subunit sheds light on splicing errors caused by mutations of this highly conserved protein.
Collapse
|
22
|
Characterization and in vivo functional analysis of the Schizosaccharomyces pombe ICLN gene. Mol Cell Biol 2013; 34:595-605. [PMID: 24298023 DOI: 10.1128/mcb.01407-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the early steps of snRNP biogenesis, the survival motor neuron (SMN) complex acts together with the methylosome, an entity formed by the pICln protein, WD45, and the PRMT5 methyltransferase. To expand our understanding of the functional relationship between pICln and SMN in vivo, we performed a genetic analysis of an uncharacterized Schizosaccharomyces pombe pICln homolog. Although not essential, the S. pombe ICln (SpICln) protein is important for optimal yeast cell growth. The human ICLN gene complements the Δicln slow-growth phenotype, demonstrating that the identified SpICln sequence is the bona fide human homolog. Consistent with the role of human pICln inferred from in vitro experiments, we found that the SpICln protein is required for optimal production of the spliceosomal snRNPs and for efficient splicing in vivo. Genetic interaction approaches further demonstrate that modulation of ICln activity is unable to compensate for growth defects of SMN-deficient cells. Using a genome-wide approach and reverse transcription (RT)-PCR validation tests, we also show that splicing is differentially altered in Δicln cells. Our data are consistent with the notion that splice site selection and spliceosome kinetics are highly dependent on the concentration of core spliceosomal components.
Collapse
|
23
|
Splicing functions and global dependency on fission yeast slu7 reveal diversity in spliceosome assembly. Mol Cell Biol 2013; 33:3125-36. [PMID: 23754748 DOI: 10.1128/mcb.00007-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multiple short introns in Schizosaccharomyces pombe genes with degenerate cis sequences and atypically positioned polypyrimidine tracts make an interesting model to investigate canonical and alternative roles for conserved splicing factors. Here we report functions and interactions of the S. pombe slu7(+) (spslu7(+)) gene product, known from Saccharomyces cerevisiae and human in vitro reactions to assemble into spliceosomes after the first catalytic reaction and to dictate 3' splice site choice during the second reaction. By using a missense mutant of this essential S. pombe factor, we detected a range of global splicing derangements that were validated in assays for the splicing status of diverse candidate introns. We ascribe widespread, intron-specific SpSlu7 functions and have deduced several features, including the branch nucleotide-to-3' splice site distance, intron length, and the impact of its A/U content at the 5' end on the intron's dependence on SpSlu7. The data imply dynamic substrate-splicing factor relationships in multiintron transcripts. Interestingly, the unexpected early splicing arrest in spslu7-2 revealed a role before catalysis. We detected a salt-stable association with U5 snRNP and observed genetic interactions with spprp1(+), a homolog of human U5-102k factor. These observations together point to an altered recruitment and dependence on SpSlu7, suggesting its role in facilitating transitions that promote catalysis, and highlight the diversity in spliceosome assembly.
Collapse
|
24
|
Chandra A, van Maldegem F, Andrews S, Neuberger MS, Rada C. Deficiency in spliceosome-associated factor CTNNBL1 does not affect ongoing cell cycling but delays exit from quiescence and results in embryonic lethality in mice. Cell Cycle 2013; 12:732-42. [PMID: 23343763 PMCID: PMC3610721 DOI: 10.4161/cc.23594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
CTNNBL1 is an armadillo-repeat protein that associates with the CDC5L/Prp19 complex of the spliceosome. Unlike the majority of spliceosomal proteins (and despite having no obvious homologs), CTNNBL1 is inessential for cell viability as revealed by studies in both vertebrate B cell lines and in fission yeast. Here, however, we show that ablation of CTNNBL1 in the mouse germline results in mid-gestation embryonic lethality but that lineage-specific CTNNBL1 ablation in early B cell precursors does not affect the production and abundance of mature B lymphocytes. However, CTNNBL1-deficient resting B lymphocytes show sluggish exit from quiescence on cell activation, although once entry into cycle has initiated, proliferation and differentiation in response to mitogenic stimuli continue largely unaffected. A similar sluggish exit from quiescence is also observed on reprovision of nutrients to nitrogen-starved CTNNBL1-deficient yeast. The results indicate that, whereas other RNA splicing-associated factors have been connected to cell cycle progression, CTNNBL1 plays no essential role in cycling cells but does fulfill an evolutionarily conserved function in helping cells to undergo efficient exit from quiescence following activation.
Collapse
Affiliation(s)
- Anita Chandra
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | |
Collapse
|
25
|
Mishra SK, Ammon T, Popowicz GM, Krajewski M, Nagel RJ, Ares M, Holak TA, Jentsch S. Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing. Nature 2011; 474:173-8. [PMID: 21614000 DOI: 10.1038/nature10143] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 04/20/2011] [Indexed: 11/09/2022]
Abstract
Alternative splicing of pre-messenger RNAs diversifies gene products in eukaryotes and is guided by factors that enable spliceosomes to recognize particular splice sites. Here we report that alternative splicing of Saccharomyces cerevisiae SRC1 pre-mRNA is promoted by the conserved ubiquitin-like protein Hub1. Structural and biochemical data show that Hub1 binds non-covalently to a conserved element termed HIND, which is present in the spliceosomal protein Snu66 in yeast and mammals, and Prp38 in plants. Hub1 binding mildly alters spliceosomal protein interactions and barely affects general splicing in S. cerevisiae. However, spliceosomes that lack Hub1, or are defective in Hub1-HIND interaction, cannot use certain non-canonical 5' splice sites and are defective in alternative SRC1 splicing. Hub1 confers alternative splicing not only when bound to HIND, but also when experimentally fused to Snu66, Prp38, or even the core splicing factor Prp8. Our study indicates a novel mechanism for splice site utilization that is guided by non-covalent modification of the spliceosome by an unconventional ubiquitin-like modifier.
Collapse
Affiliation(s)
- Shravan Kumar Mishra
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Lützelberger M, Bottner CA, Schwelnus W, Zock-Emmenthal S, Razanau A, Käufer NF. The N-terminus of Prp1 (Prp6/U5-102 K) is essential for spliceosome activation in vivo. Nucleic Acids Res 2009; 38:1610-22. [PMID: 20007600 PMCID: PMC2836577 DOI: 10.1093/nar/gkp1155] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The spliceosomal protein Prp1 (Prp6/U5-102 K) is necessary for the integrity of pre-catalytic spliceosomal complexes. We have identified a novel regulatory function for Prp1. Expression of mutations in the N-terminus of Prp1 leads to the accumulation of pre-catalytic spliceosomal complexes containing the five snRNAs U1, U2, U5 and U4/U6 and pre-mRNAs. The mutations in the N-terminus, which prevent splicing to occur, include in vitro and in vivo identified phosphorylation sites of Prp4 kinase. These sites are highly conserved in the human ortholog U5-102 K. The results presented here demonstrate that structural integrity of the N-terminus is required to mediate a splicing event, but is not necessary for the assembly of spliceosomes.
Collapse
Affiliation(s)
- Martin Lützelberger
- Institute of Genetics, University of Braunschweig TU, Spielmannstr. 7, 38106 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Catania F, Gao X, Scofield DG. Endogenous mechanisms for the origins of spliceosomal introns. J Hered 2009; 100:591-6. [PMID: 19635762 DOI: 10.1093/jhered/esp062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over 30 years since their discovery, the origin of spliceosomal introns remains uncertain. One nearly universally accepted hypothesis maintains that spliceosomal introns originated from self-splicing group-II introns that invaded the uninterrupted genes of the last eukaryotic common ancestor (LECA) and proliferated by "insertion" events. Although this is a possible explanation for the original presence of introns and splicing machinery, the emphasis on a high number of insertion events in the genome of the LECA neglects a considerable body of empirical evidence showing that spliceosomal introns can simply arise from coding or, more generally, nonintronic sequences within genes. After presenting a concise overview of some of the most common hypotheses and mechanisms for intron origin, we propose two further hypotheses that are broadly based on central cellular processes: 1) internal gene duplication and 2) the response to aberrant and fortuitously spliced transcripts. These two nonmutually exclusive hypotheses provide a powerful way to explain the establishment of spliceosomal introns in eukaryotes without invoking an exogenous source.
Collapse
Affiliation(s)
- Francesco Catania
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
29
|
|
30
|
Warnecke T, Parmley JL, Hurst LD. Finding exonic islands in a sea of non-coding sequence: splicing related constraints on protein composition and evolution are common in intron-rich genomes. Genome Biol 2008; 9:R29. [PMID: 18257921 PMCID: PMC2374712 DOI: 10.1186/gb-2008-9-2-r29] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/23/2007] [Accepted: 02/07/2008] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In mammals, splice-regulatory domains impose marked trends on the relative abundance of certain amino acids near exon-intron boundaries. Is this a mammalian particularity or symptomatic of exonic splicing regulation across taxa? Are such trends more common in species that a priori have a harder time identifying exon ends, that is, those with pre-mRNA rich in intronic sequence? We address these questions surveying exon composition in a sample of phylogenetically diverse genomes. RESULTS Biased amino acid usage near exon-intron boundaries is common throughout the metazoa but not restricted to the metazoa. There is extensive cross-species concordance as to which amino acids are affected, and reduced/elevated abundances are well predicted by knowledge of splice enhancers. Species expected to rely on exon definition for splicing, that is, those with a higher ratio of intronic to coding sequence, more introns per gene and longer introns, exhibit more amino acid skews. Notably, this includes the intron-rich basidiomycete Cryptococcus neoformans, which, unlike intron-poor ascomycetes (Schizosaccharomyces pombe, Saccharomyces cerevisiae), exhibits compositional biases reminiscent of the metazoa. Strikingly, 5 prime ends of nematode exons deviate radically from normality: amino acids strongly preferred near boundaries are strongly avoided in other species, and vice versa. This we suggest is a measure to avoid attracting trans-splicing machinery. CONCLUSION Constraints on amino acid composition near exon-intron boundaries are phylogenetically widespread and characteristic of species where exon localization should be problematic. That compositional biases accord with sequence preferences of splice-regulatory proteins and are absent in ascomycetes is consistent with selection on exonic splicing regulation.
Collapse
Affiliation(s)
- Tobias Warnecke
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | | | |
Collapse
|
31
|
Newo ANS, Lützelberger M, Bottner CA, Wehland J, Wissing J, Jänsch L, Käufer NF. Proteomic analysis of the U1 snRNP of Schizosaccharomyces pombe reveals three essential organism-specific proteins. Nucleic Acids Res 2007; 35:1391-401. [PMID: 17264129 PMCID: PMC1865046 DOI: 10.1093/nar/gkl1144] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Characterization of spliceosomal complexes in the fission yeast Schizosaccharomyces pombe revealed particles sedimenting in the range of 30-60S, exclusively containing U1 snRNA. Here, we report the tandem affinity purification (TAP) of U1-specific protein complexes. The components of the complexes were identified using (LC-MS/MS) mass spectrometry. The fission yeast U1 snRNP contains 16 proteins, including the 7 Sm snRNP core proteins. In both fission and budding yeast, the U1 snRNP contains 9 and 10 U1 specific proteins, respectively, whereas the U1 particle found in mammalian cells contains only 3. Among the U1-specific proteins in S. pombe, three are homolog to the mammalian and six to the budding yeast Saccharomyces cerevisiae U1-specific proteins, whereas three, called U1H, U1J and U1L, are proteins specific to S. pombe. Furthermore, we demonstrate that the homolog of U1-70K and the three proteins specific to S. pombe are essential for growth. We will discuss the differences between the U1 snRNPs with respect to the organism-specific proteins found in the two yeasts and the resulting effect it has on pre-mRNA splicing.
Collapse
Affiliation(s)
- Alain N. S. Newo
- Institute of Genetics, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany and Helmholtz Center for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Martin Lützelberger
- Institute of Genetics, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany and Helmholtz Center for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Claudia A. Bottner
- Institute of Genetics, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany and Helmholtz Center for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Jürgen Wehland
- Institute of Genetics, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany and Helmholtz Center for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Josef Wissing
- Institute of Genetics, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany and Helmholtz Center for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Lothar Jänsch
- Institute of Genetics, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany and Helmholtz Center for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Norbert F. Käufer
- Institute of Genetics, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany and Helmholtz Center for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
- *To whom correspondence should be addressed. +49 531 391 5774+49 531 391 5765
| |
Collapse
|
32
|
Haraguchi N, Andoh T, Frendewey D, Tani T. Mutations in the SF1-U2AF59-U2AF23 Complex Cause Exon Skipping in Schizosaccharomyces pombe. J Biol Chem 2007; 282:2221-8. [PMID: 17130122 DOI: 10.1074/jbc.m609430200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify genes involved in the mechanism to ensure ordered 5' to 3' exon joining in constitutively spliced pre-mRNAs, we screened for mutants that cause exon skipping in the fission yeast Schizosaccharomyces pombe using a reporter plasmid, which contains the ura4+ gene with the nda3 intron 1-exon 2-intron 2 sequence. The reporter plasmid was designed to produce the functional ura4+ mRNA, when the central nda3 exon is skipped during the splicing reaction. We mutagenized cells harboring the plasmid by UV irradiation and isolated 34 ura+ mutants that grew on minimal medium. Of those, eight mutants were found to be temperature sensitive (ts) for growth. Complementation analyses revealed that the ts mutants belong to three distinct complementation groups named ods (ordered splicing) 1, 2, and 3. RT-PCR analyses showed that products of exon skipping were actually generated in the ods mutants. We cloned the genes responsible for the ods mutations, and found that ods1+, ods2+, and ods3+ encode splicing factors Prp2p/U2AF59, U2AF23, and SF1, respectively, which form a SF1-U2AF59-U2AF23 complex involved in recognition of the branch-point and 3' splice site sequences in a pre-mRNA. We also showed that mutations in the SF1-U2AF59-U2AF23 binding sequences in the reporter plasmid result in exon skipping in wild-type S. pombe cells. In addition, drugs that decrease the rate of transcription elongation were found to suppress the exon skipping in the ods mutants. These results suggest that co-transcriptional recognition of a nascent pre-mRNA by the SF1-U2AF59-U2AF23 complex is essential for ordered exon joining in constitutive splicing in S. pombe.
Collapse
Affiliation(s)
- Noriko Haraguchi
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | | | | | | |
Collapse
|
33
|
Khalimonchuk O, Ott M, Funes S, Ostermann K, Rödel G, Herrmann JM. Sequential processing of a mitochondrial tandem protein: insights into protein import in Schizosaccharomyces pombe. EUKARYOTIC CELL 2006; 5:997-1006. [PMID: 16835444 PMCID: PMC1489288 DOI: 10.1128/ec.00092-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sequencing of the genome of Schizosaccharomyces pombe revealed the presence of a number of genes encoding tandem proteins, some of which are mitochondrial components. One of these proteins (pre-Rsm22-Cox11) consists of a fusion of Rsm22, a component of the mitochondrial ribosome, and Cox11, a factor required for copper insertion into cytochrome oxidase. Since in Saccharomyces cerevisiae, Cox11 is physically attached to the mitochondrial ribosome, it was suggested that the tandem organization of Rsm22-Cox11 is used to covalently tie the mitochondrial ribosome to Cox11 in S. pombe. We report here that pre-Rsm22-Cox11 is matured in two subsequent processing events. First, the mitochondrial presequence is removed. At a later stage of the import process, the Rsm22 and Cox11 domains are separated by cleavage of the mitochondrial processing peptidase at an internal processing site. In vivo data obtained using a tagged version of pre-Rsm22-Cox11 confirmed the proteolytic separation of Cox11 from the Rsm22 domain. Hence, the tandem organization of pre-Rsm22-Cox11 does not give rise to a persistent fusion protein but rather might be used to increase the import efficiency of Cox11 and/or to coordinate expression levels of Rsm22 and Cox11 in S. pombe.
Collapse
|
34
|
Noma KI, Cam HP, Maraia RJ, Grewal SIS. A role for TFIIIC transcription factor complex in genome organization. Cell 2006; 125:859-72. [PMID: 16751097 DOI: 10.1016/j.cell.2006.04.028] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/27/2006] [Accepted: 04/03/2006] [Indexed: 02/06/2023]
Abstract
Eukaryotic genome complexity necessitates boundary and insulator elements to partition genomic content into distinct domains. We show that inverted repeat (IR) boundary elements flanking the fission yeast mating-type heterochromatin domain contain B-box sequences, which prevent heterochromatin from spreading into neighboring euchromatic regions by recruiting transcription factor TFIIIC complex without RNA polymerase III (Pol III). Genome-wide analysis reveals TFIIIC with Pol III at all tRNA genes, many of which cluster at pericentromeric heterochromatin domain boundaries. However, a single tRNA(phe) gene with modest TFIIIC enrichment is insufficient to serve as boundary and requires RNAi-associated element to restrain heterochromatin spreading. Remarkably, we found TFIIIC localization without Pol III at many sites located between divergent promoters. These sites appear to act as chromosome-organizing clamps by tethering distant loci to the nuclear periphery, at which TFIIIC is concentrated into several distinct bodies. Our analyses uncover a general genome organization mechanism involving conserved TFIIIC complex.
Collapse
Affiliation(s)
- Ken-ichi Noma
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
35
|
Bottner CA, Schmidt H, Vogel S, Michele M, Käufer NF. Multiple genetic and biochemical interactions of Brr2, Prp8, Prp31, Prp1 and Prp4 kinase suggest a function in the control of the activation of spliceosomes in Schizosaccharomyces pombe. Curr Genet 2005; 48:151-61. [PMID: 16133344 DOI: 10.1007/s00294-005-0013-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 07/05/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022]
Abstract
The spliceosomal component Prp1 (U5-102 kD) is found in Schizosaccharomyces pombe, a physiological substrate of Prp4 kinase. Here, we identify, spp41-1, a previously isolated extragenic suppressor of Prp4 kinase. The gene encodes an ATP-dependent RNA helicase homologous to the splicing factor Brr2 of Saccharomyces cerevisiae and U5-200 kD of mammalia. The suppressor allele, spp41-1, interacts genetically with alleles of prp1. We show that Prp1 and Brr2 are complexed in vivo with spliceosomal particles containing the five snRNAs U1, U2, U5, and base-paired U4/U6. Prp1 was found exclusively in small ribonucleoprotein particle (snRNP) complexes sedimenting in the range of 30S-60S, whereas Brr2 was also found sedimenting lower than 30S and free of snRNAs. Moreover, we find that the splicing factor Prp31 is complexed with Prp1 in the same spliceosomal particles containing the five snRNAs. These data indicate that in fission yeast spliceosomal particles larger than 30S exist, which can be considered as pre-catalytic spliceosomes. In addition, we show that S. pombe cells lacking Prp1 still contain these large pre-catalytic spliceosomal particles associated with Prp31. These data are consistent with the notion that in fission yeast phosphorylation of Prp1 by Prp4 kinase is involved in the activation of pre-catalytic spliceosomes.
Collapse
Affiliation(s)
- Claudia A Bottner
- Institute of Genetics, Technical University of Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
36
|
Shaw BD, Upadhyay S. Aspergillus nidulans swoK encodes an RNA binding protein that is important for cell polarity. Fungal Genet Biol 2005; 42:862-72. [PMID: 16098776 DOI: 10.1016/j.fgb.2005.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/05/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
The Aspergillus nidulans swoK1 mutant is defective in polarity maintenance when grown at restrictive temperature (38 degrees C). Upon germination, the mutant extends a primary germ tube that swells to an enlarged, non-uniform cell with pronounced wall thickenings. The mutant is fully restored to wild-type growth when transformed with a plasmid containing the AN5802.2 ORF as designated in The Broad Institute A. nidulans sequence database. Genetic mapping places swoK in the same region of chromosome I, as that occupied by An5802.2 on the physical map. swoK is predicted to encode a protein that contains an N-terminal RRM (RNA Recognition Motif) and a highly repetitive C-terminus with numerous RD/DR and RS/SR dipeptides. We hypothesize that SwoK participates in one of the known functions of SR proteins (those that contain SR/RS repeats): mRNA maturation through the spliceosome and or transport of mRNAs out of the nucleus to sites of protein translation.
Collapse
Affiliation(s)
- Brian D Shaw
- Program for the Biology of Filamentous Fungi, Department of Plant Pathology and Microbiology, Texas A and M University, 2132 TAMU, College Station, TX 77843, USA.
| | | |
Collapse
|
37
|
Abstract
In higher eukaryotes, introns are spliced out of protein-coding mRNAs by the spliceosome, a massive complex comprising five non-coding RNAs (ncRNAs) and about 200 proteins. By comparing the differences between spliceosomal proteins from many basal eukaryotic lineages, it is possible to infer properties of the splicing system in the last common ancestor of extant eukaryotes, the eukaryotic ancestor. We begin with the hypothesis that, similar to intron length (that appears to have increased in multicellular eukaryotes), the spliceosome has increased in complexity throughout eukaryotic evolution. However, examination of the distribution of spliceosomal components indicates that not only was a spliceosome present in the eukaryotic ancestor but it also contained most of the key components found in today's eukaryotes. All the small nuclear ribonucleoproteins (snRNPs) protein components are likely to have been present, as well as many splicing-related proteins. Both major and trans-splicing are likely to have been present, and the spliceosome had already formed links with other cellular processes such as transcription and capping. However, there is no evidence as yet to suggest that minor (U12-dependent) splicing was present in the eukaryotic ancestor. Although the last common ancestor of extant eukaryotes appears to show much of the molecular complexity seen today, we do not, from this work, infer anything of the properties of the earlier "first eukaryote."
Collapse
Affiliation(s)
- Lesley Collins
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand.
| | | |
Collapse
|
38
|
Webb CJ, Romfo CM, van Heeckeren WJ, Wise JA. Exonic splicing enhancers in fission yeast: functional conservation demonstrates an early evolutionary origin. Genes Dev 2005; 19:242-54. [PMID: 15625190 PMCID: PMC545887 DOI: 10.1101/gad.1265905] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 11/11/2004] [Indexed: 12/17/2022]
Abstract
Discrete sequence elements known as exonic splicing enhancers (ESEs) have been shown to influence both the efficiency of splicing and the profile of mature mRNAs in multicellular eukaryotes. While the existence of ESEs has not been demonstrated previously in unicellular eukaryotes, the factors known to recognize these elements and mediate their communication with the core splicing machinery are conserved and essential in the fission yeast Schizosaccharomyces pombe. Here, we provide evidence that ESE function is conserved through evolution by demonstrating that three exonic splicing enhancers derived from vertebrates (chicken ASLV, mouse IgM, and human cTNT) promote splicing of two distinct S. pombe pre-messenger RNAs (pre-mRNAs). Second, as in extracts from mammalian cells, ESE function in S. pombe is compromised by mutations and increased distance from the 3'-splice site. Third, three-hybrid analyses indicate that the essential SR (serine/arginine-rich) protein Srp2p, but not the dispensable Srp1p, binds specifically to both native and heterologous purine-rich elements; thus, Srp2p is the likely mediator of ESE function in fission yeast. Finally, we have identified five natural purine-rich elements from S. pombe that promote splicing of our reporter pre-mRNAs. Taken together, these results provide strong evidence that the genesis of ESE-mediated splicing occurred early in eukaryotic evolution.
Collapse
Affiliation(s)
- Christopher J Webb
- School of Medicine, Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Alternative splicing creates transcriptome diversification, possibly leading to speciation. A large fraction of the protein-coding genes of multicellular organisms are alternatively spliced, although no regulated splicing has been detected in unicellular eukaryotes such as yeasts. A comparative analysis of unicellular and multicellular eukaryotic 5' splice sites has revealed important differences - the plasticity of the 5' splice sites of multicellular eukaryotes means that these sites can be used in both constitutive and alternative splicing, and for the regulation of the inclusion/skipping ratio in alternative splicing. So, alternative splicing might have originated as a result of relaxation of the 5' splice site recognition in organisms that originally could support only constitutive splicing.
Collapse
Affiliation(s)
- Gil Ast
- Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
40
|
Current awareness on yeast. Yeast 2003. [DOI: 10.1002/yea.947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|